
METASTABILITY FOR PARABOLIC EQUATIONS WITH DRIFT:
PART I

HITOSHI ISHII1,∗ AND PANAGIOTIS E. SOUGANIDIS2

Abstract. We study the exponentially long time behavior of solutions to linear
uniformly parabolic equations which are small perturbations of transport equations
with vector fields having a globally stable (attractive) equilibrium in the domain.
The result is that the solutions converge to a constant, which is either the initial
value at the stable point or the boundary value at the minimum of the associated
quasi-potential. Problems of this type were considered by Freidlin and Wentzell and
Freidlin and Koralov using probabilistic arguments related to the theory of large
deviations. Our approach, which is self-contained, relies entirely on pde arguments
and is flexible to the extent that allows us to study a class of semilinear equations
of similar structure. This note also prepares the ground for the forthcoming Part
II of this work where we consider general quasilinear problems.

1. Introduction

In this paper we provide a self-contained analysis, based entirely on pde methods,
of the long time behavior (at scale expλ/ε), as ε→ 0, of the solution uε = uε(x, t) of
the parabolic equation

(1.1) uεt = Lεu
ε in Q := Ω × (0, ∞),

with the initial-boundary condition

(1.2) uε = g on ∂pQ := (Ω × {0}) ∪ (∂Ω × (0,∞)),

where Ω is an open subset of Rn and, for ε > 0, x ∈ Ω and ϕ smooth, the elliptic
operator Lε is given by

Lεϕ(x) := ε tr[a(x)D2ϕ(x)] + b(x) ·Dϕ(x).
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Here a(x) = (aij(x))1≤i,j≤n ∈ Sn, the space of n×n symmetric matrices, is positive,
“tr” and “·” denote the trace of square matrices and the inner product in Euclidean
spaces respectively and the vector field b has some x0 ∈ Ω as an asymptotically stable
equilibrium. Exact assumptions are stated below.

Roughly speaking the result states that there exists m0 > 0 and some x∗ ∈ ∂Ω
such that, as ε→ 0 and locally uniformly in Ω,

uε(x, eλ/ε) → g(x0) if λ < m0 and uε(x, eλ/ε) → g(x∗) if λ > m0.

To make precise statements as well as to provide an interpretation of the results
in terms of the metastability properties of random perturbations of some ordinary
differential equations (ode for short), we introduce next the assumptions (A1)–(A6)
which will hold throughout. In what follows Br(x) is the open ball in Rn centered
at the x with radius r, Br := Br(0) and Lip(X ;Y) is the set of Lipshitz continuous
functions defined on X and values in Y ; when Y = R, we may write Lip(X ). We
assume that:

(A1) (Regularity) a ∈ Lip(Rn; Sn) and b ∈ Lip(Rn;Rn).

(A2) (Uniform ellipticity) There exists θ ∈ (0, 1) such that, for all x ∈ Rn,

θI ≤ a(x) ≤ θ−1I.

(A3) The set Ω is a bounded, open, connected subset of Rn with C1-boundary.

We consider the dynamical system generated by the ode

(1.3) Ẋ = b(X),

where Ẋ denotes the derivative of the function t 7→ X(t). The solution of (1.3) with
initial condition X(0) = x ∈ Rn is denoted by X(t;x). The assumptions on b are:

(A4) (Global asymptotic stability) For any x ∈ Rn limt→∞X(t;x) = x0 and for
any δ > 0 there exists r > 0 such that, if x ∈ Br(x0), then X(t; x) ∈ Bδ(x0)
for all t ≥ 0.

(A5) b(x) · ν(x) < 0 on ∂Ω, where ν(x) is the exterior unit normal at x ∈ ∂Ω.

To simplify the notation throughout the paper we take x0 = 0. For the convenience
of the reader we write this convention as an additional assumption namely

(A6) x0 = 0 ∈ Ω.

We remark that (A4) and (A6) imply that

b(0) = 0 and b ̸= 0 in Rn \ {0},

and that (A5) ensures that Ω (resp. Ω) is positively invariant under the flow X :
R× Rn → Rn, that is, for all (x, t) ∈ Ω × [0, ∞) (resp. (x, t) ∈ Ω × [0, ∞)),

X(t;x) ∈ Ω (resp. X(t;x) ∈ Ω).

This behavior is depicted in Figure 1 below.
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Figure 1. Portrait of the flow generated by the vector field b.

The asymptotic behavior of the uε’s, as ε→ 0, is closely related to that of the the
stochastic differential equation

(1.4) dXε
t = b(Xε

t ) d t+
√
2εσ(Xε

t ) dWt,

which is a random perturbation of (1.3); here (Wt)t∈R is a standard n-dimensional
Brownian motion and the matrix σ ∈ Sn is the square root of a, that is, a = σ2 and
σ ≥ 0, which, in view of (A1) and (A2), is Lipschitz continuous in Rn. As in the case
of (1.3), we write Xε(t;x) for the solution at time t of the solution of (1.4) starting
at t = 0 at x. Finally, P(A) denotes the probability of the event A.

The connection is made in terms of the asymptotic behavior of the first exit time
τ εx of Xε(t;x) from Ω, that is

τ εx := inf{t ≥ 0 : Xε(t; x) ̸∈ Ω}.

To formulate the result we consider the Hamilton-Jacobi equation

(1.5) H(x,Du) = 0 in Ω,

where, for x, p ∈ Rn,

(1.6) H(x, p) = a(x)p · p+ b(x) · p,

its maximal subsolution V ∈ C(Ω) satisfying V (0) = 0, and we set m0 = min∂Ω V
—throughout the paper when we refer to solutions of Hamilton-Jacobi and “viscous”
Hamilton-Jacobi equations we mean viscosity solutions.

For a = I the results of [11, Chap. 4] (see also [9, 10] for a general case) state
roughly that, in probability, for any x ∈ Ω and as ε→ 0,

(1.7) τ εx ≈ em0/ε and Xε(t;x) exits from Ω near argmin(V |∂Ω),

where

argmin(V |∂Ω) := {x ∈ ∂Ω : V (x) = min
∂Ω

V }.
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A simple example that gives an idea of what is happening is to take a = I, b(x) =
−x and Ω = B1. In this case u(x) = |x|2/2 obviously satisfies H(x,Du(x)) = |x|2−x·
x = 0 and, indeed, V (x) = |x|2/2. It also follows from elementary stochastic calculus

considerations that, for every x ∈ B1, X
ε(t;x) = x exp(−t) +

√
2ε

∫ t

0
exp(s− t)dWs.

Given H as in (1.6), let L ∈ C(R2n) be its convex conjugate, that is

L(x, ξ) :=
1

4
a(x)−1(ξ − b(x)) · (ξ − b(x)),

where a(x)−1 denotes the inverse matrix of a(x).

Following Freidlin-Wentzell [11], we introduce the quasi-potential VΩ on Ω × Ω
given by

(1.8)
VΩ(x, y) := inf

{∫ T

0

L(X(t), Ẋ(t)) d t : T > 0, X ∈ Lip([0, T ];Ω),

X(0) = x, X(T ) = y
}
.

Next we define the function V and the constant m0 by

V (y) := VΩ(0, y) and m0 = min
∂Ω

V.

Our main theorem is as follows.

Theorem 1. Assume (A1)–(A6) and g ∈ C(Ω) . For each ε > 0, let uε ∈ C(Q) ∩
C2,1(Q) be the solution of (1.1), (1.2).

(i) Fix λ ∈ (0, m0). For any compact subset K of Ω and σ(ε) > 0 such that
σ(ε) ≤ exp(λ/ε) and limε→0+ σ(ε) = ∞,

(1.9) lim
ε→0+

uε(·, t) = g(0) uniformly on K × [σ(ε), eλ/ε].

(ii) Assume that g = g(0) on argmin(V |∂Ω). For any compact subset K of Ω ∪
argmin(V |∂Ω) and σ(ε) > 0 such that limε→0+ σ(ε) = ∞,

(1.10) lim
ε→0+

uε(·, t) = g(0) uniformly on K × [σ(ε),∞).

(iii) Fix λ ∈ (m0, ∞) and assume that g = g0 on argmin(V |∂Ω) for some constant
g0. Then, for every compact subset K of Ω ∪ argmin(V |∂Ω),

(1.11) lim
ε→0+

uε(·, t) = g0 uniformly on K × [eλ/ε, ∞).

The theorem above has been obtained via probabilistic arguments in [11, 9, 10].
We present, in this paper, a proof of the theorem based on entirely pde arguments.

A probabilistic consequence of the above theorem for the general random pertur-
bation (1.4), which may justify (1.7), is stated in the following theorem.

Theorem 2. For any δ ∈ (0, m0), any compact K ⊂ Ω and a neighborhood U ,
relative to ∂Ω, of argmin(V |∂Ω),

lim
ε→0+

P(e(m0−δ)/ε ≤ τ εx ≤ e(m0+δ)/ε, Xε(τ εx; x) ∈ U) = 1 uniformly for x ∈ K.
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Next we explain heuristically how Theorem 2 follows from Theorem 1. To this end,
recall that the solution uε of (1.1), (1.2) is given by uε(x, t) = E g(Xε(min(t, τ εx);x)),
where E denotes the expectation. We assume here that Theorem 1 and the above
formula for uε are valid for discontinuous g, something not true in general. Moreover
we remark that below we do not repeat the qualifier that all the limits hold as ε→ 0.

Fix a small neighborhood U of argmin(V |∂Ω), relative to ∂Ω. It follows from
(1.11), with g = 1U , that, for any δ > 0 and any compact K ⊂ Ω,

(1.12) E(1U(X
ε(min(t, τ εx);x)) → 1 uniformly on K × [e(m0+δ)/ε, ∞),

and, since obviously

E(1U(X
ε(min(t, τ εx); x)) = P(t ≥ τ εx, X

ε(τ εx; x) ∈ U),

(1.13) P(τ εx ≤ e(m0+δ)/ε, Xε(τ εx ;x) ∈ U) → 1 uniformly for x ∈ K.

Similarly (1.9), with g = 1∂Ω, yields that, for any δ ∈ (0, m0) and compact K ⊂ Ω,

E1∂Ω(X
ε(min(t, τ εx);x)) → 0 uniformly for (x, t) ∈ K × [eδ/ε, e(m0−δ)/ε],

which implies that

P(Xε(min(e(m0−δ)/ε, τ εx); x) ∈ Ω) = P(τ εx > e(m0−δ)/ε) → 1 uniformly for x ∈ K.

The above limit and (1.13) show that, for any δ ∈ (0, m0) and compact K ⊂ Ω,

P(e(m0−δ)/ε < τ εx ≤ e(m0+δ)/ε, Xε(τ εx; x) ∈ U) → 1 uniformly for x ∈ K.

