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Existence and uniqueness of viscosity solutions of an integro-differential equation
arising in option pricing”*

Hitoshi Ishii T and Alexandre Roch *

Abstract. We prove the existence and uniqueness of the viscosity solution of an integro-differential equa-
tion (IDE) arising in the pricing of American-style multi-asset options in a multivariate Ornstein-
Uhlenbeck-type stochastic volatility model. We prove an extended version of the maximum principle
of Crandall and Ishii [Differential Integral Equations 3 (1990)], and use it to prove the comparison
theorem.
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1. Introduction. Option prices can often be characterized as the solutions of an associated
partial differential equation (PDE). Black and Scholes [9] model the stock price as a geometric
Brownian motion and relate the price of a European-style option to a parabolic PDE with
constant coefficients. One common extension of this model that has been proposed in the
literature is to make the volatility of the stock price a stochastic process. In the continuous
case, one can consider a stochastic volatility of the form:

d
W~ V¥aB}
t

dY; = B(Y3)dt + n(Y;)dB2,

where S is the stock price, and B! and B? are two correlated Brownian motions. For instance,
Heston [18] proposes to take 7 as the square-root function, whereas Hull and White [19] take
n of the form n(y) = £y, £ > 0. The (discounted) option price u can then be shown to be a
solution to a PDE of the form

ou 1 Ou ou 1 0%u 9%u 1 282u
5 + Yo, 5(?/)% ~ Y52 PV Yn(y) 020y 577(?4) o 0,

with p the correlation coefficient between the two Brownian motions, and x the log of S. The
existence and uniqueness of solutions to this PDE do not follow from classical theory which
typically assumes stronger regularity of the coefficients. Ekstrom, and Tysk [14] give weaker
conditions on the coefficients of the associated stochastic differential equations and boundary
conditions of the PDE that insure that the option price is the unique solution of the associated
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2 HITOSHI ISHII AND ALEXANDRE ROCH

PDE. Heath and Schweizer [17] provide other sufficient conditions to a more general class of
PDEs used in financial modelling that go beyond standard PDE results.

In their seminal paper, Barndorff-Nielsen and Shephard [5] introduced continuous-time
non-Gaussian Ornstein-Uhlenbeck-type processes to model stochastic volatility with jumps.
The model is now widely used in financial mathematics due to its ability to capture stylized
features of financial time series such as heavy-tailed distribution, long-range dependence and
negative correlation between volatility and asset prices. In this paper, we study the existence
and uniqueness of viscosity solutions of an integro-differential equation arising in the pricing
of options in a multivariate version of this model.

The stochastic volatility model of Barndorff-Nielsen and Shephard [5] has been extensively
studied in the literature. Benth et al. [8] solve a classical portfolio optimization problem in this
setting with the use of the Hamilton-Jacobi-Bellman differential equation associated to this
control problem. Nicolato and Vernados [26] obtain probabilistic representations of European-
type option prices with structure preserving martingale measures. Benth et al. [7] use these
non-Gaussian Ornstein-Uhlenbeck-type processes to model electricity prices and provide op-
tion pricing formulas based on Fourier transforms. Pigorsch and Stelzer [29], [30] provide a
multivariate extension of the non-Gaussian Ornstein-Uhlenbeck-type volatility processes of
[5]. Muhle-Karbe et al. [25] use Fourier methods to compute prices of multi-asset options in
this multivariate extension with leverage. We revisit this option pricing problem for the case
of American-style multi-asset options in this multivariate stochastic volatility setting from
the perspective of viscosity solutions of integro-differential equations. Viscosity solutions have
been used extensively in the mathematical finance literature and allow the use of numerical
methods to compute prices and solutions to control problems in many financial models. In
the option pricing case, notable early uses of viscosity solutions include the nonlinear Black-
Scholes equation of Barles and Soner [3], and the utility indifference equations of Davis et al.
[13] that both arise in markets with transaction costs. Cont and Voltchkova [10] provide a
rigorous treatment of the existence and uniqueness of viscosity solutions of the option pricing
integro-differential equations in exponential Lévy models.

On a filtered probability space (€2, F, (F:)e>0,P) is defined a d-dimensional Brownian
motion B and an Sjl'—valued Lévy process Z, independent of B, with Lévy measure v taking
values in S} \ {0}. The Lévy process Z satisfies Z, — Z, € S, for all 0 < s < t. It is commonly
referred to as a matrix subordinator and satisfies fS;(HzH A 1v(dz) < oo (cf. [4, Proposition
3.1]). The multivariate non-Gaussian Ornstein-Uhlenbeck-type volatility model ([6], [29], [30])
is defined as follows. Consider d risky assets for which the discounted prices are given under
a structure preserving risk-neutral measure (cf. [26]) by the following stochastic processes:

; d
ds; ;
R o
t j=1
(1.1) dY, = (AY, + Y, A*)dt + dZ,,

in which r : S] — My(R) satisfies r(y)r(y)* = y for all y € S}. Here, My(R) denotes
the set of d x d real matrices and Sjl' is the set of positive semi-definite d X d matrices.
Different factorizations r are possible, but [6, Proposition 2.2] shows that it does not affect
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VISCOSITY SOLUTION OF AN IDE FOR OPTION PRICING 3

the distribution of (S,Y). We take r(y) as the square-root of y, i.e. the unique symmetric
positive semi-definite matrix that satisfies r(y)? = y. We refer to Y as the variance process.
It satisfies Y; € Sj for all t > 0.

We further assume that for some constant A > 1, the measure v satisfies

(12) L e+ 1a1w(a) < .

d
As noted above, the integrability of the function |z| is not really an assumption since the
process Z is a subordinator. According to [4, Lemma 3.1], the process Z has the following
representation in terms of its associated Poisson random measure IV:

dZy = bodt —|—/ ZN(dt,dz)
sS4
in which by € S}. Due to (1.2), dZ; = (bo + fS;. zy(dz))dt + fS; zN(dt,dz) with N(dt,dz) =
N(dt,dz) — v(dz)dt, the compensated jump martingale measure of N. Consider the change
of variable X} = log(S?). Then,
d
dX} = "ry(Y)dB] — Ly/idt (i < d).

j=1

In the vectorial notation, this can be written as

(1.3) dX; = r(Y;)dB, — 37 (Yy)dt,

where 7(Y) denotes the d-dimensional vector (Y;!'1,...,Y44).

We consider a general American-style derivative product on multiple assets with payoff
function h : R¢ — R and maturity 7. For example, the payoff of an index put option is of the
form

h(z) = max{K — Zwi exp(z;),0},

for some K,w; > 0, i < d. In probabilistic terms, for each initial state (z,y), the price of the
option is given by the following stopping time problem:
(1.4) sup Er(XIY ) YY, T).

TE€TT
In the above expression, 77 is the set of stopping times 7 with value less or equal to T, Y is
the process given by (1.1) with Yy = y and X*¥ is the process defined by (1.3) with X5 =«
and h is a general payoff function on R% x Sj x [0,T7].

Let Qr = R? x S: x [0,T), and Qp = R? x S:{ x [0,T], the closure of Q7. Until the
end of section 6, we are mostly concerned with the case where h is a bounded and Lipschitz
continuous function on @ and, in the last section, we generalize our results to the case where
h is a continuous function on Q; having a polynomial growth'.

! Although, the polynomial growth assumption on h excludes the case of call options, it is well known
that for non-dividend paying assets, American call option prices are equal to their European counterpart. For
practical purposes, we can therefore approximate ug arbitrarily well by a sequence of functions which are unique
solutions of the IDE continuous function on Q..
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4 HITOSHI ISHII AND ALEXANDRE ROCH

To investigate this problem, we introduce the value function ug on Q:

(1.5) up(z,y,t) = sup ER(XZY.YY t+ 1) for (z,y,t) € Qp_y,
TETT_t

where Tr_; is the set of all stopping times 7 such that 0 < 7 < T —t.
Our goal is to show that the following integro-differential equation has a unique viscosity
solution given by wg, the price of the option of (1.5):

(1.6) min {Mu,u —h} =0 on Qr

with terminal condition u(x,y,T) = h(z,y,T) for (z,y) € R? x S}. In the above equation,

0
=——¢— Lo —
Mg i= =56~ Lo~ Jo,
and the operators L and J are given by

L(b(l’, yat) = %(ya D?Cqﬁ(x,y,t»—%(ﬂ(y), Dm¢($7yvt)> + <Ay + yA* + b(), Dy¢(x7y7t)>7
J6(w,0.6) = [ (@ly+ 20) = o, y,1)) v(da)

Sg

In terms of PDE theory, (1.6) is a kind of obstacle problem with obstacle h.
We are concerned with viscosity solutions of (1.6) on @Qp having at most a polynomial
growth of order x > 0, that is, functions f : Q7 — R satisfying

[f(2,y, )|

sup < o0
@yneQr (1+ [z[+yhs

The space of such functions f is denoted by V.. With a slight abuse of notation, we sometimes
write f € V, for f: Qp — R if its restriction to Q7 is in V.

The main mathematical difficulty is the comparison principle. In the univariate case, Roch
[31] showed the uniqueness of the solution under the additional assumption that u(z,0,t) =
h(x). However, this is generally a restrictive condition, and it is not satisfied in most finan-
cial applications. Pham [28] obtains a comparison principle for a related integro-differential
equation of a stochastic control problem in which the second-order coefficient is of the form
o(z,t;a)o(x,t;)* with o globally Lipschitz in z. The lack of this Lipschitz condition, as a
function of (x,y), in the present case makes the problem more challenging mathematically. In
particular, to give a rigorous proof of the comparison principle we present a straightforward
extension of the maximum principle for semicontinuous functions of Crandall and Ishii [11].
There have already been substantial contributions (see [22, 2] among others) to the maximum
principle for semicontinuous functions, which can be applied to integro-differential equations.

As mentioned above, the main difficulty in the proof of the comparison theorem comes
from the lack of the standard Lipschitz condition on the coefficient 3 of the second-order
term in the PDE (the first term of operator L). Precisely, the coefficient y is factorized as
Y= (\/@2 and ,/y is not Lipschitz continuous on S;. To deal with this difficulty, we make a
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VISCOSITY SOLUTION OF AN IDE FOR OPTION PRICING 5

clear distinction of the two variables z and y and take advantage of the form (y, D2u) of the
second-order term, where the coefficient y does not depend on zx.

In section 2 and section 3, we prove that ug is a continuous viscosity solution of (1.6). In
section 4, we present a new version of the maximum principle, and in section 5 the solution
is shown to be unique by proving the comparison principle for viscosity solutions of (1.6).

