Hamilton-Jacobi EQUATIONS AND VISCOSITY SOLUTIONS

Hitoshi Ishii

Tsuda University
(Waseda University)

Mini-Course at Nanjing University on Web. April-May, 2021

Hamilton-Jacobi equations and optimal control
Existence, uniqueness and stability of viscosity solutions I
Existence, uniqueness and stability of viscosity solutions II
Existence, uniqueness and stability of viscosity solutions III
Homogenization of Hamilton-Jacobi equations I
Homogenization of Hamilton-Jacobi equations II
Long-time behavior of solutions I
Long-time behavior of solutions II
Vanishing discount problem for Hamilton-Jacobi equations I
Vanishing discount problem for Hamilton-Jacobi equations II

Hamilton-Jacobi equations and optimal control

Example 1

Consider the eikonal equation

$$
\left|u^{\prime}(x)\right|=1 \quad \text { in }(-1,1),
$$

with boundary condition $u(-1)=u(1)=0$. No C^{1} solution.
This is a Hamilton-Jacobi equation.
This appears in geometric optics and describes the wave front. In the above case, the light sources are located at $\boldsymbol{x}= \pm 1$ and the speed of light is assumed to be one.
The right solution should be $u(x)=1-|x|=\min \{x-1,1-x\}=\operatorname{dist}(x,\{ \pm 1\})$. The set $\{x: u(x)=a\}$ is the set of points where the light arrives after time a coming from $\{ \pm 1\}$.
In view of the theory of differential equations, this gives a big problem.
No classical solution, but \exists a right solution.
What is a good generalised (weak) solution?

People tried to find a good notion of generalized solutions in the class of Lipschitz functions which satisfy the given equation in the almost everywhere sense.

$$
\left|u^{\prime}(x)\right|=1 \quad \text { a.e. }(-1,1) \quad \text { and } \quad u(-1)=u(1)=0
$$

Some a.e. solutions

- Semi-concave a.e. solutions: Kruzkov (after entropy solutions for conservation laws by Oleinik, Douglis) \longrightarrow No downward pointing corner.

The existence of solutions can be a problem in general.

- Viscosity solutions: Crandall-Lions, Crandall-Evans-Lions

Based on the maximum principle: if $u, \phi \in C^{1}$ and $u-\phi$ takes a maximum (or minimum) at \boldsymbol{x}, then $\boldsymbol{u}^{\prime}(\boldsymbol{x})=\boldsymbol{\phi}^{\prime}(\boldsymbol{x})$.

Definition 2 (Preliminary)

$u \in C(-1,1)$ is a (viscosity) subsolution of $\left|u^{\prime}\right|=1$ (or $\left.\left|u^{\prime}\right| \leq 1\right)$ in $(-1,1)$ if, whenever $\phi \in C^{1}(-1,1)$ and $(u-\phi)(\hat{x})=\max (u-\phi)$, we have

$$
\left|\phi^{\prime}(\hat{x})\right| \leq 1
$$

For the definition of (viscosity) supersolution, we replace (\max , \leq) by (\min , \geq). (Viscosity) solution is defined as a function which has both sub and super solution properties.

Let $u=\operatorname{dist}(x,\{ \pm 1\})$ and $\phi \in C^{1}(-1,1)$. Assume that $\max (u-\phi)=(u-\phi)(\hat{x})$ for some $\hat{\boldsymbol{x}}$. If $\hat{\boldsymbol{x}} \neq 0$, then $\boldsymbol{u}^{\prime}(\hat{\boldsymbol{x}})=\phi^{\prime}(\hat{\boldsymbol{x}})$ and $\left|\phi^{\prime}(\hat{\boldsymbol{x}})\right|=\left|\boldsymbol{u}^{\prime}(\hat{\boldsymbol{x}})\right|=1$. If $\hat{\boldsymbol{x}}=\mathbf{0}$, then $\left|\phi^{\prime}(\hat{x})\right| \leq 1$.

Instead, if $\min (u-\phi)=(u-\phi)(\hat{x})$, then $\hat{\boldsymbol{x}} \neq \mathbf{0}$ and $\left|\phi^{\prime}(\hat{x})\right|=1$.

- For classical smooth solutions,

$$
\left|u^{\prime}\right|=1 \Longleftrightarrow-\left|u^{\prime}\right|=-1 .
$$

This is not true for viscosity solutions. For instance, $u=\operatorname{dist}(x,\{ \pm 1\})($ resp., $u=-\operatorname{dist}(x,\{ \pm 1\}))$ is a viscosity solution to $\left|u^{\prime}\right|=1$ (resp., $-\left|u^{\prime}\right|=-1$), but not to $-\left|u^{\prime}\right|=-1$ (resp., $\left|u^{\prime}\right|=1$).

- The vanishing viscosity method: when "right" solutions may have singularities, a classical argument to pick up a "right" solution (physically meaning solution) is to introduce an artificial viscosity to the equation. In our example, we consider $-\varepsilon u^{\prime \prime}(x)+\left|u^{\prime}\right|=1$ in $(-1,1), \quad$ and $\quad u(\pm 1)=0, \quad$ with $\varepsilon>0$. page: 1.5

This has a C^{2} solution

$$
u_{\varepsilon}(x)=1+\varepsilon e^{-\frac{1}{\varepsilon}}-|x|-\varepsilon e^{-\frac{|x|}{\varepsilon}} .
$$

$\uparrow \varepsilon=1 / 2,1 / 10,1 / 100$
$\operatorname{dist}(x,\{ \pm 1\})=\lim _{\varepsilon \rightarrow 0^{+}} u_{\varepsilon}(x) ; \quad$ "viscosity" solution.
page:1.6

Example 3

Given two functions $\boldsymbol{f}: \mathbb{R}^{\boldsymbol{n}} \times \mathrm{C} \rightarrow \mathbb{R}$ and $\boldsymbol{g}: \mathbb{R}^{\boldsymbol{n}} \times \mathrm{C} \rightarrow \mathbb{R}^{\boldsymbol{n}}$,

$$
\begin{aligned}
& \dot{X}(t)=g(X(t), \alpha(t)), \quad X(0)=x \\
& J(x, \alpha)=\int_{0}^{\infty} e^{-\lambda t} f(X(t), \alpha(t)) d t
\end{aligned}
$$

Here, $\boldsymbol{X}(\boldsymbol{t})$ is the solution of the Cauchy problem for the ODE given by $\boldsymbol{g}, \boldsymbol{J}(\boldsymbol{x}, \boldsymbol{\alpha})$ is the cost functional, which gives the criteria for the choice of the control $\boldsymbol{\alpha}$. The constant $\boldsymbol{\lambda}>\mathbf{0}$ is the so-called discount factor, and the effect of the running cost f is decreasing with the factor $e^{-\lambda t}$ as the time proceeds.

We assume that C is a compact subset of \mathbb{R}^{m}, the functions f, g are continuous on $\mathbb{R}^{n} \times \mathrm{C}$, and there exists a constant $\boldsymbol{C}>\boldsymbol{0}$ such that for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{\boldsymbol{n}}, \boldsymbol{c} \in \mathrm{C}$,

$$
\begin{aligned}
& |f(x, c)| \vee|g(x, c)| \leq C \\
& |f(x, c)-f(y, c)| \vee|g(x, c)-g(y, c)| \leq C|x-y|
\end{aligned}
$$

The set of all measurable functions $\alpha:[0, \infty) \rightarrow C$ is denoted by \mathcal{C}. For any $\alpha \in \mathcal{C}$, the Cauchy problem

$$
\dot{X}(t)=g(X(t), \alpha(t)), \quad X(0)=x \in \mathbb{R}^{n}
$$

has a unique solution $X(t)=X(t ; x, \alpha)$, and the cost functional $J(x, \alpha)$ is well defined.

The value function \boldsymbol{V} on $\mathbb{R}^{\boldsymbol{n}}$ is defined by

$$
V(x)=\inf _{\alpha \in \mathcal{C}} J(x, \alpha)
$$

Note:

$$
|J(x, \alpha)| \leq \int_{0}^{\infty} e^{-\lambda t}|f(X(t), \alpha(t))| d t \leq C / \lambda
$$

and

$$
|V(x)| \leq C / \lambda
$$

Since

$$
|X(t ; x, \alpha)-X(t ; y, \alpha)| \leq|x-y| e^{C t}
$$

we have

$$
\begin{aligned}
|J(x, \alpha)-J(y, \alpha)| & \leq \int_{0}^{T} e^{-\lambda t+C t} C|x-y| d t+2 C \int_{T}^{\infty} e^{-\lambda t} d t \\
& \leq O\left(|x-y| e^{C T}+e^{-\lambda T}\right) \forall T>0
\end{aligned}
$$

If we choose $\boldsymbol{T}>0$ so that $|x-y| e^{C T}=e^{-\lambda T}$ (i.e., $\left.e^{T}=|x-y|^{-1 /(C+\lambda)}\right)$, the O term becomes $\boldsymbol{O}\left(|\boldsymbol{x}-\boldsymbol{y}|^{\boldsymbol{\lambda} /(\boldsymbol{C}+\lambda)}\right)$. The value function \boldsymbol{V} is in $\mathrm{BUC}\left(\mathbb{R}^{\boldsymbol{n}}\right)$. Optimal control theory:

- Find $\alpha \in \mathcal{C}$ such that $V(x)=J(x, \alpha)$. optimal control!
- Find the value of \boldsymbol{V}.

Bellman equation The Bellman equation should characterize the value function \boldsymbol{V}.

$$
\max _{c \in C}(\lambda u(x)-g(x, c) \cdot D u(x)-f(x, c))=0 \quad \text { in } \mathbb{R}^{n}
$$

$\left(\boldsymbol{D u}=\left(\partial u / \partial x_{1}, \ldots, \partial u / \partial x_{n}\right)\right.$ gardient of $\left.\boldsymbol{u}.\right)$ If we write

$$
\begin{aligned}
H(x, p, r) & =\max _{c \in \mathrm{C}}(\lambda r-g(x, c) \cdot p-f(x, c)) \\
& =\lambda r+\max _{c \in \mathrm{C}}(-g(x, c) \cdot p-f(x, c))
\end{aligned}
$$

then the above equation reads $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{D} \boldsymbol{u}(\boldsymbol{x}), \boldsymbol{u}(\boldsymbol{x}))=\mathbf{0}$.
If $\mathrm{C}=\bar{B}_{1}(0) \subset \mathbb{R}^{n}, g(x, c)=c, f(x, c)=1$ and $\lambda=0$ (against to the tentative assumption), then

$$
H(x, p, r)=H(p)=|p|-1 \quad(|D u(x)|-1=0)
$$

Similarly, if $\mathrm{C}=\bar{B}_{1}(0) \subset \mathbb{R}^{n}, g(x, c)=g(x) c$, $f(x, c)=f(x)$ and $\lambda=0$, then

$$
H=|g(x)||p|-f(x) \quad(|g(x) \| p|-f(x)=0)
$$

Removing the compactness assumption on C , if $\mathrm{C}=\mathbb{R}^{\boldsymbol{n}}, \boldsymbol{g}=\boldsymbol{c}$, $f=|c|^{2} / 2+1$, and $\lambda=0$, then

$$
H=\frac{1}{2}|p|^{2}-1 \quad\left(\frac{1}{2}|D u|^{2}-1=0\right)
$$

A remark is: the Hamiltonians $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p}, \boldsymbol{r})$ for Bellman equations are convex in \boldsymbol{p}.

Assume that $\mathrm{C}=\{c\}$ (a singleton). Write
$f(x)=f(x, c), g(x)=\boldsymbol{g}(x, c)$. Assume evrything are smooth. Then, for $\boldsymbol{\tau}>\mathbf{0}$,

$$
\begin{aligned}
V(x) & =\int_{0}^{\tau} e^{-\lambda t} f(X(t)) d t+\int_{\tau}^{\infty} e^{-\lambda t} f(X(t)) d t \\
& =\int_{0}^{\tau} e^{-\lambda t} f(X(t)) d t+e^{-\lambda \tau} \int_{0}^{\infty} e^{-\lambda t} f(X(t+\tau)) d t \\
& =\int_{0}^{\tau} e^{-\lambda t} f(X(t)) d t+e^{-\lambda \tau} V(X(\tau))
\end{aligned}
$$

and

$$
\begin{aligned}
0 & =\int_{0}^{\tau} e^{-\lambda t} f(X(t)) d t+e^{-\lambda \tau} V(X(\tau))-V(X(0)) \\
& =\int_{0}^{\tau}\left(e^{-\lambda t} f(X(t))+\frac{d}{d t}\left(e^{-\lambda t} V(X(t))\right)\right) d t \\
& =\int_{0}^{\tau} e^{-\lambda t}(f(X(t))-\lambda V(X(t))+D V(X(t)) \cdot g(X(t))) d t
\end{aligned}
$$

It follows that

$$
\lambda V(x)-g(x) \cdot D V(x)-f(x)=0 \quad \forall x \in \mathbb{R}^{n}
$$

If we start with this PDE, the formula of \boldsymbol{V} is a consequence of the so-called characteristic method applied to this PDE.

Existence, uniqueness and stability of viscosity solutions I
Consider the first-order PDE

$$
\begin{equation*}
F(x, D u(x), u(x))=0 \quad \text { in } \Omega \subset \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

Definition 1

Let $\boldsymbol{\Omega}$ be an open set $\subset \mathbb{R}^{\boldsymbol{n}}$ and $\boldsymbol{F} \in \boldsymbol{C}\left(\boldsymbol{\Omega} \times \mathbb{R}^{\boldsymbol{n}} \times \mathbb{R}, \mathbb{R}\right)$. Let $\boldsymbol{u} \in C(\Omega, \mathbb{R})$. We call \boldsymbol{u} a (viscosity) subsolution (resp., supseroslution) of (1) if for any $(\phi, x) \in C^{1}(\Omega, \mathbb{R}) \times \Omega$ such that $\max (u-\phi)=(u-\phi)(x)($ resp., $\min (u-\phi)=(u-\phi)(x)$,

$$
F(x, D \phi(x), u(x)) \leq 0 \quad(\text { resp., } F(x, D \phi(x), u(x)) \geq 0)
$$

When \boldsymbol{u} is both a (viscosity) sub and supersolution of (1), we call \boldsymbol{u} a (voscosity) solution of (1).

$$
\begin{aligned}
& \boldsymbol{u}-\boldsymbol{\phi} \max \text { at } \hat{\boldsymbol{x}} \\
& \boldsymbol{\underline { \| }} \boldsymbol{u}_{\text {min }} \text { at } \hat{\boldsymbol{x}}
\end{aligned}
$$

\boldsymbol{u} is tested from above by $\boldsymbol{\phi}$ at $\hat{\boldsymbol{x}} ; \boldsymbol{\phi}$ is an upper tangent to \boldsymbol{u} at $\hat{\boldsymbol{x}} ; \boldsymbol{u}$ is touched from above by ϕ at $\hat{\boldsymbol{x}}, \ldots$

- Subsolution for $u \in \operatorname{USC}(\Omega, \mathbb{R} \cup\{-\infty\})$; supersolution for $u \in \operatorname{LSC}(\Omega, \mathbb{R} \cup\{\infty\})$.
- $\phi \in C^{\infty}(\Omega)$.
- max, $\min \longrightarrow$ strict max, strict min.

Remark 2

1) In general, when \boldsymbol{u} is a (viscosity) solution of
$\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{D} \boldsymbol{u}, \boldsymbol{u})=\mathbf{0}, \boldsymbol{u}$ may not be a (viscosity) solution of
$-\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{D} \boldsymbol{u}, \boldsymbol{u})=\mathbf{0}$. Reverse inequalities.
2) In general, when \boldsymbol{u} is a (viscosity) solution of
$\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{D} \boldsymbol{u}, \boldsymbol{u})=\mathbf{0}, \boldsymbol{v}:=-\boldsymbol{u}$ may not be a (viscosity) solution of $\boldsymbol{F}(\boldsymbol{x},-\boldsymbol{D} \boldsymbol{v},-\boldsymbol{v})=\mathbf{0}$. Testing from the reverse side.
3) Set $\boldsymbol{v}:=-\boldsymbol{u}$. Then \boldsymbol{u} is a (viscosity) solution of
$\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{D} \boldsymbol{u}, \boldsymbol{u})=\mathbf{0}$ if and only if \boldsymbol{v} is a (viscosity) solution of
$-F(x,-D v,-v)=0$.
Let $\phi \in C^{1}, \psi:=-\phi$, and $\hat{\boldsymbol{x}} \in \Omega$.

$$
\begin{aligned}
(u-\phi)(\hat{x})=\max (u-\phi) & \Longleftrightarrow(v+\phi)(\hat{x})=\min (v+\phi) \\
& \Longleftrightarrow(v-\psi)(\hat{x})=\min (v-\psi)
\end{aligned}
$$

and
$F(\hat{x}, D \phi(\hat{x}), u(\hat{x})) \leq 0 \Longleftrightarrow-F(\hat{x},-D \psi(\hat{x}),-v(\hat{x})) \geq 0$.

Theorem 1

The value function \boldsymbol{V} defined above is a viscosity solution of
(2) $\quad \lambda u+\max _{c \in \mathrm{C}}(-g(x, c) \cdot D u-f(x, c))=0 \quad$ in \mathbb{R}^{n}.

Theorem 2 (DPP)
Let $\boldsymbol{x} \in \mathbb{R}^{\boldsymbol{n}}$ and $\boldsymbol{\tau}: \mathcal{C} \rightarrow[\mathbf{0}, \infty]$ be a mapping. Then

$$
V(x)=\inf _{\alpha \in \mathcal{C}} \int_{0}^{\tau} e^{-\lambda t} f(X(t), \alpha(t)) d t+e^{-\lambda \tau} V(X(\tau))
$$

We write

$$
H(x, p, r)=\lambda r+\max _{c \in \mathrm{C}}(-g(x, c) \cdot p-f(x, c))
$$

Proof of Theorem 2:

$$
\begin{aligned}
& J(x, \alpha)= \int_{0}^{\tau} e^{-\lambda t} f(X(t), \alpha(t)) d t \\
&+e^{-\lambda \tau} \int_{0}^{\infty} e^{-\lambda t} f(X(\tau+t), \alpha(\tau+t)) d t \\
& J(x, \alpha) \geq V(x), \\
& \int_{0}^{\infty} e^{-\lambda t} f(X(\tau+t), \alpha(\tau+t)) d t=J(X(\tau), \alpha(\tau+\cdot)) \\
& \geq V(X(\tau))
\end{aligned}
$$

Proof of Theorem 1: Since C is compact and $\boldsymbol{f}, \boldsymbol{g}$ are continuous, \boldsymbol{H} is continuous. We only check the supersolution property by a contradiction argument. Let $\phi \in C^{1}$ and $\min (V-\phi)=(V-\phi)(\hat{x})$ for some $\hat{\boldsymbol{x}} \in \mathbb{R}^{n}$. Suppose that

$$
H(\hat{x}, D \phi(\hat{x}), V(\hat{x}))<0 .
$$

Replacing ϕ by $\phi+\min (V-\phi)$, we may assume that $\min (V-\phi)=0$. That is, $V(\hat{x})=\phi(\hat{x})$.

$$
V(x)=\inf _{\alpha \in \mathcal{C}} \int_{0}^{\tau} e^{-\lambda t} f(X(t), \alpha(t)) d t+e^{-\lambda \tau} V(X(\tau))
$$

Proof Set

$$
W(x)=\inf _{\alpha \in \mathcal{C}} \int_{0}^{\tau} e^{-\lambda t} f(X(t), \alpha(t)) d t+e^{-\lambda \tau} V(X(\tau))
$$

Choose $\boldsymbol{\alpha} \in \mathcal{C}$ so that

$$
V(x) \approx J(x, \alpha)
$$

and compute

$$
\begin{aligned}
J(x, \alpha) & =\int_{0}^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) d t+\int_{\tau(\alpha)}^{\infty} e^{-\lambda t} f(X(t), \alpha(t)) d t \\
& =\int_{0}^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) d t
\end{aligned}
$$

$$
\begin{aligned}
& +e^{-\lambda \tau(\alpha)} \int_{0}^{\infty} e^{-\lambda s} f(X(s+\tau(\alpha)), \alpha(s+\tau(\alpha)) d s \\
= & \int_{0}^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) d t \\
& +e^{-\lambda \tau(\alpha)} J(X(\tau(\alpha)), \alpha(\tau(\alpha)+\cdot)) \\
\geq & \int_{0}^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) d t+e^{-\lambda \tau(\alpha)} V(X(\tau(\alpha))) \\
\geq & W(x) .
\end{aligned}
$$

Hence,

$$
V(x) \geq W(x)
$$

Choose $\alpha \in \mathcal{C}$ so that
$W(x) \approx \int_{0}^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) d t+e^{-\lambda \tau(\alpha)} V(X(\tau(\alpha)))$.
Choose $\boldsymbol{\beta} \in \mathcal{C}$ so that

$$
V(X(\tau(\alpha))) \approx J(X(\tau(\alpha)), \beta)
$$

Then

$$
\begin{aligned}
W(x) \approx & \int_{0}^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) d t+e^{-\lambda \tau(\alpha)} J(X(\tau(\alpha)), \beta) \\
= & \int_{0}^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) d t \\
& +e^{-\lambda \tau(\alpha)} \int_{0}^{\infty} e^{-\lambda t} f(X(t, X(\tau(\alpha)), \beta), \beta(t)) d t \\
= & \int_{0}^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) d t \\
& +e^{-\lambda \tau(\alpha)} \int_{\tau(\alpha)}^{\infty} e^{-\lambda(s-\tau(\alpha))} \times \\
& \times f(X(s-\tau(\alpha), X(\tau(\alpha)), \beta), \beta(s-\tau(\alpha))) d s \\
= & \int_{0}^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) d t \\
& +\int_{\tau(\alpha)}^{\infty} e^{-\lambda t} f(X(t-\tau(\alpha), X(\tau(\alpha)), \beta), \beta(t-\tau(\alpha))) d t
\end{aligned}
$$

Set

$$
\gamma(t)= \begin{cases}\alpha(t) & \text { for } t \in[0, \tau(\alpha)) \\ \beta(t-\tau(\alpha)) & \text { for } t \in[\tau(\alpha), \infty)\end{cases}
$$

and note that

$$
X(t, x, \gamma)= \begin{cases}X(t, x, \alpha) & \text { for } t \in[0, \tau(\alpha)) \\ X(t-\tau(\alpha), X(\tau(\alpha)), \beta) & \text { for } t \in[\tau(\alpha), \infty)\end{cases}
$$

to find that

$$
\begin{aligned}
W(x) \approx & \int_{0}^{\tau(\alpha)} e^{-\lambda t} f(X(t, x, \gamma), \gamma(t)) d t \\
& +\int_{\tau(\alpha)}^{\infty} e^{-\lambda t} f(X(t, x, \gamma), \gamma(t)) d t \\
= & J(x, \gamma) \geq V(x)
\end{aligned}
$$

Thus, $\boldsymbol{W}(\boldsymbol{x}) \geq \boldsymbol{V}(\boldsymbol{x})$. The proof is complete.

By continuity, for some $\boldsymbol{r}>\mathbf{0}$,

$$
H(x, D \phi(x), \phi(x))<0 \quad \forall x \in \bar{B}_{r}(\hat{x}) .
$$

Define $\tau: \mathcal{C} \rightarrow[0, \infty]$ by

$$
\tau=\tau(\alpha):=\inf \left\{t \geq 0: X(t ; \hat{x}, \alpha) \in \partial B_{r}(\hat{x})\right\}
$$

By DPP, for each $\varepsilon>0, \exists \alpha \in \mathcal{C}$ such that

$$
V(\hat{x})+\varepsilon>\int_{0}^{\tau} e^{-\lambda t} f(X(t), \alpha(t)) d t+e^{-\lambda \tau} V(X(\tau))
$$

Note that

$$
V(\hat{x})=\phi(\hat{x}), \quad V(X(\tau)) \geq \phi(X(\tau))
$$

and, since $|\dot{\boldsymbol{X}}|=|\boldsymbol{g}(\boldsymbol{X})| \leq C$,

$$
\tau \geq \frac{r}{C}
$$

which implies

$$
\int_{0}^{\tau} e^{-\lambda t} d t \geq \int_{0}^{\frac{r}{C}} e^{-\lambda t} d t
$$

We replace ε by

$$
\varepsilon \int_{0}^{\frac{r}{C}} e^{-\lambda t} d t
$$

to obtain

$$
\phi(\hat{x})+\varepsilon \int_{0}^{\tau} e^{-\lambda t} d t>\int_{0}^{\tau} e^{-\lambda t} f(X(t), \alpha(t)) d t+e^{-\lambda \tau} \phi(X(\tau))
$$ and, if $0<\varepsilon \ll 1$,

$$
\begin{aligned}
& 0<\int_{0}^{\tau} e^{-\lambda t}(\varepsilon-f(X(t), \alpha(t))+\lambda \phi(X(t)) \\
&\quad-g(X(t), \alpha(t)) \cdot D \phi(X(t))) d t \\
& \leq \int_{0}^{\tau} e^{-\lambda t}(\varepsilon+H(X(t), D \phi(X(t)), \phi(X(t))) d t<0
\end{aligned}
$$

Hence, a contradiction.
Theorem 1 is an existence theorem.

If we write

$$
H(x, p)=\max _{c \in \mathrm{C}}(-g(x, c) \cdot p-f(x, c))
$$

then

$$
\begin{aligned}
& |H(x, p)-H(y, p)| \leq C|x-y|(|p|+1) \\
& |H(x, p)-H(x, q)| \leq C|p-q|
\end{aligned}
$$

Under the above hypotheses on a general \boldsymbol{H}, consider the HJ equation

$$
\begin{equation*}
\lambda u+\boldsymbol{H}(x, D u)=0 \quad \text { in } \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

Theorem 3 (Comparison theorem)
Let $\boldsymbol{v}, \boldsymbol{w} \in \mathbf{B C}\left(\mathbb{R}^{\boldsymbol{n}}\right)$ be sub and super solutions of (2), respectively. Then, $\boldsymbol{v} \leq \boldsymbol{w}$ in $\mathbb{R}^{\boldsymbol{n}}$.

