
METASTABILITY FOR PARABOLIC EQUATIONS WITH DRIFT:

PART II. THE QUASILINEAR CASE

HITOSHI ISHII1,∗ AND PANAGIOTIS E. SOUGANIDIS2

Abstract. This is the second part of our series of papers on metastability results for
parabolic equations with drift. The aim is to present a self contained study, using partial
differential equations methods, of the metastability properties of quasi-linear parabolic
equations with a drift and to obtain results similar to those in Freidlin and Koralov [6,8].

Notation. We work in Rn and write Sn for the space of real n × n symmetric matrices.
For any θ ∈ (0, 1], Sn(θ) denotes the subset of all a ∈ Sn satisfying θI ≤ a ≤ θ−1I, where I
denotes the n×n identity matrix. If a ∈ Sn, then tr a denotes its trace, and, for a, b ∈ Sn,
a ≤ b if and only if b−a is a nonnegative definite matrix. Given p ∈ Rn, p⊗p := Σni,j=1pipj .

If U is a subset of Rk for some k ∈ N, then C(U ; Sn(θ)) is the set of Sn(θ)-valued continuous
maps from U into Sn. For a ∈ Sn and p ∈ Rn, ap · p := Σni,j=1aijpjpi. If r1, r2 ∈ R, then
r1∧r2 := min{r1, r2} and r1∨r2 := max{r1, r2} and, for r ∈ R, r+ = r∨0 and r− = (−r)∨0.
We use the convention inf ∅ =∞ and sup ∅ = −∞. The open ball in Rn with radius R > 0
and center at x ∈ Rn is BR(x), and BR := BR(0). Given Ω ⊂ Rn and δ > 0, we write
Ωδ := {x ∈ Ω : dist(x, ∂Ω) ≥ δ}, and, for T > 0, QT := Ω×(0, T ); if T =∞, then we write

Q instead of Q∞. The parabolic boundary of QT is ∂pQT := (Ω × {0}) ∪ (∂Ω × (0, T )).
We denote by Lip(A,Rk) the set of the Rk valued Lipschitz continuous functions defined
in A ⊂ Rk; when k = 1, we often write Lip(A). We write USC(A) and LSC(A) for the set
of upper- and lower-lower semicontinuous functions defined on A, and, when A is open,
C2,1(A) is the space of functions which are continuously differentiable twice with respect
to space and once with respect to time. Given a bounded family of functions fδ : A→ R,
lim sup?fδ(x) := limr→0 sup{fδ(x + y) : x + y ∈ A, |y| + δ ≤ r} and lim inf?fδ(x) :=
limr→0 inf{fδ(x+ y) : x+ y ∈ A, |y|+ δ ≤ r}. If A is a closed subset of Rn and f : A→ R,
arg min(f |A) := {x ∈ A : f(x) = miny∈A f(y)}. We use C to denote constants, which
may change from line to line. If we want to display the dependence of a constant C on a
parameter a, we write C = C(a). Finally, for a, b ∈ R, a ≈ b means that a and b are close
to each other in a controlled way.

1. Introduction

This is the second part of our series of papers on metastability results for parabolic
equations with drift. The aim is to present a self contained study, using partial differential
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equations methods, of the metastability properties of quasi-linear parabolic equations with
a drift and to obtain results similar to those in Freidlin and Koralov [6, 8].

More precisely we are interested in the asymptotic behavior, as ε→ 0 and t→∞, of the
solution uε = uε(x, t) of the initial-boundary value problem

(1.1) uεt = ε tr[a(x, uε)D2uε] + b(x) ·Duε in Q,

and

(1.2) uε = g on ∂pQ,

where

(1.3) Ω is a bounded C1-domain with outward normal vector ν

and

(1.4) g ∈ C(∂pQ).

Throughout the paper we assume that, for some θ0 ∈ (0, 1],

(1.5) a ∈ C(Ω × R;Sn(θ0)),

and

(1.6) b ∈ Lip(Rn;Rn) with b(0) = 0.

is such that

(1.7)
the origin is a (unique) globally asymptotically stable point of

the dynamical system Ẋ = b(X) generated by b.

