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Abstract. Let Ω ⊂ Rn be a bounded domain, and let 1 < p < ∞ and σ < p.
We study the nonlinear singular integral equation

M [u](x) = f0(x) in Ω

with the boundary condition u = g0 on ∂Ω, where f0 ∈ C(Ω) and g0 ∈ C(∂Ω)
are given functions and M is the singular integral operator given by

M [u](x) = p.v.

Z

B(0,ρ(x))

p− σ

|z|n+σ
|u(x + z)− u(x)|p−2(u(x + z)− u(x)) dz,

with some choice of ρ ∈ C(Ω) having the property, 0 < ρ(x) ≤ dist (x, ∂Ω).
We establish the solvability (well-posedness) of this Dirichlet problem and

the convergence uniform on Ω, as σ → p, of the solution uσ of the Dirichlet
problem to the solution u of the Dirichlet problem for the p-Laplace equation
ν∆pu = f0 in Ω with the Dirichlet condition u = g0 on ∂Ω, where the factor
ν is a positive constant (see (7.2)).

1. Introduction

Let Ω be a bounded domain of Rn and ρ ∈ C(Ω) a given function satisfying

λ0 dist (x, ∂Ω) ≤ ρ(x) ≤ dist (x, ∂Ω),

where 0 < λ0 ≤ 1 is a fixed constant.
Let p > 1 and σ < p. We introduce the nonlinear singular integral operator

M = Mσ given formally by

M [φ](x) = p.v.

∫

B(0,ρ(x))

G(φ(x + z)− φ(x))K(z) dz

for bounded measurable functions φ on Ω, where G is the function on R given by
G(x) = |x|p−2x and the kernel K = Kσ is given by

K(z) =
µ

|z|n+σ
, with µ = µσ := p− σ.

The symbol “p.v.” stands for the principal value of the integral. That is,

M [φ](x) = lim
r→0+

∫

r<|z|≤ρ(x)

G(φ(x + z)− φ(x))K(z) dz if the limit exists.

The constant σ will be often regarded as a parameter to be sent to p.
We deal with the integral equation

(1.1) M [u](x) = f0(x) in Ω,
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where f0 is a given continuous, real-valued function on Ω and u represents the
unknown function on Ω. Associated with (1.1) is the boundary condition

(1.2) u(x) = g0(x) for x ∈ ∂Ω,

where g0 is a given continuous function on ∂Ω.
Our primary purpose is to investigate the solvability of the Dirichlet problem

(1.1) and (1.2), and the secondary interest here is to study the asymptotic behavior
of solutions uσ of (1.1)–(1.2) as σ → p.

In the next section, we establish some basic estimates of the singular integral
operator M . In view of application to the asymptotic analysis as σ → p, it is
important to obtain estimates of the operators M = Mσ which are independent of
σ in a range close to p.

The notion of solution of (1.1) in this paper is an adaptation of viscosity solutions
of differential equations and it is defined as follows. We begin by introducing the
spaces Tp(Ω) of test functions. We set Tp(Ω) = C2(Ω) for p ≥ 2. For 1 < p < 2
let Tp(Ω) denote the space of functions φ ∈ C2(Ω) having the property: for each
compact R ⊂ Ω there exist a neighborhood V ⊂ Ω of R and constants β > 1/(p−1)
and A > 0 such that for any y ∈ R, if Dφ vanishes at y, then

|φ(x)− φ(y)| ≤ A|x− y|β+1 for all x ∈ V.

We call any bounded function u in Ω a (viscosity) subsolution of (1.1) if we have

M+[u∗](x) ≥ f0(x)

whenever (x, φ) ∈ Ω × Tp(Ω) and u∗ − φ has a maximum at x. Here the operator
M+ is defined by

M+[v](x) = lim sup
δ→0+

∫

δ<|z|<ρ(x)

G(v(x + z)− v(x))K(z) dz

and u∗ denotes the upper semicontinuous envelope of u. Similarly, we call any
bounded function u a (viscosity) supersolution of (1.1) if we have

M−[u∗](x) ≤ f0(x)

whenever (x, φ) ∈ Ω× Tp(Ω) and u∗ − φ has a minimum at x, where the operator
M− is defined by

M−[v](x) = lim inf
δ→0+

∫

δ<|z|<ρ(x)

G(v(x + z)− v(x))K(z) dz

and u∗ denotes the lower semicontinuous envelope of u. Finally, we call any bounded
function u in Ω a (viscosity) solution of (1.1) if it is both a subsolution and a
supersolution of (1.1).

In Section 3 we prove the stability of solutions of (1.1) under certain limiting
processes and under taking the pointwise supremum or infimum. Also, in Section
3 the Perron method is established for the integral equation (1.1). In Section 4 we
establish a comparison theorem between sub and supersolutions of (1.1). In Section
5, we build sub and supersolutions which attain the boundary condition (1.2) and
prove the existence of a continuous solution of (1.1)–(1.2).

In Section 6, we recall basic results concerning weak solutions in W 1,p
loc (Ω) of the

inhomogeneous p-Laplace equation

(1.3) ∆pu(x) = f0(x) in Ω,
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and formulate comparison results for (1.3), where we mostly follow the argument
of [12].

In Section 7 we are concerned with the asymptotic behavior of solutions uσ of
(1.1)–(1.2), and we show that under appropriate hypotheses, uσ converges uniformly
to the solution u of the Dirichlet problem

ν∆pu(x) = f0(x) in Ω,

where ν is an appropriate positive constant (see (7.2) for the precise value of ν),
with the Dirichlet condition (1.2).

In section 8, we give a few comments on possible generalizations or variants of
the results presented in the preceding sections.

Recently, while this paper was in preparation, Andreu-Mazón-Rossi-Toledo [1, 2]
have studied problems similar to ours. In [1] they study the evolution equation

(1.4) ut(x, t) = MD[u(·, t)](x) in Ω× (0, T ).

Here the unknown function u is defined on Ω× (0, T ), 0 < T < ∞, ut denotes the
derivative of u with respect to the time variable t and the operator MD is given by

MD[φ](x) =
∫

Ω

G(φ(y)− φ(x))J(x− y) dy(1.5)

+
∫

ΩJ\Ω
G(g0(y)− φ(x))J(x− y) dy,

where the function J is a nonnegative continuous radial function on Rn with com-
pact support, ΩJ := Ω + supp J and g0 is a given function on Rn belonging to
Lp(Rn). In [1] they have established, among others, the solvability in the space

C([0, T ], L1(Ω)) ∩W 1,1((0, T ), L1(Ω)),

of the Cauchy problem for (1.4) with initial data u0 ∈ Lp(Ω) and, under some ad-
ditional assumptions on J and g0, the convergence in the space C([0, T ], Lp(Ω)), as
ε → 0+, of the solution uε of the Cauchy problem for (1.4), with the kernel function
J(x) replaced by Jp,ε(x) := CpJ(x/ε)/εn+p with Cp := (1/2)

∫
J(x)|xn|p dx, to the

solution u of the initial-boundary value problem for

(1.6) ut(x, t) = ∆pu(x, t) for (x, t) ∈ Ω× (0,∞)

with the Dirichlet boundary condition u = g0 on ∂Ω × (0, T ) and the initial data
u(·, 0) = u0. In [2], they have treated the evolution equation similar to (1.4), but
with MD replaced by the operator MN defined by

MN [φ](x) =
∫

Ω

G(φ(y)− φ(x))J(x− y) dy,

and have obtained solvability and convergence results similar to the above, where
the limit problem is the initial-boundary problem for (1.6) with the Neumann
boundary condition ∂u/∂n = 0, with n denoting the outer unit normal vectors
at points on ∂Ω.

In [1] they treat the evolution problem while we study here the stationary prob-
lem, and the operator MD in [1] is different from our M . Beyond these apparent
differences, there are two important differences between [1] and ours. One is of
the qualitative property between the operators M and MD: the kernel Kσ of M is
singular at the origin while the kernel J of MD is continuous. Indeed, it is not clear
if the Cauchy problem for (1.4), with singular kernel J is solvable or not, while it
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seems difficult to solve the Dirichlet problem for (1.1) with a continuous kernel K.
The second is that the results [1, 2] are formulated in the Lp framework while the
viscosity solutions approach is taken here.

We refer the reader to [1, 2] and the references therein for some applications
of nonlocal diffusion equations like (1.1), (1.4), or (1.4) with MN in place of MD.
For the viscosity solutions approach to integro-differential equations with singular
kernels, we refer to the article [4]. We refer to [3, 6] for regularity results for integro-
differential equations. We refer to [9, 10] and the references therein for analysis of
nonlocal Hamilton-Jacobi equations describing dislocation dynamics.

Before closing the introduction we introduce a few of notation used below: a∧b :=
min{a, b}, a∨ b := max{a, b}, a+ := a∨0 for a, b ∈ R and ‖u‖∞,Ω := supx∈Ω |u(x)|
for real-valued function u on Ω. We write intB for the interior of the set B in a
topological space.

2. Estimates of operators M±

We note that for any bounded measurable function φ on Ω and for any x ∈ Ω, if
0 < δ ≤ ρ(x), then

M+[φ](x) = M+
δ [φ](x) +

∫

δ<|z|≤ρ(x)

G(φ(x + z)− φ(x))K(z) dz,

where

M+
δ [φ](x) = lim sup

ε→0+

∫

ε<|z|<δ

G(φ(x + z)− φ(x))K(z) dz.

In this section, we fix x ∈ Rn, δ > 0 and u a bounded measurable function on
the ball B(x, δ), and establish some upper bounds of M+

δ [u](x).
We note that the function G has the properties: (i) G(a) < G(b) if a < b and

(ii) G(ab) = G(a)G(b) for all a, b ∈ R.
The following lemma (see, e.g., [8, Exercise 6.65]) will be useful when carrying

out our computations and can be checked easily.

Lemma 2.1. Let pi > 0 for i = 1, ..., n and let f : (0, 1] → [0, ∞) be a continuous
function which satisfies the integrability condition at the origin:

∫ 1

0

f(t)tp1+p2+···+pn−1 dt < ∞.

Set Θ = {x = (x1, ..., xn) ∈ B(0, 1) | xi ≥ 0 for all i}. Then∫

Θ

f(x2
1 + x2

2 + · · ·+ x2
n)x2p1−1

1 x2p2−1
2 · · ·x2pn−1

n dx

=
Γ(p1)Γ(p2) · · ·Γ(pn)

2nΓ(p1 + p2 + · · ·+ pn)

∫ 1

0

f(t)tp1+p2+···+pn−1 dt,

where Γ denotes the gamma function, i.e., Γ(t) =
∫∞
0

e−xxt−1 dx.

Theorem 2.2. Assume that p ≥ 2 and that there are a vector q ∈ Rn and a
constant C > 0 such that

(2.1) u(x + z)− u(x) ≤ q · z + C|z|2 for all z ∈ B(0, δ).

Then there is a constant C1 > 0, depending only on n, such that

M+
δ [u](x) ≤ C1C(|q|+ δC)p−2δp−σ.
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A warning here is that M+
δ [u](x) can be −∞ in the above theorem. Also, we

remark that if we replace (2.1) by the inequality

u(x + z)− u(x) ≥ q · z − C|z|2 for all z ∈ B(0, δ)

in the above theorem, we have the following conclusion:

M−
δ [u](x) ≥ −C1C(|q|+ δC)p−2δp−σ,

where

M−
δ [u](x) := lim inf

ε→0−

∫

ε<|z|<δ

G(u(x + z)− u(z))K(z) dz.

This result follows from the above theorem applied to v := −u. Indeed, we have

v(x + z)− v(x) ≤ −q · z + C|z|2
for all z ∈ B(0, δ). Hence, as a consequence of Theorem 2.2, we obtain

M+
δ [v](x) ≤ C1C(|q|+ δC)p−2δp−σ,

while we obviously have
M−

δ [u](x) = −M+
δ [v](x).

Combining these yields the desired conclusion.
Another important remark is that Theorem 2.2 readily shows that under the

assumptions of Theorem 2.2 we have M+
δ [u](x) = M−

δ [u](x). Indeed, under the
assumptions of Theorem 2.2, we see that

M+
ε [u](x) ≤ C1C(|q|+ εC)p−2εp−σ for any 0 < ε < δ,

from which one deduces easily that M+
δ [u](x) ≤ M−

δ [u](x). That is, under the
assumptions of Theorem 2.2, the following identity holds:

(2.2) M [u](x) = M+[u](x) = M−[u](x).

