System Evaluation of Disk Allocation Methods for Cartesian Product Files by using Error Correcting Codes

Shigeichi Hirasawa + (Cyber University, Japan)
Tomohiko Saito (Aoyama Gakuin University, Japan)
Hiroshige Inazumi (Aoyama Gakuin University, Japan), and
Toshiyasu Matsushima (Waseda University, Japan)

+ e-mail: shigeichi_hirasawa@cyber-u.ac.jp
Out line of this paper

I. Introduction
II. Preliminaries
III. Disk Allocation of Cartesian Product Files
IV. Evaluation of Disk Allocation Methods
V. Numerical Results
VI. Concluding Remarks
 - Rate-Distortion Theory
 - Flexible and Elastic
2. System Evaluation Model [4][5][6][7]
3. Error Correcting Codes [11][12]
A. Outline of Rate-Distortion Theory

The rate-distortion function: \(R = R(D) \) (1)

\(R \): rate
\(D \): distortion

The \(R = R(D) \) is usually a convex downward and non-increasing function of \(D \). The function \(R = R(D) \) suggests us that we can decrease the rate drastically with tolerating a slightly growth of the distortion by proper source encoding.
II. Preliminaries

B. System Evaluation Model

The system evaluation model:
\[r = r(d, n) \]

\(r \): the cost of the system \((= R/R_{\text{max}}) \)
\(d \): degradation of the performance of the system \((d=D/D_{\text{max}}) \)
\(n \): the system size

[Definition 1]

Flexible

\[r_A = r_A(d_A, n) \]
\[r_B = r_B(d_B, n) \]

\[d_A = d_B \]

Elastic

\[r = r(d, n_1) \]
\[\frac{\partial r(d, n)}{\partial d} < 0 \]
\[n_1 < n_2 \]
II. Preliminaries

Effective Elastic

\[r(d,n) \]

\[d \text{ : given} \]

\[\frac{\partial^2 r(d,n)}{\partial n^2} > 0 \]

0

n

Trivial Elastic

\[r \]

\[n = 10 \]

\[n = 500 \]

n

Marginal Elastic

\[D(0) \]

\[\frac{\partial D(0)}{\partial n} < 0 \]

0

n

\[d \]

0

1
II. Preliminaries

[Example] Distributed Database in Computer networks [6][7]

\(r \) : the redundancy of the file duplication
\(d \) : the access cost to the files
\(n \) : the number of the nodes

Network Topology

(a) Bus

(b) Ring

(C) Star

\(\mu_i \) : node \(i \)
II. Preliminaries

(a), (b) Elastic

(c) Trivial Elastic
A. Cartesian Product Files

q-ary product files

Attributes: X_1, X_2, \ldots, X_n

Domain: Z_1, Z_2, \ldots, Z_n

Actual attribute value: $z_i \in Z_i = \{0, 1, \ldots, q-1\}$

Path shows a bucket $(0, 0, 2, \ldots, 1)$
B. Partial Match Request (PMR)

\[Q = (X_1 = z_1, X_2 = z_2, \ldots, X_n = z_n) \] \hspace{1cm} (3)

where \(z_i \in \{0, 1, \ldots, q-1, *\} \)

\(* : \) don’t care \((* = \{0, 1, \ldots, q-1\}) \)

[Example 1] (PMR)

\(q=2, n=4, G=4 \) \((G: \) the number of the files)

<table>
<thead>
<tr>
<th>(X_1(\text{Sex}))</th>
<th>(X_2(\text{Income ($/year))})</th>
<th>(X_3(\text{Married}))</th>
<th>(X_4(\text{Age}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Male)</td>
<td>0 (100K (\leq))</td>
<td>0 (No)</td>
<td>0 ((< 20))</td>
</tr>
<tr>
<td>1 (Female)</td>
<td>1 ((< 100K))</td>
<td>1 (Yes)</td>
<td>1 (20 (\geq))</td>
</tr>
</tbody>
</table>

\[Q = (0, 0, *, 1) \] \hspace{1cm} (4) \hspace{1cm} \rightarrow \hspace{1cm} (0, 0, 0, 1) \hspace{1cm} \text{and} \hspace{1cm} (0, 0, 1, 1) \hspace{1cm}

\(* : \) married or unmarried
III. Disk Allocation of Cartesian Product Files

(a) Binary allocation

\[Q = (0, 0, *, 1) \rightarrow \]

serial

(b) Distributed allocation

\[Q = (0, 0, *, 1) \rightarrow \]

parallel
III. Disk Allocation of Cartesian Product Files

G: the number of the files, $(G_{\text{max}} = q^n)$

[Example 2] (Standard Array) Distributed Allocation Method of Product Files by Error Correcting Codes