The value function V is a unique solution in the class $B C\left(\mathbb{R}^{n}\right)$. A PDE characterization of value functions.

1) Fix any $\varepsilon>\boldsymbol{0}$. Set $\boldsymbol{v}_{\boldsymbol{\varepsilon}}(\boldsymbol{x})=\boldsymbol{v}(\boldsymbol{x})-\varepsilon\langle\boldsymbol{x}\rangle$, where $\langle x\rangle=\left(|x|^{2}+1\right)^{1 / 2}$. Note:

$$
\begin{aligned}
\lambda v_{\varepsilon}+H\left(x, D v_{\varepsilon}\right) & \leq \lambda v+H\left(x, D v-\varepsilon \frac{x}{\langle x\rangle}\right) \\
& \leq \lambda v+H(x, D v)+C \varepsilon
\end{aligned}
$$

Replace $\boldsymbol{v}_{\boldsymbol{\varepsilon}}$ by $\boldsymbol{v}_{\varepsilon}=\boldsymbol{v}-\varepsilon\left(\langle\boldsymbol{x}\rangle+\boldsymbol{\lambda}^{-1} C\right)$, to get

$$
\lambda v_{\varepsilon}+H\left(x, D v_{\varepsilon}\right) \leq \lambda v-\varepsilon C+H(x, D v)+\varepsilon C \leq 0
$$

Enough to show that $\boldsymbol{v}_{\varepsilon} \leq \boldsymbol{w}$ in $\mathbb{R}^{\boldsymbol{n}}$ for all $\varepsilon>\mathbf{0}(\mathbf{0}<\varepsilon \ll \mathbf{1})$.
2) Fix $\boldsymbol{\varepsilon}>\boldsymbol{0}$. Since $\boldsymbol{v}, \boldsymbol{w}$ are bounded,

$$
\lim _{|x| \rightarrow \infty}\left(v_{\varepsilon}-w\right)(x)=-\infty
$$

Choose $\boldsymbol{R}>\mathbf{0}$ so that

$$
\left(v_{\varepsilon}-w\right)(x)<0 \quad \forall x \in \mathbb{R}^{n} \backslash B_{R}
$$

3) To complete the proof, we argue by contradiction. Suppose:

$$
\sup _{\mathbb{R}^{n}}\left(v_{\varepsilon}-w\right)>0
$$

which implies

$$
S:=\sup _{B_{R}}\left(u_{\varepsilon}-w\right)>0 .
$$

4) If we have $\boldsymbol{w} \in C^{1}$, by chance, then, by the viscosity properties,
$\lambda v_{\varepsilon}(x)+H(x, D w(x)) \leq 0$, and $\lambda w(x)+H(x, D w(x)) \geq 0$
at any maximum point \boldsymbol{x} of $\boldsymbol{v}_{\boldsymbol{\varepsilon}}-\boldsymbol{w} .\left(\boldsymbol{v}_{\boldsymbol{\varepsilon}}\right.$ is tested by \boldsymbol{w} from above and \boldsymbol{w} is tested by \boldsymbol{w} itself from below.) Subtracting one from the other yields

$$
\lambda\left(v_{\varepsilon}-w\right)(x) \leq 0 \text { at any maximu point } \boldsymbol{x} \text { of } \boldsymbol{v}_{\varepsilon}-\boldsymbol{w} .
$$

This is a contradiction: $\boldsymbol{\lambda} \boldsymbol{S} \leq \mathbf{0}$.
5) In the general situation, a standard technique to overcome the lack of regularity is the so-called doubling variable method. For $k \in \mathbb{N}$, consider the function

$$
\Phi_{k}(x, y)=v_{\varepsilon}(x)-w(y)-k|x-y|^{2}
$$

on $\boldsymbol{K}:=\overline{\boldsymbol{B}}_{\boldsymbol{R}} \times \overline{\boldsymbol{B}}_{\boldsymbol{R}}$. Let $\left(\boldsymbol{x}_{\boldsymbol{k}}, \boldsymbol{y}_{\boldsymbol{k}}\right)$ be a maximum point of this function.
6) Observe that

$$
\max _{K} \Phi_{k} \geq \max _{x \in \bar{B}_{R}} \Phi_{k}(x, x)=\max _{\bar{B}_{R}}\left(v_{\varepsilon}-w\right)=S
$$

and hence,
$S \leq \Phi_{k}\left(x_{k}, y_{k}\right)=v_{\varepsilon}\left(x_{k}\right)-w\left(y_{k}\right)-k\left|x_{k}-y_{k}\right|^{2} \leq C_{1}-k\left|x_{k}-y_{k}\right|^{2}$.
We may assume by passing to a subsequence that for some $\left(x_{0}, y_{0}\right) \in K$,

$$
\lim _{k}\left(x_{k}, y_{k}\right)=\left(x_{0}, y_{0}\right)
$$

Since $\left\{k\left|x_{k}-y_{k}\right|^{2}\right\}_{k}$ is bounded, we find that

$$
x_{0}=y_{0}
$$

and, moreover, from the above,

$$
S \leq v_{\varepsilon}\left(x_{0}\right)-w\left(x_{0}\right)-\limsup k\left|x_{k}-y_{k}\right|^{2}
$$

$$
k
$$

which implies that

$$
\left(v_{\varepsilon}-w\right)\left(x_{0}\right)=S \quad \text { and } \quad \lim _{k} k\left|x_{k}-y_{k}\right|^{2}=0
$$

The first identity above implies that $\boldsymbol{x}_{\boldsymbol{0}} \in \boldsymbol{B}_{\boldsymbol{R}}$ (interior point). Passing to a subsequence, we may assume that

$$
x_{k}, y_{k} \in B_{R} \quad \forall k
$$

Note that the functions

$$
\begin{aligned}
& x \mapsto \Phi_{k}\left(x, y_{k}\right)=v_{\varepsilon}(x)-k\left|x-y_{k}\right|^{2}-w\left(y_{k}\right), \\
& y \mapsto-\Phi_{k}\left(x_{k}, y\right)=w(y)+k\left|y-x_{k}\right|^{2}-v_{\varepsilon}\left(x_{k}\right)
\end{aligned}
$$

take, respectively, a max at $\boldsymbol{x}=\boldsymbol{x}_{\boldsymbol{k}}$ and \min at $\boldsymbol{y}=\boldsymbol{y}_{\boldsymbol{k}}$. By the viscosity properties,

$$
\begin{aligned}
& \lambda v_{\varepsilon}\left(x_{k}\right)+H\left(x_{k}, 2 k\left(x_{k}-y_{k}\right)\right) \leq 0, \\
& \lambda w\left(y_{k}\right)+H\left(y_{k},-2 k\left(y_{k}-x_{k}\right)\right) \geq 0 .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
0 & \geq \lambda\left(v_{\varepsilon}\left(x_{k}\right)-w\left(y_{k}\right)\right)+H\left(x_{k}, 2 k\left(x_{k}-y_{k}\right)\right)-H\left(y_{k}, 2 k\left(x_{k}-y_{k}\right)\right) \\
& \geq \lambda S-C\left|x_{k}-y_{k}\right|\left(2 k\left|x_{k}-y_{k}\right|+1\right)
\end{aligned}
$$

In the limit $\boldsymbol{k} \rightarrow \infty, \lambda \boldsymbol{S} \leq \mathbf{0}$, a contradiction.

- Dirichlet problem. Let $\boldsymbol{\Omega} \subset \mathbb{R}^{\boldsymbol{n}}$ be an open set. Let $\boldsymbol{f}, \boldsymbol{g}$ be as above. We introduce a function \boldsymbol{h} on $\boldsymbol{\partial} \boldsymbol{\Omega}$, which is called the pay-off in the framework of optimal control. The cost functional is:

$$
J(x, \alpha)=\int_{0}^{\tau} e^{-\lambda t} f(X(t), \alpha(t)) d t+e^{-\lambda \tau} h(X(\tau))
$$

where $\tau=\inf \left\{t \geq 0: X(t) \in \mathbb{R}^{\boldsymbol{n}} \backslash \Omega\right\}$, called the exit time. The value function \boldsymbol{V} is given by

$$
V(x)=\inf _{\alpha \in \mathcal{C}} J(x, \alpha)
$$

The continuity of \boldsymbol{V} can be a big issue.

When everything goes fine, $\boldsymbol{u}=\boldsymbol{V}$ satisfies the Dirichlet problem

$$
\left\{\begin{array}{cl}
\lambda u+\max _{c \in \mathrm{C}}(-g(x, c) \cdot D u-f(x, c))=0 \quad \text { in } \Omega \\
u=h \quad \text { on } \partial \Omega
\end{array}\right.
$$

In the above choice of $\boldsymbol{\tau}, \boldsymbol{X}$ have to stop at the first hitting time to $\partial \Omega$.

Another possible choice of $\boldsymbol{\tau}$ is:

$$
\bar{\tau}=\inf \left\{t \geq 0: X(t) \in \mathbb{R}^{n} \backslash \bar{\Omega}\right\}
$$

Here \boldsymbol{X} stays in $\bar{\Omega}$ until it first exits from $\overline{\boldsymbol{\Omega}}$.

Existence, uniqueness and stability of viscosity solutions II

Consider the time-evolution problem

$$
\begin{equation*}
u_{t}+\boldsymbol{H}\left(x, D_{x} u\right)=\mathbf{0} \quad \text { in } \mathbb{R}^{n} \times(0, \infty) \tag{1}
\end{equation*}
$$

If we set $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{p}, \boldsymbol{q}):=\boldsymbol{q}+\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p})$ for
$(x, t) \in \mathbb{R}^{n} \times(0, \infty),(p, q) \in \mathbb{R}^{n} \times \mathbb{R}$, then the above time-evolution PDE can be written as $\boldsymbol{F}(\boldsymbol{z}, \boldsymbol{D u})=\mathbf{0}$. The previous definition of viscosity solutions makes sense for the current problem.

If \boldsymbol{H} is given as before by

$$
H(x, p)=\max _{c \in \mathrm{C}}(-g(x, c) \cdot p-f(x, c))
$$

then our PDE can be written as

$$
\max _{c \in \mathcal{C}}\left(-g(x, c) \cdot D_{x} u-(-1) u_{t}-f(x, c)\right)=0
$$

In view of optimal control, the dynamics is described by
$\dot{X}(s)=g(X(s), \alpha(s)), \dot{T}(s)=-1, \quad X(0)=x, T(0)=t$,
and the cost functional is:

$$
J(x, t, \alpha)=\int_{0}^{t} f(X(s), \alpha(s)) d s+h(X(t))
$$

where $h \in \mathbf{B C}\left(\mathbb{R}^{n}\right)$.

A kind of the Dirichlet problem: $\boldsymbol{\tau}=\boldsymbol{t}$.
The value function is now:
(2)

$$
V(x, t)=\inf _{\alpha \in \mathcal{C}} J(x, t, \alpha)
$$

Theorem 1

Assume that $\boldsymbol{f}, \boldsymbol{g}$ satisfy the Lipschitz condition as before and that $h \in \mathbf{B C}\left(\mathbb{R}^{n}\right)$. Then,

- for any $\mathbf{0}<\boldsymbol{T}<\infty$, the value function \boldsymbol{V}, given by (2), is bounded and continuous on $\mathbb{R}^{\boldsymbol{n}} \times[\mathbf{0}, \boldsymbol{T}]$.
- $\boldsymbol{u}=\boldsymbol{V}$ is a (viscosity) solution of the Cauchy problem
(3) $u_{t}+\boldsymbol{H}\left(x, D_{x} u\right)=0 \quad$ in $\mathbb{R}^{n} \times(0, \infty)$,
(4) $u(\cdot, 0)=h \quad$ on $\mathbb{R}^{\boldsymbol{n}}$,
where $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p})=\max _{c \in \mathrm{C}}(-\boldsymbol{g}(x, c) \cdot p-f(x, c))$.
This can be regarded as an existence result for the Cauchy problem (3) - (4). Here \boldsymbol{h} is the initial data.

We have a comparison theorem which covers the above Cauchy problem, and the consequence is that \boldsymbol{V} is a unique solution of (3)-(4).

Let \boldsymbol{H} be a (general) continuous function on $\mathbb{R}^{\boldsymbol{n}} \times[\mathbf{0}, \infty) \times \mathbb{R}^{\boldsymbol{n}}$ such that for some constant $\boldsymbol{C}>\mathbf{0}$,

$$
\begin{aligned}
& |H(x, t, p)-H(x, t, q)| \leq C|p-q| \\
& |H(x, t, p)-H(y, s, p)| \leq C(|x-y|+|t-s|)(|p|+1)
\end{aligned}
$$

Let $0<\boldsymbol{T} \leq \infty$. Consider the HJ equation

$$
\begin{equation*}
u_{t}+H\left(x, t, D_{x} u\right)=0 \quad \text { in } \mathbb{R}^{n} \times[0, T) \tag{5}
\end{equation*}
$$

Theorem 2

Under the above assumptions on \boldsymbol{H}, let $\boldsymbol{v}, \boldsymbol{w} \in \mathbf{B C}\left(\mathbb{R}^{\boldsymbol{n}} \times[\mathbf{0}, \boldsymbol{T})\right)$ be, respectively, a sub and supersolution of (5). Assume moreover that $\boldsymbol{v}(\boldsymbol{x}, \mathbf{0}) \leq \boldsymbol{w}(\boldsymbol{x}, \mathbf{0})$ for all $\boldsymbol{x} \in \mathbb{R}^{\boldsymbol{n}}$. Then, $\boldsymbol{v} \leq \boldsymbol{w}$ in $\mathbb{R}^{n} \times[0, T)$.

Proof.

1) Enough to show that for any $\mathbf{0}<\boldsymbol{S}<\boldsymbol{T}, \boldsymbol{v} \leq \boldsymbol{w}$ on $\mathbb{R}^{\boldsymbol{n}} \times[\mathbf{0}, \boldsymbol{S})$. Fix any $\boldsymbol{S}>\mathbf{0}$.
2) Fix any $\varepsilon>0$. Set $\boldsymbol{v}_{\varepsilon}(\boldsymbol{x}, \boldsymbol{t})=\boldsymbol{v}(\boldsymbol{x}, \boldsymbol{t})-\varepsilon\langle\boldsymbol{x}\rangle$, where $\langle x\rangle=\left(|x|^{2}+1\right)^{1 / 2}$. Enough to show that $v_{\varepsilon} \leq w$ on $\mathbb{R}^{\boldsymbol{n}} \times[\mathbf{0}, \boldsymbol{S})$. Note that

$$
v_{\varepsilon, t}+H\left(x, t, D_{x} v_{\varepsilon}\right) \leq v_{t}+H\left(x, t, D_{x} v\right)+C \varepsilon
$$

Replace $\boldsymbol{v}_{\varepsilon}$ by $\boldsymbol{v}_{\varepsilon}(\boldsymbol{x}, \boldsymbol{t})=\boldsymbol{v}(\boldsymbol{x}, \boldsymbol{t})-\boldsymbol{\delta}\langle\boldsymbol{x}\rangle-\boldsymbol{C} \boldsymbol{t}$, and note that $v_{\varepsilon, t}+H\left(x, t, D_{x} v_{\varepsilon}\right) \leq v_{t}-C \varepsilon+H\left(x, t, D_{x} v\right)+C \varepsilon \leq 0$.

Replace again $\boldsymbol{v}_{\varepsilon}$ by $\boldsymbol{v}(\boldsymbol{x}, \boldsymbol{t})-\varepsilon\langle\boldsymbol{x}\rangle-\boldsymbol{C} \boldsymbol{\varepsilon} \boldsymbol{t}-\frac{\boldsymbol{\varepsilon}}{\boldsymbol{S}-\boldsymbol{t}}$, and note that $v_{\varepsilon, t}+H\left(x, t, D v_{\varepsilon}\right) \leq v_{t}-\frac{\varepsilon}{(S-t)^{2}}-C \varepsilon+H(x, t, D v)+C \varepsilon \leq-\eta$,
where $\eta=\varepsilon S^{-2}$.
Enough to show that $\boldsymbol{v}_{\varepsilon} \leq \boldsymbol{w}$ on $\mathbb{R}^{\boldsymbol{n}} \times[\mathbf{0}, \boldsymbol{S})$.
5) We argue by contradiction: suppose that $\sup \left(\boldsymbol{v}_{\varepsilon}-\boldsymbol{w}\right)>\mathbf{0}$ and will get a contradiction. Since

$$
\begin{aligned}
& \lim _{|x| \rightarrow \infty}\left(v_{\varepsilon}-w\right)(x, t)=-\infty \text { uniformly in } t \\
& \lim _{t \rightarrow S_{-}}\left(v_{\varepsilon}-w\right)(x, t)=-\infty \text { uniformly in } x \\
& \left(v_{\varepsilon}-w\right)(x, 0)<0 \text { for all } x \in \mathbb{R}^{n}
\end{aligned}
$$

$\exists R>0, \delta>0$ such that
$\left(v_{\varepsilon}-w\right)(x, t)<0$ for all $(x, t) \in\left(\mathbb{R}^{n} \times[0, S)\right) \backslash\left(B_{R} \times(\delta, S-\delta)\right)$. In particular,

$$
\max _{\bar{B}_{R} \times[\delta, S-\delta]}\left(v_{\varepsilon}-w\right)=\max _{B_{R} \times(\delta, S-\delta)}\left(v_{\varepsilon}-w\right)>0 .
$$

6) If $\boldsymbol{w} \in \boldsymbol{C}^{\boldsymbol{1}}$, then, at any maximum point of $\boldsymbol{v}_{\boldsymbol{\varepsilon}}-\boldsymbol{w}$,

$$
\begin{aligned}
& w_{t}+H(x, t, D w) \leq-\eta \\
& w_{t}+\boldsymbol{H}(x, t, D w) \geq 0
\end{aligned}
$$

which yields a contradiction.
In the general case, we use the doubling variable method, to obtain a contradiction.
$\Phi_{k}(x, t, y, s):=v_{\varepsilon}(x, t)-w(y, s)-k\left(|x-y|^{2}+|t-s|^{2}\right)$.
$\left(x_{k}, t_{k}, \boldsymbol{y}_{\boldsymbol{k}}, s_{\boldsymbol{k}}\right)$ a max point of $\boldsymbol{\Phi}_{\boldsymbol{k}}$.

$$
\begin{gathered}
\lim _{k \rightarrow \infty}\left(x_{k}, t_{k}, y_{k}, s_{k}\right)=\left(x_{0}, x_{0}, t_{0}, t_{0}\right) \\
\left(v_{\varepsilon}-w\right)\left(x_{0}, t_{0}\right)=\max \left(v_{\varepsilon}-w\right) \\
\lim _{k \rightarrow \infty} k\left(\left|x_{k}-y_{k}\right|^{2}+\left|t_{k}-s_{k}\right|^{2}\right)=0 \\
2\left(t_{k}-s_{k}\right)+H\left(x_{k}, t_{k}, 2 k\left(x_{k}-y_{k}\right)\right) \leq-\eta \\
2\left(t_{k}-s_{k}\right)+H\left(y_{k}, s_{k}, 2 k\left(x_{k}-y_{k}\right) \geq 0\right. \\
-\eta \geq H\left(x_{k}, t_{k}, \ldots\right)-H\left(y_{k}, s_{k}, \ldots\right) \\
\geq-C\left(\left|x_{k}-y_{k}\right|+\left|t_{k}-s_{k}\right|\right)\left(2 k\left|x_{k}-y_{k}\right|+1\right) \rightarrow 0 \\
(k \rightarrow \infty)
\end{gathered}
$$

Existence, uniqueness and stability of viscosity solutions III

- Stability:

Well-posedness (Hadamard) $=$ existence, uniqueness, stability. Consider the general first-oder PDE

$$
\begin{equation*}
F(x, D u, u)=0 \quad \text { in } \Omega \tag{1}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{\boldsymbol{n}}$ is an open set and $\boldsymbol{F} \in C\left(\Omega \times \mathbb{R}^{\boldsymbol{n}} \times \mathbb{R}\right)$.

```
Theorem 1
Let \(\left\{u_{k}\right\}\) be a sequence of continuous functions on \(\Omega\) converging to a fucntion \(\boldsymbol{u}\) in \(\boldsymbol{C}(\boldsymbol{\Omega})\). If every \(\boldsymbol{u}_{\boldsymbol{k}}\) is a (viscosity) subsolution (resp., supersolution, solution) of (1), then so is the function \(\boldsymbol{u}\).
```

Proof. Only the subsolution case. Let $\phi \in C^{\mathbf{1}}(\Omega)$ and assume that $\max (u-\phi)=(u-\phi)(\hat{x})$. By adding the function $|x-\hat{x}|^{2}$ to ϕ (notice that $D|x-\hat{x}|^{2}=0$ at $x=\hat{x}$), we may assume that max is a strict max.

Choose $\mathbf{0}<\boldsymbol{r} \ll \mathbf{1}$ so that $\overline{\boldsymbol{B}}_{\boldsymbol{r}}(\hat{\boldsymbol{x}}) \subset \boldsymbol{\Omega}$. Let $\boldsymbol{x}_{\boldsymbol{k}}$ be a maximum point of $\left.\left(u_{k}-\phi\right)\right|_{\bar{B}_{r}(\hat{\boldsymbol{x}})}$. Because of the uniform convergence on $\overline{\boldsymbol{B}}_{\boldsymbol{r}}(\hat{\boldsymbol{x}})$ and the strict max,

$$
\lim _{k} x_{k}=\hat{x} .
$$

We may assume that $\boldsymbol{x}_{\boldsymbol{k}} \in \boldsymbol{B}_{\boldsymbol{r}}(\hat{\boldsymbol{x}})$ (interior point). Since $\boldsymbol{u}_{\boldsymbol{k}}$ is a subsolution, we have

$$
F\left(x_{k}, D \phi\left(x_{k}\right), u_{k}\left(x_{k}\right)\right) \leq 0
$$

Sending $\boldsymbol{k} \rightarrow \infty$ yields

$$
F(\hat{x}, D \phi(\hat{x}), u(\hat{x})) \leq 0
$$

The following is a straightforward generalization of the above theorem.

Theorem 2

Let $\left\{u_{k}\right\}$ be a sequence of continuous functions on $\boldsymbol{\Omega}$ converging to a fucntion \boldsymbol{u} in $\boldsymbol{C}(\boldsymbol{\Omega})$. Let $\left\{\boldsymbol{F}_{\boldsymbol{k}}\right\}$ be a sequence of continuous functions on $\Omega \times \mathbb{R}^{\boldsymbol{n}} \times \mathbb{R}$ converging to a function \boldsymbol{F} in $\boldsymbol{C}\left(\boldsymbol{\Omega} \times \mathbb{R}^{\boldsymbol{n}} \times \mathbb{R}\right)$. If each $\boldsymbol{u}_{\boldsymbol{k}}$ is a (viscosity) subsolution (resp., supersolution, solution) of $\boldsymbol{F}_{\boldsymbol{k}}(\boldsymbol{x}, \boldsymbol{D} \boldsymbol{u}, \boldsymbol{u})=\mathbf{0}$ in $\boldsymbol{\Omega}$, then \boldsymbol{u} is a (viscosity) subsolution (resp., supersolution, solution) of $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{D u}, \boldsymbol{u})=\mathbf{0}$ in $\boldsymbol{\Omega}$,

Let $\boldsymbol{v}, \boldsymbol{w} \in \boldsymbol{C}(\boldsymbol{\Omega})$ be subsolutions of (1) and consider the function $\boldsymbol{v} \vee \boldsymbol{w}=\max \{\boldsymbol{v}, \boldsymbol{w}\}$. This function $\boldsymbol{v} \vee \boldsymbol{w}$ is also a subsolution of (1).

Let \mathcal{F} be a family of subsolutions of (1). In general,

$$
w(x):=\sup \{v(x): v \in \mathcal{F}\}
$$

does not define a continuous function on $\boldsymbol{\Omega} . \boldsymbol{w}(\boldsymbol{x})$ can be $+\infty$. Given a function f on $\boldsymbol{\Omega}$ which is locally bounded (above), we define the upper semicontinuous envelope f^{*} by

$$
\begin{aligned}
f^{*}(x) & :=\inf \{g(x): g \in C(\Omega), f \leq g \text { on } \Omega\} \\
& =\lim _{r \rightarrow 0^{+}} \sup \{f(y):|y-x|<r\}
\end{aligned}
$$

Similarly, the lower semicontinuous envelope f_{*} of f is defined by

$$
\begin{aligned}
f_{*}(x) & :=\sup \{g(x): g \in C(\Omega), f \geq g \text { on } \Omega\} \\
& =\lim _{r \rightarrow 0^{+}} \inf \{f(y):|y-x|<r\}
\end{aligned}
$$

It follows

$$
f^{*} \in \operatorname{USC}(\Omega), \quad f_{*} \in \operatorname{LSC}(\Omega), \quad f_{*} \leq f \leq f^{*}
$$

Definition 1

Let $\boldsymbol{u}: \boldsymbol{\Omega} \rightarrow \mathbb{R}$ be a locally bounded function. We call \boldsymbol{u} a (viscosity) subsolution (resp., supersolution) of (1) if \boldsymbol{u}^{*} (resp., \boldsymbol{u}_{*}) satisfies the requirement of being a subsolution (resp., supersolution) of (1). We call \boldsymbol{u} a solution if it is both a subsolution and a supersolution of (1).

