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Abstract

We study the long time behavior of viscosity solutions of the Cauchy prob-
lem for Hamilton-Jacobi equations in Rn. We prove that if the Hamiltonian
H(x, p) is coercive and strictly convex in a mild sense in p and upper semi-
periodic in x, then any solution of the Cauchy problem “converges” to an
asymptotic solution for any lower semi-almost periodic initial function.

1 Introduction.

In this paper we study the Cauchy problem for Hamilton-Jacobi equations of the

form 



ut + H(x,Du) = 0 in Rn × (0, +∞),

u( · , 0) = u0 on Rn,
(1)

under the following standing assumptions on the Hamiltonian H = H(x, p):

(A1) (continuity) H ∈ BUC(Rn × B(0, R)) for all R > 0, where B(0, R) := {x ∈
Rn | |x| ≤ R}.
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(A2) (coercivity) lim
R→+∞

inf{H(x, p) |x ∈ Rn, |p| ≥ R} = +∞.

(A3) (convexity) H(x, p) is convex with respect to p for every x ∈ Rn.

We will show under some additional assumptions that the continuous viscosity so-

lution u(x, t) of (1) for a given initial datum has the convergence

u(x, t) + c t− φ(x) −→ 0 uniformly on compact subsets of Rn, (2)

where c and φ are some real number and continuous function on Rn, respectively.

Note that if (2) holds, then the pair (c, φ) should satisfy the following time indepen-

dent Hamilton-Jacobi equation:

H(x,Dφ)− c = 0 in Rn. (3)

The problem of finding such a pair (c, φ) is called the additive eigenvalue problem

for H and for any solution (c, φ) of the additive eigenvalue problem for H, we call

the function φ(x)− c t an asymptotic solution of the Cauchy problem (1).

After a pioneering work by Namah-Roquejoffre [16], asymptotic problems of this

type have been investigated intensively by several authors. Fathi [7] introduced an

approach to asymptotic problems for (1) based on weak KAM theory (see [6, 8, 10])

and obtained general convergence results in the case where the state space is a

smooth compact manifold. By using a nice PDE approach, Barles-Souganidis [2, 4]

established similar convergence results under much weaker hypotheses on H. Indeed,

the results in [2] cover some classes of non-convex Hamiltonians H. Roquejoffre [17]

and then Davini-Siconolfi [5] modified and improved the approach due to Fathi [7].

A typical result obtained in these developments is stated as follows in the case when

the state space is n-dimensional unit torus Tn: for any initial function u0 ∈ C(Tn)

and Hamiltonian on Tn × Rn, the convergence (2) is valid if the function H(x, p),

regarded as a function periodic in x ∈ Rn, satisfies (A1), (A2) and

(A3′) H(x, p) is strictly convex with respect to p for every x ∈ Rn.

Regarding this strict convexity assumption, we should remark that the results in [16]

do not require any strict convexity of Hamiltonians and that, even in the convex

Hamiltoninan case, the results in [2] require only a sort of strict convexity of H near

{(x, p) | H(x, p) = c}.
Concerning asymptotic problems in unbounded region, the above (A1), (A2)

and (A3′) are insufficient to guarantee the convergence of the form (2). In order to

compensate for the unboundedness, one of the authors assumed in his recent paper
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[14] the following additional condition:

(C1) ∃φi ∈ C0+1(Rn), ∃σi ∈ C(Rn) with i = 0, 1 such that for i = 0, 1,

H(x,Dφi(x)) ≤ −σi(x) a.e. x ∈ Rn,

lim
|x|→∞

σi(x) = ∞, lim
|x|→∞

(φ0 − φ1)(x) = ∞.

An important role of (C1) is that, although (3) may have infinitely many solutions

for a given c, the uniqueness (or comparison) theorem is valid outside a certain

compact subset (called the Aubry set) of Rn in the space Φ0 of functions φ bounded

below by φ0 modulo a constant. That is, under (C1), given two solutions in the space

Φ0 of (3) which are identical on the Aubry set are indeed identical on the whole Rn.

Roughly speaking, uniqueness of solutions of this type reduces the question whether

the convergence (2) is valid or not to that on the Aubry set which is compact under

(C1). See [14] for details and Fujita-Ishii-Loreti [11] for related results. We also

refer to Barles-Roquejoffre [1] for other recent results on asymptotic problems in

unbounded region.

The objective of this paper is to find another type of conditions on H and

u0 which is different from (C1) but ensures the convergence of solutions of (1) to

asymptotic solutions. We are particularly interested in the case where H and u0

possess a kind of almost periodic structure which contains classical periodic cases

such as [5]. In the main theorems (Theorem 2.2 and its generalization, Theorem 6.1),

we prove that upper semi-periodicity of H guarantees the convergence of solutions of

(1) to asymptotic solutions for all obliquely lower semi-almost periodic initial data.

The precise definition of semi-periodicity and (obliquely) semi-almost periodicity

will be given in the next section. Note that a part of the results presented in this

paper has been announced in [12].

It is worth mentioning in connection with weak KAM theory that our results

include the case where the Aubry set for H− c is non-compact or empty. The latter

case arises in particular when the eigenvalue c is supercritical, that is, when c is

greater than the infimum of all the eigenvalues of (3). Such supercritical cases are

also investigated in [1]. Remark that our approach in this paper is based on both

dynamical and PDE approaches and that any knowledge of Aubry sets is not needed

in our proof of the main theorem.

Although the results in [2] cover some cases of non-convex Hamiltonians, it is

still interesting to note that, under some basic assumptions on H(x, p) including its

convexity in p, our condition (A4) or (A6), a sort of strict convexity assumption on

H, is equivalent to the corresponding condition in [2], i.e., (H4) or (H5) in [2].
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This paper is organized as follows. In the next section, we fix standing as-

sumptions and state our main results. Section 3 is devoted to establishing several

estimates that play a key role throughout this paper. The proof of the main theo-

rem is provided in Section 4. We also give examples in Section 5. In Section 6 we

establish a generalization of the main theorem which achives the same generality in

regard to “strict convexity” condition as [2]. Some fundamental facts used in this

paper are collected in Appendices A and B. In Appendix C we prove two theorems

concerning our “strict convexity” condition (A4) or (A6).

The authors would like to thank the referee for his criticisms on the previous

version of this paper which helped a lot for the authors to formulate (A4) in the

present form. Also, they would like to thank Mr. Hiroyoshi Mitake for pointing out

a mistake in a former version of this paper.

2 Assumptions and main results.

Let C(Rn) be the totality of continuous functions on Rn equipped with the topology

of locally uniform convergence. We say a family of functions {uj}j∈N ⊂ C(Rn) con-

verges to a function u in C(Rn) if and only if uj(x) −→ u(x) as j → +∞ uniformly

on any compact subset of Rn. We denote by BC(Rn) the set of all bounded and

continuous functions on Rn. We also use symbols UC(Rn), BUC(Rn) and Lip(Rn)

to denote, respectively, the totality of uniformly continuous, bounded uniformly

continuous and globally Lipschitz continuous functions.

For any finite closed interval J , the set of all absolutely continuous functions on

J with values in Rn is denoted by AC(J,Rn). For given right closed interval J , with

right end point T , and x, y ∈ Rn, we set

C(J ; x) := {γ ∈ C(J,Rn) | γ(T ) = x, γ ∈ AC([S, T ],Rn) for all S ∈ J}.

The solvability of (1) up to an arbitrarily given T > 0 is now classical (see

Appendix A for details).

Theorem 2.1. Let H = H(x, p) be a Hamiltonian satisfying (A1)-(A3) and fix

any T > 0. Then, for every u0 ∈ UC(Rn), there exists a unique viscosity solution

u ∈ UC(Rn × [0, T )) of

ut + H(x,Du) = 0 in Rn × (0, T ) (4)
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satisfying u( · , 0) = u0. Moreover, for all t, s > 0 and x ∈ Rn, we have

u(x, s + t) = inf
{ ∫ 0

−t

L(γ(r), γ̇(r)) dr + u(γ(−t), s)
∣∣ γ ∈ C([−t, 0]; x)

}
, (5)

where L(x, ξ) := sup{ξ · p − H(x, p) | p ∈ Rn}, which is proper and convex with

respect to ξ ∈ Rn for all x ∈ Rn.

We next introduce the notion of semi-periodicity for H.

Definition 1. We call a Hamiltonian H is lower (resp. upper) semi-periodic if for

any sequence {yj}j∈N ⊂ Rn, there exist a subsequence {zj}j∈N of {yj}, a sequence

{ξj}j∈N ⊂ Rn converging to zero, and a function G ∈ C(Rn × Rn) such that for all

(x, p, j) ∈ Rn×Rn×N, H(x+zj +ξj, p) ≥ G(x, p) (resp. H(x+zj +ξj, p) ≤ G(x, p) )

and H(x + zj, p)−→G(x, p) in C(Rn × Rn) as j →∞.