In what follows we denote by σn the surface area of (n − 1)-dimensional unit
sphere, i.e.,

σn :=
2Γ(1/2)n

Γ(n/2)
=

2πn/2

Γ(n/2)
.

Proof. It is enough to show that the assertion of Theorem 2.2 is valid for x = 0 and
δ = 1. Indeed, if we define the function uδ on B(0, 1) by uδ(z) = u(x + δz), then
we have

uδ(z)− uδ(0) ≤ δq · z + δ2C|z|2 for all z ∈ B(0, 1).
If we assume in addition that the assertion of Theorem 2.2 holds true for x = 0 and
δ = 1, then we get

(2.3) M+
1 [uδ](0) ≤ C1δ

2C(δ|q|+ δ2C)p−2 = C1C(|q|+ δC)p−2δp.

On the other hand, one observes that

M+
1 [uδ](0) = lim sup

ε→0+

∫

ε<|z|<1

G(u(x + δz)− u(x))K(z) dz

= lim sup
ε→0+

∫

ε<|z|<δ

G(u(x + y)− u(x))K(y/δ)δ−n dy = δσM+
δ [u](x).

Combining this with (2.3) ensures that

M+
δ [u](x) ≤ C1(|q|+ δC)p−2δp−σ.
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We may thus assume that x = 0 and δ = 1. Fix any 0 < ε < 1. Let z ∈ Rn be
such that ε < |z| ≤ 1. Observe that

G(u(z)− u(0)) ≤ G(q · z + C|z|2) ≤ G(q · z) + G′(q · z + θC|z|2)C|z|2

for some θ = θ(z) ∈ (0, 1), where G′(t) := dG(t)/ dt, and

G′(q · z + θC|z|2) ≤ (p− 1) (|q||z|+ C|z|2)p−2 ≤ (p− 1) (|q|+ C)p−2|z|p−2.

By symmetry, we have ∫

ε<|z|<1

G(q · z)K(z) dz = 0.

Hence, we get∫

ε<|z|<1

G(u(z)− u(0))K(z) dz

≤
∫

ε<|z|<1

(G(q · z) + C(p− 1)(|q|+ C)p−2|z|p)K(z) dz

= µC(|q|+ C)p−2

∫

ε<|z|<1

|z|p−n−σ dz

= µC(|q|+ C)p−2σn

∫ 1

ε

rp−1−σ dr < σnC(|q|+ C)p−2,

which completes the proof. ¤

Theorem 2.3. Assume that 1 < p < 2 and there are a vector q ∈ Rn \ {0} and a
constant C > 0 such that u(x + z)− u(x) ≤ q · z + C|z|2 for all z ∈ B(0, δ). Then
there is a constant C1 > 0, depending only on p and n, such that

M+
δ [u](x) ≤ C1C|q|p−2δp−σ.

For the proof of the above theorem, we need the following lemma.

Lemma 2.4. Suppose that n ≥ 2. Let 0 < a < 1 and e ∈ Rn be a unit vector. Set

S(a) = {x ∈ Rn | |x| = 1, |e · x| ≤ a}.
Let |S(a)| denote the (n − 1)-dimensional surface measure of S(a). Then we have
|S(a)| ≤ πσn−1a.

Proof. We begin with the formula from Advanced Calculus

|S(a)| = 2σn−1

∫ sin−1 a

0

cosn−2 tdt.

Since sin−1 a ≤ πa/2, we immediately get

|S(a)| ≤ 2σn−1 sin−1(a) ≤ πσn−1a.

¤

Proof of Theorem 2.3. We first prove that the conclusion of Theorem 2.3 is valid
under the additional assumption that

(2.4) |q| ≥ 4δC.

As in the proof of the previous theorem, we may assume that x = 0 and δ = 1.
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In the case where n ≥ 2, we make an orthogonal transformation if needed and
assume that q = |q|en, where en ∈ Rn denotes the unit vector en = (0, ..., 0, 1). We
write z = (z′, zn) ∈ Rn−1 × R for generic z ∈ Rn in what follows.

Fix any 0 < ε < 1. Set a := C/|q| ∈ (0, 1/4], Θ = {z ∈ Rn | ε < |z| < 1}, Θ+ =
{z = (z′, zn) ∈ Θ | |zn| > 2a|z|2} and Θ− = {z = (z′, zn) ∈ Θ | |zn| ≤ 2a|z|2}.
Setting

I :=
∫

Θ

G(u(z)− u(0))K(z) dz,

I+ :=
∫

Θ+
G(u(z)− u(0))K(z) dz,

I− :=
∫

Θ−
G(u(z)− u(0))K(z) dz,

we observe that I = I+ + I− and

I+ :=
∫

Θ+
G(u(z)− u(0))K(z) dz ≤

∫

Θ+
G(|q|zn)G(1 + a|z|2/zn)K(z) dz

=|q|p−1

∫

Θ+
|zn|p−2(zn + (p− 1)|1 + λ(z)|p−2a|z|2)K(z) dz,

where λ(z) is a real-valued function on Θ+ satisfying |λ(z)| < 1/2. Here we have
used that a|z|2/|zn| ≤ 1/2 for z ∈ Θ+. Hence we get

I+ ≤ 22−p(p− 1)|q|p−1aµ

∫

Θ+
|zn|p−2|z|2−n−σ dz.

Applying Lemma 2.1, we obtain

I+ < C2|q|p−1aµ

∫ 1

0

t
p−σ

2 −1 dt = 2C2|q|p−1a = 2C2C|q|p−2,

where

C2 =
22−p(p− 1)Γ(1/2)n−1Γ((p− 1)/2)

Γ((p + n− 2)/2)
.

Now, we compute

I− ≤|q|p−1

∫

Θ−
G(|zn|+ a|z|2)K(z) dz ≤ |q|p−1

∫

Θ−
G(3a|z|2)K(z) dz(2.5)

≤|q|p−1µ

∫

Θ−
|z|2p−2−σ−n dz ≤ |q|p−1µ

∫

Θ−
|z|p−1−n−σ dz.

For z = (z′, zn) ∈ Θ−, since a ≤ 1/4, we have |zn| ≤ 2a|z|2 ≤ 2a|z′|2 + |zn|
2 , and

|zn| ≤ 4a|z′|2. We now assume that p− σ < 2. Since p− 1− n− σ < 0, we get∫

Θ−
|z|p−1−n−σ dz ≤

∫

Θ−
|z′|p−1−n−σ dz

and

µ

∫

Θ−
|z|p−1−n−σ dz ≤ µ

∫

|z′|<1

dz′
∫ 4a|z′|2

0

|z′|p−1−n−σ dzn

≤ 4aµ

∫

|z′|<1

|z′|p+1−σ−n dz′ = 4aσn−1.

We next treat the other case, i.e., the case where p − σ ≥ 2. Let S(t) denote the
portion of the unit sphere defined by Lemma 2.4, with e = en, for t ∈ (0, 1). Since
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|zn| ≤ 2a|z|2 for z ∈ Θ−, we see that Θ− ⊂ {ty | y ∈ S(2a), 0 ≤ t ≤ 1}. Thus,
using Lemma 2.4, we find that

µ

∫

Θ−
|z|p−1−n−σ dz ≤ µ|S(2a)|

∫ 1

0

tp−2−σ dt ≤ 2πσn−1
p− σ

p− 1− σ
a ≤ 4πσn−1a.

Thus we get I− ≤ 4πσn−1|q|p−2 in view of (2.5) and

(2.6) I ≤ C3C|q|p−2,

where C3 = 2C2 + 4πσn−1.
Next we consider the case where n = 1. We follow the above argument for higher

dimensions. Noting that C|z|/|q| < 1/2 for all z ∈ (−1, 1), we compute that for
any 0 < ε < 1 and for some function λ(z) ∈ (−1/2, 1/2),

I ≤
∫

ε<|z|<1

G(qz)
(
1 + (p− 1)|1 + λ(z)|p−2 Cz

q

)
K(z) dz

≤ 23−p(p− 1)C|q|p−2µ

∫ 1

ε

|z|p−1−σ dz < 23−p(p− 1)C|q|p−2.

This together with (2.6) guarantees that the conclusion of the theorem holds under
condition (2.4).

Now, we turn to the general case. We may assume that x = 0 and δ = 1. If
|q| ≥ 4C, then we are done. Thus, we may assume that |q| < 4C.

We set r := |q|/(4C) ∈ (0, 1) and observe that condition (2.4), with r in place
of δ, is satisfied. We apply what we have proved above, to see that

M+
r [u](0) ≤ C3C|q|p−2rp−σ < C3C|q|p−2.

Also, we have∫

r<|z|<1

G
(
u(z)− u(0)

)
K(z) dz ≤

∫

r<|z|<1

(
G(|q||z|) + G(C|z|2)) K(z) dz,

∫

r<|z|<1

G(|q||z|)K(z) dz ≤ |q|p−1r−1µ

∫

r<|z|<1

|z|p−n−σ dz

≤ σn|q|p−1r−1 = 4σnC|q|p−2,

and ∫

r<|z|<1

G(C|z|2)K(z) dz ≤ Cp−1rp−2µ

∫

r<|z|<1

|z|p−n−σ dz

≤ σnC(Cr)p−2 ≤ 4σnC|q|p−2.

Combining these, we get
I ≤ (

C3 + 8σn

)
C|q|p−2,

which completes the proof. ¤

Now let 1 < p < 2 and β > 1/(p− 1). Let φ ∈ C2(Rn) be the function given by
φ(x) = |x|β+1. We note that for all x, y ∈ Rn,

Dφ(x) = (β + 1)|x|β−1x and |D2φ(x)y · y| ≤ β(β + 1)|x|β−1|y|2.
Lemma 2.5. We have

M+
δ [φ](0) ≤ σn δ(β+1)(p−1)−σ.

We remark that (β + 1)(p− 1)− σ > p− σ > 0.
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Proof. Observe that for any z ∈ Rn,

G(φ(z)− φ(0))K(z) = G(|z|β+1)K(z) = µ|z|(β+1)(p−1)−n−σ.

Hence, we get for any 0 < ε < δ,
∫

ε<|z|<δ

G(φ(z)− φ(0))K(z) dz =σnµ

∫ δ

ε

r(β+1)(p−1)−σ−1 dz

<
σnµ

(β + 1)(p− 1)− σ
δ(β+1)(p−1)−σ.

Thus

M+
δ [φ](0) ≤ σnδ(β+1)(p−1)−σ.

¤

Theorem 2.6. There is a constant C1 > 0 depending only on β, p and n such that
for any x ∈ B(0, δ),

M+
δ [φ](x) ≤ C1δ

(β+1)(p−1)−σ.

Proof. Fix any x ∈ B(0, δ). In view of Lemma 2.5, if x = 0, then we have nothing
to prove, and hence we may assume that x 6= 0. Observe that for any z ∈ B(0, |x|)
and for some θ = θ(z) ∈ (0, 1),

φ(x + z)− φ(x) ≤(β + 1)|x|β−1x · z +
β(β + 1)

2
|x + θz|β−1|z|2

≤(β + 1)|x|β−1x · z + β(β + 1)2β−2|x|β−1|z|2.

Using Theorem 2.3, we get

M|x|[φ](x) ≤ C22β−2β(β + 1)p−1|x|(β+1)(p−1)−σ,

where C2 is a constant depending only on p and n.
Next, setting

I =
∫

|x|<|z|<δ

G(φ(x + z)− φ(x))K(z) dz,

we have

(2.7) M+
δ [φ](x) ≤ C22β−2β(β + 1)p−1δ(β+1)(p−1)−σ + I.

Observe that G(φ(x + z)− φ(x)) ≤ G(φ(x + z)) ≤ G(φ(2z)) for z ∈ Rn \B(0, |x|)
and

I ≤ 2(β+1)(p−1)µ

∫

|x|<|z|<δ

|z|(β+1)(p−1)−n−σ dz ≤ 2(β+1)(p−1)σnδ(β+1)(p−1)−σ.

This combined with (2.7) completes the proof. ¤

We close this section with the following remark. Theorems 2.2, 2.3 and 2.6
guarantee that identity (2.2) holds true for every x ∈ Ω and u ∈ Tp.
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3. Stability properties and the Perron method

In this section we establish some stability properties of subsolutions of (1.1) as
well as the Perron method. Analogous stability properties are valid for supersolu-
tions of (1.1), but we leave the details to the reader.