$q=2, n=6, G=8,$ and $q^n=64$

\[
\begin{align*}
\text{PRM } \mathbf{Q} &= (0, *, 1, *, 0, 0) \quad (5) \rightarrow \\
\mathbf{Q} &= (0, 0, 1, 0, 0, 0) \\
&\quad (0, 0, 1, 1, 0, 0) \\
&\quad (0, 1, 1, 0, 0, 0) \quad \text{and} \\
&\quad (0, 1, 1, 1, 0, 0)
\end{align*}
\]
Standard array of the binary $(6, 3, 3)$ code

<table>
<thead>
<tr>
<th>disk #</th>
<th>bucket #</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000000 100110 010101 110011 001111 101001 011010 111100</td>
</tr>
<tr>
<td>1</td>
<td>100000 000110 110101 010011 101111 001001 110101 011100</td>
</tr>
<tr>
<td>2</td>
<td>010000 110110 000101 100011 011111 111001 001010 101100</td>
</tr>
<tr>
<td>3</td>
<td>001000 101110 011101 111011 000111 100001 010010 110100</td>
</tr>
<tr>
<td>4</td>
<td>000100 100010 010001 110111 001011 101101 011110 111000</td>
</tr>
<tr>
<td>5</td>
<td>000010 100100 010111 110001 001101 101011 011000 111100</td>
</tr>
<tr>
<td>6</td>
<td>000001 100111 010100 110010 001110 101000 011011 111110</td>
</tr>
<tr>
<td>7</td>
<td>000011 100101 010110 110000 001100 101010 011001 111111</td>
</tr>
</tbody>
</table>

\[\mathbf{Q} = (0, *, 1, *, 0, 0) \]

\[\Rightarrow \mathbf{Q} = (001000), (001100), (011000), (011100) \]
III. Disk Allocation of Cartesian Product Files

Coding Theory gives:

[Lemma 1] [1] Let the number of the * occurred in Q be w ($0 \leq w \leq n$). If $0 \leq w < d$, then a disk allocation method based on a q-ary (n, k, d) code is the optimum.

Lemma 1 states that the q-ary (n, k, d) code can give the method for accessing the q^w buckets in parallel at once, if $w < d$.

J : the number of access times to disks for $S(Q)$
w : the number of * occurred in Q
$0 \leq w < d \implies$ accessible to q^w buckets by $J=1$ (in parallel)
IV. Evaluation of Disk Allocation Method

A. Formulation of Disk Allocation Methods

J: the number of access times to disks for $S(Q)$

ρ: evaluation loss

$S(Q)$: the set of buckets required for Q

$S(C)$: the set of accessible by using code C

[Definition 2] The evaluation loss ρ is given by:

$$\rho = \begin{cases}
0, & J = 1 \ (S(Q) \subseteq S(C)), \\
1, & J \geq 2 \ (S(Q) \supset S(C)),
\end{cases}$$

(6)

$J = 1 \Rightarrow S(Q) \subseteq S(C)$

$J \geq 2 \Rightarrow S(Q) \supset S(C)$
IV. Evaluation of Disk Allocation Method

A. Formulation of Disk Allocation Methods

\(\nu \) : access performance
\[\nu = 0 \times \Pr(J = 1) + 1 \times \Pr(J \geq 2) \]
\[= \Pr(J \geq 2) \] \hspace{1cm} (7)

\(g \) : cost
\(G \): the number of disks
\[G = q^{n-k} \] \hspace{1cm} (8)
\[G_{\text{max}} = q^n \]
\[g = G / G_{\text{max}} = q^{-k} \] \hspace{1cm} (9)
IV. Evaluation of Disk Allocation Method

B. Equal Probability Case (EEP Codes C)

\[p : \text{the probability of the occurrence of } *, \ p=\Pr(*), \]

\[\Pr(J \geq 2) = \Pr(w \geq d) \quad (10) \]

i. e,

\[\nu \leq \Pr(w \geq d) \]
IV. Evaluation of Disk Allocation Method

C. Unequal Probability Case (UEP Codes C_u)

The minimum distance $d_1 > d_2$

The number of * w_1 w_2

Pr(*) p_1 p_2

Fig. 1: 2-split UEP code $C_u[(n_1,n_2), M, (d_1,d_2)]$

Pr($z_i = *$)=p_1 for $i = 1, 2, \ldots, n_1$
Pr($z_j = *$)=p_2 for $j = n_1+1, n_1+2, \ldots, n_2$

$n=n_1+n_2$
[Lemma 2] The \((n_1,n_2), M, (d_1,d_2)\) UEP code can access with \(J=1\) as follows:

- When \(w_1=0\), then \(J=1\) if \(w_2<d_2\).
- When \(w_1\geq0\), then \(J=1\) if \(w_1+w_2<d_1\).