Theorem 3

Let \mathcal{F} be a family of subsolutions of (1). Set

$$
u(x)=\sup \{v(x): v \in \mathcal{F}\} \quad \text { for } x \in \Omega
$$

Assume that \boldsymbol{u} is locally bounded in $\boldsymbol{\Omega}$. Then \boldsymbol{u} is a subsolution of (1).

- An assertion parallel to the above for supersolutions holds.
- If \boldsymbol{u} is a subsolution of (1), then $\boldsymbol{v}=-\boldsymbol{u}$ is a supersolution of $-\boldsymbol{F}(\boldsymbol{x},-\boldsymbol{D} \boldsymbol{v},-\boldsymbol{v})=\mathbf{0}$ in Ω, and vice versa.

Pictorial proof:

Theorem 4
Let $\left\{\boldsymbol{v}_{\boldsymbol{k}}\right\}_{k \in \mathbb{N}} \subset \mathrm{USC}(\boldsymbol{\Omega})$ and locally uniformly bounded in $\boldsymbol{\Omega}$. Let $\boldsymbol{v}_{\boldsymbol{k}}$ be a subsolution of (1) for any \boldsymbol{k}. Assume $\boldsymbol{v}_{\boldsymbol{k}} \geq \boldsymbol{v}_{\boldsymbol{k}+\boldsymbol{1}}$ on $\boldsymbol{\Omega}$ for all \boldsymbol{k}. Set

$$
v(x)=\lim _{k} v_{k}(x)=\inf _{k} v_{k}(x) \quad \text { for } x \in \Omega
$$

Then, \boldsymbol{v} is a subsolution of (1).

$$
\begin{gathered}
\phi(\hat{x})=u^{*}(\hat{x}), \\
\phi(x) \geq u^{*}(x)+|x-\hat{x}|^{2} \\
\left(v_{k}^{*}-\phi\right)\left(x_{k}\right)=\max \left(v_{k}^{*}-\phi\right), \\
v_{k}^{*}(\hat{x})>u^{*}(\hat{x})-\frac{1}{k} \\
v_{k}^{*} \leq u^{*} \\
\left(v_{k}^{*}-\phi\right)\left(x_{k}\right) \leq\left(u^{*}-\phi\right)\left(x_{k}\right) \leq-\left|x_{k}-\hat{x}\right|^{2}, \\
\| \\
\left(v_{k}^{*}-\phi\right)\left(x_{k}\right) \geq\left(v_{k}^{*}-\phi\right)(\hat{x})>-\frac{1}{k} .
\end{gathered}
$$

Hence,

$$
\begin{gathered}
\lim _{k} x_{k}=\hat{x}, \quad \lim _{k} v_{k}^{*}\left(x_{k}\right)=\phi(\hat{x})=u^{*}(\hat{x}) \\
F\left(x_{k}, D \phi\left(x_{k}\right), v_{k}^{*}\left(x_{k}\right)\right) \leq 0 \Longrightarrow F\left(\hat{x}, D \phi(\hat{x}), u^{*}(\hat{x})\right) \leq 0
\end{gathered}
$$

The choice of $\boldsymbol{v}_{\boldsymbol{k}}$ (and $\boldsymbol{y}_{\boldsymbol{k}}$):

$$
\begin{gathered}
\lim y_{k}=\hat{x}, \quad v_{k}^{*}\left(y_{k}\right)>\phi(\hat{x})-\frac{1}{k} . \\
\left\{\begin{array}{l}
\phi(\hat{x})=u^{*}(\hat{x}), \\
\phi(x) \geq u^{*}(x)+|x-\hat{x}|^{2}, \\
\left(v_{k}^{*}-\phi\right)\left(x_{k}\right)=\max \left(v_{k}^{*}-\phi\right), \\
v_{k}^{*} \leq u^{*} .
\end{array}\right. \\
\left(v_{k}^{*}-\phi\right)\left(x_{k}\right) \leq\left(u^{*}-\phi\right)\left(x_{k}\right) \leq-\left|x_{k}-\hat{x}\right|^{2}, \\
\| \\
\left(v_{k}^{*}-\phi\right)\left(x_{k}\right) \geq\left(v_{k}^{*}-\phi\right)\left(y_{k}\right) \gtrsim-\frac{1}{k} .
\end{gathered}
$$

Hence,

$$
\begin{gathered}
\lim _{k} x_{k}=\hat{x}, \quad \lim _{k} v_{k}^{*}\left(x_{k}\right)=\phi(\hat{x})=u^{*}(\hat{x}) \\
F\left(x_{k}, D \phi\left(x_{k}\right), v_{k}^{*}\left(x_{k}\right)\right) \leq 0 \Longrightarrow F\left(\hat{x}, D \phi(\hat{x}), u^{*}(\hat{x})\right) \leq 0
\end{gathered}
$$

Proof. Let $\phi \in C^{\mathbf{1}}(\boldsymbol{\Omega})$ and

$$
\max (v-\phi)=(v-\phi)(\hat{x})=0 \quad \text { (a strict max })
$$

Then, $\sup \left(v_{k}-\phi\right) \downarrow \mathbf{0}$ as $k \rightarrow \infty$. Look at $\left(v_{k}-\phi\right)_{+}$, which is in $\operatorname{USC}(\boldsymbol{\Omega})$ and $\downarrow \mathbf{0}$ as $\boldsymbol{k} \rightarrow \infty$. Dini's lemma implies that the convergence is locally uniformly on $\boldsymbol{\Omega}$. The situation is now same as in the first stability theorem.

Theorem 5 (Barles-Perthame, half-relaxed limits)
Let $\left\{\boldsymbol{v}_{\boldsymbol{k}}\right\}_{k \in \mathbb{N}}$ be a sequence of functions on $\boldsymbol{\Omega}$, which is locally uniformly bounded in $\boldsymbol{\Omega}$. Let $\boldsymbol{v}_{\boldsymbol{k}}$ be a subsolution of (1) for any \boldsymbol{k}. Set
$v(x)=\lim _{r \rightarrow 0^{+}} \sup \left\{v_{k}(y): k>\frac{1}{r},|y-x|<r\right\}$ for $x \in \Omega$.
Then, \boldsymbol{v} is a subsolution of (1).

Proof. Let $\boldsymbol{\Omega}=\mathbb{R}^{\boldsymbol{n}}$. Let $\boldsymbol{r}>\mathbf{0}$. Note that for any $\boldsymbol{\xi} \in \boldsymbol{B}_{r}(0), \boldsymbol{x} \mapsto \boldsymbol{v}_{\boldsymbol{k}}(\xi+\boldsymbol{x})$ is a subsolution of

$$
\inf _{\eta \in B_{r}(0)} F(x+\eta, D u(x), u(x))=0 \quad \text { in } \Omega
$$

So, $x \mapsto \sup \left\{v_{k}(y): k>\frac{1}{r},|y-x|<r\right\}$ is a subsolution of the above HJ equation. The stability under monotone convergence (Theorem 4) completes the proof.

Theorem 6 (Perron's method)

Let $\boldsymbol{f}, \boldsymbol{g}$ be, respectively, a sub and supersolution of (1). Assume $\boldsymbol{f} \in \mathbf{L S C}(\boldsymbol{\Omega})$ and $\boldsymbol{g} \in \mathbf{U S C}(\boldsymbol{\Omega})$ and that $\boldsymbol{f} \leq \boldsymbol{g}$ in $\boldsymbol{\Omega}$. Set
$u(x)=\sup \left\{v(x): v \in \mathcal{S}^{-}, f \leq v \leq g\right.$ in $\left.\Omega\right\}$ for $x \in \Omega$,
where $\mathcal{S}^{-}=$the set of all subsolutions of (1). Then \boldsymbol{u} is a solution of (1).

Proof. Since, by definition, \boldsymbol{u} is a pointwise sup of a family of subsolutions, it is a subsolution.

Let $\phi \in C^{1}$ and $\min \left(u_{*}-\phi\right)=\left(u_{*}-\phi\right)(\hat{x})$ for some $\hat{\boldsymbol{x}} \in \boldsymbol{\Omega}$. Assume that $\min =$ a strict min . Two cases:

Case 1: $\phi(\hat{\boldsymbol{x}})=\boldsymbol{g}_{*}(\hat{\boldsymbol{x}})$. Then, $\phi \leq \boldsymbol{u}_{*} \leq \boldsymbol{g}_{*}$ in $\boldsymbol{\Omega}$. ϕ touches \boldsymbol{g}_{*} from below at $\hat{\boldsymbol{x}}$. Since $\boldsymbol{g} \in \mathcal{S}^{+}$, where $\mathcal{S}^{+}=$the set of all supersolultions of (1), we find that $\boldsymbol{F}\left(\hat{\boldsymbol{x}}, \boldsymbol{D} \boldsymbol{\phi}(\hat{\boldsymbol{x}}), \boldsymbol{g}_{*}(\hat{\boldsymbol{x}})\right) \geq \mathbf{0}$ $\left(F\left(\hat{x}, D \phi(\hat{x}), u_{*}(\hat{x})\right) \geq 0\right)$.

Case 2: $\phi(\hat{x})<\boldsymbol{g}_{*}(\hat{x})$. Suppose by contradiction that $\boldsymbol{F}(\hat{x}, \boldsymbol{D} \phi(\hat{x}), \phi(\hat{x}))<0$.

The function $\max \{u, \phi+\varepsilon\}(0<\varepsilon \ll 1)$ is against the maximality of \boldsymbol{u}.

Let \boldsymbol{H} be a Hamiltonian satisfying the Lipschitz condition: for some constant $C>0$,

$$
\begin{aligned}
& |H(x, t, p)-H(x, t, q)| \leq C|p-q| \\
& |H(x, t, p)-H(y, s, p)| \leq C(|x-y|+|t-s|)(|p|+1) .
\end{aligned}
$$

Theorem 7

Let $\boldsymbol{H}=\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p})$ satisfy the above Lipschitz condition as well as the boundedness: $|\boldsymbol{H}(\boldsymbol{x}, \mathbf{0})| \leq \boldsymbol{C}$. Let $\boldsymbol{\lambda}>\boldsymbol{0}$. There exists a solution $\boldsymbol{u} \in \mathbf{B C}\left(\mathbb{R}^{\boldsymbol{n}}\right)$ of

$$
\begin{equation*}
\lambda u+\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{D u})=\mathbf{0} \quad \text { in } \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

Proof. Set $\boldsymbol{f}(\boldsymbol{x})=-\boldsymbol{C} / \boldsymbol{\lambda}, \boldsymbol{g}(\boldsymbol{x})=\boldsymbol{C} / \boldsymbol{\lambda}$. Then $\boldsymbol{f}, \boldsymbol{g}$ are, respectively, a sub and super solultion of (2). Set

$$
u(x)=\sup \left\{v(x): v \in \mathcal{S}^{-}, f \leq v \leq g \text { in } \mathbb{R}^{n}\right\}
$$

where $\mathcal{S}^{-}=$the set of all subsolutions of (2). By Perron's method, \boldsymbol{u} is a solution of (2).

By the comparison theorem, applied to a subsolution \boldsymbol{u}^{*} and a supersolution \boldsymbol{u}_{*}, we find that $\boldsymbol{u}^{*} \leq \boldsymbol{u}_{*}$ in $\mathbb{R}^{\boldsymbol{n}}$, from which $\boldsymbol{u} \leq \boldsymbol{u}^{*} \leq \boldsymbol{u}_{*} \leq \boldsymbol{u}$ in $\mathbb{R}^{\boldsymbol{n}}$. That is, $\boldsymbol{u}=\boldsymbol{u}^{*}=\boldsymbol{u}_{*}$ and hence, $u \in C\left(\mathbb{R}^{n}\right)$.

Theorem 8

Let \boldsymbol{H} satisfy the above Lipschitz condition and the boundedness: $|\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{t}, \mathbf{0})| \leq \boldsymbol{C}$. Let $\boldsymbol{h} \in \mathbf{B C}\left(\mathbb{R}^{\boldsymbol{n}}\right)$. Then there exists a solution $u \in C\left(\mathbb{R}^{n} \times[0, \infty)\right)$, bounded on $\mathbb{R}^{\boldsymbol{n}} \times[\mathbf{0}, \boldsymbol{T}]$ for any $\boldsymbol{T}>\mathbf{0}$, of
(3)

$$
\left\{\begin{array}{c}
u_{t}+\boldsymbol{H}(x, t, D u)=0 \quad \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u(\cdot, 0)=h \quad \text { on } \mathbb{R}^{n}
\end{array}\right.
$$

Proof. We may assume that $|\boldsymbol{h}(\boldsymbol{x})| \leq \boldsymbol{C}$. Set

$$
g_{0}(x, t)=C(1+t) \quad \text { and } \quad f_{0}=-g_{0}
$$

and note that $\boldsymbol{f}, \boldsymbol{g}$ are, resp., a sub and super solutions of $u_{t}+\boldsymbol{H}=\mathbf{0}$.

Want to have a sub and super solutions $\boldsymbol{f}, \boldsymbol{g}$ such that $\boldsymbol{f}(\cdot, \mathbf{0})=\boldsymbol{g}(\cdot, \mathbf{0})=\boldsymbol{h}$. Fix any $\boldsymbol{y} \in \mathbb{R}^{\boldsymbol{n}}, \varepsilon>\mathbf{0}$ and choose a constant $A(y, \varepsilon)>0$ so that

$$
|h(x)-h(y)|<\varepsilon+A(y, \varepsilon)|x-y| \quad \forall x .
$$

Note:

$$
|H(x, t, p)| \leq|H(x, t, 0)|+C|p| \leq C(1+|p|)
$$

and choose a constant $B(y, \varepsilon)>0$ so that if $|p| \leq A(y, \varepsilon)$,

$$
|H(x, t, p)| \leq B(y, \varepsilon)
$$

Set

$$
\begin{aligned}
g_{y, \varepsilon}(x, t) & =h(y)+\varepsilon+A(y, \varepsilon)|x-y|+B(y, \varepsilon) t \\
f_{y, \varepsilon}(x, t) & =h(y)-(\varepsilon+A(y, \varepsilon)|x-y|+B(y, \varepsilon) t)
\end{aligned}
$$

and note that $f_{\boldsymbol{y}, \varepsilon}, \boldsymbol{g}_{\boldsymbol{y}, \varepsilon}$ are, resp., a sub and super solution of our HJ equation.

Moreover, we have

$$
\begin{aligned}
& f_{y, \varepsilon}(x, t) \leq h(x) \leq g_{y, \varepsilon}(x, t) \forall(x, t) \\
& \left|f_{y, \varepsilon}(y, 0)-h(y)\right|=\left|g_{y, \varepsilon}(y, 0)-h(y)\right|=\varepsilon
\end{aligned}
$$

Finally, define $\boldsymbol{g}, \boldsymbol{f}: \mathbb{R}^{\boldsymbol{n}} \times[0, \infty) \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& g(x, t)=g_{0}(x, t) \wedge \inf _{y, \varepsilon} g_{y, \varepsilon}(x, t) \\
& f(x, t)=f_{0}(x, t) \vee \sup _{y, \varepsilon} f_{y, \varepsilon}(x, t)
\end{aligned}
$$

Then,

$$
g \in \mathcal{S}^{+}, \quad f \in \mathcal{S}^{-}, \quad g \in \mathbf{U S C}, \quad f \in \mathbf{L S C}
$$

f, g are bounded on $\mathbb{R}^{\boldsymbol{n}} \times[\mathbf{0}, \boldsymbol{T}] \forall \boldsymbol{T}<\infty$,
$f(x, t) \leq h(x) \leq g(x, t) \forall(x, t), \quad f(\cdot, 0)=h=g(\cdot, 0)$.
Perron's method yields a solution \boldsymbol{u} such that $\boldsymbol{f} \leq \boldsymbol{u} \leq \boldsymbol{g}$, which implies that $\boldsymbol{u}^{*}(\cdot, \mathbf{0})=\boldsymbol{u}_{*}(\cdot, \mathbf{0})=\boldsymbol{h}$ on $\mathbb{R}^{\boldsymbol{n}}$. The comparison theorem shows that $\boldsymbol{u}^{*}=\boldsymbol{u}_{*}=\boldsymbol{u}$ and $\boldsymbol{u} \in \boldsymbol{C}$.

Homogenization of Hamilton-Jacobi equations I (Lions-Papanicolaou-Varadhan)
Consider the HJ equation
(1) $u_{t}+|D u|^{2}-f(x / \varepsilon)=0$ in $\mathbb{R}^{n} \times(0, \infty)$, with $\varepsilon>0$, together with initial condition

$$
\begin{equation*}
u(x, 0)=h(x) \quad \text { for } x \in \mathbb{R}^{n} . \tag{2}
\end{equation*}
$$

The Hamiltonian \boldsymbol{H} is:

$$
H(x, p)=|p|^{2}-f(x),
$$

where $f \in C\left(\mathbb{T}^{n}\right)$ is assumed, and our HJ equation reads

$$
u_{t}+H\left(x / \varepsilon, D_{x} u\right)=0 .
$$

The main question here is: If $\boldsymbol{u}_{\varepsilon}$ is a solution of the above HJ equation, what happens with $\boldsymbol{u}_{\varepsilon}$ as $\varepsilon \rightarrow \mathbf{0}+$.

- Formal expansion:

Suppose that we have an expansion

$$
u_{\varepsilon}(x, t)=u_{0}(x, t)+\varepsilon u_{1}(x / \varepsilon, t)+\varepsilon^{2} u_{2}(x / \varepsilon, t)+\cdots
$$

Insert this into the HJ equation, to get

$$
\begin{aligned}
0 & =u_{0, t}(x, t)+\varepsilon u_{1, t}(x / \varepsilon, t)+O\left(\varepsilon^{2}\right) \\
& +H\left(x / \varepsilon, D_{x} u_{0}(x, t)+D_{x} u_{1}(x / \varepsilon, t)+O(\varepsilon)\right)
\end{aligned}
$$

Because of a high oscillation when $\varepsilon \rightarrow \mathbf{0}+$, one may look at $\boldsymbol{x} / \varepsilon$ as if an independent variable \boldsymbol{y}.

Then, in the limit $\varepsilon \rightarrow \mathbf{0}+$, the above asymptotic identity suggests that for some $\boldsymbol{u}_{0}, \boldsymbol{u}_{1}$,

$$
\begin{aligned}
& u_{\varepsilon}(x, t) \rightarrow u_{0}(x, t) \quad \text { as } \varepsilon \rightarrow 0+ \\
& u_{0, t}+\boldsymbol{H}\left(\boldsymbol{y}, D_{x} u_{0}(x, t)+D_{y} u_{1}(y, t)\right)=\mathbf{0} \quad \text { for all } \boldsymbol{x}, \boldsymbol{y}, t .
\end{aligned}
$$

If we have a solution $\boldsymbol{u}_{\mathbf{0}}, \boldsymbol{u}_{\mathbf{1}}$ of the above identity, we are in a good shape to conclude the above convergence. Thus, the question is how to find $u_{0}, \boldsymbol{u}_{\mathbf{1}}$ which satisfy

$$
u_{0, t}+H\left(y, D_{x} u_{0}(x, t)+D_{y} u_{1}(y, t)\right)=0 \quad \text { for all } x, y, t
$$

If we can write

$$
\bar{H}(p)=H\left(y, p+D_{y} u_{1}(y, t)\right)
$$

then the above equation can be stated as

$$
u_{0, t}+\bar{H}\left(D_{x} u_{0}\right)=0
$$

Here a big question is when we can write

$$
\bar{H}(p)=H\left(y, p+D_{y} u_{1}(y, t)\right)
$$

We consider this as a solvability problem: given $\boldsymbol{p} \in \mathbb{R}^{\boldsymbol{n}}$, find $(c, v) \in \mathbb{R} \times C\left(\mathbb{T}^{n}\right)$ such that

$$
\begin{equation*}
\boldsymbol{H}(\boldsymbol{y}, \boldsymbol{p}+\boldsymbol{D v}(\boldsymbol{y}))=\boldsymbol{c} \quad \text { in } \mathbb{T}^{n} \tag{3}
\end{equation*}
$$

(In fact, a crucial point is not the periodicity of \boldsymbol{v}, but the sublinear growth of \boldsymbol{v}.) Notice that the correspondence: $(c, v) \leftrightarrow\left(\bar{H}(p), u_{1}\right)$.

The problem of solving a solution $(\boldsymbol{c}, \boldsymbol{v})$ is called a cell problem. (Aslo, ergodic problem, additive eigenvalue problem, weak KAM problem)

Example 1
Consider the case $n=1$ and $f(x)=-\cos (2 \pi x)$. The case $p=0$:

$$
\left|v_{x}(x)\right|^{2}=c-\cos (2 \pi x)
$$

For the solvability, $\mathrm{RHS} \geq \mathbf{0} \Longleftrightarrow c \geq 1$.

When \boldsymbol{v} is a solution of

$$
\begin{equation*}
\boldsymbol{H}(y, p+D v(y))=c \quad \text { in } \mathbb{R}^{n} \tag{3'}
\end{equation*}
$$

then $\boldsymbol{w}(\boldsymbol{y})=\boldsymbol{p} \cdot \boldsymbol{y}+\boldsymbol{v}(\boldsymbol{y})$ is a solution of

$$
\boldsymbol{H}(y, D w(y))=c \quad \text { in } \mathbb{R}^{n} .
$$

The sublinear growth of the solution \boldsymbol{v} identifies the \boldsymbol{p} term in the equation.

If $c>1$, then RHS $\geq c-1>0$, which implies NO periodic (viscosity) solution: any function is tested from below at its minimum point, if any, by constant functions.

Thus, $c=1$. If $c=1$, then

$$
\left|v_{x}(x)\right|=\sqrt{1-\cos (2 \pi x)}=\sqrt{2}|\sin (\pi x)|
$$

Integrate, to get

$$
v(x)=\text { constant } \pm \frac{\sqrt{2}}{\pi} \cos (\pi x) \quad \text { for } 0 \leq x \leq 1
$$

page:5.5

The periodic function

$$
v(x)=-\frac{\sqrt{2}}{\pi} \cos (\pi x) \quad \text { for }-\frac{1}{2} \leq x \leq \frac{1}{2}
$$

with period 1 , is a viscosity solution for $p=0$ and $c=1$.
For general $p \in \mathbb{R}$, we have to solve

$$
\left|p+v_{x}\right|=\sqrt{c-\cos (2 \pi x)}
$$

with $c \geq 1$, which reads

$$
v_{x}=-p \pm \sqrt{c-\cos (2 \pi x)}
$$

Let $\boldsymbol{c}=\mathbf{1}$ and
$v(x):=-p x+\frac{\sqrt{2}}{\pi}(1-\cos (\pi x))$.
Note that $\boldsymbol{v}(\mathbf{0})=\mathbf{0}$ and solve

$$
v(-1)=0
$$

to find that

$$
-p=\frac{2 \sqrt{2}}{\pi}
$$

So, as far as $|p| \leq \frac{2 \sqrt{2}}{\pi}$, the problem

$$
\left|p+v_{x}\right|^{2}=1-\cos (2 \pi x)
$$

has a periodic viscosity solultion. Moreover, if $|p|>\frac{2 \sqrt{2}}{\pi}$,

$$
\left|p+v_{x}\right|^{2}=c-\cos (2 \pi x)
$$

has a periodic solution v only when $c>1$.
We will know that if \boldsymbol{v} is a (viscosity) solution of

$$
\left|p+v_{x}\right|=\sqrt{2}|\sin \pi x|
$$

then \boldsymbol{v} is Lipschitz continuous and satisfies the equation in the a.e. If it is periodic with period 1 , then

$$
\int_{0}^{1}\left|p+v_{x}\right| d x\left\{\begin{array}{l}
=\sqrt{2} \int_{0}^{1} \sin \pi x d x=\frac{2 \sqrt{2}}{\pi} \\
\geq\left|\int_{0}^{1}\left(p+v_{x}\right) d x\right|=|p|
\end{array}\right.
$$

As a function of $\boldsymbol{p}, \boldsymbol{c}=\overline{\boldsymbol{H}}(\boldsymbol{p})$ and, in the above case of \boldsymbol{f},

$$
\bar{H}(p) \begin{cases}=1 & \text { if }|p| \leq \frac{2 \sqrt{2}}{\pi}, \\ >1 & \text { otherwise } .\end{cases}
$$

In homogenization theory, $\overline{\boldsymbol{H}}$ is called the effective Hamiltonian.

Some properties of $\overline{\boldsymbol{H}}$:

- $\overline{\boldsymbol{H}}$ is a continuous function on \mathbb{R}.
- $\overline{\boldsymbol{H}}$ is a convex function on \mathbb{R}.
- $\overline{\boldsymbol{H}}$ is coercive on \mathbb{R}. That is, $\lim _{|p| \rightarrow \infty} \overline{\boldsymbol{H}}(\boldsymbol{p})=\infty$.