This last assumption is further quantified by the additional requirements that b points
inward at the boundary points of Ω, that is,

(1.8) b · ν < 0 on ∂Ω,

and there exist b0 > 0 and r0 > 0 such that such that Br0 ⊂ Ω, and

(1.9) b(x) · x ≤ −b0|x|2 for all x ∈ Br0 .
For later use we summarize all the above assumptions in the list

(1.10) (1.3), (1.4), (1.5), (1.6), (1.7), (1.8) and (1.9).

As mentioned above the goal is to present a self-contained proof, which are stated below
as Theorem 1. Our arguments are based entirely on a partial differential (pde for short)
methods and the main tools are the comparison principle and the construction of two kinds
of barrier functions for parabolic equations. The later was a main subject of our previous
paper [11].

We work with either classical or viscosity solutions depending on the context and most
of the times we say solution without making a distinction.

An important tool is the quasi-potential V c associated, for each c ∈ R, with (a(·, c), b),
which is characterized by the property

V c is the maximal subsolution of Hc(x,Du) = 0 in Ω and u(0) = 0,

where the Hamiltonian Hc ∈ C(Ω × Rn) is given by

Hc(x, p) := a(x, c)p · p+ b(x) · p.
Next we introduce some terminology and recall the notation and hypotheses in [6, 8].
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Given g ∈ C(∂pQ), we set

gmin := min
Ω

g, gmax := max
Ω

g, g1 := min
∂Ω

g, g2 := max
∂Ω

g,

and note that [g1, g2] ⊂ [gmin, gmax].

Consider the map M : [gmin, gmax]→ R given by

(1.11) M(c) := min
∂Ω

V c.

The continuity of a and the stability properties of viscosity solutions yield that the
functions [gmin, gmax] 3 c→M(c) and Ω×[gmin, gmax] 3 (x, c)→ V c(x) ∈ R are continuous.
Indeed the continuity of the latter is an easy consequence of the fact that V c is the unique
(viscosity) solution u ∈ Lip(Ω) of the state-constraints problem for the Hamilton-Jacobi
equation H(x,Du) = 0 in Ω, with the additional condition that u(0) = 0. (See Lemma C.1
in Appendix C for the uniqueness of this state-constraints problem, and also Soner [14],
Fleming and Soner [5] and Ishii [10] for some related aspects.)

Following [6, 8], we assume that

(1.12)
there exist finitely many c1, ..., ck ∈ [gmin, gmax] such that, if c ∈
[gmin, gmax] \ {c1, ..., ck}, then the minimum in (1.11) is achieved at a
single point,

(1.13) c0 := g(0) 6∈ {c1, ..., ck},
and

(1.14) for any i ∈ {1, ..., k}, the minimum in (1.11), with c = ci, is achieved
exactly at two points in ∂Ω.

For c ∈ [gmin, gmax] \ {c1, ..., ck}, x∗(c) denotes the unique minimum point in (1.11). It is
easily seen by (1.12) and the joint continuity of V c(x) in x and c, that x∗ : [gmin, gmax] \
{c1, ..., ck} → ∂Ω is continuous.

Moreover, (1.14) and again the continuity of V c(x) in (x, c) imply that x∗ has left and
right limits at the points ci of discontinuity.

For i ∈ {1, ..., k}, we set

x1(c
i) := lim

c→ci, c<ci
x∗(c) if ci 6= gmin and x2(c

i) := lim
c→ci, c>ci

x∗(c) if ci 6= gmax.

If ci = gmin (resp. ci = gmax), x1(c
i) (resp. x2(c

i)) is the minimum point in (1.11) with
c = ci different from x2(c

i) (resp. x1(c
i)).

We assume that

(1.15) for any i ∈ {1, ..., k}, if gmin < ci < gmax, then lim
c→ci,c<ci

x∗(c) 6= lim
c→ci,c>ci

x∗(c),

which implies that
x1(c

i) 6= x2(c
i) for all i ∈ {1, ..., k}.

Let G1(c
i) := g(x1(c

i)) and G2(c
i) := g(x2(c

i)) and consider the piecewise continuous
function G : [gmin, gmax]→ [g1, g2] defined by{

G(c) := g(x∗(c)) for c ∈ [gmin, gmax] \ {c1, ..., ck},
G(ci) := G1(c

i) for i ∈ {1, ..., k}.
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We define c1 as follows: if G(c0) ≥ c0, then c1 := inf{c ∈ [c0,∞) : G(c) ≤ c},
and, if G(c0) ≤ c0, then c1 := sup{c ∈ (−∞, c0] : G(c) ≥ c}, and note that , since
G([gmin, gmax]) ⊂ [g1, g2], we always have c1 ∈ [g1, g2].