Throughout the paper, we adopt the following notation. For A, B € M;(R), A* denotes the
transpose of A, Tr(A) is the trace of A, (A, B) = Tr(AB*) is the inner product, |A| = \/(A4, A)
is the associated norm and |A| = max,cga ¢|—1 (A€, §) is the operator norm. A remark is that if

A€Sgand p;, i =1,...,d, are the eigenvalues of A4, then |A| = />, u? and |A| = max; |u;].

Hence, |A| < |A| < Vd|A| for A € S For vectors z,y € R%, (x,y) = a*y. USC(U) and
LSC(U) denote the sets of upper semicontinuous and lower semicontinuous functions on a set
U.

2. Continuity of the solution. We begin with the continuity of the function ug. For this,
we need the following lemma.

Lemma 2.1. Let (z,y) € RYxS} and 7,7" € Tr such that 7 < 7/ < 7+¢€ for some constant
€ > 0. There exists a constant C > 0, independent of x,y, T, 7', €, such that

E sup [YY|* <C(1+ |y,
0<s<T

E sup |[XPY < C(1+ 2|+ Jy]),
0<s<T

E sup [V Y| <C(1+[y[) e,
7<s<7’

E sup [X;¥ - X7V < C(1+ |y[)Ve.
7<s<7’

Proof. In this proof, C is a positive constant that changes from line to line, but only
depends on T, A, v, |A], by and d.

Since Zr — Zs € S}, we deduce that |Zr| > |Z,| and hence Vd|Zr| > |Z| for all
0 < s <T. Indeed, we have for any unit vector £ € R%,

(Z18,8) = (2:£,8) + ((Zr — Z,)8,€) = (Zs€,6),

which yields the above inequality. By [32, Theorem 25.3], we have E |Z7|* < C for some
constant C' > 0 and hence,

(2.1) E sup |Z|* <C forany 0<s<T.
0<s<T
We know from (1.1) that for any 7 < s < T,
S
YV Y = / (AYY + YYAVdu + Zs — Z,
T

u

- / (A(YY — YY) + (VY — YY)A")du + (s — 7)(AYY + YYA*) + Z, — 7,
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and moreover,

S
vy -y <cC (HYTyHA + sup |2~ Z;|* +/ I — YTy”AdU> -
7<t<T T

By Gronwall’s inequality,

(2.2)

[Y¢ =YY < CYZI*+ sup |Z— Ze|*)(s —7) forallT <s<T,
T<t<T

which, with choice 7 = 0 and (2.1), implies

E Sup VY <o+ |yl
0<s<

Hence, from (2.2),

E sup [YY-YY|* <C(1+]yl)e

Now, by Burkholder’s inequality,

E sup [X2Y* <C[|z]* +E sup
0<s<T

A

+ E sup
0<s<T

T<s<7’
s
/ (YY) du
0

0<s<T

IA

( T A
C<1+]$|A+E / ||Yuy||du>>
(

/ F(Y2)dB,
0
A T )\/2
C \x|)‘—i—E y(Y3)\du> +E</ TrYf/du) )
0

<Cl1+[e+E (Sup IIYy||k> < O+ Jz] + JyD™

Next, observe that

k) ) 1
E sup XY - XY <3E sup

+ E sup
T<s<7’

T<s<7/ T<s<7’

S
/ (YY) du

/ Y2 |du

!

< CE

also by Burkholder’s inequality. Consequently,

E sup |[XJY - XPY

S
/ r(Y2)dB,

+CE / Te(YY)du

)

T<s<7/ T<s<7/

<O+ Jyhve.

<CE sup |VY|(+ =) +C\/E(T’—T) sup [V

T<u<lTt’

Proposition 2.2. Assume that the function h is bounded and Lipschitz continuous on Q.
The value function uy of (1.4) is continuous on Qr, belongs to Vo and the terminal condition

UO(:I:)y?T) =

h(x,y,T) is satisfied. Furthermore, ug > h on Q.

This manuscript is for review purposes only.
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VISCOSITY SOLUTION OF AN IDE FOR OPTION PRICING 7

Proof. We start by noting that, by definition (1.4), ug is bounded on Q, that is, ug € Vo,
that uo(z,y,T) = h(z,y,T) is satisfied and that ug > h on Q. Next, we show the continuity
of ug with respect to (x,y), uniformly in ¢. Joint continuity will then follow once it is shown
that ug(z,y,t') = uo(x,y,t) as t’ — ¢, for all (z,y).

Let z,2' € R, y,y/ € ST, Az :=2'— 2, Ay :=y —y and Myy = fo —r(Yy))dB
so that

t
Y -y =yt [ (A6 ¥+ (07 - YA ds,
0
t
X7V - XY =Ar — é/ (VY —YY¥)ds + MY
0
The former yields together with Gronwall’s inequality

[ =Yl < Clay

for some constant C' > 0. It is well-known (see e.g. [33, Eq. (3.2)]) that |r(y1) — r(y2)|? <
Vd|yr — yo| for all y1,y2 € S} Therefore,

T T
EIMYY[2 < B ( | - r(l@%u?ds) < CE ( | - Ys’yuds) < Clay.
0 0

From the Lipschitz condition of h, we find that

[uo !, /1) — wo(w, 5, )] < € sup B|XEW - xz

+ 1YY - v2)
TETT ¢

< C(|aal + Ayl + sup E|MEY))

TETT ¢
< C(|Az| + |Ay| + V]Ay]).

We now show continuity with respect to time for fixed (z,y). Let 0 <t < < T. Take
7 € Tr— and define 7/ = 7 A (T — t'). Then, note that 7/ € Tp_y and 7/ <7 <7+t —t, and
compute

Eh(XZY, YVt + ) =EnXV Y5 ¢ + 1)+ E (MX2Y, Y t+7) — (XYY, + 1))

) 7/7
Suo(:v Y, 1 —l—E‘h Xxy Y?J t_|_7) h(X:,’y,YTZ{,t/—l— /)‘
Suowy )+ B sup  [R(XPYYY 4 s) XS YL 7).
’SSST'th’ft

From this inequality and the fact that uo(x,y,t") < uo(x,y,t), we readily find that
|'LLO(IIZ‘,y,t)—U0(CU,y,t/)’ <CE sup (|X§7y_Xf’7y‘+ ”Y:?y_YT/”—i_‘tl_ﬂ—i_|S_T,‘)
T/ <s<T'+t/'—t

<O+ [yVE —tv (' =P

by Lemma 2.1. ]
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8 HITOSHI ISHII AND ALEXANDRE ROCH

3. Viscosity Solutions. Our notion of viscosity solution depends on the constant A > 1
in the integrability condition (1.2).

Lemma 3.1. Let u € Vy, ¢ € CH(Qr) and (z,y,t) € Qr. Assume that u — ¢ attains a
global minimum at (z,y,t) € Qr. Then the function z — u(x,y+z,t)—u(z,y,t) (respectively,
2z oz, y+ z,t) — d(x,y,t)) is bounded from below (from above) by a function on SZ{ which
1s integrable with respect to v.

A main consequence of the above lemma is that the integrals Ju(z,y,t) € RU{+oo} and
Jo(x,y,t) € RU{—oo} make sense as extended real numbers.

We remark that, in the above lemma, if, instead, u — ¢ attains a global maximum at
(z,y,t), then the conclusion is: the function z — w(z,y + 2,t) — u(x,y,t) (respectively,
z— ¢(x,y+ 2,t) — ¢(z,y,t)) is bounded from above (from below) by an integrable function
on K with respect to v. To see this, we simply observe that —(u—¢) attains a global minimum
at (z,y,t) and apply the lemma above to —u and —¢.

Proof. By the Cl-regularity of ¢, there is a constant C; > 0 such that for any z € S;r, if
|z] <1, then

(31) |¢)(5L‘,y+2,t)—¢($,y,t)| SC’1”Z”

Since (x,y,t) is a minimum point of u — ¢, we have for all z € ST,

(’LL - ¢)($7y + 2, t) = (u - ¢)($7yvt)a

which reads

(3.2) u(r,y +2,t) —u(z,y,t) > ¢(z,y + 2,t) — d(z,y,1).
Since u € V), we have
(3.3) (@, y + 2, t) — u(z,y, )] < Ca(1+ [21") + |ulz,y, )| < Cs(1+ |2]*)

for all z € S:{ and some positive constants Cy, C3. Combining the last two inequalities yields
¢,y + 2,t) — d(z,y,t) < C3(1 4 |z|*) forall z €S,
From this and (3.1), we get for all z € ST,

Cule if 2] < 1,

5 + ;t - 9 7t S
¢(x,y+ 2,t) — oz, y,t) {03(14_”2”>‘) otherwise.

If f: Sjl' — R is the function given by the right side of the above inequality, then f is integrable
with respect to v and ¢(z,y + z,t) — ¢(z,y,t) < f(z) for all z € S].
Similarly, we find by (3.1), (3.2) and (3.3) that for all z € S7,

u(@,y +z,t) —u(z,y,t) > max{p(z,y + 2,t) — $(x,y, 1), =C3(1 + | 2[*)}

_ [-ail if o] < 1,
—C3(1+|2z|*) otherwise,

which shows that u(x,y + z,t) — u(z,y,t) > —f(z) for all z € S}, where —f is integrable on
S:{ with respect to v. |
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VISCOSITY SOLUTION OF AN IDE FOR OPTION PRICING 9

In the above proof and in what follows, it is important to see that, for any ¢ € C'(Q7)
and (z,y,t) € Qr, the function z — ¢(z,y + 2,t) — ¢(x,y,t) is integrable with v on every
compact subset of Sg. Moreover, if ¢ € V), then the function z — ¢(z,y + 2,t) — ¢(x,y,t) is
integrable on S;‘ with v.

The definition of viscosity solutions of (1.6) is as follows:

Definition 3.2. Let u € LSC(Qr) NV (respectively, uw € USC(Qr) N Vy). We call u a
viscosity supersolution (subsolution) of (1.6) if

(3.4) min {Meo(z,y,t),u(z,y,t) — h(xz,y,t)} > 0(<L0),

whenever ¢ € C*(Qr) and u — ¢ attains a global minimum (mazimum) at (x,y,t) € Qr.

It is convenient to state the viscosity property pointwise: given a point (z,y,t) € Qr, we
say that u is a viscosity supersolution (subsolution) of (1.6) at (x,y,t) if the conditions in the
above definition are satisfied for the fixed (z,y,t).