Theorem 1

Assume that $h \in \operatorname{BUC}\left(\mathbb{R}^{n}\right)$. Then there exists a unique solution $\boldsymbol{u}_{\boldsymbol{\varepsilon}}$ on $\mathbb{R}^{\boldsymbol{n}} \times[\mathbf{0}, \infty$) of the Cauchy problem (1) - (2) such that $\boldsymbol{u}_{\varepsilon} \in \mathbf{B U C}\left(\mathbb{R}^{\boldsymbol{n}} \times[\mathbf{0}, \boldsymbol{T}]\right)$ for every $\boldsymbol{T}>\mathbf{0}$. Also, there exists a unique solution \boldsymbol{u} on $\mathbb{R}^{\boldsymbol{n}} \times[\mathbf{0}, \infty)$ of
(4)

$$
\left\{\begin{array}{l}
u_{t}+\overline{\boldsymbol{H}}\left(D_{x} u\right)=0 \quad \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u(\cdot, 0)=h \quad \text { on } \mathbb{R}^{n}
\end{array}\right.
$$

such that $\boldsymbol{u} \in \mathbf{B U C}\left(\mathbb{R}^{\boldsymbol{n}} \times[\mathbf{0}, \boldsymbol{T})\right)$ for every $\boldsymbol{T}>\mathbf{0}$. Furthermore, as $\varepsilon \rightarrow \mathbf{0}^{+}$,

$$
u_{\varepsilon}(x, t) \rightarrow u(x, t) \quad \text { locally uniformly on } \mathbb{R}^{n} \times[0, \infty)
$$

- The main steps in the proof of the convergence:
- Show that $\left\{\boldsymbol{u}_{\varepsilon}\right\}_{\varepsilon \in(0,1)}$ is unif-bounded and equi-continuous on $\mathbb{R}^{\boldsymbol{n}} \times[\mathbf{0}, \boldsymbol{T}] \quad \forall \boldsymbol{T}>\mathbf{0}$.
- $\boldsymbol{v}:=\lim _{j \rightarrow \infty} \boldsymbol{u}_{\varepsilon_{j}}$ for some $\varepsilon_{j} \rightarrow \mathbf{0}^{+}$, where the convergence is locally uniform on $\mathbb{R}^{\boldsymbol{n}} \times[\mathbf{0}, \infty)$.
- Show that $\boldsymbol{v}=\boldsymbol{u}$.
- Method of purterbed test functions (Evans).

To show the last step of the above list, we need to prove that \boldsymbol{v} is a solution of $\boldsymbol{v}_{t}+\overline{\boldsymbol{H}}\left(\boldsymbol{D}_{x} v\right)=0$ in $\mathbb{R}^{n} \times(0, \infty)$.

Let $\psi \in C^{\mathbf{1}}\left(\mathbb{R}^{\boldsymbol{n}} \times(\mathbf{0}, \infty)\right)$ and assume that $\boldsymbol{v}-\boldsymbol{\psi}$ takes a strict maximum at (\hat{x}, \hat{t}). Fix a compact neighborhood $K \subset \mathbb{R}^{n} \times(0, \infty)$ of (\hat{x}, \hat{t}).

Classical argument: Let $\left(\boldsymbol{x}_{\varepsilon}, \boldsymbol{t}_{\varepsilon}\right) \in \boldsymbol{K}$ be a maximum point of $\boldsymbol{u}_{\varepsilon}-\boldsymbol{\psi}$ on \boldsymbol{K}. We have

$$
\lim _{\varepsilon \rightarrow 0^{+}}\left(x_{\varepsilon}, t_{\varepsilon}\right)=(\hat{x}, \hat{t})
$$

For sufficiently small $\varepsilon>\mathbf{0}$, we have $\left(\boldsymbol{x}_{\varepsilon}, \boldsymbol{t}_{\varepsilon}\right) \in \operatorname{int} \boldsymbol{K}$ and

$$
\psi_{t}\left(\boldsymbol{x}_{\varepsilon}, \boldsymbol{t}_{\varepsilon}\right)+\boldsymbol{H}\left(\boldsymbol{x}_{\varepsilon} / \varepsilon, \boldsymbol{D}_{x} \psi\left(\boldsymbol{x}_{\varepsilon}, t_{\varepsilon}\right)\right) \leq 0
$$

This way, we can show that \boldsymbol{v} is a subsolultion of $\boldsymbol{v}_{\boldsymbol{t}}+\min _{y} \boldsymbol{H}\left(\boldsymbol{y}, \boldsymbol{D}_{\boldsymbol{x}} \boldsymbol{v}\right)=\mathbf{0}$ and a supersolution of $\boldsymbol{v}_{\boldsymbol{t}}+\max _{\boldsymbol{y}} \boldsymbol{H}\left(\boldsymbol{y}, \boldsymbol{D}_{x} \boldsymbol{v}\right)=\mathbf{0}$. This is not enough to conclude that $v=u$.

The formal exapansion suggests that $\boldsymbol{v}(\boldsymbol{x}, \boldsymbol{t})+\boldsymbol{\varepsilon w}(\boldsymbol{x} / \varepsilon)$ should be a good approximation of $\boldsymbol{u}_{\boldsymbol{\varepsilon}}$.

Set $\hat{p}=D_{x} \boldsymbol{\psi}(\hat{\boldsymbol{x}}, \hat{\boldsymbol{t}})$. Let $\boldsymbol{w} \in \boldsymbol{C}\left(\mathbb{T}^{n}\right)$ be a solution of

$$
\boldsymbol{H}\left(y, \hat{p}+D_{y} w(y)\right)=\overline{\boldsymbol{H}}(\hat{\boldsymbol{p}}) \quad \text { for } \boldsymbol{y} \in \mathbb{T}^{n}
$$

Temporarily, we assume that $\boldsymbol{w} \in C^{1}$ and consider the function

$$
u_{\varepsilon}(x, t)-\psi(x, t)-\varepsilon w(x / \varepsilon) .
$$

Let $\left(\boldsymbol{x}_{\varepsilon}, \boldsymbol{t}_{\varepsilon}\right) \in \boldsymbol{K}$ be a maximum point of this function. Then

$$
\lim _{\varepsilon \rightarrow 0^{+}}\left(x_{\varepsilon}, t_{\varepsilon}\right)=(\hat{x}, \hat{t})
$$

and if $\varepsilon>\mathbf{0}$ is small enough, $\left(\boldsymbol{x}_{\varepsilon}, \boldsymbol{t}_{\varepsilon}\right) \in \operatorname{int} K$ and

$$
\psi_{t}\left(\boldsymbol{x}_{\varepsilon}, \boldsymbol{t}_{\varepsilon}\right)+\boldsymbol{H}\left(\boldsymbol{x}_{\varepsilon} / \varepsilon, D_{x} \psi\left(\boldsymbol{x}_{\varepsilon}, t_{\varepsilon}\right)+\boldsymbol{D w}\left(\boldsymbol{x}_{\varepsilon} / \varepsilon\right)\right) \leq 0
$$

For some $\varepsilon_{\boldsymbol{j}} \rightarrow \mathbf{0}+$, we may assume that for some $\hat{\boldsymbol{y}} \in \mathbb{T}^{n}$,

$$
\lim _{j \rightarrow \infty} x_{\varepsilon_{j}} / \varepsilon_{j}=\hat{y} \quad\left(\bmod \mathbb{Z}^{n}\right)
$$

Sending $\varepsilon_{\boldsymbol{j}} \boldsymbol{\rightarrow} \mathbf{0}+$ yields

$$
\psi_{t}(\hat{x}, \hat{t})+H\left(\hat{y}, D_{x} \psi(\hat{x}, \hat{t})+D w(\hat{y})\right) \leq 0
$$

while we had

$$
H\left(y, D_{x} \psi(\hat{x}, \hat{t})+D_{y} w(y)\right)=\bar{H}\left(D_{x} \phi(\hat{x}, \hat{t})\right) \quad \text { for } y \in \mathbb{T}^{n}
$$

Thus,

$$
\psi_{t}(\hat{x}, \hat{t})+\bar{H}\left(D_{x} \psi(\hat{x}, \hat{t})\right) \leq 0
$$

proving that \boldsymbol{v} is a subsolution of $\boldsymbol{v}_{\boldsymbol{t}}+\overline{\boldsymbol{H}}=\mathbf{0}$.
In general, we have only the Lipschitz regularity of \boldsymbol{w} and we need to use the doubling variable argument.

Similarly, we conclude that \boldsymbol{v} is a supersolution of $\boldsymbol{v}_{\boldsymbol{t}}+\overline{\boldsymbol{H}}=\mathbf{0}$.
Thus, $\boldsymbol{v}=\boldsymbol{u}$.

Homogenization of Hamilton-Jacobi equations II Consider the equation

$$
\begin{equation*}
u_{t}+\boldsymbol{H}\left(x, x / \varepsilon, D_{x} u\right)=0 \quad \text { in } \mathbb{R}^{n} \times(0, \infty) \tag{1}
\end{equation*}
$$

where

- $H \in C\left(\mathbb{R}^{n} \times \mathbb{T}^{n} \times \mathbb{R}^{n}\right)$.
- $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{p})$ is bounded and uniformly continuous on $\mathbb{R}^{\boldsymbol{n}} \times \mathbb{T}^{\boldsymbol{n}} \times \boldsymbol{B}_{\boldsymbol{R}}$ for every $\boldsymbol{R}>\mathbf{0}$.
- \boldsymbol{H} is coercive, i.e.,

$$
\lim _{|p| \rightarrow \infty} \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{p})=\infty \quad \text { uniformly in }(\boldsymbol{x}, \boldsymbol{y})
$$

The cell problem is: given $(x, p) \in \mathbb{R}^{2 n}$, we solve $(c, w) \in \mathbb{R} \times C\left(\mathbb{T}^{n}\right)$ such that

$$
\begin{equation*}
H\left(x, y, p+D_{y} w(y)\right)=c \quad \text { for } y \in \mathbb{T}^{n} \tag{2}
\end{equation*}
$$

Theorem 1

Under the above hypotheses on \boldsymbol{H}, there exists a solution (c, w) for each $(x, p) \in \mathbb{R}^{2 n}$. The constant c is unique and defines a function $\overline{\boldsymbol{H}}(\boldsymbol{x}, \boldsymbol{p})$. That is, $\overline{\boldsymbol{H}}(\boldsymbol{x}, \boldsymbol{p})=\boldsymbol{c}$.

A standard proof goes this way: consider the discounted problem
(3) $\boldsymbol{\lambda} \boldsymbol{w}+\boldsymbol{H}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{p}+\boldsymbol{D}_{y} \boldsymbol{w}\right)=\mathbf{0} \quad$ in \mathbb{T}^{n}, with $\lambda>0$, and send $\boldsymbol{\lambda} \rightarrow \mathbf{0 +}$.

1) Choose $\boldsymbol{C}>\boldsymbol{0}$ so large that $|\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{p})| \leq \boldsymbol{C}$ and observe that $\lambda^{-1} C$ (resp. $-\lambda^{-1} C$) is a super (resp. sub) solution of (3). Perron's method yields a solution $\boldsymbol{w}_{\boldsymbol{\lambda}}$ of (3).
2) By comparison, $\left|\boldsymbol{w}_{\lambda}\right| \leq \lambda^{-1} C$ (and hence, $\lambda\left|\boldsymbol{w}_{\lambda}\right| \leq C$) on \mathbb{T}^{n}.
3) By the coercivity, choose $\boldsymbol{L}>\boldsymbol{0}$ so that if $|\boldsymbol{q}|>\boldsymbol{L}$, then $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{p}+\boldsymbol{q})>\boldsymbol{C}$ for all $(\boldsymbol{x}, \boldsymbol{y})$. Since $\boldsymbol{H}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{p}+\boldsymbol{D}_{y} \boldsymbol{w}_{\lambda}\right) \leq-\boldsymbol{\lambda} \boldsymbol{w}_{\boldsymbol{\lambda}} \leq \boldsymbol{C}$, we have $\left|\boldsymbol{D} \boldsymbol{w}_{\boldsymbol{\lambda}}\right| \leq \boldsymbol{L}$. This implies that $\boldsymbol{w}_{\boldsymbol{\lambda}}$ is Lipschitz continuous with Lipschitz bound \boldsymbol{L}.
4) Fix $y_{0} \in \mathbb{T}^{n}$. the family $\left\{w_{\lambda}-w_{\lambda}\left(y_{0}\right)\right\}_{\lambda>0}$ is unif-bounded and equi-Lipschitz. We may choose $\boldsymbol{\lambda}_{\boldsymbol{j}} \rightarrow \mathbf{0 +}$ so that, as $\boldsymbol{\lambda}_{\boldsymbol{j}} \boldsymbol{\rightarrow} \mathbf{0}^{+}$,

$$
\begin{aligned}
& \lambda_{j} w_{\lambda_{j}}\left(y_{0}\right) \rightarrow-c(\exists c \in \mathbb{R}) \\
& w_{\lambda_{j}}-w_{\lambda_{j}}\left(y_{0}\right) \rightarrow w\left(\exists w \in \operatorname{Lip}\left(\mathbb{T}^{n}\right)\right)
\end{aligned}
$$

To repeat, as $\boldsymbol{\lambda}_{j} \rightarrow \mathbf{0}+$,

$$
\begin{aligned}
& \lambda_{j} w_{\lambda_{j}}\left(y_{0}\right) \rightarrow-c(\exists c \in \mathbb{R}) \\
& \bar{w}_{j}:=w_{\lambda_{j}}-w_{\lambda_{j}}\left(y_{0}\right) \rightarrow w\left(\exists w \in \operatorname{Lip}\left(\mathbb{T}^{n}\right)\right) .
\end{aligned}
$$

Then:

$$
\lambda_{j} \bar{w}_{j}+H\left(x, y, p+D_{y} \bar{w}_{j}\right)=-\lambda_{j} w_{\lambda_{j}}\left(y_{0}\right)
$$

In the limit $\boldsymbol{k} \rightarrow \infty$,

$$
H\left(x, y, p+D_{y} w\right)=c \quad \text { for } y \in \mathbb{T}^{n}
$$

We have used the following regularity results.

Theorem 2

Let $\boldsymbol{\Omega} \subset \mathbb{R}^{\boldsymbol{n}}$ be open and convex. Let $\boldsymbol{F} \in \boldsymbol{C}\left(\boldsymbol{\Omega} \times \mathbb{R}^{\boldsymbol{n}}\right)$ satisfy the condition that $\exists \boldsymbol{R}>\mathbf{0}$ such that

$$
F(x, p)>0 \quad \text { if }|p|>R .
$$

If $\boldsymbol{v} \in \mathbf{U S C}(\Omega)$ is a subsolution of $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{D u})=\mathbf{0}$ in Ω, then $|\boldsymbol{v}(\boldsymbol{x})-\boldsymbol{v}(\boldsymbol{y})| \leq \boldsymbol{R}|\boldsymbol{x}-\boldsymbol{y}|$ for all $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{\Omega}$.

Proof. Fix $\boldsymbol{z} \in \boldsymbol{\Omega}$ and $\boldsymbol{r}>\mathbf{0}$ so that $\boldsymbol{B}_{\mathbf{5} \boldsymbol{r}}(\boldsymbol{z}) \subset \boldsymbol{\Omega}$. We claim that

$$
|v(x)-v(y)| \leq R|x-y| \quad \forall x, y \in B_{r}(z)
$$

This is enough to conclude the proof.

Let $\boldsymbol{g}:[\mathbf{0}, \mathbf{4 r}) \rightarrow[0, \infty)$ be a smooth function such that $g(t)=t$ for $0 \leq t \leq 2 r, g^{\prime}(t) \geq 1$ for all $0 \leq t<4 r$, and $\lim _{t \rightarrow 4 r^{-}} g(t)=\infty$.

For each fixed $\boldsymbol{y} \in \boldsymbol{B}_{\boldsymbol{r}}(\boldsymbol{z})$ and $\varepsilon>\mathbf{0}$, consider the function $\phi: x \mapsto v(y)+(R+\varepsilon) g(|x-y|)$ on $B_{4 r}(y) \subset B_{5 r}(z)$.
If $\boldsymbol{v}(\boldsymbol{x}) \leq \phi(\boldsymbol{x})$ on $\boldsymbol{B}_{4 r}(\boldsymbol{y})$, then
$v(x)-v(y) \leq(R+\varepsilon)|x-y|$ for all $x \in B_{r}(z) \subset B_{2 r}(y)$.

Otherwise,

The slope of $\phi \geq \boldsymbol{R}+\varepsilon$,
$\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{p})>\mathbf{0}$ if $|\boldsymbol{p}|>\boldsymbol{R}$.
Hence,

$$
F(x, D \phi(x))>0
$$

Theorem 3

Let $\boldsymbol{F} \in \boldsymbol{C}\left(\mathbb{R}^{\boldsymbol{n}} \times \mathbb{R}^{\boldsymbol{n}}\right)$ and $\boldsymbol{a}<\boldsymbol{b}$. Assume that $\boldsymbol{F} \in \mathbf{B U C}\left(\mathbb{R}^{\boldsymbol{n}} \times \boldsymbol{B}_{\boldsymbol{R}}\right)$ for any $\boldsymbol{R}>\mathbf{0}$. Let $\boldsymbol{v}, \boldsymbol{w} \in \mathbf{B}\left(\mathbb{R}^{\boldsymbol{n}}\right)$ be a subsolution of $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{D u})=\boldsymbol{a}$ in $\mathbb{R}^{\boldsymbol{n}}$ and a supersolution of $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{D} \boldsymbol{u})=\boldsymbol{b}$ in $\mathbb{R}^{\boldsymbol{n}}$, respectively. Assume that either \boldsymbol{v} or \boldsymbol{w} is Lipschitz continuous in $\mathbb{R}^{\boldsymbol{n}}$. Then, $\boldsymbol{v} \leq \boldsymbol{w}$ in $\mathbb{R}^{\boldsymbol{n}}$.

Proof. We consider only the case when $\boldsymbol{v} \in$ Lip. Choose $\varepsilon>\mathbf{0}$ be such that $\boldsymbol{a}+\varepsilon<\boldsymbol{b}$. Choose $\boldsymbol{\delta}>\mathbf{0}$ small enough so that $\boldsymbol{v}_{\boldsymbol{\delta}}(\boldsymbol{x}):=\boldsymbol{v}(\boldsymbol{x})-\boldsymbol{\delta}\langle\boldsymbol{x}\rangle$ is a subsolution of $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{D u})=\boldsymbol{a}+\varepsilon$ in $\mathbb{R}^{\boldsymbol{n}}$. This is possible since $\boldsymbol{v} \in \operatorname{Lip}$ and $\boldsymbol{F} \in \mathbf{U C}\left(\mathbb{R}^{\boldsymbol{n}} \times \boldsymbol{B}_{\boldsymbol{R}}\right)$ for any $\boldsymbol{R}>\mathbf{0}$.

We only need to prove that $\boldsymbol{v}_{\boldsymbol{\delta}} \leq \boldsymbol{w}_{*}$. By contradiction, we suppose that $\sup \left(\boldsymbol{v}_{\boldsymbol{\delta}}-\boldsymbol{w}_{*}\right)>\mathbf{0}$. We fix $\boldsymbol{r}>\mathbf{0}$ large enough so that

$$
\boldsymbol{v}_{\boldsymbol{\delta}}-\boldsymbol{w}_{*}<\mathbf{0} \quad \text { on } \mathbb{R}^{\boldsymbol{n}} \backslash \boldsymbol{B}_{\boldsymbol{r}} .
$$

Consider the function

$$
\Phi_{k}(x, y)=v_{\delta}(x)-w_{*}(y)-k|x-y|^{2}
$$

on $\overline{\boldsymbol{B}}_{\boldsymbol{r}} \times \overline{\boldsymbol{B}}_{\boldsymbol{r}}$. Let $\left(\boldsymbol{x}_{\boldsymbol{k}}, \boldsymbol{y}_{\boldsymbol{k}}\right)$ be a maximum point of $\boldsymbol{\Phi}_{\boldsymbol{k}}$. Let $\boldsymbol{L}>\mathbf{0}$ be a Lipschitz bound of the function $\boldsymbol{v}_{\boldsymbol{\delta}}$ and note that

$$
\Phi_{k}\left(x_{k}, y_{k}\right) \geq \Phi_{k}\left(y_{k}, y_{k}\right)
$$

which reads

$$
k\left|x_{k}-y_{k}\right|^{2} \leq v_{\delta}\left(x_{k}\right)-v_{\delta}\left(y_{k}\right) \leq L\left|x_{k}-y_{k}\right|
$$

This yields

$$
k\left|x_{k}-y_{k}\right| \leq L
$$

With this estimate in hand, we go as in the proof of the previous comparison theorems, to find for sufficient large \boldsymbol{k},
$F\left(x_{k}, 2 k\left(x_{k}-y_{k}\right)\right) \leq a+\varepsilon \quad$ and $\quad F\left(y_{k}, 2 k\left(x_{k}-y_{k}\right)\right) \geq b$, and, along a subsequence,

$$
\lim \left(x_{k}, y_{k}\right)=\left(x_{0}, x_{0}\right) \quad \text { for some } x_{0} \in B_{r}
$$

We may assume that, after taking a further subsequence,

$$
\lim 2 k\left(x_{k}-y_{k}\right)=p_{0} \quad \text { for some } p_{0} \in \mathbb{R}^{n}
$$

Consequently,

$$
F\left(x_{0}, p_{0}\right) \leq a+\varepsilon<b \leq \boldsymbol{F}\left(x_{0}, p_{0}\right)
$$

This is a contradiction.

Recall Theorem 1:

Theorem 1

Under the hypotheses above on \boldsymbol{H}, there exists a solution (c, w), for each $(x, p) \in \mathbb{R}^{2 n}$, of
(2) $\quad H\left(x, y, p+D_{y} w(y)\right)=c \quad$ for $y \in \mathbb{T}^{n}$.

The constant \boldsymbol{c} is unique and defines a function $\overline{\boldsymbol{H}}(\boldsymbol{x}, \boldsymbol{p})$. That is, $\overline{\boldsymbol{H}}(\boldsymbol{x}, \boldsymbol{p})=\boldsymbol{c}$.

Proof of the uniqueness. Let $(\boldsymbol{c}, \boldsymbol{w})$ and $(\boldsymbol{d}, \boldsymbol{v})$ be solutions of (2). If $\boldsymbol{c}<\boldsymbol{d}$, then, by Theorem 3 (the comparison theorem),

$$
\boldsymbol{w}+C \leq \boldsymbol{v} \quad \text { in } \mathbb{T}^{n}
$$

where \boldsymbol{C} is an arbitrary constant, which is a contradiction. Hence, we have $\boldsymbol{c} \geq \boldsymbol{d}$. By symmetry, we have $\boldsymbol{d} \geq \boldsymbol{c}$.

Theorem 5

Under the above hypotheses on \boldsymbol{H}, the effective Hamiltonian $\overline{\boldsymbol{H}}$ has the properties:

- $\overline{\boldsymbol{H}} \in \mathbf{B U C}\left(\mathbb{R}^{\boldsymbol{n}} \times \boldsymbol{B}_{\boldsymbol{R}}\right)$ for every $\boldsymbol{R}>\mathbf{0}$.
- $\overline{\boldsymbol{H}}$ is coercive, i.e.,

$$
\lim _{|p| \rightarrow \infty} \overline{\boldsymbol{H}}(x, p)=\infty \quad \text { uniformly in } x \in \mathbb{R}^{n}
$$

1) We have

$$
\bar{H}(x, p)=\min \left\{c \in \mathbb{R}: \exists z \in \operatorname{Lip}\left(\mathbb{T}^{n}\right)\right. \text { s.t. }
$$

$$
\left.\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{p}+\boldsymbol{D} \boldsymbol{z}) \leq c \text { in } \mathbb{T}^{n}\right\}
$$

Let $\boldsymbol{w} \in \operatorname{Lip}\left(\mathbb{T}^{n}\right)$ be a solution of $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{p}+\boldsymbol{D} \boldsymbol{w}(\boldsymbol{y}))=\overline{\boldsymbol{H}}(\boldsymbol{x}, \boldsymbol{p})$ in \mathbb{T}^{n}. If $\boldsymbol{c} \geq \overline{\boldsymbol{H}}(\boldsymbol{x}, \boldsymbol{p})$, then $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{p}+\boldsymbol{D} \boldsymbol{w}(\boldsymbol{y})) \leq \boldsymbol{c}$ (subsolution) in \mathbb{T}^{n}. If $\boldsymbol{z} \in \operatorname{Lip}\left(\mathbb{T}^{n}\right)$ be a subsolution of $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{p}+\boldsymbol{D z}(\boldsymbol{y})) \leq \boldsymbol{c}$ in $\mathbb{T}^{\boldsymbol{n}}$, with $\boldsymbol{c}<\overline{\boldsymbol{H}}(\boldsymbol{x}, \boldsymbol{p})$, then, by the comparison theorem, $\boldsymbol{z}+\boldsymbol{C} \leq \boldsymbol{w}$ in \mathbb{T}^{n} for all $C \in \mathbb{R}$, which is impossible.

Thus, the formula above is valid.
2) Set

$$
m_{0}:=\inf H>-\infty
$$

Then

$$
\bar{H}(x, p) \geq m_{0} \quad \text { for all }(x, p) \in \mathbb{R}^{2 n}
$$

$\left(\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{p}+\boldsymbol{D} \boldsymbol{w}(\boldsymbol{y}))=\boldsymbol{c}\right.$, with $\boldsymbol{c}<\boldsymbol{m}_{\mathbf{0}}$, cannot have a solution \boldsymbol{w}.)