Throughout this paper, we always assume the following:

(A4) For each a ∈ R there exists a modulus ωa satisfying ωa(r) > 0 for all r > 0

such that for all (x, p) ∈ Rn × Rn such that H(x, p) = a and for all ξ ∈ D−
2 H(x, p),

q ∈ Rn,

H(x, p + q) ≥ H(x, p) + ξ · q + ωa((ξ · q)+), (6)

where D−
2 H(x, p) stands for the subdifferential of H with respect to the second

variable p and r+ := max{r, 0} for r ∈ R.

(A5) H is upper semi-periodic.

Actually we do not need the conditions in (A4) for every a ∈ R, but only the

one for a single a which will be specified. We refer as (A4)a the condition in (A4)

for fixed a ∈ R.

Remark. (a) For Hamiltonian H ∈ C(Tn×Rn), strict convexity assumption (A3′)

implies (A4). As far as convex Hamiltonians H are concerned, condition (A4)0 is

equivalent to (H5), with K = ∅, in [2]. For this, see Appendix C.

(b) Any Hamiltonian of the form

H(x, p) = H0(x, p)− f(x)

for some H0 ∈ C(Rn × Rn) periodic in x and for some non-negative f ∈ C(Rn)

vanishing at infinity satisfies (A5).

(c) A function is periodic if and only if it is both lower and upper semi-periodic

(see Appendix B).
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As to the class of initial data, we use the following notion of (obliquely) semi-

almost periodicity.

Definition 2. A function φ ∈ C(Rn) is called lower (resp. upper) semi-almost

periodic if for any sequence {yj}j∈N ⊂ Rn and any ε > 0, there exist a subsequence

{zj}j∈N of {yj} and a function ψ ∈ C(Rn) such that φ(· + zj) −→ ψ in C(Rn) as

j →∞ and φ(x+zj)+ε > ψ(x) (resp. φ(x+zj)−ε < ψ(x) ) for all (x, j) ∈ Rn×N.

Definition 3. A function φ ∈ C(Rn) is called obliquely lower (resp. upper) semi-

almost periodic if for any sequence {yj}j∈N ⊂ Rn and any ε > 0, there exist a

subsequence {zj}j∈N of {yj} and a function ψ ∈ C(Rn) such that φ(·+zj)−φ(zj) −→
ψ in C(Rn) as j →∞ and φ(x+zj)−φ(zj)+ε > ψ(x) (resp. φ(x+zj)−φ(zj)−ε <

ψ(x) ) for all (x, j) ∈ Rn × N.

Remark. (a) It is not difficult to check that a function φ ∈ C(Rn) is almost

periodic if and only if it is both lower and upper semi-almost periodic.

(b) If φ ∈ C(Rn) is lower or upper semi-almost periodic, then φ ∈ UC(Rn).

(c) Definitions 2 and 3 are equivalent if φ ∈ BC(Rn).

Let us denote by S−H−c (resp. S+
H−c) the totality of viscosity subsolutions (resp.

supersolutions) of (3). We set SH−c := S−H−c ∩ S+
H−c. It is known that, under

(A1) and (A2), there exists c0 ∈ R such that SH−c 6= ∅ for all c ≥ c0. Moreover,

S−H−c ⊂ Lip(Rn).

For a given u0 ∈ UC(Rn), we define u−0 : Rn −→ R by

u−0 (x) := sup{φ(x) |φ ∈ S−H−c, φ ≤ u0 in Rn} (7)

if there exists φ ∈ S−H−c such that φ ≤ u0.

The conditions we impose on u0 ∈ UC(Rn) are the following:

(B1) There exist a constant c ∈ R and functions φ0 ∈ S−H−c and ψ0 ∈ S+
H−c such

that φ0 ≤ u0 ≤ φ0 + C0 for some C0 > 0 and u−0 ≤ ψ0, where u−0 is defined by (7).

(B2) u0 is obliquely lower semi-almost periodic.

We are now in position to state our main results.

Theorem 2.2. Let H and u0 satisfy (A1)-(A3), (A4)c, (A5) and (B1)-(B2), re-

spectively. Then,

u(x, t) + c t −→ u∞(x) in C(Rn) as t →∞, (8)

where

u∞(x) := inf{ψ(x) |ψ ∈ SH−c, ψ ≥ u−0 in Rn} ∈ SH−c.
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Remark. (a) For a given u0 ∈ UC(Rn), the constant c in (B1), if it exists, is

uniquely determined.

(b) In view of comparison, we see that the existence of ψ ∈ S+
H−c required in (B1)

is indeed a necessary condition for the convergence (2).

The following result can be regarded as a particular case of Theorem 2.2.

Corollary 2.3. Let c ∈ R and H satisfy (A1)-(A3), (A4)c, (A5), and assume that

(3) has viscosity solutions in the class BUC(Rn). Then, the convergence (8) holds

for any bounded, lower semi-almost periodic initial function u0.

Recall here an example due to Barles-Souganidis [3] (see also [9]) with a small

variation. Let n = 1 and consider the Cauchy problem

ut +
1

2
|Du|2 −Du = 0 in R× (0,∞) and u(·, 0) = u0 on R. (9)

Here we select u0 to be the function g which is defined as follows. For k ∈ N, we

set tk = 4(k + 2)2, sk = (tk+1 + tk)/2, ak = sk + 1, and bk = sk+1 − 1. We have

tk+1 − ak = 4k + 9, bk − tk+1 = 4k + 13 for all k ∈ N. Hence we have ak < tk+1 < bk

and (bk+1 − tk+1)
2 > (tk+1 − ak)

2 = (4k + 9)2 > 8(k + 3)2 = 2tk+1 for all k ∈ N.

We set S = {±sk | k ∈ N} ∪ (−s1, s1) and then set h(x) = inf{|x − y| | y ∈ S}
and g(x) = min{h(x), 1} for all x ∈ R. Note that g(±sk) = 0 and g(x) = 1 for all

x ∈ [ak, bk] and k ∈ N. By the Hopf-Lax formula, we have

u(0, t) = inf
y∈R

(
g(y) +

|t− y|2
2t

)
for t ≥ 0.

It is therefore clear that u(0, sk) = 0 for all k ∈ N. On the other hand, since

(tk+1−ak)
2 > 2tk+1 and (bk− tk+1)

2 > 2tk+1, we see that u(0, tk+1) = 1 for all k ∈ N
and conclude that u does not converge to any asymptotic solutions. Thus, roughly

speaking, if u0 “oscillates” slowly at infinity, then the convergence of solutions of

(1) to asymptotic solutions may not hold. This observation somehow justifies our

assumption in Theorem 2.2 and Corollary 2.3 that initial functions u0 are semi-

almost periodic.

We now choose u0 to be −g. It is easily checked that −g is a lower semi-periodic

function, and Corollary 2.3 ensures the convergence of the solution u of (9) to an

asymptotic solution.

It is not clear for the authors if one can replace or not condition (A5) in Theorem

2.2 or Corollary 2.3 by the semi-almost periodicity of H. One indication in this
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regard is the following example in [15]. Let n = 1 again and consider the Cauchy

problem

ut + |Du|2 = f(x)2 in R and u(·, 0) = 0, (10)

where f(x) := 2 + cos x + cos (
√

2x). The function f is quasi-periodic and has the

properties infR f = 0 and f(x) > 0 for all x ∈ R. It is not difficult to see that

(10) has a unique non-negative solution u and that the critical eigenvalue for the

Hamiltonian H(x, p) := |p|2 − f(x)2 is zero, but the problem H(x,Dφ) = 0 in R
does not have any non-negative solution. These together show that the non-negative

solution u of (10) does not converge to any asymptotic solution. On the other hand,

we should mention that our assumption (B1) in Theorem 2.2 excludes example (10).

Notice. In order to prove Theorem 2.2, we need only to study the case where

c = 0 by replacing, if necessary, H and u(x, t) by H− c and u(x, t)+ ct, respectively.

Therefore, from now on, we always assume that c = 0.

3 Key estimates.

Let us set Q := {(x, p) ∈ Rn × Rn | H(x, p) = 0} and

S := {(x, ξ) ∈ Rn × Rn | ξ ∈ D−
2 H(x, p) for some (x, p) ∈ Q}.

The goal of this section is to prove Proposition 3.4 below which plays a key role

in the sequel. For this purpose, we establish several lemmas. We use the notation:

P (x, ξ) := {p ∈ Rn | ξ ∈ D−
2 H(x, p)} for (x, ξ) ∈ Rn × Rn.

Lemma 3.1. Let H satisfy (A1)-(A3) and (A4)0. Then,

(a) Q, S ⊂ Rn ×B(0, R0) for some R0 > 0.

(b) There exist constants δ > 0 and R1 > 0 such that for any (x, ξ) ∈ S and

ε ∈ (0, δ), we have P (x, (1 + ε)ξ) 6= ∅ and P (x, (1 + ε)ξ) ⊂ B(0, R1).