We remark that in the above definition of viscosity supersolutions, the left side of (3.4)
takes a finite value owing to Lemma 3.1. On the other hand, in the definition of viscosity
subsolutions, the left side of (3.4) takes a finite value or the value —oo (see the remark after
Lemma 3.1).

Fix 6 € Qr and k > 0. In view of the integro-differential character of (1.6), we introduce
the function space Wy(6) as the set of functions ¢ € C(Qr) such that ¢ € V, and ¢ is a
C%function in a neighborhood of §. We say that a sequence {¢;} C W,(0) converges to
¢ € Wi(0) if {¢;} converges to ¢ in C(Qr) and in C*(K) for some neighborhood K of 8, and
|¢j| < g on Qr for all j € N and some g € V.. Note that if ¢ € W, (), then ¢ € W, (() for all
¢ in a neighborhood of . Similarly, if {¢;} converges to ¢ € Wy (0), then {¢;} converges to
¢ in W, (C) for all ¢ in a neighborhood of 6.

Lemma 3.3. Let € Qr, 0 < k < X, ¢ € Wi(0), {¢j}jen C Wi(8) and {6;}en C Q.
Assume that limj_ 0; = 6 and {¢;}jen converges to ¢ in W, (6). Then

lim Mg;(0;) = Mo(6).
Jj—o0
Notice that W () C V for all € Q7 and that M¢;(6;) makes sense in the above lemma
when j is large enough.

Proof. For some small r > 0, we have the C*-convergence of {¢;} to ¢ on the set B,.(6),
where B,.(0) is the ball in Q7 of radius r centered at §. We write § = (x,y,t) and §; =
(zj,y5,t;) for j € N. For j € N sufficiently large, we have 0; € B, /5(f) and for some C' > 0
uniform in j,

19j (25,95 + 2, t5) — 5(j,95,t5)| < Clz| if 2] <r/2.

Since |¢;| < g on Qr for some g € V,;, we may assume that for all j € N and z € Sj,

A
|0j (5,95 + 2,t5) — @5(x, 95, t5) < gz, y5 + 2,85)| + |g(z5, 95, 5] < C(L+ [2])"

It is clear that the functions z — ¢;(x;,y; + 2,t;) — ¢j(x;,y;,t;) converge to the function
z = ¢z, y + 2,t) — ¢(x,y,t) pointwise as j — co. The dominated convergence theorem thus
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10 HITOSHI ISHII AND ALEXANDRE ROCH

assures that

Tim J6;(6;) = Jo(0).

Furthermore, the C%-convergence of {¢;} on B,(8) implies readily that

Jim (—=0k(0;) — L;(05)) = —0,¢(0) — L(0),
which completes the proof. |
Lemma 3.4. Let 0 € Qr, 0 < k < X and u € LSC(Qr) NV, (respectively, u € USC(Qr) N
Vi.). Then u is a viscosity supersolution (subsolution) of (1.6) at 0 if and only if

(3.5) min {Ma(0),u(0) — h(0)} >0 (< 0),

whenever ¢ € Wy (6) and uw — ¢ attains a global minimum (mazximum) at 6 € Qr.

Proof. We treat only the case of viscosity supersolution, and leave it to the reader to check
the other case. We first prove the ”if” part. Let u be a supersolution of (1.6) at § € Q7. Let
¢ € W (0) be such that u — ¢ has a global minimum at 6. Noting that M (¢ + C') = M1 for
any ¥ € C?(Qr) NV, and C € R and adding a constant to ¢ if necessary, we may assume
that u(0) = ¢(0), a consequence of which is that u > ¢ on Q7. Let B,.(f) C Q7 be the ball of
radius r > 0 with center at 6 such that ¢ € C*(B,(0)). Select a cut-off function f € C*(Qr)
sothat 0 < f < 1on Qr, f=0on B,)5(f) and f =1 on Qr \ B.(0). For each j € N, we
select ¢; € C*(Qr) so that |¢ — ¢;| < 1/ on Qr. Setting 1; = f(¢; — 771 + (1 — f)o, we
note that v; € C2(QT), p—j < Y; < ¢ on Qr and ; = ¢ on BT/Q(G)- Hence, we find
that u — 1; attains a global minimum at  and also that the sequence {1} converges to ¢ in
Wi (6). Since w is a viscosity supersolution of (1.6) at 6, we have

min{Mup;(8), u(9) — h(6)} > 0,

which yields thanks to Lemma 3.3 that min{ M (0),u(0) — h(#)} > 0.

Next, we prove the "only if” part and thus assume that u satisfies the condition given in
Lemma 3.4. Fix any ¢ € C3(Qr). Assume that u — ¢ has a global minimum at 6. As before
we may assume that u > ¢ on Q7 and u(f) = ¢(#). We choose a function g € C(Qr) N Vi
so that u > g on Qp. Define ¢ € C(Qr) by ¥ = ¢ V g (the pointwise maximum of ¢ and g).
Note that u > 1 > g on Qr, ¢ = v in a neighborhood of 6 and u(f) = ¥ (6). In particular,
1 € Wy (0) and min(u — ¢) = (u — 1)(#). Hence, by assumption, we have

min{ M (0), (u— h)(6)} > 0.
It is clear that —0,y(0) — Ly (0) = —0:p(0) — Lp(0). Since ¢ > ¢ on Qr and ¥ (0) = ¢(0), if

we write § = (z,y,t), we have for all z € S},

¢($ay + th) - ¢($7yat) > gb(ﬂj‘,y + Z,t) - ¢($ayat)7

which implies that Ji(0) > J¢(#). Thus, we have min{Me(0), (v — h)(6)} > 0, which
concludes the proof. |
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We remark that the above lemma is valid with W, (6) N C3(Qr) in place of W,(6). To
check this, we say temporarily that C[f, W, (6)] (respectively, C[0, W,(0) N C*(Q7)]) holds
if the condition (condition with Wy () N C*(Qr) in place of W, (6)) stated after ”only if’
in Lemma 3.4 holds. Since W, () N C3(Qr) C W,(0) it is clear that C[f, W, (6)] implies
C[09, W, (0) N C*(Q7)], while the proof of ”if part” in the above proof shows that C[f, W, (6) N
C?(Qr)] implies C[0, W,(6)]. Notice that C*(Q7) N V. = C2(Qr) N W, (9) for all 6 € Q7.

We introduce F' : ST x (R? x My(R) x R) x S,, = R (with n :=d + d? + 1) defined by

F(y,p, X) = —P3— %<y7 Xl> + %<7r(y)7pl> - <Ay + yA* + bOap2>)

where

X X .

and
p = (p1,p2,p3), with p1 € Ry, p2 € My(R),p3 € R.

With this notation, we have

_8t¢(x7y7t) - L(z)(xayat) = F(y,D(Z)($,y7t),D2(Z)(£II,y,t)).

Definition 3.2 is equivalent to

Definition 3.5. Any u € LSC(Q7) N Vy (respectively, v € USC(Qr) N Vy) is a viscosity
supersolution (subsolution) of (1.6) if

(36) min {F(y7p7 X) - Ju(xayvt)7 (u - h)((lf,y,t)} >0 (S O),

whenever (p, X) € J>~u(z,y,t) ((p, X) € J*Vu(z,y,1)), (z,y,t) € Qr.

Proof of equivalence of definitions. Assume that u € LSC(Qr) NV, is a viscosity super-
solution of (1.6) in the sense of Definition 3.5. Let 6 = (z,%,t) € Q7 and ¢ € C*(Qr), and
assume that u — ¢ takes a global minimum at #. As in the proof of Lemma 3.1, we have for
all z € S:{,

u(z,y + z,t) —u(@,y,t) > ¢(z,y + 2,1) — d(x,y,1),
and hence, in view of Lemma 3.1,

Ju(f) > Jp(0).
Note as well that (D¢(0), D?¢(0)) € J* u(x,y,t). Thus, by Definition 3.5 we have

0 < min{F(y, D(0), D*6(6)) — Ju(0), (u— h)(0)}
< min{—0,6(6) — L(8) — J6(9), (u — h)(6)},

which ensures that u is a viscosity supersolution of (1.6) in the sense of Definition 3.2.

Next, we assume that u € LSC(Q7) NV, is a viscosity supersolution of (1.6) in the sense
of Definition 3.2. Let § = (z,y,t) € Qr and (p,X) € J> u(f). As is well-known, there
exists a function ¢ € C?(Qr) such that D¢ () = p, D?¢(6) = X, and u — ¢ attains a global
minimum at . We may assume that the minimum value is 0, so that u(f) = ¢(¢) and u > ¢

This manuscript is for review purposes only.



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

346

347
348
349

350

\V]

w

%)

W w

w
[SL I BN B BN, |
(LR o

w
(=)

w
(@
3

360
361
362
363

12 HITOSHI ISHII AND ALEXANDRE ROCH

on Q. Since u € LSC(Q7) NV, there exists an increasing sequence {1;}jen € C(Qr) N V)
such that u > ¢; on Q7 and lim;_,+ ¥;(¢) = u(¢) for all { € Q7. Set ¢; = ¢ V 15, and note
that v — ¢; has a global minimum at 6, ¢ = ¢; in a neighborhood of 6, which may depend on
J, and ¥ € Wy(6). By Lemma 3.4, we find that min{Me;(#), (u — h)(8)} > 0. Obviously, we
have F(y, D¢;(0), D*¢;(0)) = F(y,p, X). Since the function z — ¢1(z,y + 2,t) — ¢1(x,y, 1)
is integrable with nu and ¢;(z,y + z,t) — ¢j(x,y,t) T u(z,y + 2,t) — u(x,y,t) as j — oo, we
find by the monotone convergence theorem that, as j — oo, J¢;(6) 1T J¢(6). Hence, we get
min{Me(0), (u — h)(0)} > 0. Thus, we conclude that u is a viscosity supersolution of (1.6)
in the sense of Definition 3.5.

The proof concerning the subsolution property parallels the above, which we skip here. H

The existence proof of the viscosity solution is based on the following observation which
states that it is never optimal to stop the process before the Snell envelope u(Xs, Ys, t — s)
reaches the payoff h(Xj, Ys, t + s). If existence of a solution of IDE (1.6) is the only goal, one
may apply Perron’s method. However, we want to characterize ug as a solution to this IDE.

Proposition 3.6. Assume that the function h is bounded and Lipschitz continuous on Q.
Let (x9,y0,t0) € Qr. Define the process U by Uy = ug(X; "%, Y,° to + t) and set

(3.7) 70 =1nf{0 <t <T —ty: Uy = h(X/", Y to+ 1)}

Then:
(1) U is a supermartingale on [0,T — to].
(ii) U is a martingale on [0, 1o].