We continue with a heuristic description of the steps of the proof of Theorem 1. To
simplify the presentation we write a ≈ b to denote that a and b are, in an appropriate
sense, close to each other. For example, for a function f , f(0) ≈ a means that f − a
is small in a neighborhood of 0. Moreover, since all the asymptotic statements below
hold for ε small, we do not repeat this and f ε(0) ≈ a means that, in a “small”
neighborhood of 0 unless otherwise specified, f ε − a is uniformly close for small ε.

The first two steps are the observations that there exists some δ > 0 such that,
if g(0) ≈ 0, then uε(0, t) ≈ 0 for t ≤ exp(δ/ε), and, if λ > 0 is such that {V ≤
λ} ⊂ {g ≈ 0}, then uε(0, t) ≈ 0 for t ≤ exp(λ/ε). Both estimates can be shown by
constructing appropriate barriers to (1.1) using the quasi potential. Then we show
(third step), using again barriers constructed from the quasi potential, that, for each
δ > 0, if g ≈ 0 on ∂Ω, then uε(·, t) ≈ 0 on Ω̄ × [exp(m0 + δ)/ε,∞).

Next we consider (forth step) the solution vε of the stationary (time independent)
version of (1.1), that is the boundary value problem (5.1) and show that, if g ≈ 0 on
argmin(V |∂Ω), then vε(0) ≈ 0.

Since the limits of the uε’s satisfy the transport equation ut + b ·Du = 0, it is then
possible to show (step 5), using the properties of the vector field b, that, for each
compact K ⊂ Ω, there exists TK > 0 such that, if g(0) ≈ 0, then uε(·, TK) ≈ 0.

In step 6 we establish that, for every δ ∈ (0,m0) and compact K ⊂ Ω there exists
TK > 0 such that, if g(0) ≈ 0, then uε(·, t) ≈ 0 uniformly on K× [TK , exp(m0−δ)/ε),
and in the final (seventh) step we prove that, for every δ > 0 and compact K ⊂ Ω,
if g ≈ 0 on argmin(V |∂Ω), then uε(·, t) ≈ 0 on K × [exp(m0 + δ)/ε,∞).
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The paper is organized as follows: The first seven sections are devoted to the proofs
of the seven steps outlined above. In Section 2 we discuss the basic properties of the
quasi-potnetial as well (2.2) and construct, for each r > 0, a smooth approximation
wr ∈ C2(Ω) of V = VΩ(0, ·) such that H(x,Dwr) ≤ −η in Ω \ Br for some η > 0.
This approximation is used in Section 3 to establish steps 1 and 2, that is to prove
in Theorem 8. In Section 4 we show (Proposition 10) that, for λ > m0, there exists
a semiconcave function W ∈ Lip(Ω) such that 0 < minΩW ≤ maxΩW < λ and
H(x,−DW ) ≥ η for some η > 0, and we prove Theorem 9, which corresponds to
step 3. Steps 4 and 5 are to establish Theorems 11 and 13, which are respectively
main topics of Sections 5 and 6. The proof (steps 6 and 7) of the main theorem,
Theorem 1, is given in Section 7. The proof of Theorem 2 is given in Section 8. In
Section 9 we present a generalization of Theorem 1 to a class of semilinear parabolic
equations. Finally, in the Appendix we present a new existence and uniqueness result
of viscosity solutions for the class of the semilinear equations considered in Section 9.

Notation and terminology. We write BR(y, s) for the closure of BR(y, s). We
denote by a ∨ b and a ∧ b the larger and smaller of a, b ∈ R respectively and, for
a ∈ R, a+ := a ∨ 0 and a− := (−a)+. For any f : A → B we write ∥f∥∞,A for
the supx∈A |f(x)| and, if B = R, {f < α} (resp. {f ≤ α}) for {x : f(x) < α}
(resp. {x : f(x) ≤ α}). We write USC(U) and LSC(U) for the sets of upper- and
lower-semicontinuous functions defined on U . Let f : A → B, and let {fε}ε>0 and
{Kε}ε>0 be collections of functions fε : A → B and of subsets Kε ⊂ A. We say that
limε→0+ fε = f uniformly on Kε, if limε→0+ ∥fε − f∥∞,Kε = 0. Finally ωf stands for
the modulus of continuity of the uniformly continuous function f .

Throughout the paper subsolutions and supersolutions should be taken to be in
the Crandall-Lions viscosity sense. That is, given an open S ⊂ Rn and u : S → Rn

and F,G : S × R× Rn × Sn, we say that

F (x, u,Du,D2u) ≤ G(x, u,Du,D2u) in S

holds in the (viscosity) subsolution(resp. supersolution) sense, if we have

F (x, u(x), Dϕ(x), D2ϕ(x)) ≤ G(x, u(x), Dϕ(x), D2ϕ(x))

(resp.

F (x, u(x), Dϕ(x), D2ϕ(x)) ≥ G(x, u(x), Dϕ(x), D2ϕ(x)))

for all (x, ϕ) ∈ S × C2(S) such that u − ϕ takes a maximum (resp. minimum ) at
x. We also use the term “in the (viscosity) subsolution sense” or “in the (viscos-
ity) supersoluton sense” for strict inequalities, reversed inequalities and sequences of
inequalities.

2. The quasi-potential and a smooth approximation

Here we recall some classical facts about the quasi-potential and then we construct
a smooth approximation, which plays an important role in the rest of the analysis.
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It is well-known from the theory of viscosity solutions ([16, 3, 1, 5]) as well the
weak KAM theory ([7, 8], [17, Prop. 7.2]) that VΩ : Ω ×Ω → R is given by

(2.1) VΩ(x, y) = sup{ψ(x)− ψ(y) : ψ ∈ S−(Ω)},

where S−(Ω) := {ψ ∈ C(Ω) : H(x,−Dψ) ≤ 0 in Ω}; note that the coercivity of the
Hamiltonian implies that S−(Ω) ⊂ Lip(Ω) and recall that ψ ∈ S−(Ω) if and only if
H(x,−Dψ) ≤ 0 a.e..

It is obvious from (1.8) that, for all x, y ∈ Ω and t ≥ 0, VΩ(x, y) ≥ 0 and
VΩ(x,X(t;x)) = 0. Moreover, letting t → ∞, it follows that, for all x ∈ Ω,
VΩ(x, 0) = 0. It is also easily seen from the definition of VΩ that, for all x, y, z ∈ Ω,

VΩ(x, y) ≤ VΩ(x, z) + VΩ(z, y).

For any y ∈ Ω, let

u(x) := VΩ(x, y) and v(x) := VΩ(y, x).

It is immediate that u ∈ S−(Ω) and v is a subsolution of H(x,Dv) ≤ 0 in Ω.
Finally, in the viscosity sense,

(2.2) H(x,−Du) = 0 in Ω \ {y} and H(x,Dv) = 0 in Ω \ {y}.
Next we state a technical fact that we need for the construction of the above

mentioned auxiliary function.

Proposition 3. Assume (A1)–(A6). There exists ψ ∈ C(Ω \ {0}) such that, for all
r > 0,

ψ ∈ Lip(Ω \Br), b ·Dψ = −1 a.e. in Ω \ {0}, and limx→0 ψ(x) = −∞.

Before proving the proposition, we show in the next lemma a localization property
of the flow X(t;x).

Lemma 1. Assume (A1)–(A6). For any 0 < r < R, there exists T = T (r, R) > 0
such that, for all x ∈ BR and t ≥ T , X(t;x) ∈ Br.

Proof. In view of the asymptotic stability of the origin, there exists δ > 0 such that,
for all x ∈ Bδ and t ≥ 0, X(t; x) ∈ Br, while the global asymptotic stability yileds, for
each x ∈ BR, a tx > 0 such that X(tx; x) ∈ Bδ. Moreover, the continuous dependence
of the flow with respect the initial value implies that X(tx; y) ∈ Bδ for all y in a
neighborhood of x. Finally, using the compactness of BR, we find some T > 0 such
that, for each x ∈ BR, there exists t̄x ∈ [0, T ] such that X(t̄x;x) ∈ Bδ. It then follows
that, for all t ≥ t̄x, X(t;x) ∈ Br, and, hence, X(t; x) ∈ Br for all x ∈ BR and
t ≥ T . □

We continue with the

Proof of Proposition 3. Fix R > 0 so that Ω ⊂ BR, select f ∈ Lip(Rn) such that
f ≥ 0, f = 1 on Ω and f = 0 in Rn \BR, and consider the transport equation

b ·Dψ = −f in BR \ {0}.
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Lemma 1 yields that, for each r ∈ (0, R), there exists T (r, R) > 0 such that, for
all x ∈ Rn \Br and t ≥ T (r,R),

X(−t; x) ∈ Rn \BR.

Next define ψ : BR \ {0} → R by

ψ(x) := −
∫ ∞

0

f(X(−t; x)) d t,

and note that, if r and T (r, R) are as above, then, for all x ∈ BR \Br,

ψ(x) = −
∫ T (r,R)

0

f(X(−t; x)) d t.

It follows that ψ is Lipschitz continuous on any compact subset of BR \ {0} and

b ·Dψ = −f a.e. in BR \ {0}.
Since b(0) = 0 and b ∈ Lip(Rn), there exists L > 0 such that |b(x)| ≤ L|x| for all

x ∈ Rn. This implies that, for all t ≥ 0,

|x| = |X(t;X(−t;x))| ≤ |X(−t; x)| eLt,
and, hence, limx→0 ψ(x) = −∞. □

Next we establish some technical consequences of Proposition 3 which are used
later in the paper.

Corollary 4. Assume (A1)–(A6). For each r > 0 there exist ψr ∈ Lip(Ω) and η > 0
such that

H(x,Dψr) ≤ −η a.e. in Ω \Br and H(x,Dψr) ≤ 0 a.e. in Br.

Proof. Let ψ ∈ C(Ω \ {0}) be the function constructed in Proposition 3. Fix r > 0
and select R > 0 so that minΩ\Br

ψ > −R, define χr ∈ Lip(Ω) by

χr(x) :=

{
−R if x = 0,

max{ψ(x), −R} otherwise,

and observe that

Dχr =

{
Dψ a.e. in Ω \Br,

Dψ or 0 a.e. in Br.

Let λ > 0 be a constant to be fixed later, set ψr := λχr and note that, for a.e.
x ∈ Ω \Br, if C > 0 is a Lipschitz bound of χr, then

H(x,Dψr) ≤ θ−1|Dψr|2 + b(x) ·Dψr ≤ λ(θ−1Cλ− 1).

If λ := θ/(2C), then

H(x,Dψr) ≤ −λ/2 a.e. in Ω \Br,

and, similarly, it is easy to check that

H(x,Dψr) ≤ 0 a.e. in Br ∩Ω.
□
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Corollary 5. Assume (A1)–(A6). For all y ∈ Ω \ {0}, VΩ(0, y) > 0.

Proof. Fix any y ∈ Ω \ {0}, choose r > 0 so that y ̸∈ Br and let ψr ∈ Lip(Ω) be as
in the proof of Corollary 4, so that

H(x,Dψr) ≤ 0 a. e. in Ω and ψr(0) < ψr(x).