Proof. (a) It follows from coercivity (A2) that there exists a constant R1 > 0 such

that Q ⊂ Rn × B(0, R1). Next, fix any (x, ξ) ∈ S. Then, by the definition of S, we

can find p ∈ P (x, ξ) such that (x, p) ∈ Q. Note that |p| ≤ R1. By convexity (A3),

we have

H(x, q) ≥ H(x, p) + ξ · (q − p) for all q ∈ Rn.

Setting q = p + ξ/|ξ| (ξ 6= 0) yields

|ξ| = ξ · (q − p) ≤ H(x, q)−H(x, p) ≤ sup
Rn×B(0,R1+1)

H − inf
Rn×B(0,R1)

H.
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By virtue of coercivity (A2), we can choose R2 > 0 so that the right-hand side is less

than R2, and therefore ξ ∈ B(0, R2). If we set R0 := max{R1, R2}, we can conclude

that Q, S ⊂ Rn ×B(0, R0).

(b) Let R0 > 0 be a constant chosen as above and set δ := ω0(1), where ω0 is

from (A4)0. In view of coercivity (A2), replacing R0 > 0 by a larger constant if nec-

essary, we may assume that H(x, p) ≥ 1+ω0(1) for all (x, p) ∈ Rn×(Rn \B(0, R0)).

Fix any (x, ξ) ∈ S, p ∈ P (x, ξ) and ε ∈ (0, δ). Note that ξ, p ∈ B(0, R0). By

(A4)0, for all x ∈ Rn we have

H(x, q) ≥ ξ · (q − p) + ω0 ((ξ · (q − p))+) .

We set V := {q ∈ B(p, 2R0) | |ξ · (q − p)| ≤ 1}. Let q ∈ V and observe that if

q ∈ ∂B(p, 2R0) then |q| ≥ R0 and hence H(x, q) ≥ 1+ω(1) > 1+ε ≥ (1+ε)ξ ·(q−p),

similarly, if ξ · (q − p) = 1, then H(x, q) ≥ 1 + ω(1) > 1 + ε ≥ (1 + ε)ξ · (q − p), and

finally, if ξ · (q − p) = −1, then H(x, q) ≥ ξ · (q − p) > (1 + ε)ξ · (q − p). Thus the

function G(q) := H(x, q)− (1+ε)ξ · (q−p) on Rn is positive on ∂V while it vanishes

at q = p ∈ V , and therefore it attains a minimum over the compact set V at an

interior point of V . Hence, P (x, (1 + ε)ξ) 6= ∅. By the convexity of G, we see easily

that G(q) > 0 for all q ∈ Rn \ V and conclude that P (x, (1 + ε)ξ) ⊂ B(0, 2R0).

The following estimate (11) has been shown in Lemma 5.2 of [5] and Proposition

7.1 of [14] for strictly convex Hamiltonians.

Lemma 3.2. Assume that H satisfies (A1)-(A3), (A4)0. Then, there exist a con-

stant δ1 > 0 and a modulus ω1 such that for any ε ∈ [0, δ1] and (x, ξ) ∈ S,

L(x, (1 + ε) ξ) ≤ (1 + ε)L(x, ξ) + ε ω1(ε). (11)

Proof. Let R0 > 0, R1 > 0 and δ > 0 be the constants from Lemma 3.1. Fix any

(x, ξ) ∈ S. Take any ε ∈ [0, δ) and, in view of Lemma 3.1, a pε ∈ P (x, (1 + ε)ξ).

Then we have |pε − p0| ≤ R1, |ξ| ≤ R0 and |ξ · (pε − p0)| ≤ R0R1. Note that by

(A4)0,

H(x, pε) ≥ ξ · (pε − p0) + ω0 ((ξ · (pε − p0))+) .

Thus, we obtain

L(x, (1 + ε) ξ) = (1 + ε) ξ · pε −H(x, pε) ≤ (1 + ε) ξ · pε

− ξ · (pε − p0)− ω0 ((ξ · (pε − p0))+)

≤ (1 + ε)[ξ · p0 −H(x, p0)] + ε ξ · (pε − p0)− ω0 ((ξ · (pε − p0))+)

≤ (1 + ε)L(x, ξ) + ε max
0≤r≤R0R1

(
r − 1

ε
ω0(r)

)
.
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We define the function ω1 on [0,∞) by setting ω1(s) = max0≤r≤R0R1(r−ω0(r)/s) for

s > 0 and ω1(0) = 0 and observe that ω1 ∈ C([0,∞)). We have also L(x, (1+ε)ξ) ≤
(1 + ε)L(x, ξ) + εω1(ε) for all ε ∈ (0, δ). Thus (11) holds with δ1 := δ/2.

Let φ ∈ SH . From Theorem 2.1, for any (x, t) ∈ Rn × [0,∞), we have

φ(x) = inf
{ ∫ 0

−t

L(γ(s), γ̇(s)) ds + φ(γ(−t))
∣∣ γ ∈ C([−t, 0]; x)

}
. (12)

We denote by E((−∞, 0]; x; φ) the set of curves γ ∈ C((−∞, 0]; x) satisfying

φ(x) =

∫ 0

−t

L(γ(s), γ̇(s)) ds + φ(γ(−t)) for all t > 0. (13)

Lemma 3.3. E((−∞, 0]; x; φ) 6= ∅ for every φ ∈ SH and x ∈ Rn.

Proof. Fix y ∈ Rn. For each k ∈ N, in view of (12), we may choose a curve

γk ∈ C([−1, 0]; y) so that

φ(γk(0)) +
1

k
>

∫ 0

−1

L(γk(s), γ̇k(s))ds + φ(γk(−1)).

By the dynamic programming principle, we easily check that for any t ∈ [0, 1],

φ(γk(0)) +
1

k
>

∫ 0

−t

L(γk(s), γ̇k(s))ds + φ(γk(−t)). (14)

Define ψ ∈ C(Rn) by ψ(x) = φ(x)−|x| and observe that ψ ∈ Lip(Rn) and therefore

that there is a C > 0 such that ψ ∈ S−H−C . Hence, for any t ∈ [0, 1] we get (see for

instance Proposition 2.5 of [14]),

ψ(γk(0))− ψ(γk(−t)) ≤
∫ 0

−t

[L(γk(s), γ̇k(s)) + C] ds.

Combining this with (14), we get

|γk(−t)| ≤ φ(y)− ψ(y) + C + 1 for all t ∈ [0, 1].

We now invoke Lemmas 6.3 and 6.4 of [14], to conclude that there is a subsequence

of {γk}k∈N converging to a γ ∈ AC([−1, 0],Rn) and moreover

∫ 0

−1

L(γ(s), γ̇(s))ds ≤ φ(γ(0))− φ(γ(−1)). (15)
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For each y ∈ Rn we fix a curve γ(s) in C([−1, 0]; y) so that (15) holds and refer it

as γ(s; y).

Fix x ∈ Rn. We define the sequence {xk}k∈N inductively by setting x1 = x and

xk+1 = γ(−1; xk) for k ∈ N, and then define the curve γ ∈ C((−∞, 0]; x) by setting

γ(s) = γ(s + k − 1; xk) for −k ≤ s ≤ −k + 1 and k ∈ N. It is clear from (15) that

for all k ∈ N, ∫ 0

−k

L(γ(s), γ̇(s))ds ≤ φ(γ(0))− φ(γ(−k)),

from which, together with (12), one easily deduces that γ ∈ E((−∞, 0]; φ; x)

Proposition 3.4. Let H and u0 ∈ UC(Rn) satisfy (A1)-(A3), (A4)0 and (B1),

respectively. Then there exists λ > 1 such that for any φ ∈ SH , x ∈ Rn, γ ∈
E((−∞, 0]; x; φ) and for any t, τ > 0 satisfying t ≥ λτ ,

u(x, t)− φ(x) ≤ u(γ(−t), τ)− φ(γ(−t)) +
tτ

t− τ
ω1

( τ

t− τ

)
, (16)

where ω1 is taken from (11).

Proof. Fix φ ∈ SH , x ∈ Rn and γ ∈ E((−∞, 0]; x; φ) arbitrarily. We first check

(following [14]) that (γ(s), γ̇(s)) ∈ S for a.e. s ∈ (−∞, 0). Let t > 0. There exists

a q ∈ L∞(−t, 0;Rn) such that q(s) ∈ ∂cφ(γ(s)) for a.e. s ∈ (−t, 0) and

φ(γ(0))− φ(γ(−t)) =

∫ 0

−t

q(s) · γ̇(s) ds,

where ∂cφ stands for the Clarke differential of φ (see Proposition 2.4 of [14] for

details). Moreover, since φ ∈ SH , we have H(γ(s), q(s)) = 0 for a.e. s ∈ (−t, 0),

and therefore
∫ 0

−t

q(s) · γ̇(s) ds ≤
∫ 0

−t

{L(γ(s), γ̇(s)) + H(γ(s), q(s))} ds

≤
∫ 0

−t

L(γ(s), γ̇(s)) ds = φ(γ(0))− φ(γ(−t)).