Note that, since ug(z,y,T) = h(x,y,T) by Proposition 2.2, 7y in the above proposition is
less or equal to T — tg.

Proof. Since (X,Y) satisfies the strong Markov property, it follows from [16, Theorem 3.4]
that the process U is identified with the Snell envelope of h(Xy, Yy, to + t), given by

esssup E(h(X,, Y, to + 7)| F2).
T>t
Note that (X,Y’) is quasi-left-continuous since it is the solution of an SDE with respect to
a Lévy process. Therefore, h(X;,Y:, to + t) is quasi-left-continuous since h is continuous.
By [21, Proposition 1.2.26], quasi-left-continuity is equivalent to left-continuity over stopping
times since (X,Y) is cadlag. We can therefore apply [27, Theorem 2.2] (see also [24, 15]), and
conclude that (i) and (ii) are valid. [ |

We can now state and prove the main theorem of the section.

Theorem 3.7. Assume that the function h is bounded and Lipschitz continuous on Q.
Then, ug is a viscosity solution of IDE (1.6).

Proof. By Proposition 2.2, ug is continuous and in Vo C V). Let 8y = (xo,y0,%0) € Q1
and ¢ € VxNC?(Qr). We check the viscosity super and subsolution property of ug at 6y based
on Lemma 3.4 together with the remark next to it.

Let 9 be the stopping time defined by (3.7),

m=inf{0 <t < T —to: | Xy — wo| + |Y2 — yol +1¢] > 6},

This manuscript is for review purposes only.
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365 and T = 19 A 1. To simplify the notation, we write X; = X;*% and Y; = Y. We claim that

366 (3.8) Eo(X:, Y to+7) — ¢(00) = — E/ Mp(Xs,Ys—, to + s)ds.
0
367 We note that

dy; — (AYt+YtA*+bo+/
Stlzl<1

- / ZN(dz, dt) + / 2N (dz,dt).
SNETS! s7.lz1>1

369 Then, by [1, Theorem 4.4.7], it follows that

zl/(dz)) dt
368

370 o(X7,Yr to +7) — ¢(6b)

371 — [ (00X Yot ) + HDRO(X. Vit — ). i)

372 i — HDpp(Xs, Yo to + 5),m(Yso))

373 +(Dyd(Xs, Yoot + ), AV, + Yo A" + by — / . zu(dz)>>ds
Sy lzl<1

374 + [ <Dx¢(Xs, Y, .to+ s)),r(YS,)>st

375 + i /Sd+7"Z"21(¢(XS,Y'S +z,t0+s) — ¢(Xs, Ys—, to + 8))N(dz, ds)

(6(Xs, You + 2,t0 + 8) — (X, s, b0 + 5)) N (dz, ds)

Tlzl<1

376 +

T~ o

N 2] (¢(XS71/;— + Z’t(] + S) - ¢(Xsa Y;—ato + S)
q1z1<1

— (Dyd(Xe, Yo to +5),2) )(d2)ds,

335
©00

380 Since the two terms involving the integrators dBs and N (dz,ds) above are martingales, we
381 get after cancellation of terms involving [q+ l2]<1 zv(dz),
d I

382 Eo(X,,Yr,to + 1) — ¢(6o)

383 =E (/ (04 + L) (X5, Ys, to + s)ds
0
384 + / /+(¢(X5,Ys_ + 2, t0+s) — (X5, Ys—, to + s))v(dz)ds
0 Js}
385 + / / (p(Xs, Yo 4 2, tg + 5) — ¢(Xs, Yo_, to + 5))N(dz,ds) | ,
386 0 JS7,[2]>1

387 and, again by the martingale property of the last term in the above,

388 E¢(X77 YT7 to + 7—) - ¢(90) = - E/ M¢(st 1/377 to + S)d87
0
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14 HITOSHI ISHII AND ALEXANDRE ROCH

proving (3.8).

(1) Subsolution property:

To prove the subsolution property, assume that ug — ¢ attains a global maximum at 6y
and ug(f) = 6y. We argue by contradiction to prove that min{Me¢(6y), (up — h)(6p)} < 0. We
thus suppose that M¢(6y) > 0 and (ug — h)(6y) > 0, and will get a contradiction.

Note by Lemma 3.3 that the function M¢ is continuous at 6y. Then, there exists 0 < § <
T — tg such that

(3.9) Mep(0) > for all 6 € Bs(6y),

where Bs(0y) = {0 = (z,y,t) € Qr : |xr — zo| + |y — wo| + |t — to| < d}. Since the process
(Xs, Ys, to + s) is cadlag, we have 79 > 0 and 71 > 0 a.s. and also we find by (ii) of Proposi-
tion 3.6 and Doob’s optional sampling theorem that ug(Xsar, Ysnr, to+SAT)) is a martingale.

Note that (X, Y;—,to+1t) € Bs(0y) for all t € [0, 7] a.s., that, by the martingale property,

uo(6o) = Euo(Xr, Yr,to +7),

and that up(0) — up(6o) < ¢(0) — ¢(6p) for all 6 € Qr. Hence, we deduce by (3.8) and (3.9)
that
0= EUO(XT, Y . to+ 7') — UO(QQ)

S E ¢(XT7 YT» tO + T) - QS(HO)
= —E/ Mp(Xs,Ys—,tg+ s)ds < —0ET.
0

This implies that 7 = 0 a.s. On the other hand, we have 7 > 0 a.s. by definition. This is a
contradiction, which proves that ug is a viscosity solution of (1.6) at 6.

(2) Supersolution property:

To prove the supersolution property, assume that uy — ¢ attains a global minimum at 6
and ug(6p) = ¢(fo). As noted before, we know by the definition of ug that ug > h in Q.

We note by (i) of Proposition 3.6 and Doob’s optional sampling theorem that for any
T € T4y,

(3.10) UO(GQ) > EUO(XT,Y:,-,to—I-T).

It remains to prove that M¢(6p) > 0. To show this, we suppose to the contrary that
Mop(6p) < 0. We follow the argument above for the supersolution property, and we choose a
constant 0 < 6 < T — tg so that M¢(0) < —9 for all § € Bs(6p). Then, using (3.10), we get

0 Z EuO(XTUYTlatO + 7_1) - UO(HO) Z E¢(XT17YT17tO + 7-1) - ¢(90)
T1
= —E/ Mo( X5, Ys—,to+ s)ds > 6 E 1y,
0

which implies 73 = 0 a.s. This is a contradiction and the proof is complete. |
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VISCOSITY SOLUTION OF AN IDE FOR OPTION PRICING 15

4. An Invariance Property and Maximum Principle. The following invariance property
states that a classical subsolution (resp. supersolution) of (1.6) is also a viscosity subsolution
(resp. supersolution) of the same IDE.

Proposition 4.1. Let v € C%(Qr) N'Vy be a classical subsolution (resp. supersolution) of
(1.6). Then v is also a viscosity subsolution (resp. supersolution) of (1.6).

Proof. We only prove the case of a subsolution. Assume v € C%(Q7) N Vy is a classical
subsolution of (1.6). Let ¢ € C?(Qr) N Vy and assume that v — ¢ has a maximum at (z,y,1).
Then, we have

v(z,y+2,t) —v(z,y,t) < p(z,y + 2,t) — ¢(z,y,t) forall z€S],

which readily yields
Ju(z,y,t) < Jo(z,y,t).

If y € int S:{ and t > 0, then, as usual, we have

Du(z,y,t) = Do(z,y,t) and D32v(z,y,t) < D2é(z,y,t).
In general, we note that for a small § > 0,

(z+ & e yett t+u) e Qr for all (€,s) € R x R x [0, 4],

the function
(& 5,u) = (v = @) ( + &, eMye’ t 4+ u)

achives its maximum on R? x R x [0, 6] at (0,0,0), and hence

0=Dy(v—9)(z,y,t),  0>Di(v—¢)(z,y.t),
0= 5 =0)(z,elye™ )| = (Dy(v=0)(z,y,1), Ay + yA"),
0> (v—0)(x,y,t).

From these together, we get

Mu(z,y,t) > Mo(x,y,t),

and conclude that
min{Mo¢(z,y,t),v(zx,y,t) — h(z,y,t)} <0. m

The comparison principle is based on the following maximum principle, which we state
in general terms due to its wider applicability potential and separate interest. Theorem 4.2
below can be seen as an extension of the maximum principle for semicontinuous functions
found in [11], [12]. Thus, our result is based on the classical work due to Jensen [23], Ishii
[20] and others (see [12] for the development of the theory of the maximum principle and
viscosity solutions). The theorem below makes a similar claim to the maximum principles [22,
Theorem 4.9] and [2, Lemma 1], but its statement is less involved, and it might be more user
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16 HITOSHI ISHII AND ALEXANDRE ROCH

friendly. It is nothing but a straightforward extension of [11, Theorem 1] to the generality of
applicable to integro-PDEs.

For later convenience, we introduce the notation: for any A € S,,,, with m € N, and € > 0,
we write

1
(4.1) Ac=A+eA? A= ~+ Al and By = A,

where

Al = _max (A E).

EER™, [¢]=1

Theorem 4.2. Let U,V be locally compact subsets of R", n > 1. Fiz § € U, f eV,
u € USC(U),v € USC(V) and ¢ € C*(U xV). Definew : UxV — R by w(6,¢) = u(f)+v(C).
Assume

(4.2) max(w — ) = (w = )(0, ).

Let e > 0 and W be a compact neighborhood of (é, CA), relative to U x V. Letp = Dgcp(é, 6),@ =
D¢p(0,¢), A = D*p(0,(). Define Ac, A and Ey by formula (4.1), with m = 2n. Select a
function @, € CE2(U x V) so that

<@ onlUXxXYV,

pe(8,0) = 0(6,0),

Die(6,¢) = Dip(8,6)

D*pc(6,) = Ae.

Then, there exist sequences {(0;,(;)} C U x V,{(X;,Y})} C Sn x Sy, and {p;} C C*(U x V)
such that the following conditions hold for all j € N:

( kli)rglo(ek’ Ck) = (éa CA)’

max(w — ;) = (w = ¢;)(0;, ),

(4.4) (Do;(05,¢5), X;) € J>Hu(b;), (D (05,65),Y5) € T*Tw(¢),

w;j = e on (U xV)\ W, klim or = @ in CHU x V).
—00

(4.3)

In the theorem above, a possible choice of . is the function
€ ~ ~
e(0,0) = 9(0,Q) + 5 A0 = 0,.¢ = .
In what follows we fix a function Y™ € C*(R™), where the superscript “m” indicates the
dimension of the space R™, such that
0<x™(x)<1 foral zeR™,

m 1 lf x € Bl/47
X" (x) = ,
0 if xGRm\Bl/Q
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For any r > 0, we set

Xi''(z) = x"(x/r) for zeR™,
so that x;"(z) =1 if x € B,y and x;"(z) =0 if # € R™\ B, 5. Here and later, B, = B"
and B, = F;n denotes the open and closed balls of R™ with radius r and center at the origin,

respectively.