Set ϕ := −ψr and observe that

H(x,−Dϕ) ≤ 0 a.e. in Ω and ϕ(0)− ϕ(y) > 0.

It follows, in view of (2.1), that

VΩ(0, y) ≥ ϕ(0)− ϕ(y) > 0. □
The aim of the rest of this section is to construct a smooth approximation of

V := VΩ(0, ·) which is a strict subsolution of the above Hamilton-Jacobi equation
away from 0 while it remains a subsolution in the whole domain.

Proposition 6. Assume (A1)–(A6). Let V = VΩ(0, ·). For any r > 0 there exist
vr ∈ Lip(Ω) and η > 0 such that,

H(x,Dvr) ≤ −η a.e. in Ω \Br, H(x,Dvr) ≤ 0 a.e. in Br and ∥vr−V ∥∞,Ω < r.

Proof. Fix r > 0, let ψr ∈ Lip(Ω) and η > 0 be as in Corollary 4 and δ ∈ (0, 1) a
constant to be fixed later, define vr ∈ Lip(Ω) by vr := (1 − δ)V + δψr and observe
that 

H(x,Dvr) ≤ (1− δ)H(x,DV ) + δH(x,Dψr) ≤ −ηδ a.e. in Ω \Br,

H(x,Dvr) ≤ 0 a.e. in Br,

|V − vr| ≤ δ|ψr − V | on Ω.

The claim follows if δ > 0 is so small that δ∥V − ψr∥∞,Ω < r. □
Theorem 7. Assume (A1)–(A6). Let V = VΩ(0, ·). For any r > 0 there exist
wr ∈ C2(Ω) and η ∈ (0, 1) such that

H(x,Dwr) ≤ −η in Ω \Br, H(x,Dwr) ≤ 1 in Br, and ∥wr − V ∥∞,Ω < r.

Proof. Fix r > 0 and let vr ∈ Lip(Ω) and η > 0 be as in Proposition 6 and δ > 0.
In view of the C1-regularity of ∂Ω, there exists a C1-diffeomorphism Φδ : Rn → Rn

such that

Φδ(Ω) ⊂ Ω, ∥DΦδ − I∥∞,Rn < δ and Φ(x) = x for all x ∈ Br.

Let vr,δ := vr ◦ Φδ, observe that vr,δ ∈ Lip(Uδ) where Uδ := Φ−1
δ (Ω), and fix δ > 0

sufficiently small so that
H(x,Dvr,δ) < −η/2 a.e. in Uδ \Br,

H(x,Dvr,δ) ≤ 0 a.e. in Br ∩ Uδ,

∥vr,δ − V ∥∞,Ω < 2r.
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Next let ρ be a standard mollifier in Rn with supp ρ ⊂ B1, and choose γ ∈ (0, r/2)
small enough so that Bγ(x) ⊂ Uδ for all x ∈ Ω. Hence, w := ργ ∗ vr,δ is well-defined
in Ω, where ργ(x) := γ−nρ(γ−1x).

Let L > 0 and ΩH be respectively a Lipschitz bound of vr,δ and the modulus of
continuity of H on Ω ×BL, fix any x ∈ Ω \B2r, note that

−η
2
≥ H(x− y,Dvr,δ(x− y)) ≥ H(x,Dvr,δ(x− y))− ωH(γ) for a.e. y ∈ Bγ ,

and observe that, by Jensen’s inequality,

H(x,Dw(x)) ≤
∫
Bγ

H(x,Dvr,δ(x− y))ργ(y) d y ≤ ωH(γ)−
η

2
.

Similarly, we find that, for any x ∈ Ω,

H(x,Dw) ≤ ωH(γ).

Thus, for γ > 0 small enough,
H(x,Dw) < −η/3 in x ∈ Ω \B3r,

H(x,Dw) ≤ 1 in x ∈ B3r ∩Ω,
∥w − V ∥∞,Ω < 3r.

The function w has all the properties required for w3r and, since r > 0 is arbitrary,
this completes the proof.

□

3. Asymptotics in a smaller time scale

Fix r > 0 and µ > 0 and let wr ∈ C2(Ω) and η ∈ (0, 1) be given by Theorem 7.
For ε > 0 and x ∈ Ω set

(3.1) vε(x) := exp

(
wr(x)− µ

ε

)
,

and note that

Lεv
ε =

vε

ε

(
H(x,Dwr) + ε tr[aD2wr]

)
.

Select C > 0 and ε0 > 0 so that ε0C < η and, for all x ∈ Ω , | tr[a(x)D2wr(x)]| ≤
C. It follows that, for any ε ∈ (0, ε0),

(3.2) Lεv
ε ≤ vε

ε
(H(x,Dwr) + εC) <

0 in Ω \Br,

2vε

ε
in Br.

Set Rε :=
2
ε
∥vε∥∞,Br∩Ω and, for (x, t) ∈ Q,

(3.3) wε(x, t) := vε(x) +Rεt.
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It follows that, for any ε ∈ (0, ε0),

(3.4) wε
t > Lεw

ε in Q.

The main result of this section is about the behavior, as ε → 0, of the solution
uε ∈ C(Q) ∩ C2,1(Q) of (1.1), (1.2) in Br × [0, expλ/ε], for λ as in the statement
below.

Theorem 8. Assume (A1)–(A6). If λ > 0 is such that {V ≤ λ} ⊂ {g ≤ 0}, then,
for each δ > 0, there exists r > 0 such that

lim
ε→0+

(uε − δ)+ = 0 uniformly on Br × [0, eλ/ε].

Proof. Choose r > 0 so small that Br ⊂ Ω, let wr, ε0, v
ε and wε be as above, fix

δ > 0 and set U ε := uε − δ and G := g − δ. Since {G ≤ 0} is a neighborhood of
{g ≤ 0}, we may choose γ > λ such that

{V ≤ γ} ⊂ {G ≤ 0}.

It follows from the maximum principle that supQ U
ε ≤ supΩ G and, hence,

U ε ≤M := ∥G∥∞,Ω on Q.

Fix µ > 0 in (3.1) (the definition of vε) so that λ < µ < γ, and, if needed, select
r > 0 even smaller so that γ − r − µ > 0, which ensures that

vε > exp

(
γ − r − µ

ε

)
in {G > 0}.

Taking, if necessary, ε0 > 0 even smaller, we may assume that, if 0 < ε < ε0, then

exp

(
γ − r − µ

ε

)
> M.

Hence, for ε ∈ (0, ε0),

vε > M ≥ G in {G > 0} and vε > 0 ≥ G in {G ≤ 0},

and, accordingly, wε ≥ G = U ε on ∂pQ. Using the maximum principle we get, for
all (x, t) ∈ Ω × [0, ∞) and ε ∈ (0, ε0),

(3.5) U ε(x, t) ≤ wε(x, t) = vε(x) +Rεt.

Since V ∈ Lip(Ω) and V (0) = 0, there exists C0 > 0 such that |wr| ≤ C0r in Br

and, therefore,

vε ≤ exp

(
C0r − µ

ε

)
in Br.

Next assume that r is even smaller so that µ̃ := µ− C0r > λ, which implies that

Rε =
2∥vε∥∞,Br

ε
<

2 e−µ̃/ε

ε
,
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and, for all x ∈ Br and 0 ≤ t ≤ eλ/ε,

wε(x, t) ≤ e−µ̃/ε +
2 e−µ̃/ε

ε
eλ/ε = e−µ̃/ε +

2 e(λ−µ̃)/ε

ε
.

Hence,

lim
ε→0+

U ε
+ = 0 uniformly on Br × [0, eλ/ε]. □

4. Asymptotics in a larger time scale

The main theorem here concerns the behavior of the solutions uε ∈ C(Q)∩C2,1(Q)
of

(4.1) uεt = Lεu
ε in Q, uε = 0 on ∂pQ and sup

ε>0
∥uε∥∞,Q <∞.

We have:

Theorem 9. Assume (A1)–(A6). Fix λ > m0 and, for ε > 0, assume that uε ∈
C(Q) ∩ C2,1(Q) solves (4.1). Then

lim
ε→0+

uε = 0 uniformly on Ω × [eλ/ε, ∞).

The following proposition is a key observation needed to prove Theorem 9. Its
proof is presented later in the section.

Proposition 10. Let λ > m0. There exists W ∈ Lip(Ω) and η > 0 such that

(4.2) 0 < min
Ω
W ≤ max

Ω
W < λ,

and, in the viscosity supersolution sense,

(4.3) H(x,−DW ) ≥ η in Ω and η tr[a(x)D2W (x)] ≤ 1 in Ω.

Proof of Theorem 9. Since uε and −uε both solve (4.1), it is enough to show that, for
any λ > m0,

(4.4) lim
ε→0+

uε+ = 0 uniformly on Ω × [eλ/ε, ∞).

Moreover, multiplying the uε’s by a positive constant if necessary, we may assume
that

sup
ε>0

∥uε∥∞,Q ≤ 1.

Fix λ > m0, let W ∈ Lip(Ω), let η > 0 be as in Proposition 9, set

δ := min
Ω
W, and µ := max

∂Ω
W,

and, for ε ∈ (0, η2/2),

vε(x) := exp

(
−W (x)

ε

)
for x ∈ Ω,
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and observe, using (4.3), that, in the subsolution sense,
ε2

(vε)2
aDvε ·Dvε + ε

vε
b ·Dvε ≥ η in Ω,

− ε

vε
tr(aD2vε) +

ε

(vε)2
aDvε ·Dvε ≤ 1

η
in Ω,

and, consequently,

Lεv
ε ≥ vε

ε

(
−ε
η
+ η

)
≥ ηvε

2ε
in Ω.

Note also that

e−µ/ε ≤ vε ≤ e−δ/ε in Ω.

Next we fix some γ ∈ (0, η], set, for (x, t) ∈ Q,

wε(x, t) := 1 + e−δ/ε −vε(x)− γ

2ε
e−µ/ε t,

and observe that

wε
t − Lεw

ε = − γ

2ε
e−µ/ε +Lεv

ε ≥ − γ

2ε
e−µ/ε +

ηvε

2ε
≥ 0 in Q,

and 
wε(x, 0) ≥ 1 for all x ∈ Ω,

wε(x, t) ≥ 1− γ

2ε
e−µ/ε t for all (x, t) ∈ ∂Ω × [0, ∞),

wε(x, t) ≤ 1 + e−δ/ε − γ

2ε
e−µ/ε t for all (x, t) ∈ Ω × [0, ∞).

Then for T := 2ε
γ
eµ/ε, we have

uε ≤ wε on (Ω × {0}) ∪ (∂Ω × (0, T )),

and, by the comparison principle,

uε ≤ wε on Ω × [0, T ],

and, in particular,

uε(x, T ) ≤ e−δ/ε for all x ∈ Ω.