Fix $\boldsymbol{R}>\mathbf{0}$. Set

$$
M_{R}=\sup _{x, y,|p| \leq R} H(x, y, p)
$$

Note that $\boldsymbol{z}(\boldsymbol{y})=\mathbf{0}$ satisfies

$$
H(x, y, p+D z(y)) \leq M_{R}, \quad \text { if }|p| \leq R
$$

and that

$$
\overline{\boldsymbol{H}}(\boldsymbol{x}, \boldsymbol{p}) \leq \boldsymbol{M}_{\boldsymbol{R}} \quad \text { for all } \boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{p} \in \boldsymbol{B}_{\boldsymbol{R}} .
$$

Thus,
$\overline{\boldsymbol{H}}$ is bounded on $\mathbb{R}^{\boldsymbol{n}} \times \boldsymbol{B}_{\boldsymbol{R}}, \quad \forall \boldsymbol{R}>\mathbf{0}$.
3) Fix $\boldsymbol{R}>\mathbf{0}$ and let $\boldsymbol{M}_{\boldsymbol{R}}>\mathbf{0}$ be as above. There is $\boldsymbol{L}>\mathbf{0}$ such that

$$
H(x, y, r)-M_{R}>0 \quad \text { if }|r|>L
$$

Fix any $(\boldsymbol{x}, \boldsymbol{p}) \in \mathbb{R}^{\boldsymbol{n}} \times \boldsymbol{B}_{\boldsymbol{R}}$. Let \boldsymbol{w} be a solution of

$$
\boldsymbol{H}(x, y, p+D w(y))=\overline{\boldsymbol{H}}(x, p) \quad \text { in } \mathbb{T}^{n}
$$

Since $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{p}+\boldsymbol{D} \boldsymbol{w}(\boldsymbol{y})) \leq \boldsymbol{M}_{\boldsymbol{R}}$ (subsolution), the function \boldsymbol{w} is in $\operatorname{Lip}\left(\mathbb{T}^{n}\right)$, with Lipschitz constant $\leq L+|p| \leq L+\boldsymbol{R}$.
4) Set $\boldsymbol{K}=\mathbf{2 R}+\boldsymbol{L}+\mathbf{1}$ and note that $\boldsymbol{H} \in \mathbf{U C}\left(\mathbb{R}^{2 n} \times \boldsymbol{B}_{\boldsymbol{K}}\right)$.
$\forall \varepsilon>0, \exists \delta \in(0,1)$ such that for all $\left(x^{\prime}, p^{\prime}\right) \in B_{\delta}(x, p)$,

$$
H\left(x^{\prime}, y, p^{\prime}+D w(y)\right) \leq H(x, y, p+D w(y))+\varepsilon
$$

which assures
$\boldsymbol{H}\left(\boldsymbol{x}^{\prime}, y, p^{\prime}+\boldsymbol{D w}(y)\right) \leq \bar{H}(x, p)+\varepsilon \quad$ for all $\left(x^{\prime}, p^{\prime}\right) \in B_{\delta}(x, p)$, and

$$
\bar{H}\left(x^{\prime}, p^{\prime}\right) \leq \bar{H}(x, p)+\varepsilon \quad \text { for all }\left(x^{\prime}, p^{\prime}\right) \in B_{\delta}(x, p)
$$

Notice that $\boldsymbol{\delta}$ can be chosen uniformly in $(\boldsymbol{x}, \boldsymbol{p}, \boldsymbol{w})$ in the above. Thus, $\overline{\boldsymbol{H}}$ is uniformly continuous on $\mathbb{R}^{\boldsymbol{n}} \times \boldsymbol{B}_{\boldsymbol{R}}, \forall \boldsymbol{R}>\mathbf{0}$.
5) Let \boldsymbol{w} be a solution of

$$
\boldsymbol{H}(x, y, p+D w(y))=\bar{H}(p) \text { in } \mathbb{T}^{n}
$$

\boldsymbol{w} takes a maximum at some $\boldsymbol{y}_{\mathbf{0}} \in \mathbb{T}^{\boldsymbol{n}}$, and then

$$
H\left(x, y_{0}, p\right) \leq \bar{H}(x, p)
$$

Since \boldsymbol{H} is coercive, this shows that $\overline{\boldsymbol{H}}$ is coercive.

Theorem 6

Assume in addition that $\boldsymbol{p} \mapsto \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{p})$ is convex. Then $\boldsymbol{p} \mapsto \overline{\boldsymbol{H}}(\boldsymbol{x}, \boldsymbol{p})$ is convex.

Proof. To check this, let \boldsymbol{v} and \boldsymbol{w} be solutions of

$$
\begin{aligned}
& \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{p}+\boldsymbol{D} \boldsymbol{v}(\boldsymbol{y}))=\overline{\boldsymbol{H}}(\boldsymbol{x}, \boldsymbol{p}) \quad \text { in } \mathbb{T}^{n} \\
& \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{q}+\boldsymbol{D} \boldsymbol{w}(\boldsymbol{y}))=\overline{\boldsymbol{H}}(\boldsymbol{x}, \boldsymbol{q}) \quad \text { in } \mathbb{T}^{n} .
\end{aligned}
$$

Let $\boldsymbol{\theta} \in(\mathbf{0}, \mathbf{1})$. Assuming that $\boldsymbol{v}, \boldsymbol{w} \in \boldsymbol{C}^{\mathbf{1}}$, we observe that

$$
\begin{aligned}
& H(x, y, \theta(p+D v(y))+(1-\theta)(q+D w(y))) \\
& \leq \theta H(x, y, p+D v(y))+(1-\theta) H(x, y, q+D w(y)) \\
& \leq \theta \bar{H}(x, p)+(1-\theta) \bar{H}(x, q)
\end{aligned}
$$

In general, we deduce (a.e. subsolution or the doubling variable argument) that $\boldsymbol{\theta} \boldsymbol{v}+(\mathbf{1}-\boldsymbol{\theta}) \boldsymbol{w}$ is a subsolution of $H(x, y, \theta p+(1-\theta) q+D u(y)) \leq \theta \bar{H}(p)+(1-\theta) \bar{H}(q)$ in \mathbb{T}^{n}, which proves that

$$
\bar{H}(x, \theta p+(1-\theta) q) \leq \theta \bar{H}(x, p)+(1-\theta) \bar{H}(x, q)
$$

Theorem 7

Assume

- $\boldsymbol{H} \in \mathbf{B C}\left(\mathbb{R}^{\boldsymbol{n}} \times \boldsymbol{B}_{\boldsymbol{R}}\right)$ for every $\boldsymbol{R}>\mathbf{0}$;
- \boldsymbol{H} is coercive, i.e.,

$$
\lim _{|p| \rightarrow \infty} H(x, p)=\infty \quad \text { uniformly in } x
$$

- $h \in \operatorname{Lip} \cap \mathbf{B}\left(\mathbb{R}^{n}\right)$.

Then there is a solution $\boldsymbol{u} \in \operatorname{Lip}\left(\mathbb{R}^{\boldsymbol{n}} \times[\mathbf{0}, \infty)\right.$) of
(4) $\left\{\begin{array}{l}u_{t}+\boldsymbol{H}\left(\boldsymbol{x}, \boldsymbol{D}_{x} u\right)=\mathbf{0} \quad \text { in } \mathbb{R}^{n} \times(0, \infty), \\ u(\cdot, 0)=h \quad \text { on } \mathbb{R}^{n} .\end{array}\right.$

Remark. The Lipschitz constant of \boldsymbol{u} is bounded by a constant which depends only on the "structural bounds" for \boldsymbol{H} and the Lipschitz constant of \boldsymbol{h}.

$$
\sup _{\mathbb{R}^{n} \times B_{R}}|\boldsymbol{H}|, \quad \inf _{\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash B_{R}\right)} \boldsymbol{H}, \quad \text { with } \boldsymbol{R}>\mathbf{0}
$$

Proof. Let $\boldsymbol{C}_{\boldsymbol{h}}>\mathbf{0}$ be a Lipschitz bound for \boldsymbol{h}. Set

$$
C=C_{h, H}:=\sup _{|p| \leq C_{h}}|H(x, p)| .
$$

Note that $f(x, t)=h(x)-C t$ and $g(x, t)=\boldsymbol{h}(x)+C t$ are in \mathcal{S}^{-}and \mathcal{S}^{+}, respectively.

Moreover, $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{t}) \leq \boldsymbol{h}(\boldsymbol{x}) \leq \boldsymbol{g}(\boldsymbol{x}, \boldsymbol{t})$ and
$f(\boldsymbol{x}, \mathbf{0})=\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{g}(\boldsymbol{x}, \mathbf{0})$ for all $(\boldsymbol{x}, \boldsymbol{t})$. Perron's method yields a solution \boldsymbol{u} such that $f \leq \boldsymbol{u}_{*} \leq \boldsymbol{u} \leq \boldsymbol{u}^{*} \leq \boldsymbol{g}$ on $\mathbb{R}^{\boldsymbol{n}} \times(\mathbf{0}, \infty)$. These inequalities imply

$$
u(x, 0):=\lim _{t \rightarrow 0^{+}} u(x, t)=h(x) \quad \text { for all } x \in \mathbb{R}^{n}
$$

Note:

$$
\begin{aligned}
& u(x, t)=\sup \left\{v(x, t): v \in \mathcal{S}^{-}, v \leq g \text { on } \mathbb{R}^{n} \times(0, \infty)\right\} \\
& u \in \operatorname{USC}\left(\mathbb{R}^{n} \times[0, \infty)\right), \text { and } \\
& u(x, t)=\max \left\{v(x, t): v \in \mathcal{S}^{-}, v \leq g \text { on } \mathbb{R}^{n} \times(0, \infty)\right\}
\end{aligned}
$$

Fix any $\boldsymbol{\delta}>\mathbf{0}$. Note
$(x, t) \mapsto u(x, \delta+t) \in \mathcal{S}^{-}, \leq g(x, t+\delta)=g(x, t)+C \delta$.
Hence,

$$
u(x, t) \geq u(x, t+\delta)-C \delta
$$

and $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{\delta}+\boldsymbol{t}) \leq \boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})+\boldsymbol{C} \boldsymbol{\delta}$.
Set

$$
u^{\delta}(x, t)= \begin{cases}f(x, t) & \text { if } t \in[0, \delta] \\ -C \delta+u(x, t-\delta) & \text { if } t>\delta\end{cases}
$$

Observe: $\boldsymbol{u}^{\boldsymbol{\delta}} \in \mathcal{S}^{-}$and $\boldsymbol{u}^{\boldsymbol{\delta}} \leq \boldsymbol{g}$.

page; 6.17

Hence,

$$
u(x, \delta+t) \geq u^{\delta}(x, \delta+t)=u(x, t)-C \delta
$$

and $\boldsymbol{t} \mapsto \boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})$ is Lipschitz continuous with Lipschitz bound \boldsymbol{C}. This implies that $\left|u_{t}\right| \leq C, u_{t} \geq\left|u_{t}\right|-2\left|u_{t}\right| \geq\left|u_{t}\right|-2 C$, and

$$
\left|u_{t}\right|+H\left(x, D_{x} u\right)-2 C \leq 0 \quad \text { in } \mathbb{R}^{n} \times(0, \infty)
$$

Since $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{p}, \boldsymbol{q}):=|\boldsymbol{q}|+\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p})-\mathbf{2} \boldsymbol{C}$ is coercive, \boldsymbol{u} is Lipschitz continuous on $\mathbb{R}^{n} \times(0, \infty)$.

Theorem 8
Let $\mathbf{0}<\boldsymbol{T}<\infty$. Assume that
$\boldsymbol{H} \in \mathbf{B U C}\left(\mathbb{R}^{\boldsymbol{n}} \times(\mathbf{0}, \boldsymbol{T}) \times \boldsymbol{B}_{\boldsymbol{R}}\right)$ for every $\boldsymbol{R}>\mathbf{0}$. Consider
(5)

$$
u_{t}+\boldsymbol{H}\left(x, t, D_{x} u\right)=0 \quad \text { in } \mathbb{R}^{n} \times(0, T)
$$

Let $\boldsymbol{v}, \boldsymbol{w}$ be a sub and super-solution of (5). Assume that $\boldsymbol{v}, \boldsymbol{w}$ are bounded, $\boldsymbol{v},-\boldsymbol{w} \in \mathrm{USC}$, and $\boldsymbol{v}(\boldsymbol{x}, \mathbf{0}) \leq \boldsymbol{w}(\boldsymbol{x}, \mathbf{0})$ for all $\boldsymbol{x} \in \mathbb{R}^{\boldsymbol{n}}$. Assume moreover either \boldsymbol{v} or \boldsymbol{w} is Lipschitz continuous. Then, $\boldsymbol{v} \leq \boldsymbol{w}$ on $\mathbb{R}^{\boldsymbol{n}} \times(\mathbf{0}, \boldsymbol{T})$.

Remark. The Lipshictz regularity assumption above can be replaced by the existence of a Lipschitz continuous solution u such that $v(x, 0) \leq u(x, 0) \leq w(x, 0)$.
REmark. In the doubling variable argument, we consider the function

$$
\Phi_{k}(x, t, y, s)=v(x, t)-w(y, s)-k\left[|x-y|^{2}+(t-s)^{2}\right]
$$

and its maximum point $\left(\boldsymbol{x}_{\boldsymbol{k}}, \boldsymbol{t}_{\boldsymbol{k}}, \boldsymbol{y}_{\boldsymbol{k}}, \boldsymbol{s}_{\boldsymbol{k}}\right)$. If $\boldsymbol{v} \in \operatorname{Lip}$, then

$$
\Phi_{k}\left(x_{k}, t_{k}, y_{k}, s_{k}\right) \geq \Phi_{k}\left(y_{k}, s_{k}, y_{k}, s_{k}\right)
$$

yields

$$
\begin{aligned}
k\left[\left|x_{k}-y_{k}\right|^{2}+\left(t_{k}-s_{k}\right)^{2}\right] & \leq v\left(x_{k}, t_{k}\right)-v\left(y_{k}, s_{k}\right) \\
& \leq C\left(\left|x_{k}-y_{k}\right|+\left|t_{k}-s_{k}\right|\right)
\end{aligned}
$$

and

$$
k\left[\left|x_{k}-y_{k}\right|+\left|t_{k}-s_{k}\right|\right] \leq C^{\prime}
$$

This is the boundedness of the gradient of our test functions, which allows us to take the limit as $k \rightarrow \infty$:

$$
\begin{aligned}
& 2\left(t_{k}-s_{k}\right)+H\left(x_{k}, t_{k}, 2 k\left(x_{k}-y_{k}\right)\right) \leq-\eta \\
& 2\left(t_{k}-s_{k}\right)+H\left(y_{k}, s_{k}, 2 k\left(x_{k}-y_{k}\right)\right) \geq 0
\end{aligned}
$$

Theorem 9

Assume that $h \in \mathbf{B U C}\left(\mathbb{R}^{\boldsymbol{n}}\right)$. Then there exists a unique solution $\boldsymbol{u}_{\boldsymbol{\varepsilon}}$ on $\mathbb{R}^{\boldsymbol{n}} \times[\mathbf{0}, \infty)$ of the Cauchy problem

$$
\left\{\begin{array}{l}
u_{t}+H\left(x, x / \varepsilon, D_{x} u\right)=0 \quad \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u(\cdot, 0)=h
\end{array}\right.
$$

such that $\boldsymbol{u}_{\varepsilon} \in \operatorname{BUC}\left(\mathbb{R}^{\boldsymbol{n}} \times[0, T]\right)$ for every $\boldsymbol{T}>\mathbf{0}$. Also, there exists a unique solution \boldsymbol{u} on $\mathbb{R}^{\boldsymbol{n}} \times[\mathbf{0}, \infty)$ of

$$
\left\{\begin{array}{l}
u_{t}+\overline{\boldsymbol{H}}\left(x, D_{x} u\right)=0 \quad \text { in } \mathbb{R}^{n} \times(0, \infty) \\
\boldsymbol{u}(\cdot, 0)=h \quad \text { on } \mathbb{R}^{n}
\end{array}\right.
$$

such that $\boldsymbol{u} \in \mathbf{B U C}\left(\mathbb{R}^{\boldsymbol{n}} \times[\mathbf{0}, \boldsymbol{T})\right)$ for every $\boldsymbol{T}>\mathbf{0}$.
Furthermore, as $\varepsilon \rightarrow \mathbf{0}^{+}$,
$u_{\varepsilon}(x, t) \rightarrow u(x, t) \quad$ locally uniformly on $\mathbb{R}^{n} \times[0, \infty)$.

Long-Time behavior of solutions I

Example 1

Let $\boldsymbol{\lambda}>\mathbf{0}$. Consider the HJ equation
(1) $u_{t}+\lambda u+\left|D_{x} u\right|^{2}-f(x)=0 \quad$ in $\mathbb{T}^{n} \times(0, \infty)$.

The Hamiltonian \boldsymbol{H} is:

$$
H(x, p, u)=\lambda u+|p|^{2}-f(x)
$$

where $f \in C\left(\mathbb{T}^{n}\right)$. If there is a solution $u_{0} \in C\left(\mathbb{T}^{n}\right)$ of

$$
\begin{equation*}
\boldsymbol{H}\left(\boldsymbol{x}, \boldsymbol{D}_{x} u_{0}, u_{0}\right)=\mathbf{0} \quad \text { in } \mathbb{T}^{n} \tag{2}
\end{equation*}
$$

then $u(x, t)=u_{0}(x)$ is a solution of (1).
Let $\boldsymbol{v} \in C\left(\mathbb{T}^{n} \times[\mathbf{0}, \infty)\right)$ be another solution of (1). By comparison, we have
(3) $\|(u-v)(\cdot, t)\|_{\infty} \leq\|(u-v)(\cdot, 0)\|_{\infty} e^{-\lambda t}$ for all $t>0$.

Indeed,

$$
w(x, t):=v(x, t)+\|u(\cdot, 0)-v(\cdot, 0)\|_{\infty} e^{-\lambda t}
$$

satisfies
$w_{t}+\lambda w+\left|D_{x} w\right|^{2}-f(x)=v_{t}+\lambda v+\left|D_{v}\right|^{2}-f(x)=0$, $u(\cdot, \mathbf{0}) \leq \boldsymbol{w}(\cdot, \mathbf{0})$,
and, by the comparison theorem, $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t}) \leq \boldsymbol{w}(\boldsymbol{x}, \boldsymbol{t})$. Similarly, we have $v(x, t) \leq u(x, t)+\|u(\cdot, 0)-v(\cdot, 0)\|_{\infty} e^{-\lambda t}$.

Theorem 1

Problem (2) has a unique solution $\boldsymbol{u}_{\mathbf{0}} \in \operatorname{Lip}\left(\mathbb{T}^{n}\right)$. For any $h \in C\left(\mathbb{T}^{n}\right)$, the Cauchy problem for (1) with initial condition $u(\cdot, 0)=h$ has a unique solution $u \in C\left(\mathbb{T}^{n} \times[0, \infty)\right)$. Moreover, as $t \rightarrow \infty$,

$$
\boldsymbol{v}(\boldsymbol{x}, \boldsymbol{t}) \rightarrow \boldsymbol{u}_{\mathbf{0}}(\boldsymbol{x}) \quad \text { uniformly and exponentially on } \mathbb{T}^{n} .
$$

- The conclusion of the above theorem holds true if \boldsymbol{H} is replaced by a general continuous Hamiltonian \boldsymbol{H} :
- $\boldsymbol{u} \mapsto \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p}, \boldsymbol{u})-\boldsymbol{\lambda} \boldsymbol{u}$ is nondecreasing for some $\boldsymbol{\lambda}>\mathbf{0}$.
- For some $\boldsymbol{C}>\boldsymbol{0}$ and for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{T}^{\boldsymbol{n}}, \boldsymbol{p} \in \mathbb{R}^{\boldsymbol{n}}, \boldsymbol{u} \in \mathbb{R}$,

$$
|H(x, p, u)-H(y, p, u)| \leq C|x-y|(|p|+1)
$$

Example 2

(Barles-Souganidis) Consider the HJ equation

$$
u_{t}+\left|u_{x}+2 \pi\right|-2 \pi=0 \quad \text { in } \mathbb{T}^{1} \times[0, \infty)
$$

$n=1$. The function $u(x, t)=\sin 2 \pi(x-t)$ is a classical solution. The point is
$\left|u_{x}+2 \pi\right|=|2 \pi \cos 2 \pi(x-t)+2 \pi|=2 \pi \cos 2 \pi(x-t)+2 \pi$.
$t \mapsto \sin 2 \pi(x-t)$ is periodic with minimal period 1.
In this example, the Hamiltonian is given by

$$
H(x, p)=H(p)=|p+2 \pi|-2 \pi
$$

Note that $\boldsymbol{p} \mapsto \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p})$ is convex and coercive.

$$
\lim _{|p| \rightarrow \infty} H(p)=\infty
$$

Example 3

(Namah-Roquejoffre) Consider

$$
\begin{equation*}
u_{t}+\left|D_{x} u\right|^{2}-f(x)=0 \quad \text { in } \mathbb{T}^{n} \times[0, \infty) \tag{4}
\end{equation*}
$$

Assume that for some $\boldsymbol{x}_{\mathbf{0}} \in \mathbb{T}^{n}$ and all $\boldsymbol{x} \in \mathbb{T}^{n}$,

$$
\begin{equation*}
f(x) \geq f\left(x_{0}\right)=0 \tag{5}
\end{equation*}
$$

Set

$$
v_{0}(x)=\sup \left\{v(x): v \in \mathcal{S}^{-}, v\left(x_{0}\right)=0\right\}
$$

where \mathcal{S}^{-}denotes the set of all subsolutions of

$$
H(x, D u):=|D u|^{2}-f(x)=0 \text { in } \mathbb{T}^{n}
$$

It follows that $0 \leq v_{0}(x) \leq o\left(\left|x-x_{0}\right|\right)$.
($\left|\boldsymbol{D} v_{0}(x)\right| \leq \sqrt{f(x)}$.) Moreover, the function v_{0} is a solution of $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{D u})=\mathbf{0}$ in \mathbb{T}^{n}.

Let $\boldsymbol{u} \in \boldsymbol{C}\left(\mathbb{T}^{\boldsymbol{n}} \times[\mathbf{0}, \infty)\right)$ be a solution of (4). Note that $\boldsymbol{H}\left(\boldsymbol{x}_{0}, \boldsymbol{p}\right) \geq \mathbf{0}$ for all $\boldsymbol{p} \in \mathbb{R}^{\boldsymbol{n}}$. Hence, $\boldsymbol{u}_{\boldsymbol{t}}\left(\boldsymbol{x}_{0}, \boldsymbol{t}\right) \leq \mathbf{0}$ for all $\boldsymbol{t} \in(\mathbf{0}, \infty)$ and, therefore, $\boldsymbol{t} \mapsto \boldsymbol{u}\left(\boldsymbol{x}_{0}, \boldsymbol{t}\right)$ is nonincreasing. This monotonicity property is valid for any zero point $\in \mathbb{T}^{n}$ of f. That is, if we set $Z=f^{-1}(0)=\{x: f(x)=0\}$, then $t \mapsto u(x, t)$ is nonincreasing for all $\boldsymbol{x} \in \boldsymbol{Z}$.
Select $\boldsymbol{C}>\mathbf{0}$ so that $\boldsymbol{v}_{\mathbf{0}}-\boldsymbol{C} \leq \boldsymbol{u}(\cdot, \mathbf{0}) \leq \boldsymbol{v}_{\mathbf{0}}+\boldsymbol{C}$ on $\mathbb{T}^{\boldsymbol{n}}$. By the comparison theorem, $\boldsymbol{v}_{\mathbf{0}}-\boldsymbol{C} \leq \boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t}) \leq \boldsymbol{v}_{\mathbf{0}}(\boldsymbol{x})+\boldsymbol{C}$ for all $(x, t) \in \mathbb{T}^{n} \times[0, \infty)$.
By Theorem 9 in the last lecture, \boldsymbol{u} is uniformly continuous on $\mathbb{T}^{n} \times[0, \infty)$. Thus, the family $\{u(\cdot, t): t \geq 0\}$ is unif-bounded and equi-continuous on \mathbb{T}^{n}.