Lemma 4.3. Let R > 0 and f € C*(Bg

. Forr € (0, R) set fr(z) = xJ"(x)f(x) for
x € Br. Assume that f(0) =0 and Df(0) = 0.

4716) We have

479

sup || frllc2m. < oo
r€(0, R) "C(Br)

A(di) Assume, in addition, that D*f(0) = 0. Then

481

482

483

484

185
486
487

488

489

490

491

492
493
494
495
496

497

g Ul =0

Proof. By differentiation, we get
Dfi(x) = r~ DX (a/r)f(z) + x"(x/r)D [ (x),
D*fy(x) =17 2D*x™(x/r)f(z) + v~ Dx™(x/r) ® Df(x) +r ' Df(x) ® Dx"(x/r)
+ X" (x/r)D? f (@),

where, for v = (v1,...,0p),w = (W1,...,Wy) € R™ v ® w denotes the m x m matrix with
v;w; as its (4, j) entry. Also, by the assumption that f(0) = 0 and D f(0) = 0, we have for all
r € B,,

IDf@)| <D fllog,yr and  |f (@) < Dflleg,yr < 1D o,y
Combining these, we obtain for all = € B,,

@) <1 flle,,
Df+(@)] < (IDX™ ez, + DIDS o, -
1D @) < (ID*X" e,y + 2IDX oy + DID* e,

o~ o~

Noting that f,(x) =0 for all x € R™ \ B,, we conclude that

I frllc2@ ) = 12,y < Collx™ 2@ 1 llc2a,)

for some absolute constant Cyp > 0. From this, the assertion (i) follows since || f HCQ(ET) <
1flc2(B,), and, also, the assertion (ii) follows since limy—o4 || fllc2(z,) = 0 [ ]

Proof of Theorem 4.2. We follow the streamline of the proof of [11, Proposition 2].
1. First of all, we organize the situation to make the proof simple. We may assume by
replacing u and v by the functions

~

0 — u(0) —u(d) — (p,0 —0) and 06— v(0) —v(¢) — (G0 —C),
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18 HITOSHI ISHII AND ALEXANDRE ROCH

respectively, as well as ¢ by the function

(0,0) = ¢(0,¢) — (0,C) — (5,0 — 0) — (¢.¢ — )

that
(@) =v(() =0, ¢(0.{)=0 and p=q=0,
Furthermore, we may assume by translation that
6=C_=0.
Let 6 > 0. We introduce functions us € USC(U) and vs € USC(V) by
us(0) = u() — g|9\2 and vs5(0) = v(0) — 2\9]2.

We set ws (6, () = us(f) + vs(¢) for (6,() e U x V.

We may assume by choosing r € (0, § A R) small enough, so that ¢ is defined on B, = Ein,
as a C? function, and so is the function ¢.. We may replace r by a smaller 7 = r(§) > 0, in
view of the Taylor theorem, so that for all (6,¢) € B, N (U x V),

p(0,¢) < <(90(&O%+%WF+KW

and this inequality is strict if (6, () # (0,0).
Now, we note that the function

ws(0,¢) — < (0,0),(0,¢))

attains a strict maximum value 0 at the origin (0, 0) over the set B, N (U x V). By using the
Schwarz inequality, we compute that for all £, n € R",

(AB.0).(0.0) = (AEm) + B — €.~ ). (Em) + (0~ £.C )
= (AL ), () + 2AA(E 1), (0~ £.C— )

+ (A0 -&¢—n), (0 =& C—n))
(4.5) < (A& ), (&) +2JAE IO — & ¢ =)l + A0 — & ¢ —n)?
(A&, (€1 + A€+ (5 +141) 10 - €6~ )P

(Ac(&m), (&,m) + M0 — € + ¢ — nf?).

—~
S 3

(3
(3

IN

IN

Hence, we get

(46) ws(0.€) = 50— &P +1C ) — 3 (ALEm). (E.m) <0

for all (0,¢) € B,N(U x V) and (&,7) € R?™, and this inequality is strict if (6,¢) # (0,0).
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2. We define us,v5 : R — R by

A A
us () = max (us(f) — 5\9 —¢*) and wsp(€) = max (vs(0) — §|9 —£P).
0B, j,nU 0B, ;3N

The functions us x,vsy : R" — R are the A-sup-convolutions of us, vs, respectively. Noting
that BZ}/Q X B:}/Q C B2", we see that the above formulas define real-valued functions and that

for all (¢,7) € R?",
1
us \(§) +vsa(n) — §<Ae(§777)7 (&m) <0.
It is easy to see that usx(0) = v5x(0) = 0. Accordingly, the function
1
us(€) + vsp(n) — 5 (A&, m), (€M)

takes the maximum 0 at (0,0) over R?*. We define the function ® : R?® — R by

- i(|§|4 + [n|*) — %(Ae(&n), (&n))

and observe that the function ® has a strict maximum at (0,0) over R?". For notational
convenience, we put

®(&,n) = usA(§) +vsa(n)

Fem) = SLALE ), (Em) o (6,m) € B

Since the functions us x(€) + (A/2)[€]? and vsa(€) + (X/2)|€|* are convex, as in [11], we see
that there exist sequences {(&,mk) ey C B x By and {(pg, qx) treny C R?™ such that

and such that, for any k € N, if we set ®1(&,17) = ®(&, 1) — (pr, €) — {qw, n) for (£,1) € R?",
then

= lim
k—o00

(4.7) max Dy, = Op (&, i)
(4.8) T2 (Eky i) 1= T (&, i) N T (&g, i) # 0.

The latter of the above says that ®; has a second-order differential at &k, M) B
3. By the definition of us ) and vsx, there are points 0y € B,, NU and (x € B, o NV
such that

usa(6) = us(0h) — 510k — &

A
vs (k) = vs(Cr) — §!Ck — |
We intend to show that
lim 0, = 1i =
Pl vt G =0,
(4.9) Jim us(0x) = us(0) =0,

dim v5(Gr) = v5(0) = 0.
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20 HITOSHI ISHII AND ALEXANDRE ROCH

By (4.7), we get
Pp (ks i) = Pr(0,0) = usA(0) + v51(0) > us(0) + v5(0) = 0.

Hence, we have

A
- §(|9k — &* + 1 — mel?)

(€] + 1mkl") = Fe(Cromm) — Prs &) — (ar, M)

0 < ®4(0,0) <us(0k) + vs5(C)

1

4

For any convergent subsequence { (0, ,Ck, ) }men of {(0k, (k) }ren, setting

Ok s Ch) = (6,C)

lim
m—0oQ
and noting that ws is upper semicontinuous at (0,0), from the inequality above, we get
A s 2 =12 o . A =
5 017+ [¢]7) < lim inf ws (O, , Ck,, ) < limsup ws(Oh,,, C,,) < w5(6,C).
2 m—oo

m—0o0

Since the inequality (4.6) is strict if (6, () # (0,0), the above inequality ensures that (,¢) =
(0,0), and moreover,

limﬁinf ws (O, Ck,,) = limsup ws(Ok,,, , Ck,,) = ws(0,0) = 0.

m—r0o0

This observation combined with a simple argument by contradiction assures that
lim ws (0, Cx) = 0.
k—o00

Combining this with the fact that limsup,_,. us(fx) < 0 and limsup;_,., vs((x) < 0, we
conclude that

lim us(0x) =0=1ugs(0) and  lim vs(¢x) =0 = vs(0),
k—o0 k—o0

and that (4.9) is valid.

4. Towards the end of the proof, we convert the conditions (4.7) and (4.8) into those at
the points (6, (x) with an appropriate choice of functions ¢y. Replacing r = r(d) by a smaller
number and relabeling the sequence

{(&ks 85 PR Gk Ok Ci) Yreen,

we may assume that 0 < r < 1 and {0, &, Gk, e} C B, 4 for all k € N. Consequently, if
0,¢ € By, then 0 — O + &, ¢ — (x +nx € By for all k € N. Hence, by (4.7), we have for all
(97<) € (BT/2 X B'r’/?) N (U X V)a

(4.10) Pp(0 — Op + &k, ¢ — G +11) < Pr &y i)
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We define the function ¢ € C*(R?") by

U006,0) = 3 (10 + 1CP) + 2 (00— &P + IGe — mel)
+i(|0_9k+fk|4+ 1 = G+ ") + fe(0 = Ok + &k, € — G + 1)
+ Pk, 0 = O + &k) + (k> € — Gk + k)
By this definition and the choice of 0 and (i, we have
w(Bk, C) — VR (Oks Ck) = Pi(Eer ).
By the definition of us and vsx, we have for all (6,() € (ET/Q X ET/2) NU x V),

1) A
usA(0 — O + &) > u(f) — §|9|2 - §l9k — &2,
(4.11)

1) A
s A(C — Gk + M) > v(C) — §|C|2 - §\Ck — mkl?,

and hence,

w(8,¢) = (0, ) < Bp(0 — Ok + &k, C — G+ n).
Combining this with (4.10) and (4.11) yields
(4.12) w(®,¢) — UR(6,¢) < w(bh, Gk) — VR Ok, Cb)

for all (0, C) S (ET/Q X ET/Q) N (U X V)
By assumption, we have for all (0,{) e U x V,

w(ev C) - 90(07 C) < w(07 0) - 90(07 0) = 0:

which implies that
w(0,¢) — ¢e(0,¢) <0.

From this and (4.12), setting

#(0,€) = (1 =28 O)pe(8: ) + 57 (6, (VR (0, ) + w(Bhs Ge) = Y2 (O Gi),
where the function y2" is chosen as in Lemma 4.3, we get
(w—@2)(0,0) <0 forall (0,)eUxV.