Next we suppose that the graph of G crosses the diagonal from the left to the right at
c1, that is

(1.16)


for all δ0 > 0, there exists δ ∈ (0, δ0] such that

if c1 > gmin, then G(c1 − δ) > c1 − δ,
if c1 < gmax, then G(c1 + δ) < c1 + δ.

We define the function c : (0, ∞)→ [gmin, gmax] as follows: For each λ ∈ (0, ∞),

(1.17) c(λ) :=


c0 if either λ < M(c0) or c1 = c0,

min(c1, inf{c ∈ [c0, c1] : M(c) = λ}) if λ ≥M(c0) and c1 > c0,

max(c1, sup{c ∈ [c1, c0] : M(c) = λ}) if λ ≥M(c0) and c1 < c0.

For later use we summarize the above assumptions in the list

(1.18) (1.12), (1.13), (1.14), (1.15) and (1.16).

The definition of c(λ) is cumbersome. For clarity and to compare with the linear problem,
we discuss what happens when a(x, c) is independent of c. In this case the quasi-potential V
and its minimum value M = min∂Ω V do not depend on c. Assumption (1.12) then states
that V takes its minimum value M over ∂Ω at a unique point x∗. The function G is a
constant given by G(c) = g(x∗) and we have c0 = g(0) and c1 = g(x∗). It is easily checked
that, if g(0) = g(x∗), then c(λ) = g(0) = g(x∗) for all λ > 0, and, if either g(0) < g(x∗) or
g(0) > g(x∗),

c(λ) =

{
c0 if λ ≤M,

c1 if λ > M.

Note that, if either g(0) < g(x∗) or g(0) > g(x∗), c(λ) is discontinuous at λ = M .

The main result, which is similar to [6, Theorem 3.1; 8], is:

Theorem 1. Assume (1.10) and (1.18) and let λ > 0 be a point of continuity of c. If, for
ε ∈ (0, 1), uε ∈ C(Q) ∩ C2,1(Q) is a solution of (1.1) and (1.2), then, for each δ > 0 so
that Ωδ 6= ∅,

lim
ε→0

uε(·, exp(λ/ε)) = c(λ) uniformly in Ωδ.

In view of the previous discussion, when a(x, c) is independent of c, that is for linear
equations, Theorem 1 is a slightly less general version of [11, Theorem 1].

As in [6, 8], to prove Theorem 1 we need to show the following proposition, which was
proved in [8] using several large deviation results from [9].

Theorem 2 (Lemma 3.11 of [8]). Assume (1.10) and (1.18) and let uε ∈ C(Q)∩C2,1(Q) be a
solution of (1.1) and (1.2) with ε ∈ (0, 1). Suppose there exist constants a1, a2, µk, λk, β1, β2
and εk → 0 as k →∞ such that, for all k ∈ N,

0 < a1 ≤ µk < λk ≤ a2, uεk(0, exp(µk/εk)) = β1 and uεk(0, exp(λk/εk)) = β2.

If gmin < β1 < β2 < gmax, then neither of the following is possible:
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(A) There exists δ > 0 such that λk < M(β2)− δ,
(B) There exists δ > 0 such that G(c) < β2 − δ for all c ∈ [β2 − δ, β2 + δ].

If gmin < β2 < β1 < gmax, then neither of the following is possible:

(A′) There exists δ > 0 such that λk < M(β2)− δ,
(B′) There exist δ > 0 such that G(c) > β2 + δ for all c ∈ [β2 − δ, β2 + δ].

We discuss next some of the new ideas that are needed to prove the main theorem.

Recall that we are interested in the asymptotic behavior, as (ε, t) → (0,∞), of the
solution uε of (1.1) and (1.2) in a logarithmic time scale, that is, in the behavior, as ε→ 0,
of uε(x, exp(λ/ε)) for any fixed λ > 0. It turns out that this is a consequence of what we
call “uniform asymptotic constancy” which yields that uε(·, t) behaves similarly to uε(0, t)
in the space C(Ω) equipped with the locally uniform convergence topology,

The uniform asymptotic constancy (see Theorem 8 below) is a crucial observation that
goes beyond [11]. Roughly it says that, if uε is a bounded solution of (2.1), then, as ε→ 0,
for any compact K ⊂ Ω and δ > 0,

uε(x, t) ≈ uε(0, t) uniformly for (x, t) ∈ K × [eδ/ε, ∞).