The monotonicity on \boldsymbol{Z} of \boldsymbol{u} and the unif-boundedness and equi-continuity properties, together with AA theorem, assure that for some function $u_{0} \in C\left(\mathbb{T}^{n}\right)$, as $t \rightarrow \infty$,

- $u(x, t) \rightarrow u_{0}(x)$ uniformly and monotonically for $x \in Z$,
- $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t}) \rightarrow \boldsymbol{u}_{\mathbf{0}}(\boldsymbol{x})$ uniformly for $\boldsymbol{x} \in \mathbb{T}^{\boldsymbol{n}}$ along a sequence of t.
At this point, it is not clear if $\boldsymbol{u}_{\mathbf{0}}$ is a solution of $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{D u})=\mathbf{0}$ in \mathbb{T}^{n}. Define
$\boldsymbol{w}^{ \pm}(x, t)=\left\{\begin{array}{l}\sup \\ \inf \end{array}\right\}\{u(x, t+s): s \geq 0\}$ for all $(x, t) \in \mathbb{T}^{n} \times[0, \infty)$.
The function $\boldsymbol{w}^{+}\left(\right.$resp., $\left.\boldsymbol{w}^{-}\right)$is a subsolution (resp., a supersolution) of $\boldsymbol{w}_{t}+\boldsymbol{H}\left(\boldsymbol{x}, \boldsymbol{D}_{x} \boldsymbol{w}\right)=\mathbf{0}$ in $\mathbb{T}^{n} \times(0, \infty)$, they are bounded, uniformly continuous on $\mathbb{T}^{n} \times[0, \infty)$, $\boldsymbol{t} \mapsto \boldsymbol{w}^{+}(\boldsymbol{x}, \boldsymbol{t})$ (resp., $\boldsymbol{t} \mapsto \boldsymbol{w}^{-}(\boldsymbol{x}, \boldsymbol{t})$) is nonincreasing (resp., nondecreasing) for all $\boldsymbol{x} \in \boldsymbol{M}$, and $\boldsymbol{w}^{+}(\boldsymbol{x}, \boldsymbol{t})=\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})$ (resp., $\left.\boldsymbol{w}^{-}(x, t)=u_{0}(x)\right)$ on $\boldsymbol{Z} \times[0, \infty)$. Thus, as $t \rightarrow \infty$, for some $w_{0}^{ \pm} \in C\left(\mathbb{T}^{n}\right)$,

$$
\boldsymbol{w}^{ \pm}(x, t) \rightarrow \boldsymbol{w}_{0}^{ \pm}(x) \text { uniformly and monotonically on } \mathbb{T}^{n} .
$$

It follows that $w_{0}^{ \pm}=u_{0}$ on \boldsymbol{Z} and that \boldsymbol{w}_{0}^{+}(resp., $\left.\boldsymbol{w}_{0}^{-}\right)$is a subsolultion (resp., supersolution) of $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{D u})=\mathbf{0}$ in \mathbb{T}^{n}. Also, by the definition of $w_{0}^{ \pm}$, we have $\boldsymbol{w}_{0}^{+} \geq \boldsymbol{w}_{0}^{-}$on \mathbb{T}^{n}. Once we have shown that $w_{0}^{+}=w_{0}^{-}$on \mathbb{T}^{n}, we see easily that $\boldsymbol{u}_{0}=w_{0}^{ \pm}$ on \mathbb{T}^{n}, which implies that as $t \rightarrow \infty$,

$$
\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t}) \rightarrow \boldsymbol{u}_{\mathbf{0}} \quad \text { uniformly on } \mathbb{T}^{n} .
$$

We claim that $\boldsymbol{w}_{0}^{+}=w_{0}^{-}$on \mathbb{T}^{n}. It is enough to prove that

$$
w_{0}^{+} \leq w_{0}^{-} \quad \text { on } \mathbb{T}^{n} \backslash \boldsymbol{Z}
$$

By adding a large constant to $w_{0}^{ \pm}$, we may assume that both $w_{0}^{ \pm}$ are positive functions. Let $\boldsymbol{\theta} \in(\mathbf{0}, \mathbf{1})$ and set $\boldsymbol{w}_{\boldsymbol{\theta}}=\boldsymbol{\theta} \boldsymbol{w}_{\mathbf{0}}^{+}$. Note that
$H\left(x, D w_{\theta}\right)=\theta^{2}\left|D w_{0}^{+}\right|^{2}-f(x)=\theta^{2} H\left(x, D w_{0}^{+}\right)-\left(1-\theta^{2}\right) f(x)$, and that

$$
\boldsymbol{w}_{\theta}(\boldsymbol{x})<\boldsymbol{w}_{0}^{-}(\boldsymbol{x}) \quad \text { on } \boldsymbol{Z}
$$

Let $\boldsymbol{Z}_{\boldsymbol{\delta}}$ be the closed $\boldsymbol{\delta}$-neighborhood of $\boldsymbol{Z}(\boldsymbol{\delta}>\boldsymbol{0})$ such that

$$
w_{\theta}(x)<w_{0}^{-}(x) \quad \text { for all } x \in Z_{\delta} .
$$

Set $\boldsymbol{U}_{\boldsymbol{\delta}}:=\mathbb{T}^{\boldsymbol{n}} \backslash \boldsymbol{Z}_{\boldsymbol{\delta}}$. There exists $\boldsymbol{\eta}>\mathbf{0}$ such that

$$
f(x) \geq \boldsymbol{\eta} \quad \text { for all } \boldsymbol{x} \in \boldsymbol{U}_{\boldsymbol{\delta}}
$$

Note that

$$
\left(1-\theta^{2}\right) f(x)>\left(1-\theta^{2}\right) \eta \quad \text { on } U_{\delta}
$$

and hence, $\boldsymbol{w}_{\boldsymbol{\theta}}$ is a subsolution of

$$
H(x, D u) \leq-\left(1-\theta^{2}\right) \eta \text { in } U_{\delta}
$$

By the comparison principle, we have

$$
\boldsymbol{w}_{\boldsymbol{\theta}} \leq \boldsymbol{w}_{0}^{-} \text {on } \boldsymbol{U}_{\boldsymbol{\delta}}\left(\text { and on } \mathbb{T}^{\boldsymbol{n}}\right)
$$

Theorem 2
Let \boldsymbol{u} be a solution of (4). Assume (5) $\left(f \geq f\left(\boldsymbol{x}_{\mathbf{0}}\right)=\mathbf{0}\right)$. Then, for some $u_{0} \in C\left(\mathbb{T}^{n}\right)$, as $t \rightarrow \infty$,

$$
u(x, t) \rightarrow u_{0}(x) \quad \text { uniformly on } \mathbb{T}^{n} .
$$

One can replace $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p})=|\boldsymbol{p}|^{2}-f(x)$ by a general continuous $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p})$ which satisfies:

- $\boldsymbol{p} \mapsto \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p})$ is convex for every $\boldsymbol{x} \in \mathbb{T}^{n}$.
- $\boldsymbol{p} \mapsto \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p})$ is coercive for every $\boldsymbol{x} \in \mathbb{T}^{n}$.
- $\min _{p \in \mathbb{R}^{n}} H(x, p)=\boldsymbol{H}(x, 0) \quad \forall x \in \mathbb{T}^{n}$, $\max _{x \in \mathbb{T}^{n}} H(x, 0)=0$.
Some convenient technical theorems are as follows.

Theorem 3

Let $\boldsymbol{\Omega} \subset \mathbb{R}^{\boldsymbol{n}}$ be an open set. Let $\boldsymbol{F}=\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{p}, \boldsymbol{u})$ is a continuous convex (in \boldsymbol{p}) Hamiltonian on $\Omega \times \mathbb{R}^{\boldsymbol{n}} \times \mathbb{R}$. Let $\boldsymbol{u} \in \operatorname{Lip}(\Omega)$. Then

$$
u \in \mathcal{S}^{-}(F) \Longleftrightarrow u \in \mathcal{S}_{\mathrm{ae}}^{-}(F)
$$

- $\mathcal{S}^{-}=$the set of all viscosity subsolutions, $\mathcal{S}_{\mathrm{ae}}^{-}=$the set of all a.e. subsolutions $(\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{D} \boldsymbol{u}(\boldsymbol{x}), \boldsymbol{u}(\boldsymbol{x})) \leq \mathbf{0}$ a.e.).

Proof. Local property! We may assume that $\boldsymbol{\Omega}$ is bounded (and convex).

1) Assume that $\boldsymbol{u} \in \mathcal{S}^{-}(\boldsymbol{F})$. Since $\boldsymbol{u} \in \operatorname{Lip}$ and is differentiable a.e. in $\boldsymbol{\Omega}$. Fix any differentiability point \boldsymbol{x} of \boldsymbol{u}, and choose $\phi \in C^{\mathbf{1}}(\boldsymbol{\Omega})$ such that ϕ tests \boldsymbol{u} from above at \boldsymbol{x}. Note that $\boldsymbol{D} \phi(x)=\boldsymbol{D u}(\boldsymbol{x})$. Then, since $\boldsymbol{u} \in \mathcal{S}^{-}$,

$$
0 \geq F(x, D \phi(x), u(x))=F(x, D u(x), u(x))
$$

2) Assume now that $\boldsymbol{u} \in \mathcal{S}_{\mathrm{ae}}^{-}(\boldsymbol{F})$. Since $\boldsymbol{u} \in \operatorname{Lip}$, it is differentiable a.e. in $\boldsymbol{\Omega}$ and the derivative $\boldsymbol{D} \boldsymbol{u}$ is identified with the distributional derivative of \boldsymbol{u}. Choose a constant $\boldsymbol{M}>\mathbf{0}$ so that $|\boldsymbol{u}(\boldsymbol{x})|+|\boldsymbol{D u (x)}| \leq \boldsymbol{M}$ a.e. We may assume that \boldsymbol{F} is uniformly continuous on $\Omega \times B_{M+1} \times[-M-1, M+1]$ (if needed, replace Ω by a smaller one). For each $0<\varepsilon \ll 1$, choose $\delta(\varepsilon)>0$ so that

$$
\begin{array}{r}
F(x, D u(y), u(x)) \leq F(y, D u(y), u(y))+\varepsilon \\
\text { a.e. } y \in \Omega, \forall x \in B_{\delta(\varepsilon)}(y) .
\end{array}
$$

Mollifying the above with a standard kernel (and using the convexity), to get

$$
F\left(x, u_{\varepsilon}(x), u(x)\right) \leq \varepsilon \quad \text { in } \Omega
$$

where $\boldsymbol{u}_{\boldsymbol{\varepsilon}}$ is the mollified function of \boldsymbol{u}. Now, $\boldsymbol{u}_{\boldsymbol{\varepsilon}}$ is a classical (hence, viscosity) subsolution of $\boldsymbol{F}\left(\boldsymbol{x}, \boldsymbol{D} \boldsymbol{u}_{\varepsilon}(\boldsymbol{x}), \boldsymbol{u}(\boldsymbol{x})\right) \leq \varepsilon$. In the limit as $\boldsymbol{\varepsilon} \rightarrow \mathbf{0}$, we see that $\boldsymbol{u} \in \mathcal{S}^{-}(\boldsymbol{F})$.

We write $\mathcal{S}_{\mathrm{BJ}}^{-}(\boldsymbol{F})$ for the set of all functions $\boldsymbol{u} \in \operatorname{Lip}(\Omega)$ such that if $\phi \in C^{\mathbf{1}}(\boldsymbol{\Omega})$ touches from below at $\boldsymbol{x} \in \boldsymbol{\Omega}$, then $\boldsymbol{F}(x, D \phi(x), u(x)) \leq 0$. (Barron-Jensen)

Theorem 4
Let $\boldsymbol{\Omega} \subset \mathbb{R}^{\boldsymbol{n}}$ be an open set. Let $\boldsymbol{F}=\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{p}, \boldsymbol{u})$ is a continuous convex (in \boldsymbol{p}) Hamiltonian on $\boldsymbol{\Omega} \times \mathbb{R}^{\boldsymbol{n}} \times \mathbb{R}$. Let $\boldsymbol{u} \in \operatorname{Lip}(\Omega)$. Then

$$
u \in \mathcal{S}^{-}(F) \Longleftrightarrow u \in \mathcal{S}_{\mathrm{BJ}}^{-}(F)
$$

Proof. We need to show that

$$
u \in \mathcal{S}_{\mathrm{ae}}^{-}(F) \Longleftrightarrow u \in \mathcal{S}_{\mathrm{BJ}}^{-}(F)
$$

The previous proof applies to show this claim.
A consequence of the above is:

Theorem 5

Let $\boldsymbol{\Omega} \subset \mathbb{R}^{\boldsymbol{n}}$ be an open set. Let $\boldsymbol{F}=\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{p}, \boldsymbol{u})$ be a continuous convex (in \boldsymbol{p}) Hamiltonian on $\boldsymbol{\Omega} \times \mathbb{R}^{\boldsymbol{n}} \times \mathbb{R}$. Let $\mathcal{F} \neq \emptyset$ be a locally unif-bounded, equi-Lipschitz continuous collection of subsolutions of $\boldsymbol{F}=\mathbf{0}$ in $\boldsymbol{\Omega}$. Then the function

$$
u(x):=\inf \{v(x): v \in \mathcal{F}\}
$$

is in $\mathcal{S}^{-}(\boldsymbol{F})$.

Proof. The proof is parallel to that of the assertion that the pointwise sup of a family of subsolutions is a subsolution: replace "touching from above" and "sup" by "touching from below" and "inf", respectively, which is also parallel to that of the theorem saying that the pointwise inf of a family of supersolutions is a supersolution: replace \geq by \leq.
Remark. Roughly speaking, if \boldsymbol{u} is differentiable at \boldsymbol{y} and it is a subsolution of $\boldsymbol{F}=\mathbf{0}$, then

$$
F(y, D u(y), u(y)) \leq 0
$$

Indeed, we may choose a continuous function $\boldsymbol{\omega}$ on $[\mathbf{0}, \mathbf{1}]$ such that $\boldsymbol{\omega}(0)=0, \boldsymbol{\omega}(\boldsymbol{t}) \geq \mathbf{0}$, and
$u(x)-u(y) \leq p \cdot(x-y)+\omega(|x-y|)|x-y| \quad$ if $x \in B_{1}(y)$,
where $\boldsymbol{p}=\boldsymbol{D} \boldsymbol{u}(\boldsymbol{y})$. We may assume that $\boldsymbol{\omega}$ is nondecreasing.

Note that

$$
\omega(t) t \leq \int_{t}^{2 t} \omega(r) d r \quad \text { for all } t \in[0,1 / 2]
$$

Setting

$$
\psi(t)=\int_{t}^{2 t} \omega(r) d r \quad \text { for all } t \in[0,1 / 2]
$$

and
$\phi(x)=u(y)+p \cdot(x-y)+\psi(|x-y|) \quad$ for all $x \in B_{1 / 2}(y)$,
we observe that $\phi \in C^{1}\left(B_{1 / 2}(y)\right), D \phi(y)=p$,

$$
\boldsymbol{u}(\boldsymbol{x}) \leq \phi(\boldsymbol{x}) \forall \boldsymbol{x} \in \boldsymbol{B}_{1 / 2}(y) \quad \text { and } \quad \boldsymbol{u}(\boldsymbol{y})=\phi(\boldsymbol{y})
$$

Extending ϕ smoothly outside $\boldsymbol{B}_{1 / 3}(\boldsymbol{y})$ so that $\boldsymbol{u}(\boldsymbol{x}) \leq \boldsymbol{x}(\boldsymbol{x})$ on the domain of definition of \boldsymbol{u}. We now find that

$$
0 \geq F(y, D \phi(y), u(y))=F(y, D u(y), u(y))
$$

In the above discussion, the differentiability can be weakened as follows:

$$
\boldsymbol{u}(\boldsymbol{x})-\boldsymbol{u}(\boldsymbol{y}) \leq \boldsymbol{p} \cdot(\boldsymbol{x}-\boldsymbol{y})+\boldsymbol{o}(|\boldsymbol{x}-\boldsymbol{y}|) \quad \text { as } \boldsymbol{x} \rightarrow \boldsymbol{y}
$$

for some $\boldsymbol{p} \in \mathbb{R}^{\boldsymbol{n}}$. If this is the case and \boldsymbol{u} is a subsolution of $\boldsymbol{F}=\mathbf{0}$, then

$$
F(y, p, u(y)) \leq 0
$$

The set of all $\boldsymbol{p} \in \mathbb{R}^{\boldsymbol{n}}$ for which the above asymptotic relation hold is called the superdifferentials of \boldsymbol{u} at \boldsymbol{y} and is denoted by $\boldsymbol{D}^{+} \boldsymbol{u}(\boldsymbol{y})$. By making the upside-down in the above discussion, we define $\boldsymbol{D}^{-} \boldsymbol{u}(\boldsymbol{y})$, called the subdifferentials of \boldsymbol{u} at \boldsymbol{y}.

Theorem 6

Let $\boldsymbol{\Omega} \subset \mathbb{R}^{\boldsymbol{n}}$ be an open set and $\boldsymbol{u}: \boldsymbol{\Omega} \rightarrow \mathbb{R}$ locally bounded. Let $\boldsymbol{F} \in \boldsymbol{C}\left(\boldsymbol{\Omega} \times \mathbb{R}^{\boldsymbol{n}} \times \mathbb{R}\right)$. The function \boldsymbol{u} is a (viscosity) subsolution (resp., supersolution) of $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{D} \boldsymbol{u}, \boldsymbol{u})=\mathbf{0}$ in $\boldsymbol{\Omega}$ if and only if

$$
\begin{aligned}
& \boldsymbol{F}\left(\boldsymbol{x}, \boldsymbol{p}, \boldsymbol{u}^{*}(\boldsymbol{x})\right) \leq \mathbf{0} \text { for all } \boldsymbol{p} \in D^{+} \boldsymbol{u}^{*}(\boldsymbol{x}) \\
&\text { (resp., } \left.\boldsymbol{F}\left(\boldsymbol{x}, \boldsymbol{p}, \boldsymbol{u}_{*}(\boldsymbol{x})\right) \geq \mathbf{0} \quad \text { for all } \boldsymbol{p} \in D^{-} \boldsymbol{u}_{*}(\boldsymbol{x})\right)
\end{aligned}
$$

LONG-TIME BEHAVIOR OF SOLUTIONS II
Long-time behavior of solutions to a general HJE

$$
\begin{equation*}
u_{t}+\boldsymbol{H}\left(x, D_{x} u\right)=0 \quad \text { in } \mathbb{T}^{n} \times(0, \infty) \tag{1}
\end{equation*}
$$

Assumptions on \boldsymbol{H} :

- $H \in C\left(\mathbb{T}^{n} \times \mathbb{R}^{n}\right)$.
- $\boldsymbol{p} \mapsto \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p})$ is coercive for every (uniformly) \boldsymbol{x}. i.e.,

$$
\lim _{r \rightarrow \infty} \inf _{|p| \geq r} H(x, p)=\infty
$$

Recall the following theorem (the proof was done for bounded functions on \mathbb{R}^{n}).

Theorem 1
Let $h \in \operatorname{Lip}\left(\mathbb{T}^{n}\right)$. Under the above assumptions, there is a solution $u \in \operatorname{Lip}\left(\mathbb{T}^{n} \times[0, \infty)\right)$ of
(2) $\left\{\begin{array}{l}u_{t}+\boldsymbol{H}\left(\boldsymbol{x}, \boldsymbol{D}_{x} \boldsymbol{u}\right)=\mathbf{0} \text { in } \mathbb{T}^{n} \times(0, \infty), \\ \boldsymbol{u}(\cdot, 0)=h \quad \text { on } \mathbb{T}^{n} .\end{array}\right.$

Note also that the comparison principle holds for sub and super solutions of (1), which is crucial to establish the following theorem.

Theorem 2

Let $\boldsymbol{h} \in \boldsymbol{C}\left(\mathbb{T}^{\boldsymbol{n}}\right)$. Under the above assumptions, there is a solution $\boldsymbol{u} \in \mathbf{U C}\left(\mathbb{T}^{n} \times[\mathbf{0}, \infty)\right)$ of
(2) $\left\{\begin{array}{l}u_{t}+\boldsymbol{H}\left(\boldsymbol{x}, \boldsymbol{D}_{x} \boldsymbol{u}\right)=\mathbf{0} \text { in } \mathbb{T}^{n} \times(0, \infty), \\ \boldsymbol{u}(\cdot, 0)=h \quad \text { on } \mathbb{T}^{n} .\end{array}\right.$

Proof. Choose a sequence $h_{k} \in \operatorname{Lip}\left(\mathbb{T}^{n}\right) \rightarrow h$ in $C\left(\mathbb{T}^{n}\right)$ and let $\boldsymbol{u}_{\boldsymbol{k}} \in \operatorname{Lip}\left(\mathbb{T}^{\boldsymbol{n}} \times[\mathbf{0}, \infty)\right.$ be the solution of the Cauchy problem (2) with \boldsymbol{h} replaced by $\boldsymbol{h}_{\boldsymbol{k}}$. Choose a monotone sequence $\varepsilon_{\boldsymbol{k}} \rightarrow \mathbf{0 +}$ so that

$$
\left\|h_{j}(x)-h_{k}\right\|_{\infty} \leq \varepsilon_{k} \forall j>k
$$

By the comparison principle, if $\boldsymbol{j}>\boldsymbol{k}$, then

$$
\left|u_{j}(x, t)-u_{k}(x, t)\right| \leq \varepsilon_{k} \quad \forall(x, t)
$$

That is, for some $\boldsymbol{u} \in \mathbf{U C}\left(\mathbb{T}^{n} \times[0, \infty)\right)$,

$$
\lim _{k} u_{k}(x, t)=u(x, t) \quad \text { uniformly on } \mathbb{T}^{n} \times[0, \infty)
$$

The function \boldsymbol{u} is a solution of (2).
Limit problem:

$$
\begin{equation*}
\boldsymbol{H}(x, D u)=c \quad \text { in } \mathbb{T}^{n} \tag{3}
\end{equation*}
$$

This ergodic problem has a solution $(\boldsymbol{c}, \boldsymbol{u}) \in \mathbb{R} \times \operatorname{Lip}\left(\mathbb{T}^{n}\right)$. The ergodic constant \boldsymbol{c} is uniquely determined.

We follow the argument due to Barles-Souganidis. The argument has been modified (or simplified) by Barles-HI-Mitake. Another important approach is the one due to Davini-Siconolfi (after Fathi).

We add another requirement on \boldsymbol{H} :

- There exist constants $\boldsymbol{\eta}_{0}>\mathbf{0}$ and $\boldsymbol{\theta}_{0}>\mathbf{1}$ and for each $(\eta, \theta) \in\left(0, \eta_{0}\right) \times\left(1, \theta_{0}\right)$ a constant $\psi=\psi(\eta, \theta)>0$ such that for all $\boldsymbol{x}, \boldsymbol{p}, \boldsymbol{q} \in \mathbb{R}^{\boldsymbol{n}}$, if $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p}) \leq \boldsymbol{c}$ and $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{q}) \geq \boldsymbol{c}+\boldsymbol{\eta}$, then

$$
H(x, p+\theta(q-p)) \geq c+\eta \theta+\psi
$$

This is a kind of strict convexity of \boldsymbol{H}. Indeed, if $\boldsymbol{p} \mapsto \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p})$ is strictly convex, one can show that the above condition is satisfied.

Indeed, if \boldsymbol{H} is strictly convex, since
$q=\theta^{-1}(p+\theta(q-p))+\left(1-\theta^{-1}\right) p$,
$c+\eta \leq H(x, q)<\theta^{-1} H(x, p+\theta(q-p))+\left(1-\theta^{-1}\right) H(x, p)$
$<\theta^{-1} H(x, p+\theta(q-p))+\left(1-\theta^{-1}\right) c$,
i.e.,

$$
H(x, p+\theta(q-p))>c+\theta \eta
$$

Figure
page:8.5

Theorem 3

Let $h \in C\left(\mathbb{T}^{n}\right)$ and c be the ergodic constant. Let $\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{h}) \in \mathbf{U C}\left(\mathbb{T}^{\boldsymbol{n}} \times[\mathbf{0}, \infty)\right)$ be the solution of the Cauchy problem (2). Then, for some $h_{\infty} \in \mathcal{S}(H-c) \cap \operatorname{Lip}\left(\mathbb{T}^{n}\right)$, as $t \rightarrow \infty$,

$$
u(x, t, h)+c t \rightarrow h_{\infty}(x) \quad \text { uniformly in } \mathbb{T}^{n} .
$$

Outline of proof. By the comparison principle,

$$
\|u(\cdot, t, h)-u(\cdot, t, g)\|_{\infty} \leq\|h-g\|_{\infty}
$$

we may assume that $h \in \operatorname{Lip}\left(\mathbb{T}^{n}\right)$ and $u \in \operatorname{Lip}\left(\mathbb{T}^{n} \times[0, \infty)\right)$.
Note that the function $\boldsymbol{v}=\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{h})+\boldsymbol{c t}$ is a solution of $\boldsymbol{v}_{\boldsymbol{t}}+\boldsymbol{H}-\boldsymbol{c}=\mathbf{0}$. By rewriting \boldsymbol{H} for $\boldsymbol{H}-\boldsymbol{c}$, we henceforth assume that $c=0$.

Fix a $\boldsymbol{v}_{\mathbf{0}} \in \mathcal{S}(\boldsymbol{H})$. By choosing $\boldsymbol{C}>\mathbf{0}$ so that

$$
\boldsymbol{v}_{0}-C \leq \boldsymbol{h} \leq \boldsymbol{v}_{0}+C \quad \text { on } \mathbb{T}^{n}
$$

we have by the comparison principle,

$$
\left|u(x, t, h)-v_{0}(x)\right| \leq C \quad \forall(x, t)
$$

Thus,

$$
u(\cdot, \cdot, h) \in(\operatorname{Lip} \cap B)\left(\mathbb{T}^{n} \times[0, \infty)\right)
$$

We assume by adding a constant to $\boldsymbol{v}_{\boldsymbol{0}}$ that

$$
u(x, t)-v_{0}(x) \geq 0 \quad \forall(x, t)
$$

Let $\boldsymbol{\theta}, \boldsymbol{\eta}, \boldsymbol{\psi}$ be as in the above condition on \boldsymbol{H}. Define $w(x, t)=\sup _{s \geq t}\left[u(x, t)-v_{0}(x)-\theta\left(u(x, s)-v_{0}(x)+\eta(s-t)\right)\right]$

Let $\boldsymbol{M}>\mathbf{0}$ be a Lipschitz bound of \boldsymbol{u} and $\boldsymbol{v}_{\mathbf{0}}$. Define $\omega(r)=\max \left\{|H(x, p)-H(x, q)|: p, q \in \bar{B}_{R},|p-q| \leq r\right\}$, where $R=\left(2 \theta_{0}+1\right) M$.