Since Oy, G € B,y and x2"(0k, Cx) = 1, we have (w — ©2)(0k, Cx) = 0 and therefore

1) 13
_ = — 0 .
max(w — @) = (w — ¢p) (O, Cr)
It is easily seen that

(4.13) Jim @ = (1= x)pe +x7"° i CAU V),
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where 1% € C3(U x V) is the function defined as

J 1
W (0,0) = (101 + 1<) + (81" + 1<) + 1e(6,)-
Recall that r = r(d) € (0,0). Applying Lemma 4.3, we deduce that

li 2n(, 1,0 ) = : 2 )
im g7 (U7 =) =0 in CH(U X V)

Thus, we have

(4.14) lim (1= x2")e + x2"%) = . in C*(U x V).
6—0+

According to (4.8), there exist (pi”\,.)(,f’)‘) € J2us (&) and (q,‘}*,y,f*) € J2vs5 (). Fur-
thermore, by (4.7), we obtain
§,\
P = Dk + Defe(€rym) + |66,
5\
0" = qi + Do fe(Eomm) + |7

x> o &2 L, + 261, @ & 0
4.15 k < D?f(&k,mi) + ( " .
(4.15) ( 0 y,f“) < D7 fellame) 0 7w T + 201, @ 1,

As one of basic properties of sup-convolution (see e.g. [11, Lemma 4], [12, Lemma A.5]), we
have
é é é 1
(pk’/\, Xk’)\) € J2’+u6(‘9k) and (qk’A, yk)\) € J2’+U6(Ck)a

which yields

(4.16) (0™ + 00, X+ 81,) € J*Fu(0y)  and (g + 0C, Vi +0L,) € JETu(Gr).
Recalling that the functions us () 4+ (A/2)[€]* and vs A (€) + (A/2)|¢|* are convex, we see that
(4.17) X > ML, and Y0 > -\,

Noting that
©2(0,¢) = 30, ) + w(Ok, &) — Vi (Ok, k)

in a neighborhood of (0, (), we see that

D@ 0k, Cx) = DY Ok, C) = 6(0k, Ce) + (1€k12Exs |mm*nk) + D fe(&ry i) + (Prs ai)
(4.18) - (59k +p%>\7 0Ck + qi’A),

2+ 26, ¢ 0
D2 1 97 :5In+D2 . , +<’£k‘ n k k )

Henceforth we take care of the dependence on § of px, gk, &k, Mk, Ok, and (; and write
p,‘z, qg, 52, 7],‘3, 01‘3, and C,‘z for them, respectively. We fix a sequence {d;} of positive numbers
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converging to zero. For instance, we may set 6 = 1/j for j € N. We choose a sequence {k;}
of positive integers diverging to infinity so that

. 6; 0; 05 O8; 05 05
Thanks to (4.13) and (4.14), we may assume that
(4.20) lim @ij, =p. in C3(UxV).
Jj—o0 J

With obvious abuse of notation, we set
d; d; d; 55, A G5,
0j=0p, G=C vj=vy, Xj="+0l, and V;=Y7" + 0l
we see from (4.15), (4.17), (4.18) and (4.16) that
X, 0
< () < D66
(Dowj(05,G), &) € T>Fu(By)  and  (Dew;(85,¢5), V5) € T u(¢).

Finally, recalling (4.19) and (4.20), we conclude that the sequence {(6;, (;, ¢;, Xj,Y;)} has all
the required properties. |

In the proof of our comparison theorem below, we use the following variant of Theorem 4.2.
Let n, U, V, ¢ be as in Theorem 4.2. We consider the situation where

there are ny,ny € N, U, Vi € R™, Uy, Vo C R™, ¢ € C*(U; x V4) and
@9 € C}(Uy x V3) such that

=n1+ne, U=U; xUs, V=V xVy
(4.21) n="n1+n2 1 2 1 2

and for all 6§ = (91,02) e Uy x Us, C = (Cl,CQ) e Vi x Vs,

©(0,¢) = p1(01,C1) + p2(62, (2).
Here and afterwards, with a little abuse of notation, we write 61 = (01,...,0,,), 02 =
(Onyt1s---,0p) for 0 = (61,...,0,) € R™ and so on.
Define @1, $o € C2(U x V) by setting
(4.22) ¢1(0,¢) = ¢(01,¢1) and  @2(0,C) = p2(02,C2)

for 0 = (91,92) e Uy x Uy and 7 = (7’1,7‘2) € Uy x V.
Given a pair € = (€1, €2) of positive numbers and two matrices A, Az € Sg,, we set

Aci= A1 + Ay + €1 A} 4 2. A2,
1
A Z:Z—|—|.Ai| fori=1,2, X:=(\,\),

(4.23) M, 0 0 0
0 Aol 0 0
E) = )\1[711 D )\2In2 D )\1]111 D )\2_[”2 = 0 On2 )\11711 0

L 0 0 0 Aoly,
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Corollary 4.4. Let U, V, u, v, @, w, 6, C and W be as in Theorem 4.2, and assume that
(4.2) and (4.21) hold. Define @;, with i = 1,2, by (4.22) and set A; = D>3;(0,() fori=1,2.
Define Ac, X\ = (A1, \2) and Ey by (4.23), and select ¢, so that all the conditions of (4.3) are
satisfied. Then the same conclusion as Theorem 4.2 is valid with the current E.

Proof. We need only to follow the proof of Theorem 4.2, with minors changes. We here
give a few details how to modify it to adapt to our proof.

We set o

A= ngo(g, C) = A + As,
use the notation: for § = (0, 6,) € R™ x R"2
él = (91,0), é? = (0792) € an
and note that for any 6 = (01, 02),¢ = (¢1,(2) € R™ xR" and some § = (§1,82),7 = (n1,72) €
R™ x R"2,
Ai(6,¢) = Ai(6:,G) = (&, 7)) fori=1,2.

Moreover, we compute similarly to (4.5) that for § = (01,62), ¢ = ((1,¢2), & = (&1,&), n =
(m,m2) € R™ x R"™2,

i—1.2
< (Ai(&iy i), (Cir 7)) + 21 A& i) 1 (0i — & & — 1) + A0 — &y G — i) |2
i—1,2
< 3 . i) + eGP+ (4 1AL 16— .G - )P
i=1,2 v
=12
= (Ac(&,m), (§,m)) +dx(0 — &) +dr(¢ —n),
where
dy(€) = dx(€1,&) = M|&]* + Ao|&2)?

The definition of us x,vs5 : R™ — R should be modified as follow:

wAl€) = max (us(6) = 5r(6-€) and wa(E)= max (us(6) ~ 5dr(6 - £)).
GGBT/QOU HEBT/2HV

After fixing &k, m in the course of the proof, the choice of 0y, (i is done in the same spirit as
in the proof of Theorem 4.2, to satisfy

us A (&r) = us(Or) — %dxwk —&) and  wvsa(nk) = vs(G) — %dx(Ck — k).

We note that the functions wus (&) + 3dr(€) and vsA(€) + 3d(€) are convex on R™, which,
instead of (4.17), yield

1 1
X0 2 =5 D2A(E) = = Mo, ® Nolo, and Vi 2 —5 D¥dy(m) = — MiLny © Aoy

With these modifications, the proof goes parallel to that of Theorem 4.2. [ |
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5. Comparison Principle. The uniqueness of the solution of the IDE follows from the
following comparison theorem:

Theorem 5.1. Let 0 < k < X. Let u € USC(Qp) N Vs and v € LSC(Qp) NV, be a
subsolution and supersolution of (1.6), respectively. Assume that

(5.1) u(z,y,T) <v(x,y,T) for all (x,y) € RY x Sj{.
Then,
(5.2) u<w on Qr.

As stated above, Theorem 5.1 has the following consequence.

Corollary 5.2. If h is a bounded and Lipschitz continuous function on Qr, then the value
function uy is in C(Qr) N Vo and a unique viscosity solution of (1.6) satisfying the initial
condition uy(x,y,0) = h(z,y,0). The uniqueness is valid among functions in V., with 0 <
K< A.

Proof. Every claims except the uniqueness are included in Proposition 2.2 and Theo-
rem 3.7. The uniqueness claim is also immediate from Theorem 5.1. |

The following limiting lemma, which has a similar nature to Lemma 3.3, is useful in our
proof of the theorem above.

Lemma 5.3. Let {u;}jen be a sequence of Borel measurable functions on Q7 and {0;}en C
Qr. Set 0; = (x;,y;,t;) € RY x Sj x R. Assume that {0;};en converges to a point 8y € Qr
and that there is a constant C' > 0 such that

Juj(@,y, )l < C(L+ [z + [yl for all (z,y.t) € Qr, j €N.

Let K C Qr be a compact neighborhood of 6y and {¢;}jen C CH(K). Assume that for every
J €N, uj — p; takes a global mazimum (resp., minimum) on K at §; and that {¢;};en is
bounded in C1(K). Then,

/ lim sup(u;(z;,y; + 2, t;) — u;(6;))v(dz) > limsup Ju;(;),
S; j—ro0 j—00

(resp., /S liminf(u;(xj,y; + 2, t;) — u;(0;))v(dz) <liminf Ju;(0;). )

:lr j—o0 J—o0
It should be noted that, in the above inequalities, it can be that lim sup;_, ., Ju;(0;) = —oo,
or liminf; o Ju;(#;) = .

Proof. We only prove the claim which concerns “maximum”. The other case can be treated
similarly.
Note that for all z € ST, j € N,

wj(2),y; + 2,t5) = uj(0;) < C((L+ |az| + lys + 2D + L+ |2] + Jy;D* < Cr(L + |21,

where C is a positive constant independent of j. Since the sequence {6;} is convergent to 6y,
we may choose § > 0 and jo € N so that the d-neighborhood of the set {6}, is contained in
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K. Henceforth we are concerned with j € N is larger than jo. Since 6; is a global maximum
point of u; — ¢; on K, we have

wj(xj,y; + 2,t5) —ui(0;) < @iz, y; + 2,t;) —;j(0;) forall z € S, with Iz < 6.

By assumption, the sequence {Dy;} en is bounded in C(K, Rd+d2+1), which ensures that
there are constants § > 0 and Cy > 0 such that

oj(zj,yj + 2,t;) — pj(0;) < Co|z| forall z €S}, with |z]| <6, 5> jo.