Since γ ∈ (0, η] is arbitrary, it follows that

uε ≤ e−δ/ε on Ω × [(2ε/η) eµ/ε, ∞),

from which we conclude that (4.4) holds. □

The proof of Proposition 10 requires a number of technical facts which we state
and prove first. To this end, we introduce the function U on Ω defined by

(4.5) U(x) = min{VΩ(x, y) : y ∈ ∂Ω}.

By the coercivity of H and (2.2), the collection {VΩ(· , y) : y ∈ ∂Ω} is equi-Lipschitz
continuous on Ω and the fucntion U is Lipschitz continuous on Ω. It is a standard
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observation in weak KAM theory, the main idea of which goes back to Barron and
Jensen [4] ( see also [2]), that U is a solution of

(4.6) H(x,−DU) = 0 in Ω.

Lemma 2. The function U given by (4.5) is the maximal subsolution of

(4.7)

{
H(x,−Du) = 0 in Ω,

u = 0 on ∂Ω,

and
0 ≤ U ≤ U(0) = m0 on Ω.

Proof. Let u ∈ C(Ω) be a subsolution of (4.7). By (2.1), we have

u(x) ≤ VΩ(x, y) for all x ∈ Ω, y ∈ ∂Ω,

and, hence,
u ≤ U on Ω.

It is obvious that U = 0 on ∂Ω, and, therefore, U is a solution of (4.7), Thus, the
above inequality yields the first part of the claim.

Moreover,
U(0) = inf{VΩ(0, y) : y ∈ ∂Ω} = min

∂Ω
V = m0.

Next we recall that VΩ(x, 0) = 0 for all x ∈ Ω. Hence,

VΩ(x, y) ≤ VΩ(x, 0) + VΩ(0, y) = VΩ(0, y) for all y ∈ Ω.

Taking infimum over all y ∈ ∂Ω, we find U ≤ U(0) on Ω, and the proof is now
complete. □
Lemma 3. For each γ > 0, there exists a unique solution u ∈ Lip(Ω) of

(4.8)

{
H(x,−Du) = γ in Ω,

u = 0 on ∂Ω.

Proof. Choose M > 0 such that

H(x, p) ≥ γ for all (x, p) ∈ Ω × (Rn \BM).

It is easy to check that f(x) := Mdist(x, ∂Ω) is a supersolution of (4.8). It is also
obvious that 0 is a subsolution of (4.8). Perron’s method now implies that there exists
a solution u ∈ Lip(Ω) of (4.8).

Note that H(x, 0) = 0 < γ for all x ∈ Ω and recall that p 7→ H(x, p) is convex
for any x ∈ Ω. Under these conditions, the uniqueness follows from a well known
comparison (see e.g. [1, 3, 13]) which we state below as a separate lemma without
proof.

□
Lemma 4. Let γ > 0. If u ∈ C(Ω) (resp. v ∈ C(Ω)) is a subsolution (resp.
supersolution) of H(x,−Dw) = γ in Ω and u ≤ v on ∂Ω, then u ≤ v in Ω.
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We continue with

Lemma 5. For each γ > 0 let uγ ∈ Lip(Ω) be the solution of (4.8) and U ∈ Lip(Ω)
be the fucntion given by (4.5). Then

(4.9) lim
γ→0

uγ = U uniformly on Ω.

Proof. Note that, if 0 < γ1 < γ2, then uγ1 is a subsolutionof (4.8) with γ = γ2.
Therefore the comparison yields uγ1 ≤ uγ2 on Ω

Observe also that the uγ’s, with γ ∈ (0, 1), are subsolutions to (4.8) with γ = 1
and, therefore, the collection {uγ}γ∈(0, 1) is equi-Lipschitz on Ω. It follows that there

exists some u ∈ Lip(Ω) such that

(4.10) lim
γ→0

uγ = u uniformly on Ω and u = 0 on ∂Ω.

We see by the stability of viscosity solutions that u is a solution of (4.7), and,
moreover, by the maximality of U , that U ≥ u on Ω. Note also that U is a subsolution
of (4.8) with γ > 0. Hence, U ≤ uγ on Ω and, therefore, and U ≤ u on Ω. Thus we
conclude that u = U on Ω and (4.9) holds. □

We are now in a position to present the

Proof of Proposition 10. Fix γ > 0. It follows from Lemma 5 that, if µ ∈ (0, γ)
is sufficiently small, then the solution uµ ∈ Lip(Ω) of (4.8), with γ replaced by µ,
satisfies

∥U − uµ∥∞,Ω < γ,

and, moreover, 0 ≤ uµ(x) < m0 + γ for all x ∈ Ω.

For x ∈ Ω set
W (x) := uµ(x) + γ,

fix any δ > 0 and choose a C1-diffeomorphism Φδ : Rn → Rn so that

Φδ(Ω) ⊂ Ω, ∥DΦδ − I∥∞,Rn < δ and Φ(0) = 0,

Let
Wδ := W ◦ Φδ,

and note that Φ−1
δ (Ω) is an open neighborhood of Ω. It follows that, if δ > 0 is

sufficiently small, then

H(x,−DWδ) ≥ µ/2 in Φ−1
δ (Ω) and γ ≤ Wδ ≤ m0 + 2γ on Ω.

For α > 0 small, we introduce the inf-convolution Wδ,α of Wδ, given, for x ∈ Rn,
by

Wδ,α(x) := inf{Wδ(y) +
1

α
|x− y|2 : y ∈ Φ−1

δ (Ω)},

which is is semi-concave in Φ−1
δ (Ω) (see, for example, [3]), that is there exists Cδ,α

depending on δ, α such that

max{D2Wδ,α(x)ξ · ξ : ξ ∈ B1} ≤ Cδ,α in Φ−1
δ (Ω)
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holds in the supersolution sense, and, if α > 0 is sufficiently small, then

∥Wδ −Wδ,α∥∞,Ω < γ/2 and H(x,−DWδ,α) ≥ µ/4 in Ω,

where the latter inequality holds in the supersolution sense. It is then easily checked
that Wδ,α satisfies, in the supersolution sense,

tr
[
aD2Wδ,α

]
≤ Cδ,α tr a in Ω.

Thus, noting that
γ/2 ≤ Wδ,α ≤ m0 + 3γ in Ω,

and choosing γ > 0 and η > 0 so small that m0 + 3γ < λ, ηCδ,α∥ tr a∥∞,Ω ≤ 1 and
η ≤ µ/4, we conclude that W := Wδ,α and η have the required properties. □

5. The stationary problem

We consider the Dirichlet problem

(5.1)

{
Lεv

ε = 0 in Ω,

vε = g on ∂Ω,

for

(5.2) g ∈ C(Ω) such that g = 0 on argmin(V |∂Ω).

The next result is an essential part of a classical observation obtained by Freidlin-
Wentzell [11], Devinatz-Friedman [6], Kamin [14, 15], Perthame [18], etc..

Theorem 11. Assume (A1)–(A6) and (5.2). Then limε→0+ v
ε(0) = 0.

Proof. Since the equation is linear, it is enough to show that, for any δ > 0, there
exits r > 0 such that

lim
ε→0+

(vε − δ)+ = 0 uniformly on Br.

The function vε depends on g only through its restriction on ∂Ω. Hence we may
replace g by a new function g̃ ∈ C(Ω) as long as g̃ = g on ∂Ω.

Let Z := {x ∈ Ω : V ≤ m0}, note that g = 0 on Z ∩ ∂Ω, and set

g̃(x) :=

g(x)
dist(x, Z)

dist(x, ∂Ω)
for x ∈ Ω,

g(x) for x ∈ ∂Ω;

it is easily checked that g̃ ∈ C(Ω). Moreover it is obvious that g̃ = g on ∂Ω and
g̃ = 0 on Z. Thus, by replacing g by g̃ if necessary, we may assume that g = 0 on Z.

Now, fix δ > 0, note that {x ∈ Ω : g(x) < δ} is a neighborhood, relative to Ω, of
Z, and choose λ > m0 so that

{V ≤ λ} ⊂ {g < δ}.
Let uε be the solution of (1.1), (1.2), We apply Theorem 8, with g − δ in place of

g, to find that there exists r > 0 such that

lim
ε→0+

(uε − 2δ)+ = 0 uniformly on Br × [0, eλ/ε].
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Next we set wε(x, t) := vε(x)−uε(x, t) for (x, t) ∈ Q and note that wε ≡ 0 on ∂pQ,
and ∥wε∥∞,Q ≤ ∥vε∥∞,Ω + ∥uε∥∞,Q ≤ 2∥g∥∞,Ω.

Applying Theorem 9 to wε we get

lim
ε→0+

wε = 0 uniformly on Ω × [eλ/ε, ∞).

It is now immediate that

lim
ε→0+

(vε(x)− 2δ)+ = 0 uniformly on Br.

□

We have indeed shown the following:

Theorem 12. Assume (A1)–(A6) and (5.2). For any δ > 0 there exists r > 0 such
that

lim
ε→0

(vε − δ)+ = 0 uniformly on Br.

6. Asymptotic constancy

In this section we state precisely the claim that the limit, as ε→ 0, of (1.1) is the
transport equation ut = b ·Du and provide its proof where (A5) plays a critical role.

Theorem 13. Assume (A1)–(A6), let τ(ε) > 0 be such that limε→0+ τ(ε) = ∞ and,
for each ε > 0, let uε ∈ C(Q)∩C2,1(Q) be a solution of (1.1). Assume that, for some
r > 0,

(6.1) lim
ε→0+

uε = 0 uniformly on Br × [0, τ(ε)),

and

sup
ε>0

∥uε∥∞, Ω×[0, τ(ε)) <∞.

There exists T = T (r) > 0 such that, for any compact subset K of Ω and any τ0 > 0,

lim
ε→0+

uε = 0 uniformly on K × [T, τ(ε)− τ0).

As before we prove a slightly generalized, one-sided version of the above theorem,
which readily yields the claim.

Theorem 14. Assume (A1)–(A6), let τ(ε) > 0 be such that limε→0+ τ(ε) = ∞, and,
for each ε > 0, consider a solution uε ∈ C(Q) ∩ C2,1(Q) to (1.1). Fix r > 0 so that
Br ⊂ Ω and let N be a (possibly empty) open subset of ∂Ω. Assume that

(6.2) lim
ε→0+

uε+ = 0 uniformly on (Br ∪ N)× [0, τ(ε))

and

(6.3) lim sup
ε→0+

∥uε∥∞, Ω×[0, τ(ε)) <∞.
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There exists T = T (r) > 0 such that, for any compact subset K of Ω ∪ N and any
τ0 > 0,

lim
ε→0+

uε+ = 0 uniformly on K × [T, τ(ε)− τ0).

The following lemma plays an important role in the proof of Theorem 14.

Lemma 6. Let u ∈ USC(Q) be a subsolution of ut = b ·Du in Q and, for (x, t) ∈ Q,
set X(s) := X(s;x). The function s 7→ u(X(s), t− s) is nondecreasing on [0, t].