1. \(w_1=0, w_2<d_2 \Rightarrow J=1\)
2. \(w_1\geq1, w_1+w_2<d_1 \Rightarrow J=1\)
IV. Evaluation of Disk Allocation Method

[Theorem 1] Suppose a set of buckets $S(C_u)$ accessible to the disks with $J=1$ using the code C_u. Then the probability of the access time with $J \geq 2$ satisfies:

$$\Pr(J \geq 2) \leq \Pr(w_1 = 0) \Pr(w_2 \geq d_2) + \sum_{s=1}^{n_1} \Pr(w_1 = s) \Pr(w_2 \geq d_1 - s)$$

(11)

where w_1 (w_2) is the number of the * in the 1st part (2nd part) of the UEP code C_u. □
IV. Evaluation of Disk Allocation Method

D. Calculation for Evaluation

Access performance: \(v = v(n, d) \)

\[\delta = d / n \quad \text{vs.} \quad R = k / n \]

Cost: \(g = g(k, n) \)

1. LP upper bound [11]: \(M \leq f(n_1, n_2, d_1, d_2) \)
2. Gilbert lower bounds: \(d / n \geq H^{-1}(1-R) \quad (n \to \infty) \)
3. Actual parameters of BCH codes, RS codes

where \(R = k/n \), or \(R = (1/n) \log M \), \(M \) is the number of code words
V. Numerical Results

A. Binomial Distribution (BD)

\[\Pr(\ast) : \text{Binomial Distribution} \]

(1) Cases by EEP codes \(C \)

Fig. 2: LP upper bound by Codes \(C (p=0.5) \)

(Elastic)

Fig. 3: LP upper bound and Gilbert lower bound by codes \(C (p=0.3 \text{ and } n=10) \)

(Existence of the codes)
V. Numerical Results

A. Binomial Distribution (BD)

(2) Case by UEP codes C_u

![Fig. 4: LP upper bound by codes C_u](image1)

$(p_1=0.5$ and $p_2=0.25)$

(Elastic)

![Fig. 5: LP upper bound by codes C and C_u](image2)

$(p_1=0.5$ and $p_2=0.25)$

(Elastic, and Flexible)
V. Numerical Results

A. Binomial Distribution (BD)

(2) Cases by UEP codes C_u

Fig. 6: LP upper bound by codes C ($p=0.5$, $\nu=0.2$, and $\nu=0.5$) and codes C_u ($p_1=0.5$, $p_2=0.25$, $\nu=0.2$, and $\nu=0.5$)

(Effective Elastic)
V. Numerical Results

B. Chernoff Bound (CB)

(1) Case by EEP codes C

Fig. 7: LP upper bound by codes C ($p=0.3$)

(Elastic)

Fig. 8: Binomial distribution and Chernoff bound by codes C using LP upper bound ($p=0.3$, and $n=10$)

(Difference of distributions)
V. Numerical Results

B. Chernoff Bound (CB)

(2) Case by UEP codes C_u

Fig. 9: Binomial distribution and Chernoff bound by codes C_u

((p_1=0.5, p_2=0.25 , and n=0.5)

(Difference of distributions)
V. Numerical Results

C. Discussion

From Fig. 2-9

(1) Elastic: Fig. 2, and 5

Effective Elastic: Fig. 6
V. Numerical Results

C. Discussion

(2) **Flexible**: Fig. 5

![Fig. 5 LP upper bound by codes C and Cu (p₁=0.5 and p₂=0.25)](image)

Fig. 5 LP upper bound by codes C and C_u ($p_1=0.5$ and $p_2=0.25$)
V. Numerical Results

C. Discussion

(3) Bounding Techniques

LP upper bound and Gilbert lower bound: Fig. 3

Fig. 3 LP upper bound and Gilbert lower bound by codes $C (p=0.3$ and $n=10)$
V. Numerical Results

C. Discussion

(3) Bounding Techniques

Binominal distribution and Chernoff bound: Figs. 8 & 9

Fig. 8: Binomial distribution and Chernoff bound by codes C using LP upper bound ($p=0.3$, and $n=10$)

Fig. 9: Binomial distribution and Chernoff bound by codes C_u ($p_1=0.5$, $p_2=0.25$, and $n=0.5$)
VI. Concluding Remarks

(1) $g = g(\nu, n)$ is
 (i) an elastic function
 (ii) an effective elastic function
 (iii) a flexible function for UEP codes compared to EEP codes

The (i) states that tolerating a small access performance degradation in ν introduces a drastic saving of the cost g, and

 (ii) this property can be effectively enhanced by the number of attribute n becomes large. We can also remark that

 (iii) the UEP codes C_u are useful for the disk allocation methods if the probabilities of occurrences of the * are not uniform.
VI. Concluding Remarks

(2) Generalization:
LP upper bounds: 2-split codes \rightarrow L-split codes ($L>3$)
\[
q=2 \rightarrow q \geq 3 \quad (q: \text{power of a prime})
\]

(3) Further research
If we find $g = F(v, n)$ by Chernoff bound, then we can discuss to show analytically whether the system has effective elastic or not.