In particular, we get

q(s) · γ̇(s) = L(γ(s), γ̇(s)) + H(γ(s), q(s)) a.e. s ∈ (−t, 0),

which implies that γ̇(s) ∈ D−
2 H(γ(s), q(s)) for a.e. s ∈ (−t, 0). Thus, we conclude

that (γ(s), γ̇(s)) ∈ S for a.e. s ∈ (−∞, 0).

Now, let δ1 > 0 be the constant from Lemma 3.2 and set λ := δ−1
1 (1 + δ1). Note

that if t and τ > 0 satisfy t ≥ λτ , then ε := (t− τ)−1τ ≤ δ1. Fix such τ, t > 0 and
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define a new curve by η(s) := γ((1 + ε)s). Then, by taking account of (5) and (11),

we see

u(x, t) ≤
∫ 0

−(t−τ)

L(η(s), η̇(s)) ds + u(η(−(t− τ)), τ)

=

∫ 0

−t

(1 + ε)−1L(γ(s), (1 + ε)γ̇(s)) ds + u(γ(−t), τ)

≤
∫ 0

−t

L(γ(s), γ̇(s)) ds + t ε ω1(ε) + u(γ(−t), τ).

Since γ satisfies (13), we can conclude that (16) is valid.

4 Proof of the main theorem.

This section is devoted to the proof of Theorem 2.2. Let (Tt)t≥0 be the semigroup

on UC(Rn) defined by (Ttu0)(x) := u(x, t) , where u(x, t) is the unique viscosity

solution of (1) with initial function u0.

Lemma 4.1. Let H and u0 ∈ UC(Rn) satisfy (A1)-(A3) and (B1), respectively.

Then, for every (x, t) ∈ Rn × [0,∞),

(Ttu
−
0 )(x) = inf

s≥t
u(x, s) (17)

u∞(x) = lim inf
s→∞

u(x, s). (18)

Proof. We set v(x, t) := infs≥t u(x, s) and show that (Ttu
−
0 )(x) = v(x, t). Since

u−0 ∈ S−H and u−0 ≤ u0, by comparison, we get u−0 (x) ≤ (Tsu
−
0 )(x) ≤ (Tsu0)(x) for

all (x, s) ∈ Rn× [0, ∞). Moreover, by using comparison again, we have (Ttu
−
0 )(x) ≤

(Tt+su0)(x) for all (x, s, t) ∈ Rn × [0,∞) × [0,∞). Thus, taking infimum over all

s ≥ 0 yields (Ttu
−
0 )(x) ≤ v(x, t).

Observe next that for each r ≥ 0, the function vr(x, t) := u(x, t+r) = (Tt(Tru0))(x)

is a solution of vt + H(x, Dv) = 0 in Rn × (0, ∞), and that v(x, t) = infr≥0 vr(x, t)

for all (x, t) ∈ Rn × [0, ∞). Then, convexity (A3) ensures that v is a solution

of vt + H(x,Dv) = 0 in Rn × (0, ∞). Since the function: t 7→ v(x, t) is non-

decreasing on [0, ∞) for each x ∈ Rn, we see that v(·, t) ∈ S−H for all t ≥ 0.

Since v(·, 0) ≤ u0 in Rn, we have v(·, 0) ≤ u−0 in Rn. Thus by comparison, we get

v(x, t) = (Ttv(·, 0))(x) ≤ (Ttu
−
0 )(x). Hence we have proved (17).

Set w(x) := lim inft→∞ u(x, t). Since u−0 ≤ u∞ in Rn, in view of comparison, we

get Ttu
−
0 ≤ u∞ in Rn for all t ≥ 0. By virtue of (17), we obtain w(x) ≤ u∞(x) for all

12



x ∈ Rn. On the other hand, we have w ∈ SH and u−0 ≤ Ttu
−
0 ≤ w in Rn for all t ≥ 0.

Consequently, we have u∞ ≤ w in Rn. We thus conclude that (18) is valid.

Proof of Theorem 2.2. Define u+ ∈ UC(Rn) by u+(x) := lim supt→∞ u(x, t). In

view of the previous lemma, we need only to show that u+(x) ≤ u∞(x) for all

x ∈ Rn.

Fix any y ∈ Rn and choose a diverging sequence {tj}j∈N ⊂ (0, ∞) so that

u+(y) = limj→∞ u(y, tj). Take any γ ∈ E((−∞, 0]; y; u∞), and set yj = γ(−tj) for

j ∈ N. From (A5), passing to a subsequence if necessary, we may assume that for

some G ∈ C(Rn × Rn) and {ξj}j∈N ⊂ Rn converging to zero,

H(·+ yj, · ) −→ G in C(Rn × Rn) as j →∞,

H(x + yj + ξj, p) ≤ G(x, p) for all (x, p, j) ∈ Rn × Rn × N.

Fix any ε > 0. We may assume as well that for some function v0 ∈ UC(Rn),

u0(x + yj + ξj) + ε ≥ v0(x) + u0(yj + ξj) for all (x, j) ∈ Rn × N, (19)

u0(·+ yj + ξj)− u0(yj + ξj) −→ v0 in C(Rn) as j →∞. (20)

We now consider the Cauchy problem




vt + G(x,Dv) = 0 in Rn × (0, +∞),

v( · , 0) = v0 on Rn,
(21)

and set (TG
t v0)(x) := v(x, t), where v(x, t) stands for the unique viscosity solution

of (21). We denote by S−G , S+
G the set of all sub- and supersolutions of

G(x, Dφ) = 0 in Rn,

respectively. Set SG := S−G ∩ S+
G .

We first claim that there exists φ ∈ S−G such that φ ≤ v0 in Rn. For this, observe

by (B1) that −C0 ≤ φ0 − u0 ≤ 0 for some φ0 ∈ S−H ⊂ Lip(Rn). If we set

φ0j(x) := φ0(x + yj + ξj)− u0(yj + ξj) for j ∈ N,

then {φ0j}j∈N forms a locally uniformly bounded and equi-Lipschitz family in C(Rn).

Hence, we may assume that φ0j converges to a function φ ∈ Lip(Rn) in C(Rn) as

j →∞. Under the notation Hj(x, p) := H(x+yj + ξj, p), we see that φ0j ∈ S−Hj
and

passing to the limit as j →∞, we have φ ∈ S−G . Moreover, since φ0 ≤ u0 in Rn,

φ0j(x) ≤ u0(x + yj + ξj)− u0(yj + ξj) for all (x, j) ∈ Rn × N.
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Letting j → ∞ yields φ ≤ v0 in Rn by virtue of (20). Hence the claim has been

proved.

We next set

v−0 (x) := sup{φ(x) |φ ∈ S−G , φ ≤ v0 in Rn} (> −∞) for all x ∈ Rn,

and show that there exists a ψ ∈ SG such that ψ ≥ v−0 in Rn. In view of (19) and

the definition of v−0 , we have

v−0 (x) + u0(yj + ξj)− ε ≤ v0(x) + u0(yj + ξj)− ε ≤ u0(x + yj + ξj).

Since v−0 ∈ S−G ⊂ S−Hj
, we can see by comparison that

v−0 (x) + u0(yj + ξj)− ε ≤ T
Hj

t (v−0 (·) + u0(yj + ξj)− ε)(x)

≤ (T
Hj

t u0(·+ yj + ξj))(x) = (TH
t u0)(x + yj + ξj)

for all t > 0 and j ∈ N. Thus, v−0 (x) + u0(yj + ξj) − ε ≤ u∞(x + yj + ξj). Since

u∞j(x) := u∞(x + yj + ξj) − u0(yj + ξj) + ε ∈ SHj
⊂ S+

G , we can apply the Perron

method to construct ψj ∈ SG such that v−0 ≤ ψj ≤ u∞j in Rn for all j ∈ N. In

particular, the function

v∞(x) := inf{ψ(x) |ψ ∈ SG, ψ ≥ v−0 in Rn},

is well-defined and moreover v−0 ≤ v∞ ≤ u∞j in Rn for all j ∈ N.

Now we apply Proposition 3.4 for φ := u∞ to get

u(y, tj)− u∞(y) ≤ u(yj, τ)− u∞(yj) +
tjτ

tj − τ
ω1

( τ

tj − τ

)

≤ u(yj, τ)− u0(yj + ξj)− v∞(−ξj) + ε +
tjτ

tj − τ
ω1

( τ

tj − τ

)
(22)

for every τ > 0 and sufficiently large j ∈ N, where we have used v∞ ≤ u∞j in the

second inequality. Remark here that by stability,

u(x + yj + ξj, t)− u0(yj + ξj) −→ v(x, t) in C(Rn × [0,∞)) as j →∞.

Thus, sending j →∞ in (22), we have

u+(y)− u∞(y) ≤ v(0, τ)− v∞(0) + ε.