We define f : S} — R by

f(z) = Ci(1+ [z if =] > &,
Ca|z| otherwise.
Noting that f is integrable with respect to the measure v and that
w;i(xj,yj + 2,t;) —uj(0;) < f(z) forall z € ST,

we deduce by Fatou’s lemma that

/+ limsup(u;(z;,y; + 2,t;) — u;(6;))v(dz) > limsup Ju;(6;),
Sd

Jj—o0 j—o0
which completes the proof. |

Proof of Theorem 5.1. We divide our proof into four steps. In the first step, we arrange
that u — v takes a maximum at a point in Q7.
1. We introduce functions p : R x S; — R and f : Q7 — R given by

plz,y) = L+ |z> + yIHM2 f@,y,t) = pla,y)e ",

where C > 0 is a constant to be determined later. A simple computation shows that o, f =
—C'f on Q and for all (z,y) € R? x Sy and some constant Cy > 0,

|Dep(,y)| + |DZp(z, y)| + [Dyp(z, y)| < Cop(z, y)(1 + |2 + |y~
It is then easy to check that for some constant C7 > 0,
Lf<Cif onQr.
Observe that for (z,y) € R? x Sy and z € S,
p(z,y+2) < p(z,y) + p(0, 2),
and, if |z| < 1, then for some constant Cy > 0,

p@y+2) = plzy) < max | Dypla,y +n)f|z] < Caplz,y)|z].
nesy Inl<<1
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From these, assuming Cy > 1, we find that for all (z,y) € R? x Sy,

Jp(z,y) < Cgp(x,y)/

SHES!

< Capten)( [ NC R / IO (d2)).

Hence, for some C5 > 0, we have

@)+ [ 1ot0 2

Jf <Cs3f on Q.

Thus, we have

Mf>(C—-Cy—Cs)f onQr.

We choose C' = C7 + (5 so that
Mf > 0 on QT.

For € > 0 we define u. on Q7 by
ue(z,y,t) = u(z,y,t) — ef (x,y,1).
It is enough to show that for any € > 0,
ue(z,y,t) < v(x,y,t) for all (z,y,t) € Qp.

Since f is a classical solution of

Mf>0 onQr
and f > 0 on Qr, u. is a viscosity subsolution of
min{Muc,uc —h} =0 on Qr.
Furthermore, there exist constants 6 > 0 and C4 > 0 such that
ue(z,y,t) < =6z + [y)* + Ca for all (z,y,t) € Q.

Thus, by replacing u by u, if needed, we may assume that for some constants § > 0 and
C >0,

(5-3) u(@,y,t) < =8(|z* + |y|*) + € for all (z,y,t) € Qp.

Note however that we do not have u € V,, anymore and u € V) instead.
If we set v (x,y,t) := u(z,y,t) +v(t — T) with v > 0, then v7 < u on Qp and u” is a
subsolution of
min{Mu” +~v,u” —h} =0 on Q7.

To show (5.2), it is enough to prove that for every v > 0, u”(x,y,t) < v(z,y,t) for all

(2,9,t) € Qp. Thus, we may henceforth assume, by replacing u by u” that u is a subsolution
of

min{Mu + v,u — h} =0 on Qr.
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2. We start the contradiction argument to prove (5.2) and suppose that

(5.4) sup  u(z,y,t) —v(z,y,t) > 0.
(xvyvt)eéT

Let a > 0,8 > 0, and consider the function

(z,y, t:6,m,7) = u(z,y, t) —v(&,n,7) — alz — &> = Bly —n|* — B(t — 1)

on Qr x Q. Taking into account of (5.3) and also the fact that v € V and u, —v € USC(Q7),
the function ® achieves a maximum. Let (2ag,Yag:tassaB, Mas, Tap) be a maximum point
of ®. It is easily seen that as (a,3) — (00, 00), the points (a8, Yas, tas: Eass Nas> Tap) Stay
bounded. Also, we have

sup (|2 — Eapl® + BlYas — Nasl® + B(tas — Tap)?) < co.
a>1,>1

Furthermore, for any sequence {(ag, Sx)} such that

lim o = oo, lim G = oo,
m o, I Bk
there exists a subsequence such that, as («, ) — (00, 00) along the subsequence,

(xaﬁy yaﬁa taﬁa gaﬁ) 77045) Taﬂ) — (LUO, Yo, th 0, Yo, tO)u

and moreover,

a|zas — faBP + BlYas — 77a,8||2 + B(tap — Taﬂ)2 — 0,
u(faﬁayaﬁataﬁ) — u(xo,yo,to),
v(aps Naps Tap) — v(Z0, Yo, to)-

The last three claims on the convergence follow from the observation:
Hiax(u - U) = max q’(%!/:t%!/i) < q)(waﬁayaﬂvtaﬂafaﬁanaﬁaTaB)
Qr (z.y,t)EQp

< u(($aﬁ’ YaBs taﬁ) - U(§a57 Nass Taﬂ)y

and therefore,
max(u —v) < liminf  ®((zag, Yas, tas Eass Mass Tap))
Qr (a,8)—*(00,00)
< lim sup (I)((l‘aﬁ, Yap, taﬁv §aﬁa TNagBs 7-04,3))

(a,8)—=(00,00)

S u(l'(), yOatO) - U(x(]:y()vtO) S rgax(u - U):
T

where the liminf and limsup are taken along the subsequence selected above.
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It now follows that (zg, yo,to) is a maximum point of u — v, which implies, together with
(5.1) and (5.4), that t9 # T. We may thus reselect sequences {ay }reny and {5 }men so that

Hm B (Zay6,0 Yar b tarBns Sarbms Nk TarBm) = (205 Y0, 0, Z0, Y0, o),

k—o00 m—00

klinolo nlgnoo u(xakﬁnm Yoy Bm s takﬂm) = u(‘TUa Yo, tO)a

L kli)n;.lo 7nlg>noo ,U(gakﬁm 2 Mo B » Tak,@m) - 'U(.%'O, Yo, tO)

Furthermore, since tg # T', we may assume that for all o and B,

(5.6) (T, B> Yo B e B ) € QTs  (EapBms Mok fm Tar o) € Q-

Also, since u(zo, yo,to) > v(zo, yo,to) by (5.4), we may assume in view of (5.6) that for all ay
and ﬁm,

(5‘7) (u - h) (makﬁmvyakﬁm’ takﬁm) > (v - h) (é-akﬁm777akﬁm77—akﬁm)’

We fix k,m € N, write a« = o and § = 3, for notational simplicity, and intend to apply
Corollary 4.4 to u, —v. For this, we set
n=d+d*+1, ni=d, ns=d*+1,
U=V=Qr, Uy=Vi=RY Uy=V,=8]x(0,7),

~

é = (xa,,Ba Yoa,B5 ta,ﬁ)v C = (504,,37 N, B> Ta,,@)'

Note that S; is a locally compact subset of R%. Define the functions 0, p; € C2(U x V),
;€ C3(U; x V;) for i = 1,2 by

oz, y,4,&m,7) = oz — &2 + B(ly — nl* + (t — 7)),

Sol(x7 7€) - 851(:1:7 y7 t? 57 /,77 T) - Oé|f17 - 5‘2’

Pa(y, 1,0, 7) = Pa(,y, 1,60, 7) = Blly —nl* + (¢ — 7)),

and set o o o
Al = D2¢1(97<)7 AZ = D2¢2(05 C)a A= D2§0(97<)
It is easy to check that

I;j 0 —I; 0 0O 0 0 0
- 0 0 0 0 - 0 Ipy 0 —Ipi,
(5.8) A =20 -1y 0 Ip 0)° A=2010 T o0 o ’
0 0 0 0 0 —Ipy 0 Ipy

A=A+ Ay, A% = A2+ A3 =40, + 4B Ay, |A1l =4a, |As] = 48.

We select 1 1 1
A= 50 @= g Ai:gﬂv‘ld fori=1,2,
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note that
A1 =6a, X =60,

and set € = (e1,€2) and A = (A1, \2).

Noting that
(5.9) Ac=A+ € -daA) + e - 45 A2 = 3A,
we define the function @, on Q7 x Q7 by

906(97 C) = (70(07 C) + 2()0(6 - év C - &)a
and note that o
DQ(PE(Qa C) =3A= Ae;

and moreover, all the conditions of (4.3) hold.

3. We are now ready to apply the maximum principle. Define w € USC(Qr x Qr)
by w(6,¢) = u(f) — v(¢), fix a compact neighborhood W of (é, f) in Qr x Qr and invoke
Corollary 4.4, to select sequences {(0;,¢;} C Qr x Qr,{(X;,V;)} C S, xSy, and {p;} C
C?(Qr x Q) such that (4.4) holds, with —v in place of v.

For any j € N, we recall by (4.4) that

Jmax (w = ;) = (w =) (05, ;).
(DHSDJ(9]7CJ)7XJ) € J27+u(9j)7

— (Dei(05,¢5), ;) € J* (),
and write
9]' = (l‘j,yj,tj) € Rd X SJ X (0, T), Cj = ({j,ﬁj,’]’j) & Rd X S;li_ X (0, T),
Dop;(05,¢5) =pjs  Dewj(05,¢) = gy,

to obtain

(5.10) { min{ F(y;, pj, X;) — Ju(xj, y;,t5) + v, (w —h)(xj,y5,t5)} <0,

mln{F(njv -4y, _yj) - Jv(fjvnjvTj)7 (U - h)(f]vnjvT])} = 0.
By (4.4), we also have

(5.11) lim (6;,¢) = (6,€), lim ¢; = ¢ in CXHU x V),
J—>00

J—00

and hence, by the semicontinuities of u, v, w,

(w—¢e)(0,¢) > limsupu(;) — 1iJH_1>(i)1.}fv(Cj) - jli{go ©i(05,¢;) > limsup(w — ¢;)(0;, ;)

Jj—00 Jj—00

> liminf(w — ¢;)(0;,(;) > liminf max (w — ¢;).
= ( ©)(05,¢5) i QTXQT( ©5)
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Moreover, since

max (w— @;) > (w—;)(0,() forall 0, €Qr,jeN,
QrXxQr

we infer that

(w=2)(6,8) = max (w0 = lim (w = ,)(0;, ).

() = lim w(@;),  o(Q) = Jim v(G)-

]—)OO

(5.12)

These observations and (5.7) allow us to assume by relabeling 6;, ¢; and so on if necessary
that for all j € N,

(u—=h)(xj,y5,t5) > (v = h)(&, 15, 75)-
This and (5.10) together yield

(513) F(yjapja ) Ju(x]?y]at]) + <0< F(n]a Qj7_yj) - J’U(gjvnja'rj) for all] e N.

It follows from the inequalities above and the fact that the function w — ¢; takes a maximum
at (0,(;) that the functions z — u(z;,y; + 2,t;) — u(z;,y;,t;) and z — v(&,n; + 2,75) —
v(&;,mj, ;) are integrable with respect to the measure v.