Lemma 3.1. Let δ > 0, {xk} ⊂ Ω and x0 ∈ Ω. Let {uk} be a sequence of bounded
measurable functions on Ω and u a bounded measurable function on Ω. Assume
that {uk} is uniformly bounded on Ω and (xk, uk(xk)) → (x0, u(x0)) as k → ∞.
Moreover assume that

(3.1) lim
j→∞

sup{uk(y) | y ∈ B(z, j−1) ∩ Ω, k ≥ j} ≤ u(z) for all z ∈ Ω.

Then

lim sup
k→∞

∫

B(0, ρ(xk))\B(0, δ)

G(uk(xk + z)− uk(xk))K(z) dz

≤
∫

B(0, ρ(x0))\B(0, δ)

G(u(x0 + z)− u(x0))K(z) dz.

Proof. Set

fk(z) =
{

G(uk(xk + z)− uk(xk)) for z ∈ B(0, ρ(x0)) ∩B(0, ρ(xk)),
0 for z ∈ B(0, ρ(x0)) \B(0, ρ(xk)),

Ik =
∫

B(0, ρ(x0))\B(0, δ)

fk(z)K(z) dz.

Choose a constant C > 0 so that |uk(z)| ≤ C for all (z, k) ∈ Ω× N, and note that
|fk(z)|K(z) ≤ G(2C)K(z) for all z ∈ B(0, ρ(x0)) and all k ∈ N. By the continuity
of ρ, we find that

lim sup
k→∞

∫

B(0, ρ(xk))\B(0, δ)

G(uk(xk + z)− uk(xk))K(z) dz = lim sup
k→∞

Ik.

By the Fatou lemma, we have

lim sup
k→∞

Ik ≤
∫

B(0, ρ(x0))\B(0,δ)

lim sup
k→∞

fk(z)K(z) dz.

Since G is continuous and nondecreasing in R, using (3.1), we see that for any
z ∈ intB(0, ρ(x0)),

lim sup
k→∞

fk(z) ≤ G(u(x0 + z)− u(x0)).

Thus we obtain

lim sup
k→∞

Ik ≤
∫

B(0, ρ(x0))\B(0, δ)

G(u(x0 + z)− u(x0))K(z) dz,

which completes the proof. ¤

Theorem 3.2. Let {uk} be a sequence of bounded measurable functions on Ω and
u a bounded measurable function on Ω. Let φ ∈ Tp and let {xk} ⊂ Ω be a sequence
converging to a point x0 ∈ Ω. Assume that for each k ∈ N the function uk−φ attains
a maximum at xk, the sequence {uk} is uniformly bounded on Ω, uk(xk) → u(x0)
as k →∞ and

lim
j→∞

sup{uk(y) | y ∈ B(x, j−1) ∩ Ω, k ≥ j} ≤ u(x) for all x ∈ Ω.
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Then
lim sup

k→∞
M+[uk](xk) ≤ M+[u](x0).

A useful remark concerning the above theorem is that the global maximum
assumption can be replaced by the following “uniform” local maximum condition:
there exists a constant r > 0, independent of k, such that uk−φ attains a maximum
over B(x0, r) ∩ Ω.

Proof. Fix an r ∈ (0, ρ(x0)/2). By selecting a subsequence if necessary, we may
assume that xk ∈ B(x0, r) for all k ∈ N. Noting that B(xk, r) ⊂ B(x0, 2r) ⊂ Ω,
we choose a constant C > 0 so that

φ(xk + z)− φ(xk) ≤ Dφ(xk) · z + C|z|2 for all z ∈ B(0, r).

Then we have

uk(xk + z)− uk(xk) ≤ Dφ(xk) · z + C|z|2 for all z ∈ B(0, r).

We first treat the case where p ≥ 2. By Theorem 2.2, there is a constant C1 > 0,
independent of k, such that for any 0 < δ < r and any k ∈ N,

(3.2) M+
δ [uk](xk) ≤ C1C(|Dφ(xk)|+ δC)p−2δp−σ.

Thus, we have

M+[uk](xk) ≤C1C(|Dφ(xk)|+ δC)p−2δp−σ

+
∫

B(0, ρ(xk))\B(0, δ)

G(uk(xk + z)− uk(xk))K(z) dz.

We now apply Lemma 3.1 to the second term on the right hand side of the above
inequality, to get

lim sup
k→∞

M+[uk](xk) ≤C1C(|Dφ(x0)|+ δC)p−2δp−σ

+
∫

B(0, ρ(x0))\B(0, δ)

G(u(x0 + z)− u(x0))K(z) dz,

from which we conclude that

lim sup
k→∞

M+[uk](xk) ≤ M+[u](x0).

Next, we consider the case where 1 < p < 2. We follow the above argument with
some modifications. In the case where Dφ(x0) 6= 0, we may assume by selecting a
subsequence if needed that infk∈N |Dφ(xk)| > 0, and instead of (3.2), by applying
Theorem 2.3, we get

M+
δ [uk](xk) ≤ C1|Dφ(xk)|p−2δp−σ.

In the case where Dφ(x0) = 0, we may replace the test function φ by the function

φ(x) = A|x− x0|β+1,

where A is a sufficiently large constant, and using Theorem 2.6, we get

M+
δ [uk](xk) ≤ M+

δ [φ](xk) ≤ AC1δ
(β+1)(p−1)−σ if |xk − x0| ≤ δ

in place of (3.2), where C1 is a constant depending only on p, β and n. Then the
rest of argument is the same as the previous case. ¤
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Theorem 3.3. Let S0 be a nonempty set of subsolutions of (1.1). Assume that
the family S0 is uniformly bounded on Ω. Define the bounded function u on Ω by
u(x) = sup{v(x) | v ∈ S0}. Then u is a subsolution of (1.1).

Proof. Let x0 ∈ Ω and φ ∈ Tp(Ω), and assume that u∗−φ attains a strict maximum
at x0. By the definition of u∗, there are sequences {xk} ⊂ B(x0, r), where r > 0
is chosen so that B(x0, r) ⊂ Ω, and {vk} ⊂ S0 such that vk(xk) → u∗(x0) and
xk → x0 as k →∞. By the definition of u, we have v∗k ≤ u∗ in Ω.

For each k ∈ N let yk ∈ B(x0, r) be a maximum point, over B(x0, r), of the
function v∗k − φ. Observe as usual that

(u∗ − φ)(x0) = lim
k→∞

(vk − φ)(xk) ≤ lim inf
k→∞

(v∗k − φ)(yk)

≤ lim sup
k→∞

(v∗k − φ)(yk) ≤ lim sup
k→∞

(u∗ − φ)(yk) ≤ (u∗ − φ)(x0).

This shows that v∗k(yk) → u∗(x0) and (u∗ − φ)(yk) → (u∗ − φ)(x0) as k →∞. It is
now easy to deduce that yk → x0 as k →∞. Passing to a subsequence if necessary,
we may assume that yk ∈ intB(x0, r) for all k. Since vk is a subsolution of (1.1),
we have M+[v∗k](yk) ≥ f(yk) for all k ∈ N. Since v∗k ≤ u∗, we see that for all x ∈ Ω,

lim
j→∞

sup{v∗k(y) | k ≥ j, y ∈ B(x, j−1) ∩ Ω} ≤ u∗(x).

We may now invoke Theorem 3.2, to conclude that M+[u∗](x0) ≥ f0(x0), which
completes the proof. ¤

Theorem 3.4. Let {uk} be a sequence of subsolutions of (1.1). Assume that the
collection {uk} is uniformly bounded on Ω. Define the bounded function u on Ω by

u(x) = lim
j→∞

sup{uk(y) | y ∈ B(x, j−1) ∩ Ω, k ≥ j}.

Then u is a subsolution of (1.1).

Proof. First of all, we remark that u ∈ USC(Ω). Next, let x0 ∈ Ω and φ ∈ Tp(Ω).
Assume that u−φ attains a strict maximum at x0. By the definition of u, there are
sequences {kj} ⊂ N diverging to infinity and {xj} ⊂ Ω such that ukj (xj) → u(x0)
and xj → x0 as j → ∞. Here we also assume by passing to a subsequence if
necessary that {xj} ⊂ B(x0, r), where r > 0 is chosen so that B(x0, r) ⊂ Ω.

Set vj = ukj for j ∈ N. For each j ∈ N let yj ∈ B(x0, r) be a maximum point,
over B(x0, r), of v∗j − φ. We observe that

(3.3) (u− φ)(x0) = lim
j→∞

(vj − φ)(xj) ≤ lim inf
j→∞

(v∗j − φ)(yj).

By selecting a subsequence if necessary, we may assume that yj → y as j →∞ for
some y ∈ B(x0, r). By the definition of u, we see that

lim sup
j→∞

(v∗j − φ)(yj) = lim sup
k→∞

v∗j (yj)− φ(y) ≤ u(y)− φ(y).

This together with (3.3) guarantees that y = x0. That is, the sequence {yj} con-
verges to x0. Also, it follows that v∗j (yj) → u(x0) as j →∞.

For sufficiently large j, we have yj ∈ intB(x0, r) and M+[v∗j ](yj) ≥ f0(yj).
Applying Theorem 3.2, we find that M+[u](x0) ≥ f0(x0). This finishes the proof.

¤
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To formulate a basic existence result (Perron method) for (1.1), we let g− ∈
LSC(Ω) and g+ ∈ USC(Ω) be a subsolution and a supersolution of (1.1), respec-
tively. Assume furthermore that g± are bounded in Ω and g− ≤ g+ in Ω. Set

(3.4) u(x) = sup{v(x) | v is a subsolution of (1.1), g− ≤ v ≤ g+ in Ω}.
Note that u is bounded in Ω.

Theorem 3.5. The function u given by (3.4) is a solution of (1.1).

Proof. We note by Theorem 3.4 that u∗ is a subsolution of (1.1). We thus need to
show that u∗ is a supersolution of (1.1).

Let x0 ∈ Ω and φ ∈ Tp(Ω). Assume that u∗ − φ attains a strict minimum at x0,
with minimum value zero. We intend to show that the inequality

(3.5) M−[u∗](x0) ≤ f0(x0)

holds.
It is clear by the definition of u that g− ≤ u ≤ g+ in Ω. Consequently we

have g− ≤ u∗ ≤ g+
∗ in Ω. Consider first the case where u∗(x0) = g+

∗(x0). Then,
since u∗ ≤ g+

∗ in Ω, it follows that g+
∗ − φ attains a minimum at x0. As g+ is a

supersolution of (1.1), we have

(3.6) M−[g+
∗](x0) ≤ f0(x0).

But, since u∗ ≤ g+
∗ in Ω and g+

∗(x0) = u∗(x0), we see that

M−[g+
∗](x0) ≥ M−[u∗](x0),

from which together with (3.6) we conclude that (3.5) holds.
Next we assume that u∗(x0) < g+

∗(x0). We deduce by the semicontinuity of g+
∗

that g+
∗ > φ+ε in a neighborhood of x0 for some constant ε ∈ (0, 1). Furthermore,

we may assume, by modifying φ on a set away from the point x0 if necessary, that
g+
∗(x) > φ(x) + ε for all x ∈ Ω.
Define

uk = u ∨ (
φ + 1

k

)
in Ω.

Note that (uk)∗(x0) = φ(x0)+1/k > u∗(x0) and therefore uk 6≤ u. Since φ+ε < g+

in Ω, we see that g− ≤ uk ≤ g+ for sufficiently large k, say, k ≥ j, for some j ∈ N.
In what follows we are concerned only with uk having k ≥ j. Since uk 6≤ u and

g− ≤ uk ≤ g+ on Ω, by the definition of u, we find that uk is not a subsolution of
(1.1). Thus, for each k there are a point xk ∈ Ω and a function ψk ∈ Tp(Ω) such
that xk is a maximum point of u∗k − ψk and the inequality

(3.7) M+[u∗k](xk) < f0(xk)

holds.
Set φk(x) = φ(x) + 1

k for x ∈ Ω and Vk = {x ∈ Ω | φk(x) > u∗(x)}. Note that
Vk is an open subset of Ω and uk = φk on Vk.

We claim that xk ∈ Vk. Indeed, if this were not the case, then we would have
φk(xk) ≤ u∗(xk) and therefore u ∗k (xk) = u∗(xk) ∨ φk(xk) = u∗(xk).