Letting τ = τj →∞ along a sequence {τj} such that lim
j→∞

v(0, τj) = lim inf
t→∞

v(0, t), we

finally obtain u+(y) ≤ u∞(y)+ ε. Since ε > 0 and y ∈ Rn are arbitrary, we conclude

that u+ ≤ u∞ in Rn.
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5 Examples.

In this section, we give a couple of examples that satisfy all conditions in Theorem

2.2 or that in Corollary 2.3.

We begin with a simple but typical example of Hamiltonian which is upper semi-

periodic.

Example 1. Let n = 1 and f(x) := 1 + sin x + e−|x|. Note that 0 < f(x) < 3 for

all x ∈ R and infR f = 0. We define H by H(x, p) := |p|2− f(x)2. Then, H satisfies

(A1)-(A4). We shall check the upper semi-periodicity (A5) of H. Let {yj}j∈R ⊂ R
be any sequence. If supj |yj| < ∞, then there exists a subsequence {zj}j∈N ⊂ {yj}
such that zj → z for some z ∈ R as j → ∞. Set G(x, p) := H(x + z, p) and

ξj := z − zj. Then,

H(x + zj + ξj, p) = H(x + zj + z − zj, p) = H(x + z, p) = G(x, p)

for all (x, p, j) ∈ R× R× N, and clearly H(x + zj, p) −→ G(x, p) in C(R× R).

We next suppose that supj |yj| = ∞. Then, we can find a subsequence {zj}j∈N ⊂
{yj} such that zj = ζj + ηj, (ζj, ηj) ∈ (2πZ) × [0, 2π), and ηj −→ η as j → ∞
for some η ∈ [0, 2π]. We set g(x) := 1 + sin(x + η), G(x, p) := |p|2 − g(x)2 and

ξj := η − ηj. Then,

H(x+zj+ξj, p) ≤ |p|2−(1+sin(x+ηj+η−ηj))
2 = G(x, p) for all (x, p, j) ∈ R×R×N,

and moreover H(x + zj, p) −→ G(x, p) in C(R× R) since e−|x+zj | −→ 0 as j →∞.

Hence, H is upper semi-periodic.

Let us consider the Hamilton-Jacobi equation

ut + H(x,Du) = 0 in R× (0, +∞) (23)

with initial condition u0(x) := x. It suffices to check (B1) since (B2) is obvious. Let

us define φ : R −→ R by

φ(x) :=

∫ x

0

f(y) dy = x + 1− cos x + sgn(x)(1− e−|x|), x ∈ R, (24)

where sgn(x) := 1 if x > 0 and sgn(x) := −1 if x < 0. Then, φ is a viscosity

solution of

H(x,Dφ) = 0 in R. (25)
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Moreover, we see φ(x) − 3 ≤ u0(x) ≤ φ(x) + 1 for all x ∈ R, which implies (B1).

Hence, Theorem 2.2 holds with c = 0. We remark that the Aubry set A for H (or

for equation (25)) is empty, where A is defined by

A := {y ∈ R | H(y, p) ≥ 0 for all φ ∈ S−H , p ∈ D−φ(y)}
(see [10] and [14] for further information on Aubry sets).

Another observation to be noted is that in this example we cannot take any

bounded function as initial function as far as Theorem 2.2 is valid. Indeed, suppose

that u0 = 0 in R for simplicity and let u(x, t) be the solution of (23) satisfying

u(x, 0) = u0(x). We deduce a contradiction by assuming that there exist a constant

c ∈ R and a solution v of

H(x,Dv)− c = 0 in R (26)

such that u(x, t) + c t− v(x) −→ 0 in C(R) as t →∞.

Let us first show that c = 0. Fix any x ∈ R. For each k ∈ N, we set τk :=

(2k + 1)π − x and define ηk ∈ C((−∞, 0]; x) by

ηk(s) :=





x− s if s ∈ [−τk, 0],

(2k + 1)π if s ∈ (−∞,−τk].

Then, in view of f(ηk(−τk)) = e−(2k+1)π and

L(x, ξ) := sup
p∈R

(p ξ −H(x, p)) =
1

4
|ξ|2 + f(x)2 ≥ 0,

we observe that for every t > τk,

0 ≤ u(x, t) ≤
∫ 0

−τk

L(ηk(s), η̇k(s)) ds +

∫ −τk

−t

L(ηk(s), η̇k(s)) ds

≤ (
1

4
+ |f |2∞)τk + e−(2k+1)π(t− τk).

Thus, we obtain

0 ≤ lim sup
t→∞

u(x, t)

t
≤ e−(2k+1)π for all k ∈ N.

Letting k →∞ infers limt→∞ t−1u(x, t) = 0 . Hence c = 0.

Suppose now that u( · , t) −→ v ∈ SH in C(R) as t → ∞. Since u(x, t) ≥ 0

for all (x, t) ∈ R × [0,∞), v should be bounded from below, but it is impossible.

Indeed, let φ ∈ SH be the function defined by (24). Remark that −φ ∈ SH . We set

w(x) := min{φ(x),−φ(x)} ∈ SH .
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Fix M > 0 so that w(0) + M > v(0). Since lim|x|→∞ w(x) = −∞, we can find

R > 0 such that w(−R)+M ≤ v(−R) and w(R)+M ≤ v(R). Thus, by comparison

(recall that H is convex in p and f < 0 in R), we get w ≤ v on [−R, R]. This is

a contradiction. Hence, the solution u(x, t) of (23) satisfying u( · , 0) = 0 does not

converge to any asymptotic solution.

The next example also satisfies all conditions in Theorem 2.2.

Example 2. Let n = 1 and f(x) := 1 + sin x. We set H(x, p) := |p|2 − f(x)2.

Obviously, H satisfies (A1)-(A5) since f is non-negative and Z-periodic.

We consider the Hamilton-Jacobi equation

ut + H(x,Du) = 0 in R× (0, +∞)

with initial condition u0(x) := |x|. We show that u0 satisfies (B1). Define g : R −→
R by

g(x) :=

∫ x

π

f(y) dy = x− π − (1 + cos x), x ∈ R.

Note that g ∈ C1(R), g(π) = 0 and g′(π) = f(π) = 0. We next set

φ(x) := max{g(x),−g(x)}, x ∈ R.

Then, φ ∈ C1(R) and φ is a solution of

H(x,Dφ) = 0 in R. (27)

Moreover, we have

lim
x→+∞

φ(x)

x
= 1, lim

x→−∞
φ(x)

x
= −1.

Thus, there exists a constant C > 0 such that φ−C ≤ u0 ≤ φ+C in R. This implies

(B1). Clearly, u0 satisfies (B2). In this case, the Aubry set for H is {(2k +1)π | k ∈
Z} ⊂ R, which is not compact.

We give an example of Corollary 2.3.

Example 3. Let n = 2 and set e1 := (1, 0) and e2 := (0, 1). Let f ∈ C(R2) be such

that f ≥ 0 and supp f ⊂ B(0, 1). We define H by

H(x, p) := |p− e1|2 − 1−
∑

k∈N
f(x− 2ke2).
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It is easy to check that H satisfies (A1)-(A5).

We now prove that there exists a bounded viscosity solution of

H(x,Dφ) = 0 in R2. (28)

Observe first that the Lagrangian L associated with H can be calculated as

L(x, ξ) =
1

4
|ξ + 2e1|2 +

∑

k∈N
f(x− 2ke2) ≥ 0.

For x ∈ R2, we define γx ∈ C((−∞, 0]; x) by γx(s) := x − 2se1. Then, there exists

at most one number j ∈ N such that γx((−∞, 0]) ∩ supp f( · − 2je2) 6= ∅. Thus, for

every t > 0,

∫ 0

−t

L(γx(s), γ̇x(s)) ds =
∑

k∈N

∫ 0

−t

f(γx(s)− 2ke2) ds

=

∫ 0

−t

f(γx(s)− 2je2) ds ≤ max f.

If we set

d(x, y) := inf
{ ∫ 0

−t

L(γ(s), γ̇(s)) ds
∣∣ t > 0, γ ∈ C([−t, 0]; x), γ(−t) = y

}
,

then, d(·, y) is a viscosity solution of (28) in R2 \ {y}. Moreover, for a > 0, we see

0 ≤ d(x, x + ae1) ≤
∫ 0

−a
2

L(γx(s), γ̇x(s)) ds ≤ max f.

Now, we set φj(x) := infr∈R d(x, (j, r)) and Dj := {(x1, x2) ∈ R2 | x1 < j } for j ∈ N.

Then, 0 ≤ φ(x) ≤ d(x, (j, x2)) ≤ max f for all x ∈ Dj and φj is a viscosity solution

of H(x,Dφ) = 0 in Dj. Hence, by taking a subsequence {φjk
}k∈N of {φj}j∈N so that

φjk
−→ φ in C(R2) for some φ as k →∞, we can conclude in view of stability that

φ is indeed a bounded viscosity solution of (28).