Theorem 4

The function \boldsymbol{w} is a subsolution of

$$
\min \left\{w, w_{t}-\omega\left(\left|D_{x} w\right|\right)+\psi\right\} \leq 0 \quad \text { in } \mathbb{T}^{n} \times(0, \infty)
$$

In particular, setting

$$
m(t)=\max _{x} w(x, t)
$$

we have

$$
\min \left\{m, m_{t}+\psi\right\} \leq 0
$$

The last inequality implies that for a finite time $\boldsymbol{\tau}>\mathbf{0}$,

$$
m(t) \leq 0 \quad \forall t \geq \tau
$$

Then, for any $t \geq \tau, x \in \mathbb{T}^{n}, s \geq t$,

$$
u(x, t)-v_{0}(x) \leq \theta\left(u(x, s)-v_{0}(x)+\eta(s-t)\right)
$$

The constant $\tau=\boldsymbol{\tau}_{\theta, \eta}$ depends on $\boldsymbol{\theta}, \boldsymbol{\eta}$.
(AA theorem) $\exists t_{j} \rightarrow \infty$ such that for some $\boldsymbol{u}_{\infty} \in \operatorname{Lip}\left(\mathbb{T}^{n}\right)$,

$$
u\left(x, t_{j}, h\right) \rightarrow u_{\infty}(x) \quad \text { in } C\left(\mathbb{T}^{n}\right)
$$

Then, we have

$$
\left.\begin{array}{c}
u\left(x, t+t_{j}, h\right) \rightarrow u\left(x, t, u_{\infty}\right) \quad \forall(x, t) \\
\left(\begin{array}{c}
\left\|u\left(\cdot, t, u\left(\cdot, t_{j}, h\right)\right)-u\left(\cdot, t, u_{\infty}\right)\right\|_{\infty} \\
\leq\left\|u\left(\cdot, t_{j}, h\right)-u_{\infty}\right\|_{\infty} \forall t \geq 0
\end{array} \quad\right. \text { by comparison. }
\end{array}\right) .
$$

Hence, for all $t \geq 0, s \geq t, x \in \mathbb{T}^{n}$,
$u\left(x, t, u_{\infty}\right)-v_{0}(x) \leq \theta\left(u\left(x, s, u_{\infty}\right)-v_{0}(x)+\eta(s-t)\right)$.
This holds for any $\theta \in\left(1, \theta_{0}\right)$ and $\boldsymbol{\eta}>\mathbf{0}$. Thus,

$$
u\left(x, t, u_{\infty}\right)-v_{0}(x) \leq u\left(x, s, u_{\infty}\right)-v_{0}(x) \text { if } s \geq t
$$

That is, $\boldsymbol{t} \mapsto \boldsymbol{u}\left(\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{u}_{\infty}\right)$ is nondecreasing. Monotone in \boldsymbol{t}.
(AA theorem) $\exists h_{\infty} \in \operatorname{Lip}\left(\mathbb{T}^{n}\right)$ such that

$$
h_{\infty}(x)=\lim _{t \rightarrow \infty} u\left(x, t, u_{\infty}\right) \quad \text { in } C\left(\mathbb{T}^{n}\right)
$$

Since

$$
\begin{aligned}
& \left\|u\left(\cdot, t+t_{j}, h\right)-u\left(\cdot, t, u_{\infty}\right)\right\|_{\infty} \\
& \quad \leq\left\|u\left(\cdot, t_{j}, h\right)-u_{\infty}\right\|_{\infty} \forall t \geq 0
\end{aligned}
$$

we have

$$
h_{\infty}(x)=\lim _{t \rightarrow \infty} u(x, t, h) \quad \text { in } C\left(\mathbb{T}^{n}\right)
$$

Since

$$
\left\|\boldsymbol{u}\left(\cdot, \boldsymbol{t}+\boldsymbol{t}_{\boldsymbol{j}}, \boldsymbol{h}\right)-\boldsymbol{h}_{\infty}\right\|_{\infty} \rightarrow \mathbf{0} \quad \text { as } \boldsymbol{j} \rightarrow \infty
$$

we find that $\partial_{t} \boldsymbol{h}_{\infty}+\boldsymbol{H}\left(\boldsymbol{x}, \boldsymbol{D}_{x} \boldsymbol{h}_{\infty}\right)=\mathbf{0}$ and $\boldsymbol{h}_{\infty} \in \mathcal{S}(\boldsymbol{H})$.
Outline of the proof of the VI:

$$
\begin{gathered}
\quad \min \left\{w, w_{t}-\omega\left(\left|D_{x} w\right|\right)+\psi\right\} \leq 0, \quad \text { where } \\
w(x, t):=\sup _{s \geq t}\left[u(x, t)-v_{0}(x)-\theta\left(u(x, s)-v_{0}(x)+\eta(s-t)\right)\right]
\end{gathered}
$$

Fix any $(x, t) \in \mathbb{T}^{\boldsymbol{n}} \times(\mathbf{0}, \infty)$. If $\boldsymbol{w}(\boldsymbol{x}, \boldsymbol{t}) \leq \mathbf{0}$, we have VI at (x, t).

Assume that $\boldsymbol{w}(x, t)>\mathbf{0}$. Suppose that $\boldsymbol{u} \in C^{\mathbf{1}}$ and $\boldsymbol{v}_{\mathbf{0}} \in C^{\mathbf{1}}$ and that for some $s>t$,

$$
w(x, t)=u(x, t)-v_{0}(x)-\theta\left(u(x, s)-v_{0}(x)+\eta(s-t)\right)
$$

and show that

$$
w_{t}-\omega\left(\left|D_{x} w\right|\right)+\psi \leq 0
$$

Set

$$
\begin{gathered}
p=D v_{0}(x), \quad q=D_{x} u(x, s), \quad r=D_{x} u(x, t) \\
a=u_{t}(x, s), \quad b=u_{t}(x, t)
\end{gathered}
$$

We have

$$
\begin{aligned}
H(x, p) & \leq 0 \\
a+H(x, q) & \geq 0 \\
b+H(x, r) & \leq 0
\end{aligned}
$$

The function
$-w\left(x^{\prime}, t^{\prime}\right)+u\left(x^{\prime}, t^{\prime}\right)-v_{0}\left(x^{\prime}\right)-\theta\left(u\left(x^{\prime}, s^{\prime}\right)-v_{0}\left(x^{\prime}\right)+\eta\left(s^{\prime}-t^{\prime}\right)\right)$
$\leq \mathbf{0}$ and attains the maximum value $\mathbf{0}$ at (x, t, s), which yields

$$
\begin{aligned}
D_{x} w(x, t) & =r-p-\theta(q-p) \\
w_{t}(x, t) & =b+\theta \eta \\
0 & =-\theta(a+\eta)
\end{aligned}
$$

$\boldsymbol{a}+\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{q}) \geq \mathbf{0}$ and $\boldsymbol{a}+\boldsymbol{\eta}=\mathbf{0}$ yield

$$
H(x, q) \geq \eta
$$

This and $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p}) \leq \mathbf{0}$, the key assumption on \boldsymbol{H},

$$
H(x, p+\theta(q-p)) \geq \theta \eta+\psi
$$

Since $r=D_{x} w(x, t)+p+\theta(q-p)$,

$$
H(x, r)=H\left(x, D_{x} w(x, t)+p+\theta(q-p)\right)
$$

Note:
$|r|=\left|D_{x} u(x, t)\right| \leq M \leq R,|p+\theta(q-p)| \leq(1+2 \theta) M \leq R$.
Hence,

$$
\begin{aligned}
H(x, r) & \geq H(x, p+\theta(q-p))-\omega\left(\left|D_{x} w(x, t)\right|\right) \\
& \geq-\omega\left(\left|D_{x} w(x, t)\right|\right)+\theta \eta+\psi
\end{aligned}
$$

Now,

$$
\begin{aligned}
& w_{t}(x, t)=b+\theta \eta \\
& 0 \geq b+H(x, r) \geq b-\omega\left(\left|D_{x} w\right|\right)+\theta \eta+\psi
\end{aligned}
$$

yield

$$
0 \geq w_{t}-\omega\left(\left|D_{x} w\right|\right)+\psi
$$

Example 1 (Non-convex \boldsymbol{H})

Note that constant functions are solutions of $\boldsymbol{H}=\mathbf{0}$. Hence, $\boldsymbol{c}(\boldsymbol{H})=\mathbf{0}$. Since \boldsymbol{H} is "strictly convex" on $\{H>0\}=\{f>1\}$, our key condition is satisfied.

The key condition implies that $\{\boldsymbol{p}: \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p}) \leq \boldsymbol{c}\}$ is convex. The key assumption requires a kind of "strict convexity" of \boldsymbol{H} in a neighborhood of $\{\boldsymbol{p}: \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p}) \leq \boldsymbol{c}\}$ in $\{\boldsymbol{p}: \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p})>\boldsymbol{c}\}$.

page:8.14

The following condition replaces the key condition:

- There exist constants $\eta_{0}>\mathbf{0}$ and $\boldsymbol{\theta}_{0}>\mathbf{1}$ and for each $(\eta, \theta) \in\left(0, \eta_{0}\right) \times\left(1, \theta_{0}\right)$ a constant $\psi=\psi(\eta, \theta)>0$ such that for all $\boldsymbol{x} \in \mathbb{T}^{n}, \boldsymbol{p}, \boldsymbol{q} \in \mathbb{R}^{\boldsymbol{n}}$, if $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p}) \leq \boldsymbol{c}$ and $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{q}) \geq \boldsymbol{c}-\boldsymbol{\eta}$, then

$$
H(x, p+\theta(q-p)) \geq c-\eta \theta+\psi
$$

VANISHING DISCOUNT PROBLEM FOR

Hamilton-Jacobi equations I

Let $\boldsymbol{\lambda}>\mathbf{0}$. Consider the stationary problem

$$
\begin{equation*}
\lambda u+\boldsymbol{H}(x, D u)=0 \quad \text { in } \mathbb{T}^{n} \tag{1}
\end{equation*}
$$

In view of optimal control theory, the constant $\boldsymbol{\lambda}$ is called a discoutn factor. Here we study the asymptotic behavior of the solution $\boldsymbol{u}_{\boldsymbol{\lambda}}$ of (1) as $\boldsymbol{\lambda} \boldsymbol{\rightarrow}+$.

Assumptions on \boldsymbol{H} :

- $H \in C\left(\mathbb{T}^{n} \times \mathbb{R}^{n}\right)$.
- \boldsymbol{H} is coercive, i.e.,

$$
\lim _{r \rightarrow \infty} \inf _{\mathbb{T}^{n} \times\left(\mathbb{R}^{n} \backslash B_{r}\right)} H(x, p)=\infty
$$

- \boldsymbol{H} is convex, i.e., $\boldsymbol{p} \mapsto \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p})$ is convex, $\forall \boldsymbol{x} \in \mathbb{R}^{\boldsymbol{n}}$.

Theorem 1

$\operatorname{PDE}(1)$ has a unique solution u_{λ} in the class $\operatorname{Lip}\left(\mathbb{T}^{n}\right)$. The comparison principle is valid for sub and super solutions in the class $\mathbf{B}\left(\mathbb{T}^{n}\right)$.

Remark. $\exists \boldsymbol{C}>0$ (independent of $\boldsymbol{\lambda}>0$) such that

$$
\lambda\left|u_{\lambda}(x)\right| \leq C
$$

$\exists M>0$ such that

$$
|p|>M \Longrightarrow-C+H(x, p)>0
$$

Since $\boldsymbol{u}_{\boldsymbol{\lambda}}$ is a subsolution of

$$
-C+\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{D u}) \leq \mathbf{0} \quad \text { in } \mathbb{T}^{n}
$$

\boldsymbol{M} is a Lipschitz bound of $\boldsymbol{u}_{\boldsymbol{\lambda}}$.
\boldsymbol{M} can be chosen independently of $\boldsymbol{\lambda}$.

The above observations imply together with AA theorem that for a sequence $\boldsymbol{\lambda}_{\boldsymbol{k}} \rightarrow \mathbf{0 +}, \boldsymbol{u}_{\boldsymbol{\lambda}_{\boldsymbol{k}}}$ "converge" to a function $\boldsymbol{u}_{\mathbf{0}} \in \boldsymbol{C}\left(\mathbb{T}^{n}\right)$ and for some constant \boldsymbol{c} (the ergodic constant), $\boldsymbol{u}_{\mathbf{0}}$ is a solution of

$$
\begin{equation*}
\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{D u})=\boldsymbol{c} \quad \text { in } \mathbb{T}^{n} . \tag{2}
\end{equation*}
$$

The main result is roughly stated as follows.

Claim 2

The whole family $\left\{u_{\boldsymbol{\lambda}}\right\}_{\boldsymbol{\lambda}>\boldsymbol{0}}$ "converges" to a function $\boldsymbol{u}_{\boldsymbol{0}}$ in $C\left(\mathbb{T}^{n}\right)$.
(Davini-Fathi-Iturriaga-Zavidovique)

- Mather measures play an important role in the proof.

1) $\exists M>\mathbf{0}$ such that $\left\|D u_{\boldsymbol{\lambda}}\right\|_{\infty} \leq M$ for all $\boldsymbol{\lambda}>\mathbf{0}$.
2) $u_{\boldsymbol{\lambda}}$ is the value function of the optimal control system:

$$
\left\{\begin{array}{l}
H(x, p)=\sup _{\xi}(\xi \cdot p-L(x, \xi)) \\
\dot{X}(t)=-\alpha(t) X(0)=x \\
J(x, \alpha)=\int_{0}^{\infty} e^{-\lambda t} L(X(t), \alpha(t)) d t
\end{array}\right.
$$

That is,

$$
\begin{aligned}
u_{\lambda}(x) & =\inf _{X(0)=x} \int_{0}^{\infty} e^{-\lambda t} L(X(t),-\dot{X}(t)) d t \\
& =\inf _{Y(0)=x} \int_{-\infty}^{0} e^{\lambda t} L(Y(t), \dot{Y}(t)) d t
\end{aligned}
$$

3) $\boldsymbol{\xi} \mapsto \boldsymbol{L}(\boldsymbol{x}, \boldsymbol{\xi})$ has a superlinear growth:

$$
L(x, \xi) \geq \xi \cdot \frac{A \xi}{|\xi|}-H\left(x, \frac{A \xi}{|\xi|}\right), \quad \forall A>0, \xi \neq 0
$$

$\forall|\boldsymbol{p}| \leq M, \exists \rho>0$ such that

$$
H(x, p)=\max _{|\xi| \leq \rho} \xi \cdot p-L(x, \xi)
$$

Set

$$
H_{\rho}(x, p):=\max _{|\xi| \leq \rho} \xi \cdot p-L(x, \xi)
$$

$\boldsymbol{u}_{\boldsymbol{\lambda}}$ is a solution of

$$
\lambda u+H_{\rho}(x, D u)=0 \quad \text { in } \mathbb{T}^{n}
$$

and

$$
u_{\lambda}(x)=\inf _{X(0)=x,|\dot{X}(t)| \leq \rho} \int_{0}^{\infty} e^{-\lambda t} L(X(t),-\dot{X}(t)) d t
$$

4) Set $\boldsymbol{K}=\boldsymbol{K}_{\boldsymbol{\rho}}=: \mathbb{T}^{\boldsymbol{n}} \times \overline{\boldsymbol{B}}_{\boldsymbol{\rho}}$. Let $\mathrm{M}=\mathrm{M}\left(\mathbb{T}^{n} \times \mathbb{R}^{\boldsymbol{n}}\right)$ denote the set of all finite Borel measures μ on $\mathbb{T}^{n} \times \mathbb{R}^{n}$. Set

$$
\begin{aligned}
\mathrm{M}_{\rho} & =\mathrm{M}_{\rho}\left(\mathbb{T}^{n} \times \mathbb{R}^{n}\right)=\left\{\mu \in \mathrm{M}: \operatorname{supp} \mu \subset K_{\rho}\right\} \\
\mathrm{M}_{\rho}^{+} & =\mathrm{M}_{\rho}^{+}\left(\mathbb{T}^{n} \times \mathbb{R}^{n}\right)=\left\{\mu \in \mathrm{M}_{\rho}: \mu \geq 0\right\}
\end{aligned}
$$

Set

$$
\begin{gathered}
\mathcal{C}_{\rho}(x)=\left\{X \in C\left([0, \infty), \mathbb{T}^{n}\right): X \in \mathrm{AC}[0, T], \forall T>0\right. \\
X(0)=x,|\dot{X}(t)| \leq \rho \text { a.e. }\}
\end{gathered}
$$

Given $z \in \mathbb{T}^{n}$ and $\boldsymbol{X} \in \mathcal{C}(\boldsymbol{z})$, consider the functional

$$
C(K) \ni \phi \mapsto \int_{0}^{\infty} e^{-\lambda t} \phi(X(t),-\dot{X}(t)) d t \in \mathbb{R}
$$

Note:
$\left|\int_{0}^{\infty} e^{-\lambda t} \phi(X(t),-\dot{X}(t)) d t\right| \leq\|\phi\|_{\infty} \int_{0}^{\infty} e^{-\lambda t} d t=\lambda^{-1}\|\phi\|_{\infty}$.
Each $z \in \mathbb{T}^{n}$ and $\boldsymbol{X} \in \mathcal{C}(\boldsymbol{z})$ define a continuous linear functional on $\boldsymbol{C}(\boldsymbol{K})$, an element of $C^{*}(\boldsymbol{K})$, and by Riesz' theorem, $\exists \mu \in \mathrm{M}_{\rho}$ such that

$$
\lambda \int_{0}^{\infty} e^{-\lambda t} \phi(X(t),-\dot{X}(t)) d t=\int_{K} \phi(x, \xi) \mu(d x, d \xi)
$$

If $\phi=1$ (resp., $\phi \geq 0$), then

$$
\lambda \int_{0}^{\infty} e^{-\lambda t} \phi(X(t),-\dot{X}(t)) d t=1(\text { resp., } \geq 0)
$$

Hence, $\boldsymbol{\mu} \in \mathrm{M}_{\rho}^{+}$and a probability measure.

Let $\mathrm{P}_{\rho}=\left\{\boldsymbol{\mu} \in \mathrm{M}_{\rho}^{+}: \boldsymbol{\mu}(\boldsymbol{K})=1\right\}$. If we write $\boldsymbol{\mu}_{\boldsymbol{z}, \boldsymbol{X}}$ for the measure defined above, then

$$
\lambda u_{\lambda}(z)=\inf _{X \in \mathcal{C}(z)} \int_{K} L(x, \xi) \mu_{z, X}(d x, d \xi)
$$

P_{ρ} has a good stability property: the compactness in the weak-star convergence in $C^{*}(\boldsymbol{K})$ (the weak convergence in the sense of measures). The Banach-Alaoglu theorem. On the other hand, the implication of "convergence" of $\left\{\boldsymbol{X}_{\boldsymbol{k}}\right\}$ to the functionals

$$
\int_{0}^{\infty} e^{-\lambda t} \phi\left(X_{k}(t),-\dot{X}_{k}(t)\right) d t
$$

is not easy. What is the limit?

$$
\mu_{z, X_{k}} \xrightarrow{\text { weak }^{*}} \mu=\mu_{z, X}(\exists X \in \mathcal{C}(z) ?) .
$$

Want to replace $\left\{\boldsymbol{\mu}_{\boldsymbol{z}, \boldsymbol{X}}: \boldsymbol{X} \in \mathcal{C}(\boldsymbol{z})\right\}$ by a good $\boldsymbol{G} \subset \mathrm{P}_{\rho}$ such that

$$
\lambda u_{\lambda}(z)=\inf _{\mu \in G} \int_{K} L \mu(d x, d \xi)
$$

$G=\mathrm{P}_{\rho}$ is too big.
5) Note that if $u_{\boldsymbol{\lambda}} \in C^{\mathbf{1}}\left(\mathbb{T}^{n}\right)$, then

$$
\lambda u_{\lambda}(x)+\xi \cdot D u_{\lambda}(x) \leq L(x, \xi) \quad \forall(x, \xi) \in K
$$

Integrate both sides by $\boldsymbol{\mu}=\boldsymbol{\mu}_{\boldsymbol{z}, \boldsymbol{X}}$, to get
$\int_{K}\left(\lambda u_{\lambda}(x)+\xi \cdot D u_{\lambda}(x)\right) \mu(d x, d \xi) \leq \int_{K} L(x, \xi) \mu(d x, d \xi)$.
Compute that

$$
\begin{aligned}
\int_{K} & \left(\lambda u_{\lambda}(x)+\xi \cdot D u_{\lambda}(x)\right) \mu_{x, X}(d x, d \xi) \\
& =\lambda \int_{0}^{\infty} e^{-\lambda t}\left(\lambda u_{\lambda}(X(t))-\dot{X}(t) \cdot D u_{\lambda}(X(t))\right) d t \\
& =\lambda \int_{0}^{\infty} \frac{d}{d t}\left(-e^{-\lambda t} u_{\lambda}(X(t))\right) d t=\lambda u_{\lambda}(z)
\end{aligned}
$$

Hence, for any $\boldsymbol{\mu}=\boldsymbol{\mu}_{\boldsymbol{z}, \boldsymbol{X}}$,

$$
\int_{K} L(x, \xi) \mu(d x, d \xi) \geq \lambda u_{\lambda}(z)
$$

Let P_{c} denote the set of all (Borel) probability measures with compact support. Note: $\mathrm{P}_{\rho} \subset \mathrm{P}_{\mathrm{c}}$.
We introdue the condition on $\mu \in \mathrm{P}_{\mathrm{c}}$ that $\forall \psi \in C^{1}\left(\mathbb{T}^{n}\right)$,
(3) $\quad \lambda \psi(z)=\int_{\mathbb{T}^{n} \times \mathbb{R}^{n}}(\lambda \psi(x)+\xi \cdot D \psi(x)) \mu(d x, d \xi)$.

In general, " $u_{\boldsymbol{\lambda}} \in C^{1}\left(\mathbb{T}^{n}\right)$ " does not hold, but the above condition always makes sense.

We call $\boldsymbol{\mu} \in \mathrm{P}_{\mathrm{c}}$ a closed measure for $(\boldsymbol{z}, \boldsymbol{\lambda})$ if (3) holds. We write $\mathfrak{C}(z, \lambda)$ for the set of all closed measures for (z, λ). Note that $\mathfrak{C}(\boldsymbol{z}, \boldsymbol{\lambda})$ is irrelevant to our HJE. Since all $\boldsymbol{\mu}_{\boldsymbol{z}, \boldsymbol{X}}$ are in $\mathfrak{C}(z, \lambda)$, we have

$$
\lambda u_{\lambda}(z) \geq \inf _{\mu \in \mathfrak{C}(z, \lambda)} \int_{\mathbb{T}^{n} \times \mathbb{R}^{n}} L(x, \xi) \mu(d x, d \xi)
$$

Theorem 3

$$
\lambda u_{\lambda}(z)=\min _{\mu \in \mathfrak{C}(z, \lambda)} \int_{\mathbb{T}^{n} \times \mathbb{R}^{n}} L(x, \xi) \mu(d x, d \xi)
$$

Proof. 1) A first step is: $\forall \boldsymbol{\mu} \in \mathfrak{C}(\boldsymbol{z}, \boldsymbol{\lambda})$,

$$
\begin{equation*}
\lambda u_{\lambda}(z) \leq \int_{\mathbb{T}^{n} \times \mathbb{R}^{n}} L(x, \xi) \mu(d x, d \xi) \tag{4}
\end{equation*}
$$

Since $\boldsymbol{u}_{\boldsymbol{\lambda}} \in \operatorname{Lip}\left(\mathbb{T}^{n}\right)$, it is a.e. differentiable and the pointwise derivative is identified with the distributional derivative. Let $\boldsymbol{u}_{\boldsymbol{\lambda}}^{\varepsilon}$ and $\left(\boldsymbol{D} \boldsymbol{u}_{\boldsymbol{\lambda}}\right)^{\varepsilon}$ be the mollified functions of $\boldsymbol{u}_{\boldsymbol{\lambda}}$ and $\boldsymbol{D} \boldsymbol{u}_{\boldsymbol{\lambda}}$, respectively, with the same millification kernel. We have $\boldsymbol{D} \boldsymbol{u}_{\boldsymbol{\lambda}}^{\varepsilon}=\left(\boldsymbol{D} \boldsymbol{u}_{\boldsymbol{\lambda}}\right)^{\varepsilon} . \boldsymbol{H}$ is uniformly continuous on $\mathbb{T}^{\boldsymbol{n}} \times \boldsymbol{B}_{\boldsymbol{M}}$, and so
$\lambda u_{\lambda}(y)+H\left(x, D u_{\lambda}(y)\right) \leq \delta(\varepsilon)$ a.e. $\left\{(x, y) \in \mathbb{T}^{2 n}:|x-y|<\varepsilon\right\}$, where $\boldsymbol{\delta}(\varepsilon) \rightarrow \mathbf{0}^{+}\left(\varepsilon \rightarrow \mathbf{0}^{+}\right)$. By the convexity of \boldsymbol{H}, we find

$$
\lambda u_{\lambda}^{\varepsilon}(x)+H\left(x, D u_{\lambda}^{\varepsilon}(x)\right) \leq \delta(\varepsilon) \text { on } \mathbb{T}^{n}
$$

Integrate

$$
\lambda u_{\lambda}^{\varepsilon}(x)+\xi \cdot D u_{\lambda}^{\varepsilon}(x) \leq L(x, \xi)+\delta(\varepsilon)
$$

by $\boldsymbol{\mu} \in \mathfrak{C}(z, \lambda)$, to get

$$
\lambda u_{\lambda}^{\varepsilon}(z) \leq \int_{\mathbb{T}^{n} \times \mathbb{R}^{n}} L(x, \xi) \mu(d x, d \xi)+\delta(\varepsilon) ; \text { hence, (4) }
$$

Recall that

$$
\lambda u_{\lambda}(z) \geq \inf _{\mu \in \mathfrak{C}(z, \lambda)} \int_{\mathbb{T}^{n} \times \mathbb{R}^{n}} L(x, \xi) \mu(d x, d \xi)
$$

to conclued that

$$
\lambda u_{\lambda}(z)=\inf _{\mu \in \mathfrak{C}(z, \lambda)} \int_{\mathbb{T}^{n} \times \mathbb{R}^{n}} L(x, \xi) \mu(d x, d \xi)
$$

2) The next and last step is to replace inf by min. Choose $\left\{X_{k}\right\} \subset \mathcal{C}(z)$ so that

$$
\int_{K} L(x, \xi) \mu_{z, X_{k}}(d x, d \xi) \rightarrow u_{\lambda}(z)
$$

By replacing by a subsequence, we may assume that $\boldsymbol{\mu}_{\boldsymbol{z}, \boldsymbol{X}_{\boldsymbol{k}}} \xrightarrow{\text { weak }^{*}} \boldsymbol{\mu}$ for some $\boldsymbol{\mu} \in \mathrm{P}_{\rho}$.
3) "Lower semicontinuity + weak* convergence" imply:

$$
\int_{K} L \mu(d x, d \xi) \leq \liminf _{k} \int_{K} L \mu_{z, X_{k}}(d x, d \xi)\left(=\lambda u_{\lambda}(z)\right)
$$

4) Need to check that $\boldsymbol{\mu}$ is a closed measure for (z, λ) : $\forall \psi \in C^{1}\left(\mathbb{T}^{n}\right), \phi(x, \xi):=\lambda \psi(x)+\xi \cdot D \psi(x)$ is in $C^{1}(K)$. Hence,

$$
\lambda \psi(z)=\int_{K} \phi(x, \xi) \mu_{x, X_{k}}(d x, d \xi) \rightarrow \int_{K} \phi(x, \xi) \mu(d x, d \xi)
$$

Thus, $\boldsymbol{\mu} \in \mathfrak{C}(\boldsymbol{x}, \boldsymbol{\lambda}) \cap \mathrm{P}_{\rho}$ and

$$
\lambda u_{\lambda}(z)=\int_{T^{n} \times \mathbb{R}^{n}} L \mu(d x, d \xi)
$$

- We call a minimizer $\boldsymbol{\mu} \in \mathfrak{C}(\boldsymbol{z}, \boldsymbol{\lambda})$ as generalized Mather measure for (z, λ). We write $\mathfrak{M}(z, \lambda)$ for all minimizers $\boldsymbol{\mu} \in \mathrm{P}_{\mathrm{c}}(z, \boldsymbol{\lambda})$. Also, called as a discounted Mather measure - One can show that $\mathfrak{M}(z, \lambda) \subset \mathrm{P}_{\rho}$.