Now, since u∗k ≥ u∗ in Ω, we see that xk is a maximum point of u∗ − ψk. Hence
we have M+[u∗](xk) ≥ f0(xk). Since u∗k(xk) = u∗(xk) and u∗k ≥ u∗ in Ω, we have
M+[u∗](xk) ≤ M+[u∗k](xk). From these we obtain M+[u∗k](xk) ≥ f0(xk), which
contradicts (3.7). Thus we have xk ∈ Vk.

As noted above, Vk is an open subset of Ω and uk = φk on Vk. Therefore,
(uk)∗(xk) = φk(xk). By the definition of uk, we have uk ≥ φk on Ω and hence
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(uk)∗ ≥ φk on Ω. Thus, (uk)∗−φ takes a minimum at xk. Also, since u∗ ≤ (uk)∗ ≤
u∗ + 1/k in Ω, we find that, as k → ∞, (uk)∗ → u∗ uniformly on Ω and xk → x0.
Hence, applying Theorem 3.2, we obtain

lim inf
k→∞

M−[(uk)∗](xk) ≥ M−[u∗](x0).

Combining this with (3.7) yields f0(x0) ≥ M−[u∗](x0), which finishes the proof. ¤

4. Comparison theorem

In this section we prove the following comparison theorem.

Theorem 4.1. Let λ0 = 1. Let u ∈ USC(Ω) and v ∈ LSC(Ω) be a subsolution
and a supersolution of (1.1), respectively. Assume that u ≤ v on ∂Ω and u and v
are bounded on Ω. Then u ≤ v in Ω.

Proof. We argue by contradiction, and thus suppose that m := supΩ(u−v) > 0 and
will show a contradiction. We fix a constant C > 0 so that ‖u‖∞,Ω ∨ ‖v‖∞,Ω ≤ C.
Since G is strictly increasing, we can choose a nondecreasing positive function γ on
(0, m) so that

G(t + s) ≥ G(t) + γ(s) for all |t| ≤ 2C, 0 < s < m.

For α > 0 we consider the function Φα on Ω× Ω defined by

Φα(x, y) = u(x)− v(y)− α|x− y|β+1,

where β > max{1, 1/(p− 1)}. For each α > 0, let (xα, yα) ∈ Ω×Ω be a maximum
point of Φα. As usual in viscosity solutions theory, we observe that there are a
sequence {αk}, diverging to infinity, and a point x0 ∈ Ω for which xαk

→ x0,
yαk

→ x0, u(xαk
) → u(x0) and v(yαk

) → v(x0) as j → ∞. Also, it is easy to see
that (u− v)(x0) = m. Since max∂Ω(u− v) ≤ 0 by assumption, we have x0 ∈ Ω.

For notational simplicity, we write xk and yk for xαk
and yαk

, respectively.
Passing to a subsequence if necessary, we may assume that xk, yk ∈ Ω for all k ∈ N.
Hence, by the definition of sub and supersolutions of (1.1), we have M+[u](xk) ≥
f0(xk) and f0(yk) ≥ M−[v](yk) for all k ∈ N. As a remark after Theorem 2.2, we
see from Theorems 2.2, 2.3 and 2.6 that M+[u](xk) = M−[u](xk) for all ∈ N.

Since ρ(x0) = dist (x0, ∂Ω) and m > 0, by the upper semicontinuity of u − v,
we can choose a point ξ ∈ intB(x0, ρ(x0)) so that (u− v)(ξ) < m/2. Then, in view
of the semicontinuity of u and v, we can choose an 0 < r < dist (ξ, ∂B(x0, ρ(x0)))
so that u(x) − v(y) < m/2 for all x, y ∈ B(ξ, r). Setting ρk = ρ(xk) ∧ ρ(yk) and
passing to a subsequence if necessary, we may assume that

B(ξ, r) ⊂ B(xk, ρk) ∩B(yk, ρk) for all k ∈ N,

which can be stated as

B(ξ − xk, r) ∪B(ξ − yk, r) ⊂ B(0, ρk) for k ∈ N.

Again, passing to a subsequence if needed, we may assume that

B(ξ − x0, r/2) ⊂ B(ξ − xk, r) ∩B(ξ − yk, r) for k ∈ N.

Note that for z ∈ B(ξ − x0, r/2),

xk + z, yk + z ∈ B(ξ, r)

and
u(xk + z)− v(yk + z) <

m

2
.
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Since u(xk)− v(yk) ≥ m, we have

u(xk + z)− u(xk) < v(yk + z)− v(yk)− m

2
for z ∈ B(ξ − x0, r/2).

Note also that B(ξ − x0) ⊂ B(0, ρk) for k ∈ N.
We have

Φ(xk, yk) ≥ Φ(xk + z, yk + z) for all z ∈ B(0, ρk), k ∈ N,

and hence

u(xk)− v(yk) ≥ u(xk + z)− v(yk + z) for all z ∈ B(0, ρk), k ∈ N.

We set η = ξ − x0. Using the above observations, we compute that

f0(xk) ≤M−[u](xk)(4.1)

≤ lim inf
ε→0+

∫

B(0, ρk)\(B(η, r/2)∪B(0, ε))

G(v(yk + z)− v(yk))K(z) dz

+
∫

B(η, r/2)

G(u(xk + z)− u(xk))K(z) dz

+
∫

ρk<|z|<ρ(xk)

G(2C)K(z) dz

≤ lim inf
ε→0+

∫

B(0, ρk)\(B(η, r/2)∪B(0, ε))

G(v(yk + z)− v(yk))K(z) dz

+
∫

B(η, r/2)

G(v(yk + z)− v(yk)−m/2)K(z) dz

+
∫

ρk<|z|<ρ(xk)

G(2C)K(z) dz

≤ lim inf
ε→0+

∫

B(0, ρk)\B(0, ε)

G(v(yk + z)− v(yk))K(z) dz

− γ(m/2)
∫

B(η, r/2)

K(z) dz +
∫

ρk<|z|<ρ(xk)

G(2C)K(z) dz

≤M−[v](yk)− γ(m/2)
∫

B(η, r/2)

K(z) dz

+ 2
∫

ρk<|z|<ρ(xk)∨ρ(yk)

G(2C)K(z) dz

≤f0(yk)− γ(m/2)
∫

B(η, r/2)

K(z) dz

+ 2
∫

ρk<|z|<ρ(xk)∨ρ(yk)

G(2C)K(z) dz.

Sending k →∞ yields

γ(m/2)
∫

B(η, r/2)

K(z) dz < 0,

which is a contradiction. ¤

Remark 4.1. In the (linear) case where p = 2, the same conclusion as the above
theorem is valid without assuming λ0 = 1.
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Proof of Remark 4.1. Let p = 2 and 0 < λ0 < 1. As in the proof of the previous
theorem, we suppose that m := maxΩ(u − v) > 0 and will show a contradiction.
We set Γ = {x ∈ Ω | (u − v)(x) = m}. Obviously, the set Γ is a nonempty closed
subset of Ω and there are a point x0 ∈ Γ and a ball B(ξ, r), with r > 0, such that

B(ξ, r) ⊂ intB(x0, ρ(x0)) \ Γ.

Here we may assume by choosing r > 0 small enough that u(x)− v(y) ≤ m0 for all
x, y ∈ B(ξ, r) and some constant m0 < m.

Let ε > 0, and note that the function u(x) − v(x) − ε|x − x0|2 has a strict
maximum at x = x0, and, introducing the function

Ψα(x, y) = u(x)− v(y)− ε|x− x0|2 − α|x− y|2

on Ω×Ω, we find that there are a sequence {αk} diverging to infinity and sequences
{xk} and {yk} converging to x0 such that Ψαk

attains a maximum at (xk, yk).
Selecting a subsequence if necessary, we may assume that xk, yk 6∈ B(ξ, r) and

B(ξ, r) ⊂ B(xk, ρ(xk)) ∩ B(yk, ρ(yk)) for all k ∈ N. Setting η = ξ − x0, we may
assume that for all k ∈ N,

(
xk + B(η, r/2)

) ∪ (
yk + B(η, r/2)

) ⊂ B(ξ, r).

As u and v are sub and supersolutions of (1.1), respectively, we get

M+[u](xk) = M−[u](xk) ≥ f0(xk) and M−[v](yk) = M+[v](yk) ≤ f0(yk).

Since

Ψαk
(xk, yk) ≥ Ψαk

(xk + z, yk + z) for all z ∈ B(0, ρ(xk) ∧ ρ(yk)), k ∈ N,

we have

u(xk + z)− u(xk) ≤v(yk + z)− v(yk) + ε
(
2(xk − x0) · z + |z|2)

for all z ∈ B(0, ρ(xk) ∧ ρ(yk)), k ∈ N.

Hence, computing similarly to (4.1), we get

f0(xk) ≤f0(yk)− γ(m−m0)
∫

B(η, r/2)

K(z) dz + 2
∫

Nk

G(2C)K(z) dz

+ ε

∫

B(0, ρ(xk))

|z|2K(z) dz,

where

Nk =
(
B(xk, ρ(xk)) ∪B(yk, ρ(yk))

) \ (
B(xk, ρ(xk) ∩B(yk, ρ(yk))

)
,

from which we obtain a contradiction in the limit as k →∞ if ε > 0 is sufficiently
small. ¤

5. Existence of continuous solutions

In this section we establish an existence result for the Dirichlet problem for
(1.1)–(1.2). We need the following additional hypotheses on Ω and f0.

(H1) The set Ω satisfies the uniform exterior sphere condition. That is, there
is an R > 0 and, for each x ∈ ∂Ω, a point y ∈ Rn such that

B(y, R) ∩ Ω = {x}.
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(H2) There exist constants ε0 ∈ (0, 1) and C0 > 0 such that

|f0(x)| ≤ C0 (λ0 dist (x, ∂Ω))ε0(p−1)−σ for all x ∈ Ω.

Remark 5.1. (i) Although we are mainly concerned with bounded f0, but assump-
tion (H2), with ε0(p− 1)− σ < 0, allows f0 to blow up at points of the boundary
∂Ω. (ii) Fix a bounded function f0 on Ω and constants p > 1 and 0 < σ0 < p.
We may choose constants ε0 ∈ (0, 1) and C0 > 0 so that ε0(p − 1) − σ0 ≤ 0 and
|f0(x)| ≤ C0(λ0 dist (x, ∂Ω))ε0(p−1)−σ0 for x ∈ Ω. Then, for any σ0 ≤ σ < p,
we have |f0(x)| ≤ C1 (λ0 dist (x, ∂Ω))ε0(p−1)−σ for all x ∈ Ω and for some constant
C1 > 0 independent of σ. This remark is important when we discuss the asymptotic
behavior of of the solution uσ of (1.1)–(1.2) as σ → p.

Henceforth in this section, we assume that the above hypotheses are valid, and
we fix R > 0, ε0 ∈ (0, 1) and C0 > 0 taken from (H1)–(H2).

The main result in this section is stated as follows.

Theorem 5.1. Assume that λ0 = 1 if p 6= 2. Then there exists a unique solution
u ∈ C(Ω) of (1.1)–(1.2).

Proof. In view of the Perron method (Theorem 3.5) and the comparison theorem
(Theorem 4.1 and Remark 4.1), we need only to show that there exist a subsolution
ψ− ∈ LSC(Ω) and a supersolution ψ+ ∈ USC(Ω) of (1.1) such that ψ− ≤ ψ+ in Ω
and ψ− = ψ+ on ∂Ω, which is exactly what the next theorem guarantees. ¤
Theorem 5.2. There exist functions ψ+ ∈ USC(Ω) and ψ− ∈ LSC(Ω) such that
ψ+ (resp., ψ−) is a supersolution (resp., subsolution) of (1.1), ψ− ≤ ψ+ on Ω and
ψ = g0 on ∂Ω. Moreover, the functions ψ± can be chosen independently of σ.

Remark 5.2. The hypotheses of Theorem 4.1 exclude the case where 0 < λ0 < 1
and p 6= 2. But, even in this case, the proof of Theorem 5.1 ensures the existence of
a solution u of (1.1)-(1.2) which is continuous at points of the boundary ∂Ω, that
is,

lim
Ω3x→y

u(x) = g0(y) for y ∈ ∂Ω,

and may not be continuous in Ω.

The above theorem is an easy consequence of the following lemma.