With the asymptotic constancy at hand the main theorem, Theorem 1, is an easy conse-
quence of Theorem 2.

The proof of Theorem 2 is based on the comparison (or maximum) principle and, thus,
on the construction of barriers, that is sub- and super-solutions of (1.1). We have already
built such functions in our previous work [11], where the matrix a(x, c) is independent of c.
Here (see Theorem 11) we modify the construction of one class of barrier functions in order
to make the comparison argument straightforward.

The building block of the barrier functions in [11] and here is viscosity solutions of
Hα(x,Du) = 0 with some additional normalization conditions, where α ∈ C(Ω;Sn(θ0)) is
is selected as explained below and Hα(x, p) := α(x)p ·p+ (

¯
x) ·p. If Vα is the quasi-potential

associated with (α, b), then Vα > 0 in Ω \ {0} and Mα := min∂Ω Vα > 0.

The barriers wε : Q→ R are supersolutions of (1.1) of the form

wε(x, t) := exp

(
v(x)−m

ε

)
+ dεt,

where m and dε are positive constants such that 0 < m < Mα and dε = exp(−λε/ε) for
some λε ≈ m, and v is an appropriately chosen smooth approximation of Vα. The choice
of m yields that, for ε sufficiently small, wε is compatible with the Dirichlet data g on
∂Ω × [0, ∞).

In view of the fact that a priori we have little knowledge of the uniform in ε regularity of
solutions of (1.1), given such a solution uε, we treat a(x, uε(x, t)) as an arbitrary element
aε = a(x, uε(x, t)) of C(Q;Sn(θ0)).

To motivate the choice of α in the barrier function given the aε above we compute in Q

wεt − tr[aε(x, t)D2wε]− b ·Dwε

= dε − ε−1 exp

(
v(x)−m

ε

)
(Hε(x, t,Dv)− ε tr[aεD2v])

with Hε(x, t, p) := aε(x, t)p · p+ b(x) · p.
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If α satisfies aε(x, t) ≤ α(x) for any (x, t) ∈ Q, then

wεt − tr[aε(x, t)D2wε]− b ·Dwε ≥ dε − ε−1 exp

(
v(x)−m

ε

)
(Hα(x,Dv)−O(ε)) ≥ 0,

with the last the inequality holding, if ε is sufficiently small, because of the choice of v and
dε –the details are given in Theorem 10.

A very important fact in our analysis (see Theorem 9 below for the precise statement) is
that the local uniform topology of C(Ω) is strong enough to imply that, if α(x) ≈ a(x, c)
in C(Ω), then Mα ≈M(c) and arg min(Vα | ∂Ω) ≈ arg min(V c | ∂Ω).

To describe the idea which is in the core of the proof of, for example, the claims (A) and
(A′) of Theorem 2, we consider the very special case that, for ε > 0 sufficiently small and
some constants c, γ > 0 and 0 < δ < µ < λ,

|uε(0, t)− c| < γ for all t ∈ [exp(δ/ε), exp(λ/ε)],

uε(0, exp(δ/ε)) = c and uε(0, exp(µ/ε)) > c+ η for some η ∈ (0, γ).

We then choose α ∈ C(Ω;Sn(θ0)) so that aε(x, t) ≤ α(x) for all (x, t) ∈ Ω × [tε, Tε],
where tε := exp(δ/ε) and Tε := exp(λ/ε). Using the barrier wε as in the linear case (see
[11, Theorem 1 (i)]), we conclude that, as ε → 0, for any ρ < Mα, uε(0, t) → c for all
t ∈ [tε, Tε ∧ exp(ρ/ε)], which implies that µ ≥Mα. Furthermore, according to the previous
arguments, α can be chosen, so that, as γ → 0, Mα →M c.