Next, thanks to the inequality

X, 0 9
—E) < (Oj yj> < D%p;(0;, ),
together with the convergence

lim (8;,¢;) = (é,f), lim p; = ¢ in C2(QT X Qr),
j—o0 j—o0

we see that the sequence {Xj, V;} is bounded in S,, X S,, and, hence, we may assume by passing
to a subsequence if necessary that for some (Xy3,Va3) € Sp X Sp,

lim (vayj) ( aﬂ’yaﬁ)-

j—)OO

Moreover, from the matrix inequality above, we get

.14 ~ms (%) ) <D0 -

Sending j — oo and using Lemma 5.3, we get from (5.13)
(5-15) F(yoz/o’:paﬂa ) Ju(xaﬁ Yap, a,@)"i"y <0 < F(naﬁa —qap, _yaﬂ)_JU(gaﬁanaﬂaTaﬁ)a

where pag = Dyp(ZTag: Yap, tass Eass Napy Sap) and qap = Dco(Tap: Yaps tass Sabs Naps Sap)-
We remark that, in the application of Lemma 5.3 here, we have used the fact that for all
z € S:{,
limsup(u(z;j, y; + 2, t5) — u(z;, 5, t5)) < u(@ap, Yap + 2, tap) — W(Tas, Yas, tas),
J—00

hjfgg}f(v(fj, nj + 2,7;) —v(&,n5,75)) = V(s Nas + 2, Tap) — V(€as, Nap> TaB)s
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which are consequences of (5.11), (5.12) and the upper semicontinuity of u, —v.

4. We are going to show that (5.15), together with (5.14) and (5.5), yields a desired conclu-
sion. We denote by X, and Y,z the first d x d block of X3 and V3, respectively. Computing
the quadratic forms associated with the matrices appearing in (5.14) at (£,0,7,0) € R?" where
¢,m € R we deduce from (5.14), (5.8) and (5.9) that

X 0 Iy -1
—6adoy < [P < .
bartad = < 0 Yab’) =t <—Id Ia )
From this, we may assume by passing to a subsequence if necessary that for each k € N, as
m — 00, {(Xa, 8> Yar )} converges to some (Xj,Yy) in Sy x Sg. From the inequality above,

we get,
—6ayloy < (2(()16 %) < 6y <_I;d _I§d> 7
which yields
(5.16) Xp + Y, 0.
From (5.5), we see that for some (Zy, §x, ) € Qr, & € RY,

n}gﬂw(%kﬁm,yakﬁm,takﬁm,fakﬁm, Do B> TarBm ) = (ks Ui s Sy Uhs ),
5.17

(5.17) Hm B |Yar s — Naghm|* = 0
o kBm kBm

Note that
Pap = Do(0,C) = 2((xap — €ap), BYas — Map): Bltas — Tap)):
Gop = Dcp(0,0) = =2(a(wap — €ap)s BYas — Tap), Bltap — Tap)),
F(Yap, Pap, Xap) = —2B(tap — Tap) — ;(yaBaXaﬁ> — a(m(Yap): Tap — Eap)
— 26(Ayas + Yap A" + b0, Yap — Nap);
F(nag, =Gap, =YVap) = —2B(tap — Tap) — ;(wwa —Yap) — a(m(1ag), Tap — Eap)
— 2B(A1ap + NapA” + b0, Yap — Tap)-

Combine the last two equalities above, to obtain

F(Nap, — Gops —Yap) — F(Yas Pass Xap)

< %(yaﬁa Xap) + %<77a57 Yog) + (T (Yap — Nap): Tag — &ap)

(5.18) + 28{A(Yap — M) + Yas — 1) A", Yap — Nap)
;@aﬂa Xap) + %%57 Yag) + a7 (Yap — Mas), Tap — Eap)

+ 48] Allyap — nasl*.
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We may regard ¢ as a function on R? x My(R) x R having the property:
WO+0,C+0)=0p(0,¢) forall 0,6,¢c R x My(R) x R.

The function ¢¢(0,¢) = ¢(0, () + 2¢(0 — 0,¢— f) inherits the above invariance property. Now
that for all 8,¢ € Qr,

u(8) — v(¢) < u(B) = v(C) + ¢e(8,¢) — (6, <)
by (5.12), we obtain for all z € S,
U(.Tag, Yap + Z, taﬁ) - U(J,‘a57 Yaps, taﬁ) S U(§Qﬂ7 TNap + Z, TOZ,B) - U(€&ﬁ7 7704,37 Taﬂ)7

which implies
Ju($aﬁa Yap, tozﬁ) < JU(faﬁ, Nags 7-04,3)'
Combining this, (5.17) and (5.18), we obtain

1
<yaﬁaXaﬁ> + §<770¢,37Ya6> + a<7r(yaﬁ - 7704,3)73704,3 - 504,3> + 4ﬁ’A|”yaﬂ - 770¢,BH2'

N | —

7 <

Since « = a and 8 = f,, in the above, sending m — oo and using (5.17) and (5.16), we
obtain from the above

v < =(yk, Xi + Yi) <O0.

N

This is a contradiction, which completes the proof. |

6. Payoff function with polynomial growth. In this section we extend our result stated
in Corollary 5.2 to the case when the payoff function h has a polynomial growth of order less
than X\ and establish the following theorem.

Theorem 6.1. Let0 < k < \. Assume that h € C(Qp)"Vi. Then, ug given by (1.5) belongs
to C(Qr) NV, and is a unique viscosity solution of (1.6) satisfying uo(z,y,T) = h(z,y,T)
for all (z,y) € R x ST. The uniqueness holds in the class C(Qp) N V.

Before the proof, we give the following stability lemma, which is similar to the standard
stability results [12, Sect. 6], [2, Sect. 3].

Lemma 6.2. Let {v;}jen, {g;}jen C C(Qr) N V. Assume that for some constant C > 0,
(6.1) [oj(z,y,8)] < C(L+|a| +y)* for all (z,y,1) € Qr,

and that for some functions v,g € C(Qrp) N Vy, {v;} and {g;} converge to, respectively, v
and g locally uniformly on Qp. Assume that for every j € N, v; is a viscosity solution of
(1.6), with g; in place of h, that satisfies the terminal condition vj(z,y,T) = g;(z,y,T) for
all (z,y) € R4 x Sz{. Then, v is a viscosity solution of (1.6), with g in place of h, satisfying
v(z,y,T) = g(z,y,T) for all (z,y) € R x S}
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Proof. By the assumed convergence, we see immediately that v(z,y,T) = g(x,y,T) for
all (z,y) € R? x Sz{. We only need to prove the viscosity property of v. We present here
the proof of the supersolution property of v, and leave it to the reader to check that v is a
subsolution of (1.6) with h = g.

Fix 0y = (w0,v0,t0) € Qr and let (p,X) € J> v(fy). Fix a compact neighborhood
K C Q of 6y and choose a function ¢ € C%(K) so that v — ¢ takes a strict minimum on
K at 6y and (p, X) = (D¢(6p), D?¢(0)). (The existence of such a function is a standard
observation.) Let 0; = (zj,y;,t;) € K be a minimum point of v; — ¢ on K. Since {v;}
converges to v in C(K), we see that lim;_,o, 0; = 0y. By relabelling the sequence {(v;, gj,0;)}
if necessary, we may assume that for every j € N, 6; is an interior point of K.

Noting that (D¢(6;), D*¢(6;)) € J>~v;(6;) and invoking Definition 3.5, we get

min{F (y;, Dp(6;), D*¢(6;)) — Jv;(8;), (v; — ¢;)(6;)} =0 forall j € N.
It is clear that

and lim; o (v; — g5)(0;) = (v —g¢)(0p). By Lemma 5.3, we find that

liminf Jv;(0;) > / liminf(v;(z;,y; + 2,t5) — vi(z4, 95, t5))v(dz)
S

j—00 ;— Jj—o0
— [ 00,0+ 21t0) = a0, posto)(d2) = Jo(60).
Sd
Thus, we obtain
min{F'(yo, p, X) — Jv(bo), (v — g)(6o)} = 0.
In light of Definition 3.5, we deduce that v is a viscosity supersolution of (1.6) with h = g. W

Proof of Theorem 6.1. Once it is proved that ug € C(Qp) N V. and wug is a viscosity
solution of (1.6) satisfying the terminal condition, then the uniqueness is immediate from
Theorem 5.1.

To show that ug € V., we recall some of the results in Lemma 2.1: there is a constant
Co > 0 such that

(6.2) EoiugT(l + [ XPY Y2 < Co(L+ Jz| + JyI)* for all (z,y) € R x S
8>

By assumption, we have for some constant C7 > 0,
(6.3) (@, y, )] < C1(1 + ||+ |y)"  for all (z,y,t) € Qp.
It is then straightforward to see that

uo(z,y, 1)l < C1 sup B(L+ XY+ [V2])" < CoCi(1+ |z] + Jyl)™  for all (z,y,t) € Qr.

TETT_t
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By the definition of ug, it is clear that ug(z,y,T) = h(z,y,T) for all (z,y) € R% x S:{.
Next, we prove that ug € C(Qp). For this, we select a sequence of bounded Lipschitz
continuous functions h; € C(Qr), with j € N, such that for some constant Cy > 0,

(6.4) hi(z,y,t) — h(z,y,t) locally uniformly on Qrp,
(6.5) |hj(2,y, 1) < Co(1+ 2]+ [y])* for all (z,y,t) € Qr.

We define u; : Qp — R by

U’j(xayat): Gs;l'p Ehj(Xf’yvvayat_‘_T)'
UISE B

By Corollary 5.2, we know that u; is in V) N C(Qp) and a unique viscosity solution of (1.6)
satisfying u;(z,y, T) = hj(z,y,T) for (z,y) € R x S}.
We show that for any compact subset K of R? x Sj, as j — 00,

(6.6) uj(x,y,t) = uo(z,y,t) uniformly on K x [0, T7.

This convergence assertion proves that ug € C(Q7). B
To check the above convergence of {u;}, fix any compact K C R%x S;l". Define g; : Q7 — R
by g; = hj —h. By (6.3), (6.5), setting C3 = C + C3, we have

l9j(2.y,1)] < C3(1+ |2+ [y])™ for all (z,y,t) € Q-
By (6.2), there is a constant Cx > 0 such that

E sup (1+ XY+ YY) < Ck  forall (z,y) € K.
0<t<T

The above two inequalities imply that the family of random variables g;(X7Y,Y?, ¢+ 7), with
(z,y) € K and 7 € Tr, is uniformly integrable. Thus, by the inequality

[Bhy(X2V, Y2, t+7) — ER(XIV, Y2, t +7)| < Blgy (XY, Y2, t +7)]

and (6.4), we conclude the required convergence. o
Now, Lemma 6.2 combined with (6.6) assures that ug € C(Q7) is a viscosity solution of
(1.6) with the terminal condition h. The proof is complete. [ |
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