Lemma 5.3. Let g ∈ C2(Ω). Then there is a function ψ ∈ C(Ω) such that ψ is
a supersolution of (1.1), g ≤ ψ on Ω and ψ = g on ∂Ω. The choice of ψ does not
depends on σ.

Assuming the above lemma as true for the moment, we prove Theorem 5.2 as
follows.

Proof of Theorem 5.2. We extend the domain of definition of g0 to Ω so that the
resulting function, denoted again by g0, is continuous on Ω. For any 0 < ε < 1 we
choose a function gε ∈ C2(Ω) so that ‖gε− g0‖∞,Ω < ε. We apply Lemma 5.3 with
g = ε + gε, to find a supersolution ψ+

ε ∈ C(Ω) of (1.1) such that ψ+
ε ≥ ε + gε on Ω

and ψ+
ε = ε + gε on ∂Ω. Here the choice of ψ+

ε is independent of σ. Now, we set

ψ+(x) = inf{ψ+
ε (x) | 0 < ε < 1} for x ∈ Ω.

This function ψ+ is upper semicontinuous on Ω, is a supersolution of (1.1) due to
Theorem 3.3 and satisfies the conditions that g0 ≤ ψ+ on Ω and g0 = ψ+ on ∂Ω.
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Next we apply Lemma 5.3 with −f0 and ε−gε in place of f0 and g, respectively,
to obtain a supersolution φε of

M [u](x) = −f0 in Ω.

Setting ψ−ε = −φε, we observe that ψ−ε is a subsolution of (1.1) and satisfies the
conditions that ψ−ε ≥ −ε + gε on Ω and ψ−ε = −ε + gε on ∂Ω. As before, setting

ψ−(x) = sup{ψ−ε (x) | 0 < ε < 1} for x ∈ Ω,

we get a subsolution ψ− ∈ LSC(Ω) of (1.1), the choice of which is independent
of σ, having the properties: ψ− ≤ g0 on Ω and ψ− = g0 on ∂Ω. Noting that
ψ− ≤ g0 ≤ ψ+ on Ω, we conclude the proof. ¤

In this section we put d(x) = dist (x, ∂Ω) for x ∈ Ω and

Ωδ = {x ∈ Ω | d(x) > δ} for δ > 0.

To prove Lemma 5.3, we need the following lemma.

Lemma 5.4. Let ε ∈ (0, 1). Define the function φε ∈ C(Ω) by φε(x) = d(x)ε.
Then there are constants δ = δε,R, C = CR > 0, γ = γε,R > 0 and, for each
x ∈ Ω \ Ωδ, a unit vector e = ex ∈ Rn such that for any z ∈ B(0, d(x)),

(5.1) φε(x + z)− φε(x) ≤
{

εd(x)ε−1
(
e · z + C|z|2) ,

εd(x)ε−1
(
e · z − γd(x)−1|z|2) if |e · z| ≥ |z|/2.

Now, assuming Lemma 5.4 as true, we give the proof of Lemma 5.3.

Proof of Lemma 5.3. In this proof we write ε for ε0 for notational simplicity. Let
φε, CR, γ = γε,R and δ = δε,R be as in Lemma 5.4. Fix a constant C ≥ CR ∨ 1 so
that

C0 ∨ ‖g‖∞,Ω ∨ ‖Dg‖∞,Ω ∨ ‖D2g‖∞,Ω ≤ C.

Here, to be sure, we write ‖D2g‖∞,Ω := sup{|D2g(x)ξ · ξ| | x ∈ Ω, ξ ∈ B(0, 1)}.
It is easy to see that there is a quadratic function ψ0 ∈ C2(Rn) such that

ψ0(x + z)− ψ0(x) ≤ Dψ0(x) · z − |z|2 for all x, z ∈ Rn

and
diam (Ω) + 1 ≤ |Dψ0(x)| ≤ 3 diam (Ω) + 1 for all x ∈ Ω.

We may moreover assume that ψ0 ≥ 0 on Ω. We fix such a function ψ0.
Now, we fix x ∈ Ω and set q0 = Dψ0(x) and

Σ0 = {z ∈ B(0, ρ(x)) | |q0 · z| ≥ |q0||z|/2}.
Note that Σ0 is symmetric, i.e., −Σ0 = Σ0 and the volume of Σ0 is comparable
to that of B(0, ρ(x)), i.e., |Σ0| = τn|B(0, ρ(x))| for some constant τn ∈ (0, 1). We
observe that for some θ ∈ (0, 1),

G(ψ0(x + z)− ψ0(x)) = G(q0 · z)−G′(q0 · z − θ|z|2)|z|2

≤
{

G(q0 · z) for all z ∈ B(0, ρ(x))

G(q0 · z)− (p− 1)|q0 · z − θ|z|2|p−2|z|p for all z ∈ Σ0.

Let z ∈ Σ0 and θ ∈ (0, 1), and observe that if p ≥ 2, then

|q0 · z − θ|z|2|p−2 ≥ 22−p|z|p−2
∣∣|q0| − 2|z|∣∣p−2 ≥ 22−p|z|p−2
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and if p < 2, then

|q0 · z − θ|z|2|p−2 ≥|z|p−2||q0|+ |z||p−2 ≥ (4 diam (Ω) + 1)p−2|z|p−2.

Here we have used the condition that diam (Ω)+1 ≤ |q0| ≤ 3 diam (Ω)+1. Setting

bp =

{
(p− 1) 22−p if p ≥ 2,

(p− 1)(4 diam (Ω) + 1)p−2 if p < 2,

we have for z ∈ Σ0,

G(ψ0(x + z)− ψ0(x)) ≤ G(q0 · z)− bp|z|2,
and obtain

M [ψ0](x) ≤
∫

B(0, ρ(x))\Σ0

G(q0 · z)K(z) dz

+
∫

Σ0

(
G(q0 · z)− bp|z|p

)
K(z) dz

=− bpµ

∫

Σ0

|z|p−n−σ dz = −bpτnσnρ(x)p−σ.

Thus, noting that p = ε(p−1)+(1−ε)p+ε and setting b0 = bpτnσn(λ0δ/2)(1−ε)p+ε,
we get

(5.2) M [ψ0](x) ≤ −b0ρ(x)ε(p−1)−σ for all x ∈ Ωδ/2.

Let A ≥ 1 be a constant to be fixed later on, and set

v(x) = g(x) + Aφε(x) for x ∈ Ω.

Fix x ∈ Ω \ Ωδ and let e ∈ Rn be a unit vector which satisfies (5.1). We set Σ =
{z ∈ B(0, ρ(x)) | |e ·z| ≥ |z|/2}, q1 = Dg(x)+εd(x)ε−1Ae and γ1 = γεd(x)ε−2A/2.
We may assume by replacing γ and δ by smaller positive numbers if needed that
δ ≤ 4γ ≤ 1. We now assume that 4C ≤ εδε−1A. Then we have C ≤ γεδε−2A and

C

2
− γεd(x)ε−2A ≤ −γεd(x)ε−2A

2
= γ1.

Hence, by (5.1), we have for any z ∈ Σ,

v(x + z)− v(x) ≤ q1 · z − γ1|z|2.
Observe also that for any z ∈ Σ,

γ1|z|2 ≤ γεd(x)ε−1A|z|
2

≤ εd(x)ε−1A|z|
8

,

|q1 · z| ≥ εd(x)ε−1A|e · z| − C|z| ≥ εd(x)ε−1|z|A
4

,

|q1 · z| ≤ εd(x)ε−1A|z|+ C|z| ≤ 2εd(x)ε−1A|z|.
Hence, for any z ∈ Σ and θ ∈ (0, 1), if p ≥ 2, then

G′(q1 · z − θγ1|z|2) = (p− 1)
∣∣q1 · z − θγ1|z|2

∣∣p−2 ≥ (p− 1)
(εd(x)ε−1A|z|

8

)p−2

,

and if 1 < p < 2, then

G′(q1 · z − θγ1|z|2) ≥ (p− 1)
(
2εd(x)ε−1A|z|)p−2

.
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Thus, setting

cp =

{
(p− 1) 82−p if p ≥ 2,

(p− 1) 2p−2 if p < 2,

we get

G(v(x + z)− v(x)) ≤ G(q1 · z)− cp

(
εd(x)ε−1A

)p−2
γ1|z|p for z ∈ Σ,

and consequently∫

Σ

G(v(x + z)− v(x))K(z) dz ≤ −cp

(
εd(x)ε−1A

)p−2
γ1µ

∫

Σ

|z|p−n−σ dz(5.3)

= −1
2
cpγ(εA)p−1d(x)−(1−ε)p−ετnσnρ(x)p−σ

≤ −1
2
cpτnσnγ(εA)p−1λ

(1−ε)p+ε
0 ρ(x)ε(p−1)−σ.

Next, we give an estimate of the integral

I :=
∫

B(0, ρ(x))\Σ
G(v(x + z)− v(x))K(z) dz.

We have v(x + z)− v(x) ≤ q1 · z + C(1 + εd(x)ε−1A)|z|2 for z ∈ B(0, ρ(x)). Noting
that

|q1| ∨ C(1 + εd(x)ε−1A) ≤ Q := 2εd(x)ε−1AC

and arguing as in the proofs of Theorems 2.2 and 2.3, we find a constant C1 > 0,
depending only on p and n, such that if p ≥ 2, then

I ≤C1Q(Q + ρ(x)Q)p−2ρ(x)p−σ = C1Q
p−1(1 + ρ(x))p−2ρ(x)p−σ

≤ 2p−2C1 (2εAC)p−1
d(x)(ε−1)(p−1)ρ(x)p−σ ≤ C1(4εAC)p−1ρ(x)(ε−1)(p−1)+p−σ

= C1(4εAC)p−1ρ(x)ε(p−1)−σ+1,

and if p < 2, then

I ≤C1Q
p−1ρ(x)p−σ ≤ C1(2εAC)p−1d(x)(ε−1)(p−1)ρ(x)p−2 ≤ C1(2εAC)p−1ρ(x)ε(p−1)−σ+1.

Here we have used that ρ(x) ≤ δ ≤ 1. From these and (5.3), we get

M+[v](x) ≤ (εA)p−1
(
(4C)p−1C1δ − 1

2
cpτnσnγλ

(1−ε)p+ε
0

)
ρ(x)ε(p−1)−σ.

Set c0 = cpτnσnγλ
(1−ε)p+ε
0 /4. Replacing δ > 0 by a smaller number if needed, we

may assume that (4C)p−1C1δ ≤ c0. Then we have

M+[v](x) ≤ −c0(εA)p−1ρ(x)ε(p−1)−σ for all x ∈ Ω \ Ωδ.

We now assume that c0(εA)p−1 ≥ C, and then we get

(5.4) M+[v](x) ≤ −Cρ(x)ε(p−1)−σ for all x ∈ Ω \ Ωδ.

At this stage, our requirement on A is that A ≥ A1, where

A1 := max
{

1,
4C

εδε−1
,

1
ε

( C

c0

) 1
p−1

}
.

By (5.2), for any constant B > 0, we have

M [Bψ0](x) ≤ −Bp−1b0ρ(x)ε(p−1)−σ for x ∈ Ωδ/2.
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We fix B > 0 so that Bp−1b0 ≥ C, and we have

(5.5) M [Bψ0](x) ≤ −Cρ(x)ε(p−1)−σ for all x ∈ Ωδ/2.

We set
L := B max

Ω
ψ0 ∈ (0, ∞) and jε(t) = tε for t ≥ 0,

and observe that

sup
Ω\Ωδ/2

v ≤C + Ajε(δ/2),

inf
Ωδ

v ≥− C + Ajε(δ).

Since jε(δ) > jε(δ/2), we may choose a constant A2 > 0 so that

A2 (jε(δ)− jε(δ/2)) ≥ L + 2C.

We finally fix A = A1 ∨A2, and define the functions w, ψ ∈ C(Ω) by

w(x) =C + Ajε(δ/2) + Bψ0(x),

ψ(x) =





v(x) if x ∈ Ω \ Ωδ/2,

v(x) ∧ w(x) if x ∈ Ωδ/2 \ Ωδ,

w(x) if x ∈ Ωδ.

It is easily checked that ψ ≥ g on Ω and ψ = g on ∂Ω and also that ψ(x) =
v(x) ∧ w(x) on Ω.