6 A generalization.

Following [2] we modify (A4)0 and generalize Theorem 2.2.

(A6) There exists a closed set K ⊂ Rn having the properties (a) and (b):

(a) minp∈Rn H(x, p) = 0 for all x ∈ K.
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(b) For each ε > 0 there exists a modulus ωε satisfying ωε(r) > 0 for all r > 0

such that for all (x, p) ∈ R2n, ξ ∈ D−
2 H(x, p) and q ∈ Rn, if dist(x, K) ≥ ε and

H(x, p) = 0, then

H(x, p + q) ≥ ξ · q + ωε((ξ · q)+).

The following theorem generalizes Theorem 2.2.

Theorem 6.1. Assume that (A1)-(A3), (A5)-(A6) and (B1)-(B2) hold and that

c = 0. Then, the convergence (8) holds.

Proof. Let u∞ and u+ be as in the proof of Theorem 2.2. It is enough to show that

u+(x) ≤ u∞(x) for all x ∈ Rn. To this end, we fix any x̄ ∈ Rn and an extremal

curve γ for u∞ such that γ(0) = x̄.

In the case when

dist(γ((−∞, 0]), K) := inf{|γ(s)− y| | s ∈ (−∞, 0], y ∈ K} > 0,

using the same argument as in the proof of Theorem 2.2, we can show that u+(x̄) =

u∞(x̄). Thus we may assume henceforth that dist(γ((−∞, 0]), K) = 0.

We claim that there exist δ > 0 and R > 0 such that B(0, δ) ⊂ ⋃{D−
2 H(x, p) |

p ∈ B(0, R)} for all x ∈ Rn. To show this, we first note by (A1) that sup{|H(x, p)| |
(x, p) ∈ Rn × B(0, r)} < ∞ for all r ≥ 0. We set A := sup{|H(x, 0)| | x ∈ Rn} and

choose R > 0 in view of coercivity (A2) so that inf{H(x, p) | (x, p) ∈ R2n, |p| ≥
R} > 1 + A. Fix any ξ ∈ B(0, 1/R) and observe that H(x, 0) + ξ · p ≤ A + 1 for all

p ∈ ∂B(0, R). Hence, H(x, p) > ξ · p + H(x, 0) for all (x, p) ∈ Rn × ∂B(0, R) and,

for each x ∈ Rn, the function p 7→ ξ ·p−H(x, p)+H(x, 0) attains a maximum at an

interior point of B(0, R). Therfore, ξ ∈ ⋃{D−
2 H(x, p) | p ∈ B(0, R)}. Thus, setting

δ := 1/R, we get B(0, δ) ⊂ ⋃{D−
2 H(x, p) | p ∈ B(0, R)}.

We fix δ > 0 and R > 0 as above. We next claim that there exists an M > 0 such

that |L(x, ξ)| ≤ M for all (x, ξ) ∈ Rn × B(0, δ). Indeed, let (x, ξ) ∈ Rn × B(0, δ).

Then, by the choice of δ and R > 0, we have ξ ∈ D−
2 H(x, q) for some q ∈ B(0, R),

from which we have L(x, ξ) = ξ · q −H(x, q). Hence we get

|L(x, ξ)| ≤ |ξ||q|+ |H(x, q)| ≤ δR + sup{|H(y, p)| | y ∈ Rn, p ∈ B(0, R)}.

Setting M := δR + sup{|H(y, p)| | y ∈ Rn, p ∈ B(0, R)}, we conclude that

|L(x, ξ)| ≤ M .

Fix any ε > 0. We choose a ρ > 0 so that Mρ < δε and then y ∈ K and r ≥ 0 so

that |γ(−r)−y| < ρ. It is important to notice that L(y, 0) = −maxp∈Rn H(y, p) = 0.
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Since u∞ is uniformly continuous on Rn, we may assume that |u∞(z)− u∞(z′)| ≤ ε

if |z−z′| < ρ. We define the curve η : (−∞, 0] → Rn by η(s) = γ(s) for −r ≤ s ≤ 0,

η(s) = µ(s + r) for −r − ρ/δ ≤ s ≤ −r, η(s) = y for s ≤ −r − ρ/δ, where

µ ∈ AC([−ρ/δ, 0], Rn) is given by

µ(s) = γ(−r)− δs

ρ
(y − γ(−r)).

Note that µ(0) = γ(−r), µ(−δ/ρ) = y and |µ̇(s)| = |y − γ(−r)|δ/ρ < δ, so that

|L(µ(s), µ̇(s))| ≤ M for all s ∈ [−ρ/δ, 0].

Next, we set T := r + ρ/δ and choose τ > 0 so that u(y, τ) < u∞(y) + ε. For

any t > T we compute that

u(x̄, t + τ) ≤
∫ 0

−t

L(η(s), η̇(s))ds + u(η(−t), τ)

≤
∫ 0

−r

L(γ(s), γ̇(s))ds +

∫ 0

−ρ/δ

L(µ(s), µ̇(s))ds + u(y, τ)

<u∞(x̄)− u∞(γ(−r)) + Mρ/δ + u∞(y) + ε

≤u∞(x̄) + 2ε + u∞(y)− u∞(γ(−r)) ≤ u∞(x̄) + 3ε,

from which we conclude that u+(x̄) ≤ u∞(x̄).

Appendix A: Solvability of the Cauchy problem.

We denote by USC(Rn × [0, T )) (resp. LSC(Rn × [0, T ))) the set of upper (resp.

lower) semi-continuous functions on Rn × [0, T ).

Proposition A.2. Let T > 0 be given and assume that H satisfies (A1) and (A3).

Let u ∈ USC(Rn×[0, T )) and v ∈ LSC(Rn×[0, T )) be viscosity sub- and supersolution

of (4), respectively.

If v(x, t) ≥ −C0(|x| + 1) for all (x, t) ∈ Rn × [0, T ) for some C0 > 0 and u ≤ v

on Rn × {0}, then u ≤ v in Rn × [0, T ).

Proof. Choose a function g ∈ C1(Rn) so that g(x) = (C0 +1)|x| for x ∈ Rn \B(0, 1).

Set ũ(x, t) := u(x, t) + g(x), ṽ(x, t) := v(x, t) + g(x) for (x, t) ∈ Rn × [0, T ) and

H̃(x, p) := H(x, p − Dg(x)) for (x, p) ∈ Rn × Rn. Observe that (A1) and (A3)

is valid with H̃ in place of H. Observe as well that ũ ∈ USC(Rn × [0, T )) and

ṽ ∈ LSC(Rn × [0, T )) are viscosity sub- and supersolution of

ut + H̃(x,Du) = 0 in Rn × (0, T ),
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respectively. Clearly,

lim
R→∞

inf{ṽ(x, t) | (x, t) ∈ (Rn \B(0, R))× [0, T )} = ∞

and ũ ≤ ṽ on Rn×{0}. Thus, replacing H, u, and v with H̃, ũ, and ṽ, respectively,

we may assume that

lim
R→∞

inf{v(x, t) | (x, t) ∈ (Rn \B(0, R))× [0, T )} = ∞.

We choose a constant C1 > 0 so that H(x, 0) ≤ C1 for all x ∈ Rn. Fix any A > 0

and set w(x, t) = min{u(x, t),−C1t + A} for (x, t) ∈ Rn × [0, T ). Note that w is a

viscosity subsolution of (4). (To check this, one may apply an argument in which

sup-convolutions of u in the t-variable are used to approximate u with Lipschitz

subsolutions.)

Since w is bounded above in Rn×[0, T ), we may choose a constant R ≡ R(A) > 0

so that w ≤ v in (Rn \ B(0, R)) × [0, T ). Since u ≤ v on Rn × {0}, we have w ≤ v

on Rn × {0}. We apply a standard comparison theorem to see that w ≤ v in

B(0, R)× [0, T ), which guarantees that w ≤ v in Rn × [0, T ). Sending A →∞, we

conclude that u ≤ v in Rn × [0, T ).

Proposition A.3. Let H satisfy (A1)-(A3) and fix any T > 0. Then, for every

u0 ∈ Lip(Rn), there exists a viscosity solution u ∈ Lip(Rn × [0, T )) of (4) satisfying

u( · , 0) = u0.

Proof. Set QT = Rn× [0, T ). Choose a constant C0 > 0 so that |H(x, Du0(x))| ≤ C0

for all x ∈ Rn. Set

u+(x, t) = u0(x) + C0t and u−(x, t) = u0(x)− C0t for all (x, t) ∈ QT ,

and observe that u± ∈ Lip(QT ), u− ≤ u+ in QT and u−( · , 0) = u+( · , 0) = u0.