Organization of the paper. The rest of the paper is organized as follows. In Section 2 we
study the asymptotic constancy, that is the effect of the drift term in parabolic equations
like (1.1). In Section 3 we introduce Hamilton-Jacobi equations related to (1.1), which
have quadratic nonlinearity, and study the continuity properties of the associated quasi-
potentials. Section 4 is devoted to the construction of two kind of barrier functions, or
sub- and super-solutions, which are used to study the asymptotic behavior of solutions of
linear parabolic equations, that is, equations like (1.1) with a ∈ C(Q; Sn(θ0)). The proofs of
Theorem 2 and Theorem 1 are given in Sections 5 and 6 respectively. Some basic properties
of viscosity solutions are explained in the Appendices A, B and C.

2. The Asymptotic constancy

We consider the linear pde

(2.1) uεt = ε tr[aε(x, t)D2uε] + b(x) ·Duε in Q.

We assume, in addition to (1.6) and (1.9), that

(2.2) aε ∈ C(Q,Sn(θ0)).

The goal here is to show that the effect of the drift term in (2.1) is to propagate, as ε→ 0,
the values of the solutions uε at x = 0 to Ω. We call this phenomenon the asymptotic
constancy.

It turns out that the asymptotic constancy does not depend on any properties of aε other
than (2.2). It is, therefore, technically more convenient to study, in some instances, instead
of (2.1), the problem

(2.3) vt = εP+(D2v) + b(x) ·Dv in Q,
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where P+ is the Pucci operator associated with Sn(θ0) defined by

(2.4) P+(X) = sup{tr[AX] : A ∈ Sn(θ0)},

which is, obviously, uniformly elliptic with constants θ0 and θ−10 , that is, for all matrices
X,Y ∈ Sn such that X ≤ Y,

(2.5) θ0 tr(Y −X) ≤ P+(Y )− P+(X) ≤ θ−10 tr(Y −X).

Some useful barrier functions. We fix an auxiliary function h ∈ C2([0, ∞)) with the
properties

(2.6) 0 ≤ h ≤ 1, h = 0 in [0, 1/2], h = 1 in [1,∞) and h′ ≥ 0,

set

k := b0/2 and R0 := 2
√

2n/
√
b0θ0,

choose R ∈ [R0,∞), r ∈ (0, r0], where r0 is as in (1.9), and ε0 ∈ (0, 1) so that

(2.7)
√
ε0R < r,

and, for ε ∈ (0, ε0], let

(2.8) τ = τ(ε) :=
1

k
log

(
r

R
√
ε

)
.

With all these choices at hand we introduce the functions pε, qε : Rn×[0, ∞)→ R defined
by

(2.9) pε(x, t) := h((R
√
ε)−1|x| e−kt)

and

(2.10) qε(x, t) := pε(x, t) +
‖h′′‖L∞
R2θ0

∫ t

0
e−2kt dt;

observe that, since h vanishes identically in a neighborhood of the positive time axis l :=
{0} × (0,∞), pε and qε are smooth in Rn × (0, ∞).

We note that pε appears in the proof of [6, Lemma 3.6; 8]. The difference is that these
references consider equations like (2.1), while here we study (2.3).

The following lemma summarizes the properties of qε. Its proof is based on long explicit
but also straightforward calculations. The reader may want to skip the details on first
reading.

Lemma 1. Assume (1.6), (1.9) and (2.5). With the above choices of k, R, ε0, ε and τ ,
the function qε given by (2.10) is a supersolution to (2.3) in Br0 × (0, ∞). Moreover,{

qε(·, 0) ≥ 0 in Br, qε(·, 0) ≥ 1 in Br \B√εR,

qε ≥ 1 in ∂Br × [0, τ ] and qε(·, τ) ≤ ‖h
′′‖L∞

b0θ0R2 on Br/2.

Proof. First note that

pε(x, 0) = 1 if |x| ≥ R
√
ε and pε(x, t) = 0 if |x| ≤ 1

2
R
√
ε ekt .
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For (x, t) ∈ Br0 × (0, ∞) we write ρ = 1
R
√
ε
, rx,t = (R

√
ε)−1|x| e−kt and x̄ := x/|x| (since,

in view of the above, pε vanishes in a neighborhood of the origin we do not have to be
concerned about x = 0), and find

pεt (x, t) = −kh′(rx,t)|x|ρ e−kt, Dpε(x, t) = h′(rx,t)ρx̄ e−kt,

D2pε(x, t) = h′(rx,t)ρ e−kt
1

|x|
(I − x̄⊗ x̄) + h′′(rx,t)ρ

2 e−2kt x̄⊗ x̄.