It remains to check that ψ is a supersolution of (1.1). Let φ ∈ Tp(Ω) and y ∈ Ω,
and assume that ψ−φ attains a minimum at y. We may assume that (ψ−φ)(y) = 0,
so that ψ ≥ φ in Ω. We divide our consideration into three cases. First, we consider
the case where y ∈ Ωδ/2 and ψ(y) = w(y). Since φ ≤ ψ = v ∧ w in Ω, we see from
(5.5) that

M [φ](y) ≤ M [w](y) ≤ f0(y).

Next, consider the case where y ∈ Ωδ/2 and ψ(y) 6= w(y). Then we have y ∈
Ωδ/2 \ Ωδ and ψ(y) = v(y). Hence, from (5.4), we get

M [φ](y) ≤ M+[v](y) ≤ f0(y).

The last case is where y ∈ Ω \ Ωδ/2. But then we have φ(y) = ψ(y) = v(y) and, as
in the previous case, we get

M [φ](y) ≤ M+[v](y) ≤ f0(y),

which completes the proof. ¤

We need the following lemma for the proof of Lemma 5.4.

Lemma 5.5. Let r > 0, 0 < ε < 1, and e ∈ Rn be a unit vector. Set x = (R + r)e.
Then there are positive constants cε,R and δε,R, depending only on ε and R, such
that for any z ∈ B(0, r), if r ≤ δε,R, then

(|x + z| −R)ε − (|x| −R)ε ≤





εrε−1
(
e · z +

|z|2
2R

)
,

εrε−1
(
e · z − cε,Rr−1|z|2

)
if |e · z| ≥ |z|

2 .
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Proof. We fix any z ∈ B(0, r) and observe that for some θ ∈ (0, 1),

(|x + z| −R)ε − (|x| −R)ε ≤ε(|x| −R)ε−1(|x + z| − |x|)

− ε(1− ε)
2

(|x + θz| −R)ε−2(|x + z| − |x|)2.
We set f(y) = |x + y| for y ∈ Rn and compute that if x + y 6= 0, then

Df(y) =
x + y

|x + y| and D2f(y) =
1

|x + y|
(
I − (x + y)⊗ (x + y)

|x + y|2
)
,

where I denotes the identity matrix of order n and v ⊗ v := (vivj)1≤i,j≤n for
v = (v1, v2, ..., vn). Hence, we have

|x + z| − |x| ≤ e · z +
|z|2

2|x + θz|
for some θ ∈ (0, 1). Thus, noting that R ≤ |x + θz| ≤ R + 2r for θ ∈ (0, 1), we get

(|x + z| −R)ε − (|x| −R)ε ≤εrε−1
(
e · z +

|z|2
2R

)
(5.6)

− ε(1− ε)
2

(2r)ε−2(|x + z| − |x|)2.
In particular, we have

(|x + z| −R)ε − (|x| −R)ε ≤ εrε−1
(
e · z +

|z|2
2R

)
.

We assume henceforth that |e · z| ≥ |z|/2. Note that

2|x · z| − |z|2 ≥ (R + r)|z| − r|z| = R|z|,
and

(5.7) (|x + z| − |z|)2 =
(|x + z|2 − |x|2)2
(|x + z|+ |x|)2 ≥ (R|z|)2

(2R + 3r)2
.

We choose δε,R > 0 so that

1
R
≤ (1− ε)2ε−3 R2

(2R + 3δ)2
,

and set

cε,R := (1− ε)2ε−3 R2

(2R + 3δ)2
.

From (5.6) and (5.7), if r ≤ δε,R, we get

(|x + z| −R)ε − (|x| −R)ε ≤ εrε−1
(
e · z − cε,Rr−1|z|2) ,

which completes the proof. ¤

Proof of Lemma 5.4. Let c = cε,R and δ = δε,R be positive constants from Lemma
5.5. Fix any x ∈ Ω \ Ωδ. Set r := d(x) ∈ (0, δ] and select a point ξ ∈ ∂Ω so that
r = |ξ− x|. By the uniform exterior sphere condition (H1), there is a point η ∈ Rn

such that B(η, R) ∩ Ω = {ξ}. By translation, we may assume that η = 0. Setting
e = x/|x|, we have x = (R+r)e and ξ = Re. Note also that d(x)ε = rε = (|x|−R)ε.
Let z ∈ B(0, r). Setting ē = (x + z)/|x + z|, we observe that Rē 6∈ Ω,

d(x + z) ≤|x + z −Rē| = |x + z| −R,

and
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d(x + z)ε − d(x)ε ≤ (|x + z| −R)ε − (|x| −R)ε.

Now, by virtue of Lemma 5.5, we see that

φε(x + z)− φε(x) ≤




εrε−1
(
e · z +

|z|2
2R

)
,

εrε−1
(
e · z − cr−1|z|2) if |e · z| ≥ |z|

2 .

This completes the proof. ¤

6. Comparison results for the p-Laplace equation

In this section we recall some of basic results on the inhomogeneous p-Laplace
equation

(6.1) ∆pu = f0(x) in Ω

and formulate comparison results for (6.1). The results in this section are more or
less well-known (see [12]), and thus we give only a brief sketch of their proofs. We
refer to [12] for results and proofs similar to those in this section.

We are concerned with the Dirichlet problem for (6.1) with the Dirichlet condi-
tion (1.2), i.e., the condition u = g0 on ∂Ω. We may assume that g0 is a continuous
function on Ω and moreover g0 ∈ C2(Ω).

We call any function u ∈ W 1,p
loc (Ω) a weak solution of (6.1) if

−
∫

Ω

|Du(x)|p−2Du(x) ·Dψ(x) dx =
∫

Ω

f0(x)ψ(x) dx for all ψ ∈ C∞0 (Ω).

Also we call any function u ∈ W 1,p
loc (Ω) a weak subsolution (resp., supersolution) of

(1.1) if

−
∫

Ω

|Du(x)|p−2Du(x) ·Dψ(x) dx ≥
∫

Ω

f0(x)ψ(x) dx,

(resp., −
∫

Ω

|Du(x)|p−2Du(x) ·Dψ(x) dx ≤
∫

Ω

f0(x)ψ(x) dx )

for all ψ ∈ C∞0 (Ω) with ψ ≥ 0.
In this paper, the Dirichlet condition (1.2) for weak solutions u of (6.1) is un-

derstood in the pointwise sense, i.e.,

lim
x→∂Ω

(u− g0)(x) = 0.

Next, following [11, 14], we recall the definition of viscosity solutions of (6.1).
We call any bounded function u in Ω a viscosity subsolution (resp., supersolution)
of (6.1) provided that for any (x, φ) ∈ Ω × Tp(Ω) for which u∗ − φ (resp., u∗ − φ)
attains a local maximum (resp., minimum) at x, we have

∆pφ(x) ≥ f0(x) ( resp., ∆pφ(x) ≤ f0(x) ) if Dφ(x) 6= 0,

and
0 ≥ f0(x) ( resp., 0 ≤ f0(x) ) if Dφ(x) = 0.

We call any bounded function u on Ω a viscosity solution of (6.1) if it is both a
viscosity sub and supersolution of (6.1).

We assume throughout this section that the uniform exterior sphere condition
(H1) holds and that f0 ∈ C(Ω) is bounded on Ω.
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Theorem 6.1. Let u, v ∈ W 1,p
loc (Ω) be weak sub and supersolutions of (6.1), respec-

tively. Assume that
lim sup
x→∂Ω

(u− v)(x) ≤ 0.

Then u ≤ v a.e. in Ω.

Proof. Fix any ε > 0 and replace u by u− ε. Then w := (u− v)+ ∈ W 1,p
0 (Ω), and

we get

−
∫

w>0

(|Du|p−2Du− |Dv|p−2Dv
) · (Du−Dv) dx ≥ 0,

which implies that∫

w>0

(|Du|p−2Du− |Dv|p−2Dv
) · (Du−Dv) dx = 0.

Observe (see [15, Lemma 1]) that there is a constant γp > 0 such that for all
a, b ∈ Rn,

(|a|p−2 − |b|p−2b) · (a− b) ≥




γp|a− b|p if p ≥ 2,

γp|a− b|2
(|a|+ |b|)2−p

if p < 2.

Accordingly, if p ≥ 2, then we have∫

w>0

|D(u− v)|p dx

≤ γ−1
p

∫

w>0

(|Du|p−2Du− |Dv|p−2Dv
) · (Du−Dv) = 0,

and, if 1 < p < 2, then we have∫

w>0

|Du−Dv|p dx

≤
(∫

w>0

|Du−Dv|2
(|Du|+ |Dv|)2−p

dx

)p/2 (∫

w>0

(|Du|+ |Dv|)p dx

)(2−p)/2

≤
(

γ−1
p

∫

w>0

(|Du|p−2Du− |Dv|p−2Dv
) · (Du−Dv) dx

)p/2

×
(∫

w>0

(|Du|+ |Dv|)p dx

)(2−p)/2

= 0.

Thus we find that w = 0 and hence u ≤ v + ε a.e. in Ω, which shows that u ≤ v
a.e. in Ω. ¤
Lemma 6.2. For each x ∈ ∂Ω and ε > 0 there exist a weak supersolution ψ+

x,ε ∈
C∞(Ω) and a weak subsolution ψ−x,ε ∈ C∞(Ω) of (6.1) such that ψ−x,ε ≤ g0 ≤ ψ+

x,ε

in Ω and ψ+
x,ε(x)− ε ≤ g0(x) ≤ ψ−x,ε(x) + ε.

Proof. Fix any x ∈ ∂Ω and ε > 0. Let y ∈ Rn and R > 0 be those from condition
(H1). Let C > 0 and α > 0 be constants to be selected later. We define the function
f ∈ C∞(Rn) by

f(z) = C(e−αR2 − e−α|z−y|2).
By a simple computation, we get

∆pf(z) = (2αC)p−1e−α(p−1)|z−y|2 |z − y|p−2
(
n + p− 2− 2α(p− 1)|z − y|2) .
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We choose α > 0 so that 2α(p− 1)R2 > n + p− 2 and then C > 0 so that

∆pf(z) ≤ f0(z) and ε + f(z) ≥ g0(z) for all z ∈ Ω.

The function f(z)+ε has the properties required of the function ψ+
x,ε in the lemma.

The function ψ−x,ε can be constructed in a similar way. ¤
We need the following well-known Hölder gradient estimate for the solutions of

(6.1). We refer to [7, 13, 15] for this estimate.

Lemma 6.3. Let u ∈ W 1,p
loc (Ω) be a weak solution of (6.1). There is a constant

α ∈ (0, 1), depending only on p and n, and for each ball B := B(x0, 2r) ⊂ Ω a
constant C > 0, depending only on p, n, r, ‖u‖∞,B and ‖f0‖∞,B, such that

|Du(x)−Du(x′)| ≤ C|x− x′|α for all x, x′ ∈ B(x0, r).

The constant C can be chosen so that it is nondecreasing in ‖u‖∞,B and ‖f0‖∞,B.

Theorem 6.4. There is a unique weak solution u ∈ W 1,p
loc (Ω) ∩ C(Ω) of (6.1) and

(1.2).

Proof. We choose a sequence {gk} ⊂ C1(Ω) such that, as k →∞, gk → g0 uniformly
on Ω and Dgk → Dg0 locally uniformly in Ω. For each k ∈ N we consider the convex
minimization problem

(6.2) inf{I(v) | v ∈ gk + W 1,p
0 (Ω)},

where k ∈ N and
I(v) =

∫

Ω

(1
p
|Dv|p + f0v

)
dx.

It is a standard observation that for each k ∈ N, the minimization problem (6.2)
has a unique solution uk ∈ gk + W 1,p

0 (Ω) and it is a weak solution of (6.1).
According to Lemma 6.2, there are functions ψ± ∈ C∞(Ω) such that ψ+ (resp.,

ψ−) is a weak supersolution (resp., subsolution) of (6.1) and ψ− ≤ gk ≤ ψ+ on Ω for
all k ∈ N. By an argument similar to the proof of Theorem 6.1, we see that ψ− ≤
uk ≤ ψ+ a.e. in Ω for all k ∈ N. By Lemma 6.3, we may assume that uk ∈ C1,α(Ω)
for all n and for some α ∈ (0, 1) and that the sequence {uk} is precompact in C1(Ω).
Thus, the sequence uk has a subsequence {ukj} such that (ukj , Dukj ) → (u, Du)
locally uniformly in Ω for some function u ∈ C1,α(Ω) ∩W 1,p

loc (Ω) as j → ∞. It is
easily seen that u is a weak solution of (6.1). We extend the domain of definition
of u up to ∂Ω by setting u(x) = g0(x) for all x ∈ ∂Ω.