Proof. Note that (A5) yields that, for all x ∈ Ω, s ≥ 0, X(s; x) ∈ Ω. For s ∈ [0, t],
set v(s) := u(X(s), t − s). We show that, in the subsolution sense, v′ ≥ 0 in (0, t)
which implies that v is nondecreasing on [0, t].

Let ϕ ∈ C1([0, t]) and assume that v − ϕ attains a strict maximum at a point
ŝ ∈ (0, t). For α > 0 consider the map

(y, s) 7→ u(y, t− s)− ϕ(s)− α|y −X(s)|2

on Ω × [0, t] and let (yα, sα) be a maximum point. It is easy to see that, as α→ ∞,
(yα, sα) → (ŝ, X(ŝ)) and α|yα − X(sα))|2 → 0. Fix a sufficiently large α so that
(yα, sα) ∈ Q. Noting that ψ(y, s) := u(y, t − s) is a subsolution of −ψs = b · Dψ in
Ω × (0, t), we find that

−ϕ′(sα) + 2α(yα −X(sα)) · Ẋ(sα) ≤ 2αb(yα) · (yα −X(sα)),

from which we get

ϕ′(sα) ≥ 2α(yα −X(sα)) · (b(X(sα))− b(yα)) ≥ −2αL|yα −X(sα)|2,
where L > 0 is a Lipschitz bound of b. Sending α → ∞ yields ϕ′(ŝ) ≥ 0 and the
proof is complete. □

We continue with the

Proof of Theorem 14. We introduce the upper relaxed limit U ∈ USC(Q) given by

U(x, t) := lim
λ→0+

sup{uε(y, s)+ : (y, s) ∈ Q, |y − x|+ |s− t| ≤ λ, 0 < ε < λ},

and recall the standard observation that U is a subsolution of Ut = b ·DU in Q.

According to Lemma 1, we may choose T = T (r) > 0 such that, for all (x, t) ∈
Ω × [T,∞), X(s; x) ∈ Br . From Lemma 6 it follows that, for any (x, t) ∈ Q and
s ∈ [0, t], U(X(s; x), t− s) ≥ U(x, t). Hence, for any (x, t) ∈ Q with t ≥ T , we have
X(T ;x) ∈ Br and

(6.4) U(x, t) ≤ U(X(T ; x), t− T ) ≤ 0.

Next we show that

(6.5) U = 0 on N × (T,∞).

Fix (y, s) ∈ N × (T, ∞) and, in view of (A5), choose R > 0 so small that

y + λb(y) ∈ Ω for all λ ∈ (0, R), s > R + T, and BR(y) ∩ ∂Ω ⊂ N.
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Reformulating the last observation in terms of l(y, s) := {(y, s)+λ(b(y),−1) : λ > 0},
a half-line in Rn+1 with vertex at (y, s), we have

(6.6)


BR(y, s) ∩ l(y, s) ⊂ Ω × (T, ∞),

BR(y, s) ⊂ Rn × (T, ∞),

BR(y, s) ∩ (∂Ω × R) ⊂ N × (T, ∞).

For any γ ∈ (0, 1), we consider the open convex cone Cγ in Rn+1 with vertex at the
origin given by

Cγ :=
∪
λ>0

λ ((b(y),−1)) +Bγ) ,

and we set
Cγ(y, s) := (y, s) + Cγ.

From (A5) again, we may choose γ ∈ (0, 1/2) small enough so that

(6.7) BR(y, s) ∩ C2γ(y, s) ⊂ Ω × (T, ∞),

which strengthens the first inclusion of (6.6). Noting that Cγ is an open neighborhood
of (b(y),−1), we may also choose ρ ∈ (0, R) so that

(b(x),−1) ⊂ Cγ for all x ∈ Bρ(y),

which ensures that

(6.8) (b(x),−1) ⊂ Cγ for all (x, t) ∈ Bρ(y, s).

Define next d, ϕ : Rn+1 → R by

d(x, t) := dist((x, t), Cγ(y, s)) and ϕ(x, t) := d2(x, t),

and recall the well-known facts that ϕ ∈ C1(Rn+1), Dϕ ∈ Lip(Rn+1) and Dϕ(x, t) is
in the (negative) dual cone of Cγ, that is, for all (ξ, τ) ∈ Cγ, (x, t) ∈ Rn+1

Dϕ(x, t) · (ξ, τ) ≤ 0.

Combining the above remark with (6.8) yields

(6.9) b ·Dϕ ≤ ϕt in Bρ(y, s).

Next we compare uε and ϕ on the set

Q(y, s) := Bρ(y, s) ∩Q,
and note that

∂Q(y, s) ⊂ (∂Bρ(y, s) ∩Q) ∪ (Bρ(y, s) ∩ ∂Q).
In view of (6.7), we may choose λ > 0 so that

(Cγ(y, s) + Bλ) ∩ ∂Bρ(y, s) ⊂ Ω × (T, ∞).

Set
K := (Cγ(y, s) +Bλ) ∩ ∂Bρ(y, s),

which is clearly a compact subset of Ω × (T, ∞), and fix any δ > 0.
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Note that (6.3) and (6.4) imply that there exist ε0 > 0 and M > 0 such that, for
all ε ∈ (0, ε0),

(6.10) Q(y, s) ⊂ Ω × (T, τ(ε)) and uε ≤ δ in K and uε ≤M in Q(y, s).

Set A :=M/λ2. Then, for ε ∈ (0, ε0),

(6.11) uε ≤M = Aλ2 ≤ Aϕ in Q(y, s) ∩ {d ≥ λ}.

Since Bρ(t, s) ∩ ∂Q is a compact subset of N × (T, ∞), in view of (6.2), we may
assume, replacing, if needed, ε0 by a smaller positive number, that, for all ε ∈ (0, ε0),

(6.12) uε ≤ δ in Bρ(t, s) ∩ ∂Q.
Fix (x, t) ∈ ∂Q(y, s) and ε ∈ (0, ε0). If (x, t) ∈ ∂Bρ(y, s) ∩ Q = ∂Bρ(y, s) ∩ (Ω ×

(T, ∞)) and (x, t) ̸∈ K, then d(x, t) ≥ λ and, by (6.11), uε ≤ Aϕ. Otherwise, that is,
if (x, t) ∈ ∂Bρ(y, s) ∩Q ∩K, (6.10) gives uε(x, t) ≤ δ.

Moreover, if (x, t) ∈ Bρ(y, s) ∩ ∂Q, then, by (6.12), we have uε(x, t) ≤ δ, and,
therefore, for all ε ∈ (0, ε0),

uε ≤ δ + Aϕ on ∂Q(y, s).

Since, for each t, Dϕ(·, t) ∈ Lip(Rn), there exists some C > 0 so that, in the
supersolution sense, tr[aD2

xϕ] ≤ C in Q(y, s), Hence, using (6.9), we see that
ψ(x, t) := δ + Aϕ(x, t) + εACt is a supersolution to

ψt ≥ Lεψ in Q(y, s).

Thus, by comparison, we get

uε ≤ ψ in Q(y, s),

which yields

U(y, s) ≤ δ + Aϕ(y, s) = δ,

and, after letting δ → 0, U(y, s) = 0. This proves (6.5).

Since we have shown that U = 0 on (Ω ∪ N) × (T, ∞), it follows that, for any
compact subset K of (Ω ∪N)× (T, ∞),

lim
ε→0+

uε+ = 0 uniformly on K.

To complete the proof, let T > 0 be as above, fix any τ0 > 0, choose ε0 > 0 so that
T + τ0 < τ(ε) for all ε ∈ (0, ε0), set, for (x, t) ∈ Ω × [0, T + τ0] and ε ∈ (0, ε0),

vε(x, t) := sup{uε(x, t+ s) : 0 ≤ s < τ(ε)− T − τ0}
and

U(x, t) := lim
λ→0+

sup{vε+(y, s) : (y, s) ∈ Ω × [0, T0 + τ0],

|y − x|+ |s− t| < λ, 0 < ε < λ},
and note that, for any 0 < ε < ε0, v

ε is a subsolution to vεt = Lεv
ε in Ω× (0, T + τ0).

It follows, as above, that U = 0 in Ω× [T, T + τ0) and U = 0 in N × (T, T + τ0).
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Let K be a compact subset of Ω∪N . Then K× [T + τ0/3, T +2τ0/3] is a compact
subset of N × (T, T + τ0) and, thus,

lim
ε→0+

vε+ = 0 uniformly on K × [T + τ0/3, T + 2τ0/3],

which yields

lim
ε→0+

uε+ = 0 uniformly on K × [T + τ0/3, τ(ε)− τ0/3].

The proof is now complete. □

We close the section with the following generalization of Theorem 11.

Theorem 15. Under the hypotheses of Theorem 11, if K is a compact subset of
Ω ∪ argmin(V |∂Ω), then limε→0+ v

ε = 0 uniformly on K.

Proof. Fix a compact K ⊂ Ω ∪ argmin(V |∂Ω) and δ > 0. Theorem 14 applied to
uε(x, t) := vε(x) − δ with N = {y ∈ ∂Ω : g(y) < δ}, gives limε→0+(v

ε − δ)+ =
0 uniformly on K, and, hence, limε→0+ v

ε
+ = 0 uniformly on K. Similarly,

limε→0+ v
ε
− = 0 uniformly on K. □

7. The proof of the main theorem

We are now ready to prove the main theorem. Note that, in view of the linearity
of pde (1.1), it is enough to show that the following holds.

Theorem 16. Let uε ∈ C(Q) ∩ C2,1(Q) be the solution of (1.1), (1.2) and fix δ > 0.

(i) There exists T = T (δ, g) > 0 such that, for any λ ∈ (0, m0) and any compact
subset K of Ω,

(7.1) lim
ε→0+

(uε − g(0)− δ)+ = 0 uniformly on K × [T, eλ/ε].

(ii) Assume that g = g(0) on argmin(V |∂Ω). There exists T = T (δ, g) > 0 such
that, for any compact subset K of Ω ∪ argmin(V |∂Ω),

(7.2) lim
ε→0+

(uε − g(0)− δ)+ = 0 uniformly on K × [T, ∞).

(iii) Assume that g = g0 on argmin(V |∂Ω) for some g0 ∈ R. Then, for any
λ ∈ (m0, ∞) and any compact subset K of Ω ∪ argmin(V |∂Ω),

(7.3) lim
ε→0+

(uε − g0 − δ)+ = 0 uniformly on K × [eλ/ε, ∞).