Moreover, u− and u+ are viscosity sub- and supersolutions of

ut + H(x,Du(x)) = 0 in Rn × (0, T ), (29)

respectively. Thus, by the Perron method, we see that there exists a viscosity

solution u of (29) such that u− ≤ u ≤ u+ in QT . By the comparison theorem, we

see that u ∈ C(Rn× (0, T )) and moreover, if we set u(x, 0) = u0(x) for x ∈ Rn, then

u ∈ C(Rn × [0, T )).

Fix any ε ∈ (0, T ) and set v(x, t) = u(x, t + ε) + C0ε for (x, t) ∈ QT−ε :=

Rn × [0, T − ε). Observe that v is a viscosity solution of vt + H(x,Dv) = 0 in QT−ε
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and that v(x, 0) = u(x, ε)+C0ε ≥ u(x, 0) for all x ∈ Rn. By the comparison theorem,

we get u(x, t) ≤ v(x, t) = u(x, t + ε) + C0ε for all (x, t) ∈ QT−ε. Consequently, we

have u(x, t + ε)− u(x, t) ≥ −C0ε for all ε ∈ (0, T ) and (x, t) ∈ QT−ε, which implies

that ut ≥ −C0 in QT in the viscosity sense. Hence, u is a viscosity subsolution of

H(x,Du) = C0 in QT , which guarantees that the family {u(·, t) | t ∈ [0, T )} is equi-

Lipschitz continuous in Rn. We now see that ut ≤ C1 in QT in the viscosity sense

for some C1 > 0, and that the family {u(x, ·) |x ∈ Rn} is equi-Lipschitz continuous

in [0, T ). We thus conclude that u ∈ Lip(Rn × [0, T )).

Proposition A.4. Let H satisfy (A1)-(A3) and fix any T > 0. Then, for every

u0 ∈ UC(Rn), there exists a viscosity solution u ∈ UC(Rn × [0, T )) of (4) with

u( · , 0) = u0.

Proof. For each ε ∈ (0, 1), there is a function uε
0 ∈ Lip(Rn) such that |uε

0(x) −
u0(x)| ≤ ε for all x ∈ Rn. Fix such a family {uε

0 | ε ∈ (0, 1)} ⊂ Lip(Rn). Due

to the previous proposition, for each ε ∈ (0, 1) there exists a viscosity solution

uε ∈ Lip(Rn × [0, T )) of (4) satisfying uε( · , 0) = uε
0. By the comparison theorem,

for any ε, δ ∈ (0, 1), we get

|uε(x, t)− uδ(x, t)| ≤ ε + δ for all (x, t) ∈ Rn × [0, T ),

which shows that the family {uε
0 | ε ∈ (0, 1)} converges uniformly on Rn × [0, T ) to

a function u ∈ UC(Rn × [0, T )) as ε → 0. It is easy to check that the function u is

a viscosity solution of (4) with u( · , 0) = u0.

Appendix B: Semi-periodic functions.

Lemma B.1. Let f ∈ C(Rn) be both lower and upper semi-periodic. Let e ∈ Rn

and ε > 0. Then there exist an integer m ≥ 1 and a vector v ∈ B(0, ε) such that

f(x) = f(x + m(e + v)) for all x ∈ Rn. (30)

Proof. We note first that any lower (or upper) semi-periodic function is bounded

and uniformly continuous on Rn. In particular, we have f ∈ BUC(Rn).

We show that there exist an m ∈ N and a v ∈ B(0, ε) such that

f(x) ≥ f(x + m(e + v)) for all x ∈ Rn. (31)

For this, we set yj = je for j ∈ N. Since f is lower semi-periodic, there are an

increasing sequence {jk}k∈N ⊂ N, a sequence {ξk}k∈N ⊂ Rn converging to zero, and
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a function g ∈ C(Rn) such that f(x + jke) −→ g(x) in C(Rn) as k → ∞ and

f(x + jke + ξk) ≥ g(x) for all (x, k) ∈ Rn × N. In view of upper semi-periodicity

of f , we may assume by taking a common subsequence of {jk} that there exists a

sequence {ηk}k∈N ⊂ Rn converging to zero such that f(x+ jk+1e+ ηk) ≤ g(x) for all

(x, k) ∈ Rn × N. Consequently, we have

f(x + jke + ξk) ≥ f(x + jk+1e + ηk) for all (x, k) ∈ Rn × N,

which reads

f(x) ≥ f(x + (jk+1 − jk)e + ηk − ξk) for all (x, k) ∈ Rn × N. (32)

We select k ∈ N so large that ηk − ξk ∈ B(0, ε) and set m = jk+1 − jk and v =

m−1(ηk−ξk). Observing that m ∈ N and v ∈ B(0, ε), we conclude that (31) is valid.

Next, let m ∈ N and v ∈ B(0, ε) be such that (31) holds. We argue by contra-

diction to show that (30) indeed holds. Suppose that there exists x0 ∈ Rn such that

f(x0) > f(x0 + m(e + v)). We set e0 = m(e + v) and choose a constant δ > 0 so

that f(x0) ≥ δ + f(x0 + e0). By (31), we find that f(x0 + e0) ≥ f(x0 + je0) for all

j ∈ N. Similarly as in the proof of (32), we can find an integer j ∈ N and a vector

w ∈ Rn such that ω(|w|) < δ and f(x) ≥ f(x − je0 + w) for all x ∈ Rn, where ω

denotes the modulus of continuity for f . Hence we have

f(x) ≤ f(x + je0 − w) ≤ f(x + je0) + ω(|w|) < f(x + je0) + δ,

and therefore,

f(x0 + je0) + δ ≤ f(x0 + e0) + δ ≤ f(x0) < f(x0 + je0) + δ,

which is a contradiction. Thus we obtain (30).

Proposition B.2. Let f ∈ C(Rn) be both lower and upper semi-periodic. Then f

is periodic, that is, the linear span, Span M , of

M := {z ∈ Rn | f(x + z) = f(x) for all x ∈ Rn}

equals the space Rn.

Proof. Let {e1, e2, ..., en} be the standard basis of Rn. By the previous lemma, for

each i = 1, 2, ..., n and k ∈ N, there exist an mik ∈ N and a vector vik ∈ B(0, 1/k)

such that mik(ei + vik) ∈ M . Regarding ei and vik as column vectors, we observe

that

det(e1 + v1k, e2 + v2k, ..., en + vnk) → det(e1, e2, ..., en) = 1 as k →∞.
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This guarantees that for sufficiently large k,

det(e1 + v1k, e2 + v2k, ..., en + vnk) > 0

and therefore vectors m1k(e1+v1k), m2k(e2+v2k), ..., mnk(en+vnk) in M are linearly

independent. Hence, Span M = Rn.

Proposition B.3. Let f, g ∈ C(Rn) be obliquely lower semi-almost periodic. Then

f + g and max{f, g} are obliquely lower semi-almost periodic.

Proof. Let ε > 0 and {yj} ⊂ Rn be a sequence, and assume that f(x+yj)−f(yj) −→
f̄(x) and g(x + yj) − g(yj) −→ ḡ(x) in C(Rn) as j → ∞ and f(x + yj) − f(yj) +

ε ≥ f̄(x) and g(x + yj) − g(yj) + ε ≥ ḡ(x) for all x ∈ Rn. Then it is clear that

f(x + yj) + g(x + yj) − f(yj) − g(yj) −→ f̄(x) + ḡ(x) in C(Rn) as j → ∞ and

f(x + yj) + g(x + yj) − f(yj) − g(yj) + 2ε ≥ f̄(x) + ḡ(x) for all x ∈ Rn. These

observations show that f + g is an obliquely lower semi-almost periodic function.

As above, let ε > 0 and {yj} ⊂ Rn be a sequence, and assume that f(x +

yj) − f(yj) −→ f̄(x) and g(x + yj) − g(yj) −→ ḡ(x) in C(Rn) as j → ∞ and

f(x + yj) − f(yj) + ε ≥ f̄(x) and g(x + yj) − g(yj) + ε ≥ ḡ(x) for all x ∈ Rn. We

divide our considerations into two cases.

The first case is when supj∈N |f(yj) − g(yj)| < ∞. We may assume that cj :=

f(yj) − g(yj) −→ c ∈ R as j → ∞. We may assume as well that c ≤ cj + ε for all

j ∈ N.

Now, we note that f(x + yj)− g(yj)− c −→ f̄(x) in C(Rn) as j →∞ and that

f(x + yj) − g(yj) + 2ε = f(x + yj) − f(yj) + cj + 2ε ≥ f̄(x) + c for all x ∈ Rn.

Therefore we see that max{f(x + yj), g(x + yj)}− g(yj) −→ max{f̄(x) + c, ḡ(x)} in

C(Rn) as j →∞ and max{f(x + yj), g(x + yj)}− g(yj) + 2ε ≥ max{f̄(x) + c, ḡ(x)}
for all x ∈ Rn.

The remaining case is when supj∈N |f(yj) − g(yj)| = ∞. We may assume that

cj := f(yj)− g(yj) −→∞ as j →∞.