We now show that u ∈ C(Ω). Fix any x ∈ ∂Ω and ε > 0. Let ψ±x,ε ∈ C∞(Ω) be
two functions from Lemma 6.2. If k ∈ N is sufficiently large, then we have

ψ−x,ε(z)− 2ε ≤ gk(z) ≤ ψx,ε(z) + 2ε for all z ∈ Ω.

By comparison, we see that if k is sufficiently large, then

ψx,ε(z)− 2ε ≤ uk(z) ≤ ψ+
x,ε(z) + 2ε for all z ∈ Ω,

which obviously implies that u is continuous at x. Thus u is a continuous function
on Ω.

The uniqueness of weak solutions of (6.1) and (1.2) follows from Theorem 6.1. ¤

Theorem 6.5. Let u ∈ W 1,p
loc (Ω) ∩ USC(Ω) (resp., u ∈ W 1,p

loc (Ω) ∩ LSC(Ω)) be a
weak subsolution (resp., supersolution) of (6.1). Then it is a viscosity subsolution
(resp., supersolution) of (6.1).
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Proof. Note that w ∈ W 1,p
loc (Ω)∩ LSC(Ω) is a weak (resp., viscosity) supersolution of

(6.1) if and only if −w ∈ W 1,p
loc (Ω)∩ USC(Ω) is a weak (resp., viscosity) subsolution

of (6.1) with −f0 in place of f0. Hence, we need only to prove the subsolution part
of the assertion.

Let U ⊂ Ω be an open ball such that U ⊂ Ω. Suppose that u is not a viscosity
subsolution of (6.1) in U . Then there is a function φ ∈ Tp(U) ∩ C(U) such that
u− φ attains a strict maximum over U at some point x0 ∈ U and

{
∆pφ(x0) < f0(x0) if Dφ(x0) 6= 0,

0 < f0(x0) if Dφ(x0) = 0.

By replacing the function φ(x) by the function C|x − x0|β+1 with a sufficiently
large C > 0 and a β > 1/(p − 1) if 1 < p < 2 and Dφ(x0) = 0, we may assume
that |Dφ|p−2Dφ ∈ C1(U), and then it is easily checked that φ is a weak solution
of (6.1) in a neighborhood V ⊂ U of x0. Adding a constant to u, we may assume
that (u−φ)(x0) > 0 and max∂V (u−φ) < 0. By the comparison theorem (Theorem
6.1), we find that u ≤ φ in V , which is a contradiction. This guarantees that u is
a viscosity subsolution of (6.1). ¤

Proposition 6.6. Let f1, f2 ∈ C(Ω) satisfy f1 > f2 on Ω. Let u ∈ USC(Ω) (resp.,
v ∈ LSC(Ω)) be a viscosity subsolution (resp., supersolution) of (6.1) with f1 (resp.,
f2) in place of f0. Assume that u ≤ v on ∂Ω. Then u ≤ v in Ω.

Proof. We argue by contradiction, and thus assume that maxΩ(u − v) > 0. Fix a
β ≥ 1 so that β > 1/(p− 1), and set φ(x) = |x|β+1 for x ∈ Rn. For any α > 1 we
consider the function

u(x)− v(y)− αφ(x− y) on Ω× Ω

and choose a maximum point (xα, yα) of it. Restricting our attention to sufficiently
large α, we may assume that xα, yα ∈ Ω. Setting

qα := αDφ(xα − yα) = α(β + 1)|xα − yα|β−1(xα − yα),

noting that
0 ≤ D2φ(x) ≤ (β + 1)β|x|β−1I for all x ∈ Rn,

and using, for instance, [5, Theorem 3.2], we find an n×n real matrix Xα such that

(qα, Xα) ∈ J
2,+

u(xα) and (qα, Xα) ∈ J
2,−

v(yα).

Here we refer the reader to [5] for the definition of semijets J
2,±

. Note that for
every ψ ∈ Tp(Ω), if Dψ(x) 6= 0, then

∆pψ(x) = |Dψ(x)|p−4 tr
(|Dψ(x)|2D2ψ(x) + (p− 2)(Dψ(x)⊗Dψ(x))D2ψ(x)

)
.

Now, by the viscosity property of u and v, we get

|qα|p−4 tr
(|qα|2Xα + (p− 2)(qα ⊗ qα)Xα

) ≥ f1(xα),

|qα|p−4 tr
(|qα|2Xα + (p− 2)(qα ⊗ qα)Xα

) ≤ f2(yα)

if either p ≥ 2 or qα 6= 0, and

0 ≥ f1(xα) and 0 ≤ f2(yα)

otherwise. From these, we see that f1(xα) ≤ f2(yα). Sending α → 0, we conclude
that f1(x0) ≤ f2(x0) for some x0 ∈ Ω, but this contradicts our assumption that
f1 > f2 on Ω. ¤
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The following Theorem improves the previous proposition.

Theorem 6.7. Let u ∈ USC(Ω) and v ∈ LSC(Ω) be, respectively, viscosity sub
and supersolutions of (6.1). Assume that u ≤ v on ∂Ω. Then u ≤ v in Ω.

Proof. According to Theorem 6.4, there is a unique weak solution w ∈ W 1,p
loc (Ω) ∩

C(Ω) of (6.1) and (1.2).
Now, we prove that u ≤ w in Ω. Fix any γ ∈ (0, 1), and let wγ ∈ W 1,p

loc (Ω)∩C(Ω)
be the unique weak solution of (6.1), with f0 − γ in place of f0, and (1.2).

Since wγ is a viscosity solution of (6.1) with f0 − γ in place of f0, applying
Proposition 6.6, we see that u ≤ wγ on Ω.

Using Lemma 6.3, we deduce that there is a sequence γj → 0 such that as j →∞,
(wγj

, Dwγj
) → (w0, Dw0) locally uniformly in Ω for some weak solution w0 of (6.1).

Let ψ+
x,ε ∈ C∞(Ω), with x ∈ ∂Ω and ε ∈ (0, 1), be those functions given by

Lemma 6.2 with f0 − 1 in place of f0. By Theorem 6.1, we have

wγ(z) ≤ ψ+(z) := inf{ε + ψx,ε(z) | x ∈ ∂Ω, ε ∈ (0, 1)} for all z ∈ Ω.

Since ψ+ = g0 on ∂Ω and ψ+ ∈ USC(Ω), we see that if we set w0(x) = g0(x) for
x ∈ ∂Ω, then w0 ∈ C(Ω). Hence, by the uniqueness of weak solutions of (6.1) and
(1.2), we find that w0 = w. This shows that u ≤ w on Ω.

An argument similar to the above yields the inequality w ≤ v on Ω. The proof
is now complete. ¤

7. p-Laplace equation in the limit as σ → p

Throughout this section we assume that the uniform exterior sphere condition
(H1) is satisfied, f0 ∈ C(Ω) is bounded on Ω and 1/2 ≤ σ < p. The last two
assumptions assure, in particular, that there are constants ε0 ∈ (0, 1) and C0 > 0,
independent of σ, such that

|f0(x)| ≤ C0 (λ0 dist (x, ∂Ω))ε0(p−1)−σ for x ∈ Ω.

That is, condition (H2) is satisfied. Hence, according to Lemma 5.3, there are
functions ψ± ∈ C(Ω), independent of σ, such that ψ± = g0 on ∂Ω, ψ− ≤ ψ+ in
Ω and ψ+ (resp., ψ−) is a supersolution (resp., subsolution) of (1.1). By virtue
of Theorem 3.5, there is a solution u of (1.1) ( see also Theorem 5.1 and Remark
5.2) such that ψ− ≤ u ≤ ψ+ in Ω. We fix such a solution and denote it by uσ.
According to Theorem 5.1, under the additional assumption that λ0 = 1 if p 6= 2,
uσ is a unique solution of the problem (1.1)–(1.2) and it is continuous on Ω.

As the limit equation for (1.1), we introduce the p-Laplace equation

(7.1) ν∆pu(x) = f0(x) for x ∈ Ω.

with the factor ν = νn,p given by

(7.2) ν =
π

n−1
2 Γ

(
p+1
2

)

Γ(n+p
2 )

.

By Theorem 6.4, the Dirichlet problem (7.1) and (1.2) has a unique weak solution
in W 1,p

loc (Ω) ∩ C(Ω) which is also a unique viscosity solution of (7.1) and (1.2), by
Theorems 6.5 and 6.7.
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Theorem 7.1. Let v ∈ W 1,p
loc ∩C(Ω) be the unique weak solution of (7.1) and (1.2).

Then
lim

σ→p−
uσ(x) = v(x) uniformly on Ω.

Proof. As usual in viscosity solutions theory, we introduce the half relaxed limits
u± of uσ by

u+(x) = lim
r→0+

sup{uσ(y) | y ∈ B(x, r) ∩ Ω, p− r < σ < p} for x ∈ Ω,

u−(x) = lim
r→0+

inf{uσ(y) | y ∈ B(x, r) ∩ Ω, p− r < σ < p} for x ∈ Ω.

Observe that u+ ∈ USC(Ω), u− ∈ LSC(Ω) and ψ− ≤ u− ≤ u+ ≤ ψ+ on Ω. We
intend to show that u+ (resp., u−) is a viscosity subsolution (resp., supersolution)
of (7.1). Once this was done, Theorem 6.7 guarantees that u− = u+ on Ω and, as
σ → p−, uσ converges uniformly on Ω to the unique viscosity solution of (7.1) and
(1.2) which is equal to v, thanks to Theorem 6.5. In fact, we prove here only that
u+ is a viscosity subsolution of (7.1), and leave it to the reader to check that u− is
a viscosity supersolution of (7.1).

Let φ ∈ Tp(Ω), and assume that u+−φ attains a strict maximum at x0 ∈ Ω. By
translation, we may assume that x0 = 0, and then set q = Dφ(0) and A = D2φ(0).
We choose a constant δ0 ∈ (0, 1/2) so that B(0, 2δ0) ⊂ Ω. Fix a constant C1 > 0
so that (1/2)|D2φ(x)ξ · ξ| ≤ C1|ξ|2 for all x ∈ B(0, 2δ0) and ξ ∈ Rn. It is easy to
find a sequence {σk} ⊂

(
1/2, p

)
converging to p such that for each k ∈ N, u∗σk

− φ
attains a maximum over B(0, 2δ0) at some point xk ∈ B(0, δ0), where xk converges
to the origin. Note that Mσk

[u∗σk
](xk) ≥ f0(xk) for all k ∈ N. We may assume that

δ0 < ρ(x) for all x ∈ B(0, 2δ0).
We first consider the case where q = 0 and p 6= 2. Note that ∆pφ(0) = 0 if

p > 2. Thus we need to show that f0(0) ≤ 0. If 1 < p < 2, we may replace the test
function φ by a function C|x|β+1, with some constants C > 0 and β > 1/(p − 1).
Applying Theorem 2.2 or Theorem 2.6, we see that there is a constant C2 > 0,
independent of σ, such that for any 0 < δ < δ0 and x ∈ B(0, δ), if p ≥ 2, then

Mσ[u∗σk
](xk) ≤ C2(|Dφ(xk)|+ δ)p−2δp−σ +

∫

δ<|z|<ρ(xk)

G(C3)
p− σ

|z|n+σ
dz,

and if 1 < p < 2, then

Mσ[u∗σk
](xk) ≤ C2δ

(β+1)(p−1)−σ +
∫

δ<|z|<ρ(xk)

G(C3)
p− σ

|z|n+σ
dz,

where C3 := ‖ψ+‖∞,Ω + ‖ψ−‖∞,Ω. From this observation, since Mσk
[u∗σk

](xk) ≥
f0(xk), we find that f0(0) ≤ 0, which was to be shown.

Next, we consider the case where q 6= 0 and will show that f0(0) ≤ ν∆pφ(0).
Fix any ε ∈ (0, 1). We may assume by reselecting δ0 if needed that

|(A−D2φ(x))ξ · ξ| ≤ ε|ξ|2 for all x ∈ B(0, 2δ0) and ξ ∈ Rn.