Proof. We begin with (i). Fix any λ ∈ (0, m0) and δ > 0, recall that V (0) = 0 and
V > 0 in Ω \ {0}, choose a γ = γ(δ, g) > 0 so that

{V ≤ γ} ⊂ {g − g(0)− δ ≤ 0},

and recall that Theorem 8 yields some r = r(γ) > 0 such that

lim
ε→0+

(uε − g(0)− δ)+ = 0 uniformly on Br × [0, eγ/ε].
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Next we use Theorem 14 to select T = T (r) > 0 such that, for any compact subset
K of Ω and τ0 > 0,

lim
ε→0+

(uε − g(0)− δ)+ = 0 uniformly on K × [T, eγ/ε −τ0].

Fix µ ∈ (λ, m0). The above convergence, for K = {V ≤ µ}, ensures that there
exists ε0 > 0 such that, for all ε ∈ (0, ε0),

uε(·, T )− g(0)− 2δ ≤ 0 on {V ≤ µ},
that is, for all ε ∈ (0, ε0),

{V ≤ µ} ⊂ {uε(· , T )− g(0)− 2δ ≤ 0}.

V ≤ λ

Ω

V ≤ µ

1

Figure 2. The inclusion between two sublevel sets of V .

Noting that {V ≤ µ} is a neighborhood of {V ≤ λ}, we may select G ∈ C(Ω) so
that

G = 0 in {V ≤ λ}, G ≥ 0 on Ω, and max
Ω

g − g(0)− 2δ ≤ G in {V > µ},

and observe that, for all ε ∈ (0, ε0),

uε(·, T )− g(0)− 2δ ≤ G on Ω and {V ≤ λ} ⊂ {G ≤ 0}.
Let U ε ∈ C(Q) ∩ C2,1(Q) be the solution of (1.1) with initial-boundary condition

U ε = G on ∂pQ. The maximum principle implies that, for all (x, t) ∈ Q,

uε(x, T + t)− g(0)− 2δ ≤ U ε(x, t),

while, in view of Theorem 8 and Theorem 14, there exist r1 = r1(δ,G) > 0 and
T1 = T1(r1) > 0 respectively such that, for any compact K ⊂ Ω,

lim
ε→0+

(U ε − δ)+ = 0 uniformly on Br1 × [0, eλ/ε],

and
lim
ε→0+

(U ε − δ)+ = 0 uniformly on K × [T1, e
λ/ε−T ],

and, hence,

lim
ε→0+

(uε − g(0)− 3δ)+ = 0 uniformly on K × [T + T1, e
λ/ε],
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and the proof of (i) is complete.

Next we prove (iii). Fix any λ > m0 and δ > 0 and let vε ∈ Lip(Ω) be the solution
of

Lεv
ε = 0 in Ω and vε = g on ∂Ω.

Theorem 12 yields r = r(δ) > 0 such that

lim
ε→0+

(vε − g0 − δ)+ = 0 uniformly on Br.

Set N = {x ∈ ∂Ω : g(x) < g0 + δ} and note that

lim
ε→0+

(vε − g0 − δ)+ = 0 uniformly on Br ∪N.

Hence, by Theorem 14, for any compact subset K of Ω ∪N ,

lim
ε→0+

(vε − g0 − δ)+ = 0 uniformly on K.

Let wε : Q̄→ R be given by wε := uε−vε, and note that wε = 0 on ∂Ω× [0, ∞).
Then Theorem 9 yields

lim
ε→0+

wε = 0 uniformly on Ω × [eλ/ε, ∞),

and we may conclude that, for any compact subset K of Ω ∪N ,

lim
ε→0+

(uε − g0 − δ)+ = 0 uniformly on K × [eλ/ε, ∞),

which completes the proof of (iii).

To prove (ii) fix any δ > 0, and, as in the proof of (i), choose r = r(δ, g) > 0 and
γ > 0 such that

lim
ε→0+

(uε − g(0)− δ)+ = 0 uniformly on Br × [0, eγ/ε].

Moreover, as in the proof of (iii), set N = {x ∈ ∂Ω : g(x)− g(0)− δ < 0} and use
Theorem 14 to find T = T (δ, g) > 0 such that, for any compact subset K of Ω ∪N ,

lim
ε→0+

(uε(·, T )− g(0)− δ)+ = 0 uniformly on K.

We choose now λ > m0 such that {V ≤ λ} ⊂ Ω ∪N . It follows that there exists
ε0 > 0 such that, if ε ∈ (0, ε0), then

uε(·, T )− g(0)− 2δ ≤ 0 on {V ≤ λ}.
Fix a µ ∈ (m0, λ) and select G ∈ C(Ω) as in proof of (iii) so that

G = 0 in {V ≤ µ}, G ≥ 0 on Ω, and G ≥ max
Ω

(uε(·, T )− g(0)− 2δ) in {V > λ}.

Let U ε ∈ C(Q) ∩ C2,1(Q) be the solution of (1.1) with U ε = G on ∂pQ. It follows
from the maximum principle that uε(x, t+T )−g(0)−2δ ≤ U ε(x, t) for all (x, t) ∈ Q,
and {V ≤ µ} ⊂ {G ≤ 0}. Combining Theorem 8 and Theorem 14, as in the proof of
(i), we deduce that there exists T1 = T1(δ,G) > 0 such that, for any compact subset
K of Ω ∪N ,

lim
ε→0+

(U ε − δ)+ = 0 uniformly on K × [T1, e
µ/ε −T ].
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Note that argmin(V |∂Ω) ⊂ {V ≤ µ} and, hence, G = 0 = G(0) on argmin(V |∂Ω).
Using assertion (iii), we see that, for any compact subset K of Ω ∪ argmin(V |∂Ω),

lim
ε→0+

(U ε − δ)+ = 0 uniformly on K × [eµ/ε, ∞).

Combining these two observations, we conclude that, for any compact subset K of
Ω ∪ argmin(V |∂Ω),

lim
ε→0+

(uε − g(0)− 3δ)+ = 0 uniformly on K × [T + T1, ∞);

and the proof is complete. □

8. The proof of Theorem 2

We note that there exists a family {Ωδ}δ∈(0, 1) of bounded, open, connected subsets
of Rn with C1-boundary such that

Ω ⊂ Ωδ ⊂ Ωδ and b · νδ < 0 on ∂Ωδ,

where Ωδ := {x ∈ Rn : dist(x,Ω) < δ} and νδ(x) denotes the exterior unit normal
of ∂Ωδ at x ∈ ∂Ωδ. Indeed let ρ ∈ C1(Rn) be a defining function of Ω, that is,
Ω = {x ∈ Rn : ρ(x) < 0} and Dρ ̸= 0 if ρ = 0; its existence is guaranteed
by the assumed regularity of the boundary of Ω. We may assume moreover that
lim|x|→∞ ρ(x) = ∞.

For each δ ∈ (0, 1), we choose γ ∈ (0, δ) small enough and set Ωδ = {x ∈ Rn :
ρ(x) < γ}. Then Ωδ is a bounded, open, connected subset of Rn. Furthermore, we
have Ω ⊂ Ωδ ⊂ Ωδ and b · νδ < 0 on ∂Ωδ.

Recall that if we write S−(W ) for the set of all subsolutions ϕ ∈ C(W ) ofH(x,Dϕ(x)) =
0 in W , then

V (y) = sup{ϕ(y)− ϕ(0) : ϕ ∈ S−(Ω)} for all y ∈ Ω.

For each δ ∈ (0, 1), we set

Vδ(y) = sup{ϕ(y)− ϕ(0) : ϕ ∈ S−(Ωδ)} for all y ∈ Ωδ

and mδ = min∂Ωδ
Vδ.

Proposition 17. For any δ ∈ (0, 1), mδ ≥ m0. Furthermore, limδ→0+mδ = m0.

Proof. Since Vδ ∈ S−(Ωδ) implies that Vδ ∈ S−(Ω), we have

(8.1) Vδ(y) ≤ V (y) for all y ∈ Ω.

Fix m ∈ (0, m0) and set

v :=

{
min{V, m} in Ω,

m in Ωδ \Ω.
Noting that u ≡ m is a solution of H(x,Du) = 0 in Ωδ and that m < V on ∂Ω, we

see that v is a subsolution of H(x,Dv) = 0 in Ω, and, hence, in Ωδ. It follows from
the maximality of Vδ, that Vδ ≥ v on Ωδ, and, hence,

(8.2) mδ ≥ m0.
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Fix any κ > 0, choose a function ζ ∈ C1(Ω1) so that ζ(x0) < m0+κ for some point
x0 ∈ argmin(V |∂Ω) and ζ ≥ V on ∂Ω, and R > 0 so that

H > 1 on Ω1 × (Rn \BR) and |Dζ| ≤ R on Ω1.

We may assume by relabeling the family {Ωδ}δ∈(0, 1) if needed that

inf{|Dρ(x)| : x ∈
∪

δ∈(0, 1)

Ωδ \Ω} > 0,

and we choose A > 0 so that

A inf{|Dρ(x)| : x ∈
∪

δ∈(0, 1)

Ωδ \Ω} > 2R.

Fix any δ ∈ (0, 1) and recall that Ωδ = {x ∈ Rn : ρ(x) < γ} for some γ ∈ (0, δ).
For each µ ∈ (0, γ) we select a C1-function θ : [0, γ) → [0, ∞) so that θ(r) = Ar for
r ∈ [0, µ], θ′ ≥ A in [0, γ) and limr→γ− θ(r) = ∞.

Set w := ζ + θ ◦ ρ on Ωδ \Ω and observe that w ∈ C1(Ωδ \Ω),

|Dw| ≥ θ′(ρ)|Dρ| − |Dζ| ≥ 2R−R ≥ R on Ωδ \Ω,
and, hence, H(x,Dw) > 0 on Ωδ \Ω. Furthermore, we have Vδ ≤ V ≤ w on ∂Ω and
limΩδ∋x→∂Ωδ

w(x) = ∞.
We use next the fact that Vδ is a subsolution of H(x,DVδ) = 0 in Ωδ, to conclude

that Vδ ≤ w in Ωδ\Ω. Indeed, otherwise Vδ−w attains a positive maximum at a point
ξ ∈ Ωδ \ Ω since we have either (Vδ − w)(x) ≤ 0 or limΩδ\Ω∋y→x(Vδ − w)(y) = −∞
for all x ∈ ∂(Ωδ \Ω), and obtain H(ξ,Dw(ξ)) ≤ 0, which is a contradiction. Sending
µ→ γ in the inequality Vδ ≤ ζ + θ ◦ ρ in Ωδ \Ω, we find that Vδ ≤ ζ +Aρ in Ωδ \Ω,
which implies that mδ ≤ min∂Ωδ

ζ +Aδ, and, hence, lim supδ→0+mδ ≤ m0 + κ. Since
κ > 0 is arbitrary, we thus get lim supδ→0+mδ ≤ m0, which, together with (8.2),
implies that limδ→0+mδ = m0. □
Theorem 18. Assume (A1)–(A6). For any δ ∈ (0, m0) and compact K ⊂ Ω, there
exists ε0 > 0 such that if ε ∈ (0, ε0), then, for all (x, t) ∈ K × [eδ/ε, e(m0−δ)/ε],

P(τ εx > t, Xε(t; x) ∈ Bδ) > 1− δ.