We observe that g(x+yj)−f(yj) = g(x+yj)−g(yj)−cj −→ −∞ in C(Rn) as j →
∞ and hence that max{f(x+yj), g(x+yj)}−f(yj) −→ f̄(x) in C(Rn) as j →∞. We

next observe that max{f(x+yj), g(x+yj)}−f(yj)+ε = f(x+yj)−f(yj)+ε ≥ f̄(x)

for all x ∈ Rn.

Thus we have checked in both cases after passing to a subsequence that for some

function h ∈ C(Rn) and some sequence {aj} ⊂ Rn, max{f(x+yj), g(x+yj)}−aj −→
h(x) in C(Rn) as j → ∞ and max{f(x + yj), g(x + yj)} − aj + 2ε ≥ h(x) for all

x ∈ Rn, and we conclude that max{f, g} is obliquely lower semi-almost periodic.
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Appendix C: Notes on condition (A6) or (A4)0.

We show here that, for any function H(x, p) which is periodic in x and satifies (A1)-

(A3), condition (H5) in [2] is equivalent to (A6), which is a generalization of (A4)0.

A warning is that we are here assuming the convexity of H while it is not assumed

in [2]. Also, we show that, under (A1)-(A3), condition (A4)0 is equivalent to the

condition that the corresponding Lagrangian L satisfies (11) for all ε ∈ (0, δ1] and

(x, ξ) ∈ S and for some modulus ω1.

Let us recall condition (H5) of [2]:

(H5) There exists a closed set K ⊂ Rn having the properties (a) and (b):

(a) minp∈Rn H(x, p) = 0 for all x ∈ K.

(b) For each ε > 0 there exists a modulus ψε satisfying ψε(r) > 0 for all r > 0 such

that for all x, p, q ∈ Rn, if dist(x, K) ≥ ε, H(x, p) ≤ 0 and H(x, p + q) ≥ ν, then

H(x, p + (1 + t)q) ≥ (1 + t)H(x, p + q) + tψε(ν) for all t ≥ 0.

Theorem C.1. Let H(x, p) be a function on R2n periodic in x with period Zn.

Assume that H satisfies (A1)-(A3). Then H satisfies (A6) if and only if it satisfies

(H5).

Proof. To simplify our arguments, we only prove here that two conditions (A6) and

(H5), with K = ∅, are equivalent each other. Then, in (A6) or (H5), the condition

dist(x,K) = ∞ ≥ ε is satisfied for any ε > 0. Thus, in what follows, we fix an ε > 0

and write ω and ψ for the moduli ωε in (A6) and ψε in (H5), respectively.

We first show that (H5) implies (A6). For this fix (x, p) ∈ R2n such that

H(x, p) = 0. Fix ξ ∈ D−
2 H(x, p) and q ∈ Rn. By convexity (A3), we have

H(x, p + r) ≥ ξ · r + H(x, p) = ξ · r for all r ∈ Rn.

Assume that ξ · q > 0. Then we have H(p + q/2) ≥ ξ · q/2 > 0. Therefore, by (H5),

we get

H(x, p + q) = H(x, p + 2(q/2)) ≥ 2H(x, p + q/2) + ψ(H(p + q/2))

≥ 2ξ · q

2
+ ψ(ξ · q/2) = ξ · q + ψ(ξ · q/2).

On the other hand, if ξ·q ≤ 0, then we get immediately H(x, p+q) ≥ ξ·q = ξ·q+ψ((ξ·
q)+/2). Thus, setting ω(t) := ψ(t/2), we conclude that H(x, p+q) ≥ ξ ·q+ω((ξ ·q)+)

and (H5) holds.
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Next, we show that (A6) implies (H5). Thus we suppose that (A6) is satisfied.

We observe that convexity (A3) is equivalent to the condition that

H(x, p + (1 + t)q) ≥ (1 + t)H(x, p + q)− tH(x, p) for all x, p, q ∈ Rn, t ≥ 0. (33)

Indeed, the above inequality can be rewritten as

H(x, p+q) ≤ 1

1 + t
H(x, p+(1+ t)q)+

t

1 + t
H(x, p) for all x, p, q ∈ Rn, t ≥ 0, (34)

which is clearly equivalent to (A3).

Fix any ν > 0. We show that there is a constant θ ∈ (0, 1) such that for all

(x, p, q) ∈ Rn × R2n, if H(x, p) ≤ 0 and H(x, p + q) = ν, then

H(x, p + (1 + t)q) = 2ν for some t ∈ (0, θ]. (35)

We henceforth regard H as a function on Tn×Rn, so that {(x, p) | H(x, p) ≤ a}
is a compact set for any a ∈ R. To see (35), we set W := {(x, p, q) ∈ Tn × R2n |
H(x, p) ≤ 0, H(x, p + q) = ν} and observe by coercivity (A2) that W is a compact

set. Note by (33) that, for any (x, p, q) ∈ W , we have H(x, p + (1 + t)q) ≥ (1 +

t)H(x, p + q) > 2ν for t > 1 and H(x, p + q) = ν and hence H(x, p + (1 + t)q) = 2ν

for some t ∈ (0, 1]. If W = ∅, then H(x, p) > 0 for all (x, p) and we have nothing to

prove. We may thus assume that W 6= ∅. We set

θ = max{t ∈ (0, 1] | (x, p, q) ∈ W, H(x, p, +(1 + t)q) = 2ν},

which is well-defined since W is nonempty and compact. It is clear that θ ∈ (0, 1].

We prove that θ < 1, which allows us to conclude the existence of θ ∈ (0, 1) for

which (35) holds. We argue by contradiction, and thus suppose that θ = 1. Then

we can choose a (x, p, q) ∈ W such that H(x, p+2q) = 2ν. By convexity (A3), there

is a ξ ∈ D−
2 H(x, p + q) and we have

H(x, p + q + r) ≥ H(x, p + q) + ξ · r for all r ∈ Rn. (36)

Plugging r = q and r = −q into this, we find that ξ · q = ν and H(x, p) = 0. Now,

by (36), we get H(x, p + r) ≥ ν + ξ · (r − q) = ξ · r for all r ∈ Rn, which says

that ξ ∈ D−
2 H(x, p). Consequently, using (A6), we find that ν = H(x, p + q) ≥

H(x, p) + ξ · q + ω((ξ · q)+) = ν + ω(ν), which is a contradiction. We hence conclude

that θ < 1.
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Fix ν > 0 and let θ ∈ (0, 1) be such that (35) holds. We prove that for all

(x, p, q) ∈ W , τ ∈ (0, θ] such that H(x, p + (1 + τ)q) = 2ν, and t ≥ 0,

H(x, p + (1 + t)(1 + τ)q) ≥ (1 + t)H(x, p + (1 + τ)q) +
1− θ

θ
νt, (37)

from which one easily deduces that (H5) holds.

We thus fix (x, p, q) ∈ W and τ ∈ (0, θ] so that H(x, p + (1 + τ)q) = 2ν. We

choose ξ ∈ D−
2 H(x, p+(1+ τ)q), so that H(x, p+(1+ t)(1+ τ)q) ≥ 2ν + t(1+ τ)ξ · q

for all t ∈ R. Inserting t = −τ/(1 + τ) (i.e., (1 + t)(1 + τ) = 1) into the above

assures that ξ · q ≥ ν/τ . Using this, we observe that for any t ≥ 0,

2ν + t(1 + τ)ξ · q ≥ 2ν(1 + t) +
1− τ

τ
νt ≥ 2ν(1 + t) +

1− θ

θ
νt,

which proves that (37) holds.

Theorem C.2. Assume that H satisfies (A1)-(A3) and that there exist a constant

δ1 > 0 and a modulus ω1 such that (11) holds for all ε ∈ [0, δ1] and (x, ξ) ∈ S. Then

(A4)0 holds.

This theorem together with Lemma 3.2 guarantees that (A4)0 for H is equivalent

to condition (11) for L.

Proof. Let ε ∈ [0, δ1] and (x, ξ) ∈ S. Choose a p ∈ Rn so that ξ ∈ D−
2 H(x, p). By

(11), we get

L(x, (1 + ε)ξ) ≤ (1 + ε)L(x, ξ) + εω1(ε) = (1 + ε)ξ · p + εω1(ε),

while we have

L(x, (1 + ε)ξ) ≥ (1 + ε)ξ · (p + q)−H(x, p + q) for all q ∈ Rn.

We combine these, to get

H(x, p + q) ≥ ξ · q + ε(ξ · q − ω1(ε)) for all q ∈ Rn.

We define ω0 ∈ C(R) by setting ω0(r) = max0≤ε≤δ1 ε(r − ω1(ε)) and observe that

ω0(r) = 0 for r ≤ 0, which implies that ω0(r+) = 0 = ω0(r) for r ≤ 0, and ω0(r) > 0

for all r > 0. Moreover we have H(x, p + q) ≥ ξ · q + ω0((ξ · q)+) for all q ∈ Rn,

which says that (A4)0 holds.
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