We may also assume that |q|/2 ≤ |Dφ(x)| ≤ 2|q| for all x ∈ B(0, δ0).
Fix any x ∈ B(0, δ0). For each z ∈ B(0, δ0) we can choose a constant θ(z) ∈

(0, 1) so that

φ(x + z)− φ(x) = qx · z +
1
2
D2φ(x + θ(z)z)z · z,
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where qx := Dφ(x), and note that

G(φ(x + z)− φ(x)) ≤ G
(
qx · z +

1
2
Aεz · z

)
,

where Aε := A + εI. Let δ ∈ (0, δ0). We set C4 = C1 + 1 and

Wδ(x) = {z ∈ B(0, δ) | C4|z|2 < ε|qx · z|}.
Let z ∈ Wδ(x) and compute that

G(φ(x + z)− φ(x)) ≤G(qx · z)G
(
1 +

Aεz · z
2qx · z

)

=G(qx · z)
(
1 + G′(1 + λ(z))

Aεz · z
2qx · z

)

=G(qx · z) + (p− 1)|qx · z|p−2|1 + λ(z)|p−2 Aεz · z
2

for some λ(z) ∈ R satisfying

|λ(z)| ≤
∣∣∣∣
Aεz · z
2qx · z

∣∣∣∣ ≤
C4|z|2
2|qx · z| < ε.

Noting that if 1 < p < 2, then

(1 + ε)p−2 ≤ |1 + λ(z)|p−2 ≤ (1− ε)p−2

and if p ≥ 2, then

(1− ε)p−2 ≤ |1 + λ(z)|p−2 ≤ (1 + ε)p−2,

we find that
∣∣(|1 + λ(z)|p−2 − 1

)
Aεz · z

∣∣ ≤
∣∣(1 + ε)p−2 − (1− ε)p−2

∣∣C4|z|2.
Setting γε = ε +

∣∣(1− ε)p−2 − (1 + ε)p−2
∣∣ and Bε = A + γεI, we observe that

|1 + λ(z)|p−2Aεz · z ≤Bεz · z,

G(φ(x + z)− φ(x)) ≤G(qx · z) +
(p− 1)|qx · z|p−2Bεz · z

2
,

and limε→0 γε = 0.
Now, we write q̄x = qx/|qx| and reselect δ0, if needed, so small that C4δ0 ≤

ε|qx|/2. Observe that if z ∈ B(0, δ) \Wδ(x), then

ε|qx · z| ≤ C4|z|2 =C4

(|z − (q̄x · z)q̄|2 + (q̄x · z)2
)

≤C4

(|z − (q̄x · z)q̄x|2 + δ|q̄x · z|
)

≤C4|z − (q̄x · z)q̄|2 +
ε

2
|qx · z|.

That is, for any z ∈ B(0, δ) \Wδ(x), we have ε|qx · z| ≤ 2C4|z− (q̄x · z)q̄x|2. Hence,
setting

Vδ(x) =
{
z ∈ B(0, δ)

∣∣ ε|qx · z| ≤ 2C4|z − (q̄x · z)q̄x|2
}
,

we get B(0, δ) ⊂ Wδ(x) ∪ Vδ(x).
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Next we observe that

I1(x) :=
∫

Wδ(x)

G(φ(x + z)− φ(x))K(z) dz

≤
∫

Wδ(x)

(
G(qx · z) +

p− 1
2

|qx · z|p−2Bεz · z
)
K(z) dz

=
p− 1

2

∫

Wδ(x)

|qx · z|p−2(Bεz · z)K(z) dz.

We make an orthogonal change of variables in the above integral. Indeed, for each
x ∈ B(0, δ), we introduce an orthogonal matrix Ux of order n for which Uxen = q̄x

and compute as follows:

I1(x) ≤p− 1
2

∫

W n
δ

|qx · Uxy|p−2(BεUxy · Uxy)K(y) dy

=
p− 1

2
|qx|p−2

n∑

j=1

∫

W n
δ

|yn|p−2bjj(x)y2
j K(y) dy

≤p− 1
2

|qx|p−2
n∑

j=1

( ∫

|y|<δ

|yn|p−2bjj(x)y2
j K(y) dy

+
∫

V n
δ

|bjj(x)||yn|p−2y2
j K(y) dy

)
,

where bij(x) denotes the (i, j)-entry of the matrix U−1
x BεUx and

Wn
δ :={y = (y′, yn) ∈ B(0, δ) | C4|y|2 < ε|qx||yn|},

V n
δ :={y = (y′, yn) ∈ B(0, δ) | ε|qx||yn| ≤ 2C4|y′|2}.

For 1 ≤ j ≤ n we compute

J1,j(x) :=
∫

|y|<δ

|yn|p−2y2
j K(y) dy

=µδp−σ

∫

|y|<1

|yn|p−2y2
j |y|−n−σ dy.

We use Lemma 2.1, to find that if j < n, then

J1,j(x) =
µδp−σΓ

(
3
2

)
Γ
(

1
2

)n−2Γ
(

p−1
2

)

Γ
(

n+p
2

)
∫ 1

0

t
p−σ

2 −1 dt =
2νδp−σ

p− 1
,

and

J1,n(x) =
µδp−σΓ

(
1
2

)n−1Γ
(

p+1
2

)

Γ
(

n+p
2

)
∫ 1

0

t
p−σ

2 −1 dt = 2νδp−σ.
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Next, we set C5 = 4C4/(|q|ε), so that |yn| ≤ C5|y′|2 for y = (y′, yn) ∈ V n
δ . We

compute that for 1 ≤ j < n,

J2,j(x) :=
∫

V n
δ

|yn|p−2y2
j K(y) dy

≤2µ

∫

|y′|<δ

|y′|2−n−σ dy′
∫ C5|y′|2

0

yp−2
n dyn

=
2Cp−1

5 µ

p− 1

∫

|y′|<1

|y′|2p−n−σ dy′ =
2Cp−1

5 σn−1µ

(p− 1)(2p− 1− σ)
.

Similarly we get

J2,n(x) :=
∫

V n
δ

|yn|pK(y) dy

≤2µ

∫

|y′|<δ

|y′|−n−σ dy′
∫ C5|y′|2

0

yp
n dyn

=
2Cp+1

5 µ

p + 1

∫

|y′|<1

|y′|2p+2−n−σ dy′

=
2Cp+1

5 σn−1µ

(p + 1)(2p + 1− σ)
<

2Cp+1
5 σn−1µ

(p + 1)(2p− 1− σ)
.

Furthermore, noting that

φ(x + z)− φ(x) ≤ qx · z + C4|z|2 for z ∈ B(0, δ)

and

|qx| · |yn|+ C4|y|2 ≤ (2|q|+ C4)|yn|+ C4|y′|2 ≤ C6|y′|2 for y ∈ V n
δ ,

where C6 := (2|q|+ C4)C5 + C4, we compute that

I2(x) :=
∫

Vδ(x)

G(φ(x + z)− φ(x))K(z) dz

≤
∫

V n
δ

G(|qx||yn|+ C4|y|2)K(y) dy

≤2Cp−1
6 µ

∫

|y′|<1

|y′|2p−2−n−σ dy′
∫ C5|y′|2

0

dyn

≤2C5C
p−1
6 µ

∫

|y′|<1

|y′|2p−n−σ dy′

≤2C5C
p−1
6 σn−1µ

2p− 1− σ
.

We combine the above observations, to obtain

lim sup
r→0+

∫

r<|z|<δ

G(φ(x + z)− φ(x))K(z) dz(7.3)

≤ |qx|p−2ν




n∑

j=1

bjj(x) + (p− 2)bnn(x)


 +

C7µ

2p− 1− σ
,
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where C7 is a positive constant depending only on C1, p, |q|, ε and n. Since
f0(xk) ≤ Mσk

[u∗σk
](xk), we have

f0(xk) ≤ lim sup
r→0+

∫

r<|z|<δ

G(φ(xk + z)− φ(xk))Kσk
(z) dz

+
∫

δ<|z|<ρ(xk)

G(C3)Kσk
(z) dz.

Here, as before, we have

lim
σ→p−

∫

δ<|z|<ρ(xk)

G(C3)Kσk
(z) dz = 0.

Observe that
n∑

j=1

bjj(x) = tr
(
U−1

x BεUx

)
= tr Bε,

bnn(x) =U−1
x BεUxen · en = Bεq̄x · q̄x.

Now, from(7.3), we get

f0(0) ≤ ν
(|q|p−2 trBε + (p− 2)|q|p−4Bεq · q

)
,

and, because of the arbitrariness of ε > 0,

f0(0) ≤ ν
(|q|p−2∆φ(0) + (p− 2)|q|p−4D2φ(0)q · q) = ν∆pφ(0),

which is the desired inequality.
It remains to check the case where p = 2 and q = 0. For each ε > 0, selecting

δ0 > 0 as in the previous case and setting Aε = (aij) := A + εI, we have for any
0 < r < δ < δ0 and any x ∈ B(0, δ0),∫

r<|z|<δ

G(φ(x + z)− φ(x))K(z) dz ≤
∫

r<|z|<δ

(
qx · z +

1
2
Aεz · z

)
K(z) dz

=
1
2

n∑

j=1

∫

r<|z|<δ

ajjz
2
j K(z) dz.

By applying Lemma 2.1, we find that for any 1 ≤ j ≤ n,∫

|z|<δ

z2
j K(z) dz = 2νδ2−σ.

Hence we have

lim sup
r→0+

∫

r<|z|<δ

G(φ(x + z)− φ(x))K(z) dz ≤ νδ2−σ tr Aε.

Using this and arguing as in the previous case, we see easily that f0(0) ≤ ν∆φ(0).
This completes the proof. ¤

8. Final remarks

In this section we discuss a few possible extensions and variants of the formula-
tions and results presented in the previous sections.

Let c ∈ C(Ω) be a given function satisfying infΩ c > 0. We consider the integral
equation

(8.1) Mσ[u](x) = c(x)u(x) + f0(x) in Ω,
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together with the Dirichlet condition (1.2). The p-Laplace equation corresponding
to (8.1) is

(8.2) ν∆pu(x) = c(x)u(x) + f0(x) in Ω,

where ν = νn,p is the constant given by (7.2). Because of the new term “cu”, two
equations (8.1) and (8.2) are tractable. Indeed, for the Dirichlet problem for (8.1)-
(1.2), without the restriction that λ0 = 1 if p 6= 2, a comparison assertion similar
to Theorem 4.1 and consequently the existence of a unique continuous solution as
in Theorem 5.1 hold true. Also, for the Dirichlet problem (8.2)-(1.2), a comparison
theorem for viscosity sub and supersolutions similar to Proposition 6.7, but with
f1 = f2, is valid. The same assertion as Theorem 7.1, with (8.1) and (8.2) in place
of (1.1) and (7.1) respectively, is valid.

A remark similar to the above applies to the evolution problem. The equations
are now

(8.3) Mσ[u(·, t)](x) = ut(x, t) + f0(x, t) in QT ,

and

(8.4) ν∆pu(x, t) = ut(x, t) + f0(x, t) in QT ,

where 0 < T < ∞ is a fixed constant, QT := Ω × (0, T ), ut := ∂u/∂t and f0 ∈
C(QT ) is a given function. The initial-boundary condition for (8.3) or (8.4) is of
the form

(8.5) u = g0 on the parabolic boundary, ∂pQT = Ω× {0} ∪ ∂Ω× (0, T ),

where g0 ∈ C(∂pQT ). With an obvious modification (see for instance [11]) of
the definition of spaces of test functions, we have well-posedness and convergence
results similar to those for (8.1) and (8.2). That is, the Cauchy-Dirichlet problems
for (8.3) and for (8.4) are well-posed in the space C(QT ) and the solution uσ of the
problem (8.3) and (8.5) converges uniformly on QT as σ → p− to the solution of
the problem (8.4) and (8.5).

It would be interesting to treat the Neumann boundary problem for (1.1) as in
[2], and we hope to come back to this issue in a future publication.

Another interesting question would be to seek for the possibility of replacing the
operator Mσ, in the well-posedness problem of Sections 3-5 or in the convergence
problem of Section 6 for (1.1), by the operator

M̃σ[φ](x) := p.v.

∫

B(x)

G(φ(x + z)− φ(x))Kσ(z) dz,

where B(x), with x ∈ Ω, are given measurable subsets of Rn satisfying the condition
that x + B(x) ⊂ Ω for all x ∈ Ω.
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