Proof. Select g ∈ C(Ω) so that

g(0) = 1 and g ≤ 1Bδ
on Ω,

and fix δ ∈ (0, m0) and a compact K ⊂ Ω. Theorem 1 implies that there exists
ε0 > 0 such that, if ε ∈ (0, ε0), then

|uε − 1| < δ on K × [eδ/ε, e(m0−δ)/ε].

The observation that, for any (x, t) ∈ K × [eδ/ε, e(m0−δ)/ε] and ε ∈ (0, ε0),

1− δ < uε(x, t) = E g(Xε(t ∧ τ εx ;x)) ≤ E1Bδ
(Xε(t ∧ τ εx ;x))

= P(Xε(t ∧ τ εx;x) ∈ Bδ) = P(τ εx > t, Xε(t; x) ∈ Bδ)

completes the proof. □
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Lemma 7. Assume (A1)–(A6). Let δ > 0 and K ⊂ Ω compact. There exists ε0 > 0
such that, for all x ∈ K and ε ∈ (0, ε0),

P(τ εx < e(m0+δ)/ε) > 1− δ.

Proof. Let {Ωδ}δ∈(0, 1) and {mδ}δ∈(0, 1) be as before, and, for a fixed δ > 0, we may

assume that mδ < m0 + δ. We also choose g ∈ C(Ωδ) so that g ≤ 1Ωδ\Ω on Ωδ and
g ≡ 1 on ∂Ωδ and consider the solution U ε of{

U ε
t = LεU

ε in Qδ := Ωδ × (0, ∞),

U ε = g on ∂pQδ.

Theorem 1 gives some ε0 > 0 such that, if ε ∈ (0, ε0), then

U ε > 1− δ in K × [e(m0+δ)/ε, ∞).

Fix x ∈ K and ε ∈ (0, ε0) and observe that, if τ δ,εx denotes the first exit time of
Xε(·;x) from Ωδ,

1− δ < U ε(x, e(m0+δ)/ε) = E g(Xε(τ δ,εx ∧ e(m0+δ)/ε; x)) ≤ E1Ωδ\Ω(X
ε(τ δ,εx ∧ e(m0+δ)/ε;x))

= P(Xε(τ δ,εx ∧ e(m0+δ)/ε;x) ∈ Ωδ \Ω) ≤ P(τ εx < e(m0+δ)/ε),

and the proof is now complete. □

Proof of Theorem 2. Let W̃ be an open relative to Ω neighborhood of argmin(V |∂Ω)

such that W̃∩∂Ω ⊂ W , choose g ∈ C(Ω) so that g ≡ 1 on argmin(V |∂Ω) and g ≤ 1W̃

and let uε be the solution of{
uεt +H(x,Duε) = 0 in Q,

uε = g on ∂pQ.

Let T (ε) := e(m0+δ)/ε and t(ε) := e(m0−δ)/ε. Theorem 1 gives some ε0 > 0 such that

(8.3) uε(x, T (ε)) > 1− δ for all (x, ε) ∈ K × (0, ε0),

while, in view of Theorem 18 and Lemma 7, we may assume that

(8.4) P(t(ε) ≤ τ εx ≤ T (ε)) > 1− δ for all (x, ε) ∈ K × (0, ε0).

Fix any (x, ε) ∈ K × (0, ε0) and observe that

uε(x, T (ε)) ≤ E g(Xε(T (ε) ∧ τ εx; x)) ≤ E1W̃ (Xε(T (ε) ∧ τ εx; x))

= P(Xε(T (ε) ∧ τ εx ;x) ∈ W̃ )

≤ P(τ εx ≤ T (ε), Xε(τ εx; x) ∈ W ) + P(τ εx > T (ε))

≤ P(t(ε) ≤ τ εx ≤ T (ε), Xε(τ εx; x) ∈ W ) + P(τ εx < t(ε) or τ εx > T (ε)).

Combining the above with (8.3) and (8.4) yields

P(t(ε) ≤ τ εx ≤ T (ε), Xε(τ εx; x) ∈ W ) > 1− 2δ for all (x, ε) ∈ K × (0, ε0). □
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9. A semilinear parabolic equation

For fε ∈ C(Ω × R× Rn) we consider here the semilinear parabolic equation

(9.1) uεt = Lεu
ε + fε(x, u

ε, Duε) in Q.

In addition to (A1)–(A6), throughout this section we assume that

(A7) for each ε > 0 there exists M(ε) > 0 such that, for all (x, u, p) ∈ Ω ×R×Rn,

|fε(x, u, p)| ≤M(ε)|p|, lim
ε→0+

M(ε) = 0, and u 7→ fε(x, u, p) is nonincreasing;

note that it is immediate from (A7) that, for all (x, u) ∈ Ω × R, fε(x, u, 0) = 0.

In what follows, for ϕ ∈ C2(Ω), we set

Lεϕ := Lεϕ+ fε(x, ϕ,Dϕ) and L+
ε ϕ := Lεϕ+M(ε)|Dϕ|,

and remark that any subsolution uε of (9.1) is also a subsolution of uεt = L+
ε u

ε in Q.

It is possible to deal with (9.1) with the nonlinear term fε which depends further
on the second derivatives in x of uε, but, to make the presentation simple and to
avoid technicalities, we restrict ourselves here to study the semilinear pde (9.1).

Theorem 19. Assume (A1)-(A7). The assertions of Theorem 1 hold for the solution
uε ∈ C(Q) ∩ C2,1(Q) of (9.1) satisfying, for g ∈ C(Ω), the initial-boundary value
condition (1.2).

It is not clear to the authors whether the initial-boundary value problem (9.1),
(1.2) has a classical solution in C(Q) ∩ C2,1(Q). It is, hence, worthwhile stating an
existence and uniqueness result for viscosity solutions of (9.1), (1.2). For this we may
replace (A1) by the weaker assumption:

(A1w) a is Hölder continuous on Ω with exponent γ > 1/2 and b is continuous on Ω.

We have:

Theorem 20. Assume (A1w), (A2), (A3), (A6) and (A7). Then there exists a unique
viscosity solution uε ∈ C(Q) of (9.1), (1.2).

We present the proof of Theorem 20, which is rather long and technical, in the
Appendix. Here we continue with Theorem 19, which actually holds also for viscosity
solutions of (9.1), (1.2). Indeed we have:

Theorem 21. Assume (A1)–(A7) and g ∈ C(Ω). The assertions of Theorem 19 hold
for the (viscosity) solution uε ∈ C(Q) of (9.1), (1.2).

In view of the facts that, for any ε > 0, −fε(x,−u,−p) satisfies condition (A7) if
fε does and, if u

ε ∈ C(Q) is a solution of (9.1) then vε := −uε is a solution of

vεt = Lεv
ε − fε(x,−vε,−Dxv

ε) in Q,

Theorem 20 is an easy consequence of the following version of Theorem 16.

Theorem 22. Assume (A1)–(A7) and g ∈ C(Ω). For each ε > 0, let uε ∈ C(Q) be
a subsolution of (9.1), (1.2). Fix δ > 0.
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(i) There exists T = T (δ, g) > 0 such that, for any λ ∈ (0, m0) and any compact
subset K of Ω,

lim
ε→0+

(uε − g(0)− δ)+ = 0 uniformly on K × [T, eλ/ε].

(ii) Assume that g = g(0) on argmin(V |∂Ω). There exists T = T (δ, g) > 0 such
that, for any compact subset K of Ω ∪ argmin(V |∂Ω),

lim
ε→0+

(uε − g(0)− δ)+ = 0 uniformly on K × [T, ∞).

(iii) Assume that g = g0 on argmin(V |∂Ω) for some g0 ∈ R. Then, for any
λ ∈ (m0, ∞) and any compact subset K of Ω ∪ argmin(V |∂Ω),

lim
ε→0+

(uε − g0 − δ)+ = 0 uniformly on K × [eλ/ε, ∞).

The proof of Theorem 22 parallels that of Theorem 16. Instead of giving the full
detailed proof, we indicate here its major differences from that of Theorem 16.

Choose r, Wr, µ, η and C as those at the beginning of Section 3, let vε ∈ C2(Ω)
be the function defined by (3.1) and observe that

fε(x, v
ε, Dxv

ε) ≤M(ε)|Dxv
ε| ≤ vε

ε
M(ε)|DWr|

and

Lεv
ε ≤ vε

ε
(H(x,DWr) + εC +M(ε)∥DWr∥∞,Ω) .

Select ε0 > 0 so that, for all ε ∈ (0, ε0),

εC +M(ε)∥DWr∥∞,Ω ≤ η,

and observe that, for any ε ∈ (0, ε0),

Lεv
ε(x) ≤

0 in Ω \Br,

2vε

ε
in Br.

Then wε ∈ C2(Q) defined by wε(x, t) := vε(x) + Rεt, with Rε := (2/ε)∥vε∥∞,Br ,
satisfies wε

t ≥ Lεw
ε in Q.

The next assertion (Theorem 23) is similar to Theorem 8. Its proof follows by
a straightforward adaptation of the proof of Theorem 8 with the above choice of
function wε.

Theorem 23. Assume (A1)–(A7). For each ε > 0 let uε ∈ USC(Q) be a subsolution
of (9.1), (1.2) and let λ > 0 be such that {V ≤ λ} ⊂ {g ≤ 0}. For any δ > 0 there
exists r > 0 such that

lim
ε→0+

(uε − δ)+ = 0 uniformly on Br × [0, eλ/ε].

Theorem 9 can be reformulated for subsolutions of (9.1) as follows.
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Theorem 24. Assume (A1)–(A7). Fix λ > m0 and, for each ε > 0, let uε ∈ USC(Q)
be a subsolution of (9.1). Assume that uε ≤ 0 on ∂Ω×[0, ∞) and supε>0 ∥uε∥∞,Q <
∞. Then

lim
ε→0+

uε+ = 0 uniformly on Ω × [eλ/ε, ∞).

Let W , η, δ, µ and vε be as in the proof Theorem 9. We deduce, following the
arguments in the proof of Theorem 9, that, in the subsolution sense,

Lεv
ε ≥ vε

ε

(
− ε

η
+ η −M(ε)∥DW∥∞, Ω

)
in Ω.

Fix ε0 > 0 so that, for all ε ∈ (0, ε0),

ε

η
+M(ε)∥DW∥∞, Ω <

η

2
, and, hence, Lεv

ε ≥ ηvε

2ε
in Ω,

define wε ∈ Lip(Q) as in the proof of Theorem 9, that is, for γ ∈ (0, η], set

wε(x, t) := 1 + e−δ/ε −vε(x)− γ

2ε
e−µ/ε t,

and then follow the proof of Theorem 9 with wε as above to conclude.