Another approach to the existence of Mather

MEASURES.

Assume that

$$
L \in C(K)
$$

For $\phi \in \boldsymbol{C}(\boldsymbol{K})$, set

$$
\begin{aligned}
& H_{\phi}(x, p):=\max _{|\xi| \leq \rho} \xi \cdot p-\phi(x, \xi) \\
& F_{\lambda, \phi}(x, p, u):=\lambda u+H_{\phi}(x, p)
\end{aligned}
$$

Let Γ denote the set of all $(\psi, \phi) \in C\left(\mathbb{T}^{n}\right) \times C(K)$ such that $\psi \in \mathcal{S}^{-}\left(\boldsymbol{F}_{\boldsymbol{\lambda}, \phi}\right)$. That is,

$$
\lambda \psi(x)+\xi \cdot D \psi(x) \leq \phi(x, \xi) \quad \text { for all }(x, \xi) \in K
$$

For fixed $(\boldsymbol{z}, \boldsymbol{\lambda})$, let

$$
G(z, \lambda)=\{\phi-\lambda \psi(z):(\psi, \phi) \in \Gamma\}
$$

Γ and $G(z, \boldsymbol{\lambda})$ are closed convex cones with vertex at the origin in $C\left(\mathbb{T}^{n}\right) \times C(K)$ and $C(K)$, respectively.

Let $G^{*}(\boldsymbol{z}, \boldsymbol{\lambda})$ denote the dual cone, i.e.,

$$
G^{*}(z, \lambda):=\left\{\nu \in C^{*}(K):\langle\nu, g\rangle \geq 0 \forall g \in G(z, \lambda)\right\}
$$

We invoke the Hahn-Banach theorem:

1) $G(z, \lambda)$ has nonempty interior. Choose $(\mathbf{0}, \mathbf{1}) \in \Gamma$ so that $1 \in G(z, \lambda)$. For any $\phi \in C(K)$ such that $\|\phi\|_{\infty} \leq 1$, we have $(0,1+\phi) \in \Gamma$ and $1+\phi \in G(z, \lambda)$.
2) $L-\lambda u_{\lambda}(z) \in \partial G(z, \lambda)$. Indeed, $L-\lambda u_{\lambda}(z) \in G(z, \lambda)$ and $L-\lambda u_{\lambda}(z)-\frac{1}{k} \notin G(z, \lambda)$ for all $k \in \mathbb{N}$.
3) HB theorem $\Longrightarrow \exists \boldsymbol{\nu} \in C^{*}(\boldsymbol{K})$ such that, $\boldsymbol{\nu} \neq \mathbf{0}$, and

$$
\left\langle\nu, g-\left(L-\lambda u_{\lambda}(z)\right)\right\rangle \geq 0 \quad \forall g \in G(z, \lambda)
$$

4) Select $\boldsymbol{g}=\boldsymbol{t}\left(\boldsymbol{L}-\boldsymbol{\lambda} u_{\lambda}(z)\right), \boldsymbol{t}>\boldsymbol{0}$, in the above, to find

$$
(t-1)\left\langle\nu, L-\lambda u_{\lambda}(z)\right\rangle \geq 0
$$

and

$$
\langle\nu, L\rangle=\lambda u_{\lambda}(z)\langle\nu, 1\rangle
$$

5) Select $g=L-\lambda u_{\lambda}(z)+f$, with any $f \geq 0$, to find that

$$
\langle\nu, f\rangle \geq 0, \text { i.e., } \nu \in \mathrm{M}_{\rho}^{+}
$$

Set

$$
\mu:=\frac{\nu}{\nu(K)} \in \mathrm{P}_{\rho}
$$

6) Fix any $(\psi, \phi) \in \Gamma$ and note that $(\psi, \phi)+\left(L, u_{\lambda}\right) \in \Gamma$ and $\phi+L-\lambda\left(\psi+u_{\lambda}\right)(z) \in G(z, \lambda)$. Select $g=\phi+L-\lambda\left(\psi+u_{\lambda}\right)(z)$, to see

$$
\langle\mu, \phi\rangle \geq \lambda \psi(z)
$$

Let $\psi \in C^{1}\left(\mathbb{T}^{n}\right)$. Choose $\phi=\lambda \psi(x)+\xi \cdot D \psi(x)$, to find

$$
\langle\mu, \lambda \psi+\xi \cdot D \psi(x)\rangle \geq \lambda \psi(z)
$$

This is valid also for $-\psi$ in place of ψ. Hence,

$$
\lambda \psi(z)=\langle\mu, \lambda \psi+\xi \cdot D \psi\rangle \quad \forall \psi \in C^{1}\left(\mathbb{T}^{n}\right)
$$

7) The conclusion:

$$
\mu \in \mathfrak{C}(z, \lambda) \quad \text { and } \quad \lambda u_{\lambda}(z)=\langle\boldsymbol{\mu}, L\rangle=\int_{K} \boldsymbol{L} \boldsymbol{\mu} .
$$

Exercises. 1. Prove that $\boldsymbol{\Gamma}$ is a convex set.
2. Prove that if $a>0$, then $L-\lambda u_{\lambda}(z)-a \notin G(z, \lambda)$.

VANISHING DISCOUNT PROBLEM FOR
Hamilton-Jacobi equations II
Our HJE is as follows:

$$
\begin{equation*}
\lambda u+\boldsymbol{H}(x, D u)=0 \quad \text { in } \mathbb{T}^{n} \tag{1}
\end{equation*}
$$

Assumptions on \boldsymbol{H} :

- $H \in C\left(\mathbb{T}^{n} \times \mathbb{R}^{n}\right)$.
- \boldsymbol{H} is coercive, i.e.,

$$
\lim _{r \rightarrow \infty} \inf _{\mathbb{T}^{n} \times\left(\mathbb{R}^{n} \backslash B_{r}\right)} H(x, p)=\infty
$$

- \boldsymbol{H} is convex, i.e., $\boldsymbol{p} \mapsto \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p})$ is convex, $\forall \boldsymbol{x} \in \mathbb{T}^{\boldsymbol{n}}$.

Theorem 1

$$
\lambda u_{\lambda}(z)=\min _{\mu \in \mathfrak{C}(z, \lambda)} \int_{\mathbb{T}^{n} \times \mathbb{R}^{n}} L(x, \xi) \mu(d x, d \xi)
$$

The min is attained at $\boldsymbol{\mu} \in \mathrm{P}_{\rho} \cap \mathfrak{C}(\boldsymbol{z}, \boldsymbol{\lambda})$, where, for $\boldsymbol{\mu} \in \mathrm{P}_{\rho}$, $\operatorname{supp} \boldsymbol{\mu} \subset \boldsymbol{K}=\mathbb{T}^{n} \times \overline{\boldsymbol{B}}_{\rho}$ and ρ does not depend of $\boldsymbol{\lambda}>\mathbf{0}$.

The closedness of $\mu \in \mathfrak{C}(z, \lambda)$ is described as: $\forall \psi \in C^{1}\left(\mathbb{T}^{n}\right)$,

$$
\lambda \psi(z)=\int_{\mathbb{T}^{n} \times \mathbb{R}^{n}}(\lambda \psi(x)+\xi \cdot D \psi(x)) \mu(d x, d \xi)
$$

This condition is stable under the weak* convergence of sequences in $\mathrm{P}_{\boldsymbol{\rho}}$. For instance, if $\boldsymbol{\lambda}_{\boldsymbol{j}} \rightarrow \mathbf{0}+$ and
$\mathrm{P}_{\rho} \cap \mathfrak{C}\left(\boldsymbol{z}, \boldsymbol{\lambda}_{j}\right) \ni \mu_{j} \xrightarrow{\text { weak }^{*}} \boldsymbol{\mu}$, then
(2) $\quad 0=\int_{\mathbb{T}^{n} \times \mathbb{R}^{n}} \xi \cdot D \psi(x) \mu(d x, d \xi) \quad \forall \psi \in C^{1}\left(\mathbb{T}^{n}\right)$.

We call $\boldsymbol{\mu} \in \mathrm{P}_{\mathrm{c}}$ a closed measure (for $\boldsymbol{\lambda}=0$) if (2) holds. Let $\mathfrak{C}(0)$ denote the set of all closed measures $\boldsymbol{\mu} \in \mathrm{P}_{\mathbf{c}}$.

Recall the ergodic problem:

$$
H(x, D u)=c \quad \text { in } \mathbb{T}^{n}
$$

We know the following.

Theorem 2

Let \boldsymbol{c} be the ergodic constant. Then

- $u_{\boldsymbol{\lambda}}-\max _{\mathbb{T}^{n}} u_{\boldsymbol{\lambda}} \rightarrow \boldsymbol{u}_{\mathbf{0}}$ in $\boldsymbol{C}\left(\mathbb{T}^{\boldsymbol{n}}\right)$ along a sequence $\boldsymbol{\lambda}_{\boldsymbol{j}} \rightarrow \mathbf{0 +}$,
- $\lambda u_{\lambda} \rightarrow-c$ in $C\left(\mathbb{T}^{n}\right)$ as $\boldsymbol{\lambda} \rightarrow 0^{+}$,
- $\boldsymbol{u}_{\mathbf{0}}$ is a solution of (3).

We have a representation theorem for \boldsymbol{c}.

Theorem 3

Let \boldsymbol{c} be the ergodic constant. Then

$$
-c=\min _{\mu \in \mathfrak{C}(0)} \int_{\mathbb{T}^{n} \times \mathbb{R}^{n}} L(x, \xi) \mu(d x, d \xi)
$$

Proof. 1) Let $\boldsymbol{u}_{\mathbf{0}} \in \operatorname{Lip}\left(\mathbb{T}^{n}\right)$ be a solution of $\boldsymbol{H}=\boldsymbol{c}$ in \mathbb{T}^{n}. We have $\left\|\boldsymbol{D} \boldsymbol{u}_{0}\right\|_{\infty}<\infty$. By approximation, $\exists u_{0}^{\varepsilon} \in C^{1}\left(\mathbb{T}^{n}\right), \delta(\varepsilon)>0$ such that

$$
\left\{\begin{array}{l}
-c+H\left(x, D u_{0}^{\varepsilon}(x)\right) \leq \delta(\varepsilon) \text { in } \mathbb{T}^{n} \\
u_{0}^{\varepsilon} \rightarrow u_{0} \text { in } C\left(\mathbb{T}^{n}\right)\left(\varepsilon \rightarrow 0^{+}\right) \\
\delta(\varepsilon) \rightarrow 0^{+}\left(\varepsilon \rightarrow 0^{+}\right)
\end{array}\right.
$$

In particular,

$$
-c+\xi \cdot D u_{0}^{\varepsilon}(x) \leq L(x, \xi)+\delta(\varepsilon) \quad \forall(x, \xi)
$$

Integrating by $\boldsymbol{\mu} \in \mathfrak{C}(\mathbf{0})$ and sending $\varepsilon \rightarrow \mathbf{0 +}$ yield

$$
-c \leq \int_{\mathbb{T}^{n} \times \mathbb{R}^{n}} L(x, \xi) \mu(d x, d \xi)
$$

Thus,

$$
-c \leq \inf _{\mu \in \mathfrak{C}(0)} \int_{\mathbb{T}^{n} \times \mathbb{R}^{n}} L(x, \xi) \mu(d x, d \xi)
$$

2) Existence of a minimizer: Fix $\boldsymbol{z} \in \mathbb{T}^{n}$ and for each $\boldsymbol{\lambda}>\mathbf{0}$ choose $\mu_{\lambda} \in \mathfrak{M}(z, \lambda) \cap \mathrm{P}_{\rho}$ so that

$$
\lambda u_{\lambda}(z)=\int_{\mathbb{T}^{n} \times \mathbb{R}^{n}} L(x, \xi) \mu_{\lambda}(d x, d \xi)
$$

Recall that

$$
\lim _{\lambda \rightarrow 0^{+}} \lambda u_{\lambda}(z)=-c
$$

We can choose $\boldsymbol{\lambda}_{\boldsymbol{j}} \rightarrow \mathbf{0}+$ so that

$$
\mu_{\lambda_{j}} \xrightarrow{\text { weak }^{*}} \mu_{0} \in \mathrm{P}_{\rho} .
$$

As in the argument for a fixed $\boldsymbol{\lambda}>\mathbf{0}$, we find that $\boldsymbol{\mu}_{\mathbf{0}} \in \mathfrak{C}(\mathbf{0})$,

$$
\int_{\mathbb{T}^{n} \times \mathbb{R}^{n}} L \mu_{0}(d x, d \xi) \leq \liminf _{j \rightarrow \infty} \int_{\mathbb{T}^{n} \times \mathbb{R}^{n}} L \mu_{\lambda_{j}}(d x, d \xi)=-c
$$

Hence, μ_{0} is a minimizer:

$$
-c=\int_{\mathbb{T}^{n} \times \mathbb{R}^{n}} L \mu_{0}(d x, d \xi)
$$

- Any minimizer $\boldsymbol{\mu} \in \mathfrak{C}(\mathbf{0})$ is called a Mather measure. Denoted by $\mathfrak{M}(0)$.

Our purpose here is:

Claim 4

The whole family $\left\{u_{\lambda}\right\}_{\lambda>0}$ "converges" to a function $\boldsymbol{u}_{\boldsymbol{0}}$.
Formal expansion:

$$
\lambda u_{\lambda} \approx-c+\lambda u_{0}(x)+\lambda^{2} u_{1}(x)+\cdots
$$

page:10.6

Then,

$$
\begin{aligned}
u_{\lambda} & \approx-\lambda^{-1} c+u_{0}(x)+\lambda u_{1}(x)+\cdots \\
0 & =\lambda u_{\lambda}+H\left(x, D u_{\lambda}\right) \approx-c+H\left(x, D u_{0}+\cdots\right)+\cdots
\end{aligned}
$$

and hence,

$$
-c+H\left(x, D u_{0}\right)=0
$$

$0 \gtrsim-c+\lambda u_{0}+\cdots+\xi \cdot\left(D u_{0}+\lambda D u_{1}+\cdots\right)-L(x, \xi)$.
If $\mu_{0} \in \mathfrak{M}(0)$, then

$$
\int(-c-L) \mu_{0}=0, \quad \int \xi \cdot\left(D u_{0}+\lambda D u_{1}+\cdots\right) \mu_{0} \approx 0
$$

Hence,

$$
0 \gtrsim \lambda \int u_{0} \mu_{0}, \quad \text { i.e., } \int u_{0} \mu_{0} \leq 0
$$

Theorem 5

The whole family $\left\{u_{\lambda}+\lambda^{-1} c\right\}_{\boldsymbol{\lambda}>0}$ converges to a solution $\boldsymbol{u}_{\mathbf{0}}$ in $\boldsymbol{C}\left(\mathbb{T}^{n}\right)$ of (3).
(Davini-Fathi-Iturriaga-Zavidovique=2016)
Proof. 1) Note that $\boldsymbol{v}_{\boldsymbol{\lambda}}:=u_{\boldsymbol{\lambda}}+\boldsymbol{\lambda}^{-1} \boldsymbol{c}$ satisfies

$$
\lambda v_{\lambda}+H\left(x, D v_{\lambda}\right)=\lambda u_{\lambda}+c+H\left(x, D u_{\lambda}\right)=c \text { in } \mathbb{T}^{n}
$$

If we set $\boldsymbol{H}_{\boldsymbol{c}}(\boldsymbol{x}, \boldsymbol{p})=\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p})-\boldsymbol{c}$, then $\boldsymbol{v}_{\boldsymbol{\lambda}}$ is a solution of $\boldsymbol{\lambda} \boldsymbol{v}_{\boldsymbol{\lambda}}+\boldsymbol{H}_{\boldsymbol{c}}=\mathbf{0}$ in \mathbb{T}^{n}. If $\boldsymbol{u}_{\mathbf{0}}$ is a solution of $\boldsymbol{H}=\boldsymbol{c}$ in \mathbb{T}^{n}, then it is also a solution of $\boldsymbol{H}_{\boldsymbol{c}}\left(\boldsymbol{x}, \boldsymbol{D} \boldsymbol{u}_{\mathbf{0}}\right)=\mathbf{0}$ in $\mathbb{T}^{\boldsymbol{n}}$. Note that the Lagrangian corresponding to $\boldsymbol{H}_{\boldsymbol{c}}$ is given by

$$
L_{c}(x, \xi):=\sup _{p} \xi \cdot p-H_{c}(x, p)=L(x, \xi)+c
$$

Replacing $(\boldsymbol{H}, \boldsymbol{L})$ by $\left(\boldsymbol{H}_{\boldsymbol{c}}, \boldsymbol{L}_{\boldsymbol{c}}\right)$, we may assume that $\boldsymbol{c}=\mathbf{0}$. We need to show that the solutions $\boldsymbol{u}_{\boldsymbol{\lambda}}$ of $\boldsymbol{\lambda} \boldsymbol{u}+\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{D u})=\mathbf{0}$ in \mathbb{T}^{n} converge to a solution $\boldsymbol{u}_{\mathbf{0}}$ of $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{D u})=\mathbf{0}$ in \mathbb{T}^{n}.
2) Let $\boldsymbol{v}_{0} \in \operatorname{Lip}\left(\mathbb{T}^{\boldsymbol{n}}\right)$ be a solution of $\boldsymbol{H}=\mathbf{0}$ in $\mathbb{T}^{\boldsymbol{n}}$. Choose $C_{0}>0$ so that $\left\|v_{\mathbf{0}}\right\|_{\infty} \leq \boldsymbol{C}_{\mathbf{0}}$. Note that
$\lambda\left(v_{0}+C_{0}\right)+H\left(x, D u_{0}\right) \geq 0, \quad \lambda\left(v_{0}-C_{0}\right)+H \leq 0 \quad$ in \mathbb{T}^{n}.
By comparison,

$$
v_{0}+C_{0} \geq u_{\lambda} \geq v_{0}-C_{0} \quad \text { in } \mathbb{T}^{n}
$$

Hence,

$$
\left|u_{\lambda}(x)\right| \leq 2 C_{0} \quad \text { in } \mathbb{T}^{n}
$$

and the family $\left\{u_{\lambda}\right\}$ is unif-bounded on \mathbb{T}^{n}. Thus, the family $\left\{u_{\lambda}\right\}$ is unif-bounded and equi-Lipschitz continuous on \mathbb{T}^{n}.
3) Let \mathcal{V} denote the set of all limit points in $C\left(\mathbb{T}^{n}\right)$ of $\left\{u_{\lambda}\right\}_{\lambda>0}$ as $\boldsymbol{\lambda} \rightarrow \mathbf{0}^{+}$. We have $\mathcal{V} \neq \emptyset$. Since

$$
\lambda u_{\lambda} \rightarrow 0 \text { in } C\left(\mathbb{T}^{n}\right)(\lambda \rightarrow 0+)
$$

we find that $\boldsymbol{v} \in \mathcal{V}$ is a solution of $\boldsymbol{H}=\mathbf{0}$ in $\mathbb{T}^{\boldsymbol{n}}$.

We claim:

$$
\int v(x) \mu(d x, d \xi) \leq 0 \quad \forall(v, \mu) \in \mathcal{V} \times \mathfrak{M}(0)
$$

Let $\boldsymbol{v} \in \mathcal{V}$ and $\boldsymbol{\mu} \in \mathfrak{M}(\mathbf{0})$. Choose a sequence $\boldsymbol{\lambda}_{\boldsymbol{j}} \rightarrow \mathbf{0 +}$ such that $\boldsymbol{u}_{\lambda_{j}}$ converge to \boldsymbol{v} in $\boldsymbol{C}\left(\mathbb{T}^{n}\right)$. Note that $\boldsymbol{u}_{\boldsymbol{\lambda}}$ is a solution of

$$
\widetilde{\boldsymbol{H}}\left(x, \boldsymbol{D} u_{\lambda}\right)=0 \quad \text { in } \mathbb{T}^{n}, \quad(\text { the ergodic constant }=0!)
$$

where $\widetilde{\boldsymbol{H}}(x, p)=\sup _{\xi}\left(\xi \cdot p-L(x, \xi)+\lambda u_{\lambda}(x)\right)$, which implies that

$$
0=\min _{\nu \in \mathfrak{C}(0)} \int\left(L(x, \xi)-\lambda u_{\lambda}(x)\right) \nu(d x, d \xi)
$$

Since $\boldsymbol{\mu} \in \mathfrak{C}(\mathbf{0})$,

$$
\begin{aligned}
0 & \leq \int\left(L(x, \xi)-\lambda u_{\lambda}(x)\right) \mu(d x, d \xi) \\
& =-\lambda \int u_{\lambda} \mu(d x, d \xi)
\end{aligned}
$$

Sending $\boldsymbol{\lambda}=\boldsymbol{\lambda}_{\boldsymbol{j}} \rightarrow \mathbf{0}^{+}$, we find that

$$
\int v(x) \mu(d x, d \xi) \leq 0
$$

Let \mathcal{W} denote the set of all solutions \boldsymbol{w} of $\boldsymbol{H}=\mathbf{0}$ in $\mathbb{T}^{\boldsymbol{n}}$ such that

$$
\int w(x) \mu(d x, d \xi) \leq 0 \quad \forall \mu \in \mathfrak{M}(0)
$$

We have shown that

$$
\mathcal{V} \subset \mathcal{W}
$$

4) We claim that

$$
\boldsymbol{w} \leq \boldsymbol{v} \text { on } \mathbb{T}^{n} \forall(\boldsymbol{w}, \boldsymbol{v}) \in \mathcal{W} \times \mathcal{V}
$$

which assures that for all $\boldsymbol{v} \in \mathcal{V}$,

$$
v(x)=\max _{w \in \mathcal{W}} w(x) \quad \forall x \in \mathbb{T}^{n}
$$

In particular, if we set $\boldsymbol{v}(\boldsymbol{x}):=\max _{\boldsymbol{w} \in \mathcal{W}} \boldsymbol{w}(\boldsymbol{x})$, then $\mathcal{V}=\{\boldsymbol{v}\}$, and, as $\boldsymbol{\lambda} \rightarrow \mathbf{0}+$,

$$
u_{\lambda} \rightarrow v \quad \text { in } C\left(\mathbb{T}^{n}\right)
$$

5) To show the above, fix any $\boldsymbol{w} \in \mathcal{W}, \boldsymbol{v} \in \mathcal{V}$. Choose $\boldsymbol{\lambda}_{\boldsymbol{j}} \boldsymbol{\rightarrow} \mathbf{0 +}$ so that

$$
u_{\lambda_{j}} \rightarrow v \quad \text { in } C\left(\mathbb{T}^{n}\right)(j \rightarrow \infty)
$$

Fix any $\boldsymbol{z} \in \mathbb{T}^{n}$. Fix a $\boldsymbol{\mu}_{\boldsymbol{\lambda}} \in \mathfrak{M}(\boldsymbol{z}, \boldsymbol{\lambda}) \cap \mathrm{P}_{\rho}$ for each $\boldsymbol{\lambda}>\mathbf{0}$. Note that

$$
\lambda w+\widetilde{H}(x, D w)=0 \quad \text { in } \mathbb{T}^{n}
$$

where $\widetilde{H}(x, p):=\sup _{\xi}(\xi \cdot p-L(x, \xi)-\lambda w(x))$.

By the formula

$$
\lambda w(z)=\min _{\mu \in \mathfrak{C}(z, \lambda)} \int(L(x, \xi)+\lambda w(x)) \mu(d x, d \xi)
$$

we have

$$
\begin{aligned}
\lambda w(z) & \leq \int(L(x, \xi)+\lambda w(x)) \mu_{\lambda} \\
& =\lambda u_{\lambda}(z)+\lambda \int w(x) \mu_{\lambda} \\
& =\lambda u_{\lambda}(z)+\lambda \int w(x) \mu_{\lambda}
\end{aligned}
$$

By passing to a subsequence, we may assume that for some $\mu_{0} \in \mathfrak{M}(0)$,

$$
\mu_{\lambda} \xrightarrow{\text { weak }^{*}} \mu_{0} \quad\left(\lambda=\lambda_{j} \rightarrow 0^{+}\right)
$$

In the limit as $\boldsymbol{\lambda}=\boldsymbol{\lambda}_{\boldsymbol{j}} \rightarrow \mathbf{0}^{+}$,

$$
w(z) \leq v(z)+\int w(x) \mu_{0}(d x, d \xi) \leq v(z)
$$

- We have shown

$$
\lim _{\lambda \rightarrow 0^{+}} u_{\lambda}(x)=\max _{w \in \mathcal{W}} w(x)
$$