A review of the proof of Theorem 14 shows that, with a minor modification of the
function ψ, the assertion of Theorem 14 holds true for subsolutions uε ∈ USC(Q) of
(9.1). To prove the first claim of Theorem 22, we just need to follow the proof of part
(i) of Theorem 16, with Theorem 8 replaced by Theorem 23 and with Theorem 14
replaced by the corresponding assertion for subsolutions uε ∈ USC(Q) of (9.1).

Now we discuss a version of Theorem 12 for subsolutions of

(9.2)

{
Lεv

ε = 0 in Ω,

vε = g on ∂Ω,

with g ∈ C(Ω). The existence and uniqueness of a solution in C(Ω) of (9.2) follow
similarly to the case of Theorem 19.

Following the proof of Theorem 11 we obtain:

Theorem 25. Assume (A1)–(A7). For each ε > 0 let vε ∈ USC(Q) be a subsolution
of (9.2). Assume that g ≤ g0 on argmin(V |∂Ω) for some constant g0. Then, for any
δ > 0, there exists r > 0 such that

lim
ε→0+

(vε − g0 − δ)+ = 0 uniformly on Br.

When following the proof of Theorem 11, it is necessary to replace G and uε

respectively by G := g − g0 − δ and the solution uε ∈ C(Q) of

(9.3) uεt = L+
ε u

ε in Q with uε = h on ∂pQ,

where h ∈ C(Ω) is chosen as in the proof of Theorem 11 with the present choice of G.
Once it is shown that wε := vε−uε is a subsolution of (9.3), the rest of the argument
goes exactly as in the proof of Theorem 11. Thus, the following lemma completes the
proof of Theorem 25.
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Lemma 8. Fix ε > 0. If v ∈ USC(Q) and u ∈ LSC(Q) are respectively a subsolution
and a supersolution of (9.3), then w := v − u is a subsolution of (9.3).

Proof. Let ϕ ∈ C2(Q) and (x̂, t̂) ∈ Q be such that w − ϕ achieves a strict maximum
at (x̂, t̂). We need to show that ϕt ≤ L+

ε ϕ at (x̂, t̂).

We argue by contradiction and thus assume that this inequality does not hold. In
this case we may choose r > 0 so that Qr := Br(x̂)× (t̂− r, t̂+ r) ⊂ Q and

ϕt > L+
ε ϕ in Qr := Br(x̂)× (t̂− r, t̂+ r).

It is easily seen that v − ϕ is a subsolution of (9.3) in Qr. Moreover, there is a
comparison between v − ϕ and u (see the comparison principle at the beginning of
the proof of Theorem 20 below), that is, we have

max
Qr

(v − u− ϕ) ≤ max
∂pQr

(v − u− ϕ),

which is a contradiction since w−ϕ = v−u−ϕ has a strict maximum at (x̂, t̂) ∈ Qr. □

The proof of part (iii), (ii) of Theorem 22 follows as that of part (iii), (ii) of Theorem
16 once vε is chosen as the solution of

L+
ε v

ε = 0 in Ω with vε = g(x) on ∂Ω,

and Theorems 12, 14, 9 and 8 are replaced by those for subsolutions of (9.1) and
(9.2).

10. Appendix: The well posedness of the semilinear problem

We begin with the comparison principle which is a special parabolic version of (i)
of Theorem III.1 in [12] and, hence, we omit its proof. A useful comment here is
that the proof of (i) of Theorem III.1 in [12] works even when the constant CR in the
assumption (3.2) there replaced by CR(1 + |p|γ), for some γ ∈ (0, 1).

Lemma 9. If v ∈ USC(Q) and w ∈ LSC(Q) are, respectively, a subsolution and a
supersolution of (9.1) and v ≤ w on ∂pQ, then u ≤ w in Q.

For the existence of the solutions we will need the following lemma; its proof is
postponed for later.

Lemma 10. There exists a constant λ0 > 0 such that, for all y ∈ ∂Ω and λ ∈
(0, λ0), y + λν(y) ∈ Rn \ Ω. Moreover, if δ(λ) := miny∈∂Ω dist(y + λν(y), Ω), then
limλ→0+ δ(λ)/λ = 1.

Outline of the proof of Theorem 20. The uniqueness follows from Lemma 9, while the
existence of a solution follows from Perron’s method provided we construct appropri-
ate subsolutions and supersolutions of (9.1) in Q.

To this end, let λ0 ∈ (0, 1) and δ : (0, λ0) → (0, λ0) be as in Lemma 10. For each
y ∈ ∂Ω and λ ∈ (0, λ0) set z := y + λν(y) and, for α = α(λ) > 0 to be fixed later,
define ub, vb ∈ C∞(Ω) by

ub(x) := ub(x; y, λ) := e−α(|x−z|2−δ(λ)2) and vb(x) := vb(x; y, λ) := 1− ub(x),
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and observe that, if d := diam(Ω), then for all x ∈ Ω,

δ(λ) ≤ |x− z| ≤ d+ 1.

Next we estimate Lεvb from above to find

Lεvb(x) ≤ ub(x)
{
ε
(
2α tr a(x)− 4α2a(x)(x− z) · (x− z)

)
+ 2αM(ε)|x− z|

+ 2α|x− z|∥b∥∞,Ω

}
≤ αub(x){ε

(
2nθ−1 − 4αθδ(λ)2

)
+ 2(d+ 1)(M(ε) + ∥b∥∞,Ω)}.

Fix Λ > 0 and α = α(λ) > 0 so that

ε
(
2nθ−1 − 4θΛ

)
+ 2(d+ 1) (M(ε) + ∥b∥∞,Ω) = 0 and αδ(λ)2 = Λ,

note that, with this choice,

(10.1) Lεvb ≤ 0 on Ω,

and observe that

vb(y) = 1− exp
(
−α

(
λ2 − δ(λ)2

))
= 1− exp

(
−Λ

(
λ2/δ(λ)2 − 1

))
,

vb(x) ≥ 1− exp
(
−α

(
δ(λ)2 − δ(λ)2

))
= 0 for all x ∈ Ω,

and, for any x ∈ Ω \B3λ(y),

vb(x) ≥ 1− exp
(
−α

(
(|x− y| − |y − z|)2 − δ(λ)2

))
≥ 1− exp

(
−α

(
4λ2 − δ(λ)2

))
> 1− exp

(
−αδ(λ)2

)
= 1− e−Λ .

Lemma 10 together with the first observation above yields

(10.2) lim
λ→0+

vb(y; y, λ) = 0.

Next let ω denote the modulus of continuity of g, chooseA > 0 so thatA
(
1− e−Λ

)
>

ω(d), and observe that, for any x ∈ Ω and y ∈ ∂Ω,

g(x) ≤ g(y) + ω(d) ≤ g(y) + Avb(x; y, λ) if x ̸∈ B3λ(y),

and

g(x) ≤ g(y) + ω(3λ) if x ∈ B3λ(y).

Hence, for all x ∈ Ω,

g(x) ≤ g(y) + ω(3λ) + Avb(x; y, λ),

and thus, setting, for x ∈ Ω,

wb(x) := inf{g(y) + ω(3λ) + Avb(x; y, λ) : λ ∈ (0, λ0), y ∈ ∂Ω}

and recalling (10.1) and (10.2), we deduce that wb ∈ USC(Ω) is a supersolution of
Lεwb = 0 in Ω, wb ≥ g on Ω and wb = g on ∂Ω.

Next let γ > 0, choose B = B(γ) > 0 so that Bγ2 ≥ ω(d), for y ∈ Ω, define
vi = vi(· , y, γ) ∈ C∞(Ω) by

vi(x) := g(y) +B|x− y|2 + ω(γ),
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and observe that

vi ≥ g on Ω and vi(y) = g(y) + ω(γ).

Choose C(γ) > 0 so that

Lεvi ≤ C(γ) in Ω for all vi = vi(· ; y, γ) with y ∈ Ω,

set, for (x, t) ∈ Q,

wi(x, t) := inf{vi(x; y, γ) + C(γ) t : y ∈ Ω, γ > 0},

and observe that wi ∈ USC(Ω) is a supersolution of (9.1), g ≤ wi on Q and
wi(·, 0) = g on Ω.

Now, for (x, t) ∈ Q, let

w(x, t) := min{wb(x), wi(x, t)};

it is immediate that w ∈ USC(Q) is a supersolution of (9.1), and, in addition, w = g
on ∂pQ and w ≥ g on Q.

Similarly, we can build a subsolution z ∈ LSC(Q) of (9.1) such that z = g on ∂pQ
and z ≤ g on Q. Perron’s method together with the comparison claim mentioned
at beginning of the ongoing proof yields a solution u ∈ C(Q) of (9.1) such that
z ≤ u ≤ w on Q. The last inequality implies that u = g on ∂pQ. □

We present now the

Proof of Lemma 10. Let ρ ∈ C1(Rn) be a defining function of Ω.

Since, for any y ∈ ∂Ω, there exists θ0 ∈ (0, 1) such that

ρ(y + λν(y)) = λDρ(y + θ0λν(y)) · ν(y)
we deduce that there exists λ0 > 0 such that, for all y ∈ ∂Ω and λ ∈ (0, λ0),

y + λν(y) ∈ Rn \Ω.
To show that limλ→0+ δ(λ)/λ = 1, we first note that δ(λ) ≤ λ and assume by

contradiction that lim infλ→0+ δ(λ)/λ < 1. It follows that there exist δ0 ∈ (0, 1) and
a sequence {λj}j∈N ⊂ (0, λ0) such that, as j → ∞, λj → 0 and δ(λj)/λj ≤ δ0 for all
j. Moreover, for each j ∈ N there are yj, ξj ∈ ∂Ω such that

δ(λj) = |yj + λjν(yj)− ξj|;
note that we may assume by passing, if needed, to a subsequence, that, as j → ∞,
yj → y0 for some y0 ∈ ∂Ω. It is then clear that ξj → y0 as j → ∞.

Since ξj is a closest point of ∂Ω to yj + λjν(yj), we have

ξj + δ(λj)ν(ξj) = yj + λjν(yj).

Hence, noting that, for some θj, θ̃j ∈ (0, 1),{
ρ(yj + λjν(yj)) = λjDρ(yj + θjλjν(yj)) · ν(yj),
ρ(ξj + δ(λj)ν(ξj)) = δ(λj)Dρ(ξj + θ̃jδ(λj)ν(ξj)) · ν(ξj),
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we find

λjDρ(yj + θjλjν(yj)) · ν(yj) = δ(λj)Dρ(ξj + θ̃jδ(λj)ν(ξj)) · ν(ξj),
which, in the limit as j → ∞, yields

lim
j→∞

δ(λj)

λj
= lim

j→∞

Dρ(yj + θjλjν(yj)) · ν(yj)
Dρ(ξj + θ̃jδ(λj)ν(ξj)) · ν(ξj)

= 1,

a contradiction to the inequality δ(λj)/λj ≤ δ0 < 1 for j ∈ N. □
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