Moreover, for any a ∈ Sn(θ0) and all (x, t) ∈ Q with x 6= 0, we have

| tr[a(I − x̄⊗ x̄)]| ≤ θ−10 (n− 1) < θ−10 n and | tr[ax̄⊗ x̄]| ≤ θ−10 ,

and, therefore,

pεt − ε tr[aD2pε]− b(x) ·Dpε

= h′(rx,t)ρ|x| e−kt
{
−k − |x|−1b(x) · x̄− ε

|x|2
tr[a(I − x̄⊗ x̄)]

}
− εh′′(rx,t)ρ2 e−2kt tr[ax̄⊗ x̄]

≥ h′(rx,t)ρ|x| e−kt
{
−k + b0 −

nε

θ0|x|2

}
− ε‖h′′‖L∞ρ2 e−2kt θ−10 .

Observe that

(2.11)
1

2
≤ |x|ρ e−kt ≤ 1 if and only if

1

2
R
√
ε ekt ≤ |x| ≤ R

√
ε ekt,

and

h′(|x|ρ e−kt)
1

|x|2
≤ h′(|x|ρ e−kt)

4 e−2kt

R2ε
≤ h′(|x|ρ e−kt)

4

R2ε
.

Using the observations above and (1.9) and recalling the choices of the constants and
that a ∈ Sn(θ0) is arbitrary, we get

pεt − εP+(D2pε)− b(x) ·Dpε

≥ h′(rx,t)ρ|x| e−kt
{
−k + b0 −

4n

θ0R2

}
− ‖h′′‖L∞

e−2kt

θ0R2
≥ −‖h′′‖L∞

e−2kt

θ0R2
.

Thus, noting that, for all t > 0,

pεt (0, t)− εP+(D2pε(0, t))− b(0) ·Dpε(0, t) = 0

we conclude that

pεt − εP+(D2pε)− b(x) ·Dpε ≥ −‖h′′‖L∞
e−2kt

θ0R2
in Br0 × (0, ∞),

and, hence, qε is a supersolution of (2.3) in Br0 × (0, ∞).

Finally, we observe that, if 0 ≤ t ≤ τ and x ∈ ∂Br, then

|x| e−kt√
εR

≥ r e−kτ√
εR

= 1 and qε(x, t) ≥ pε(x, t) = 1,

and, if x ∈ Br/2, then

|x| e−kτ√
εR

≤ r e−kτ

2
√
εR

=
1

2
and qε ≤ pε +

‖h′′‖L∞
b0θ0R2

=
‖h′′‖L∞
b0θ0R2

.
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Moreover,

qε(x, 0) = pε(x, 0) = h(|x|/(
√
εR)) ≥

{
0 for all x ∈ Br,
1 for all x ∈ Br \B√εR.

�

An application of the Harnack inequality. We use a consequence of the Harnack
inequality to obtain an a priori bound for the oscillations of the uε’s, which are uniform in
ε and t up to ∞.

If uε ∈ C2,1(Q) is a solution of (2.1), then

vε(y, t) := uε(
√
εy, t) for (y, t) ∈ Br0/√ε × [0,∞),

satisfies

(2.12) vεt = tr[aε(
√
εy, t)D2vε] +

b(
√
εy)√
ε
·Dvε in Br0/

√
ε × (0, ∞).

It also follows from (1.6) that there exist Lb > 0 such that

|b(x)| ≤ Lb|x| for all x ∈ Br0 ,
and, hence,

(2.13)
|b(
√
εy)|√
ε
≤ Lb|y| for all y ∈ Br0/√ε.

Next we recall the following consequence of the Harnack inequality from Krylov [12,
Theorem 4.2.1].

Theorem 3. Assume (2.2) and (2.13), fix R ∈ (0, 2], (z, τ) ∈ Rn × (0,∞) such that
BR(z) ⊂ Br0/

√
ε) and τ > 2R2, and let w ∈ C2,1(BR(z)× (τ − 2R2, τ)) be a nonnegative

solution of (2.12) in BR(z)× (τ − 2R2, τ). There exists a constant C = C(R, θ0, Lb, n) > 1
such that

w(z, τ −R2) ≤ C inf
y∈BR/2(z)

w(y, τ).

We use now Theorem 3 to obtain the following improvement of oscillation-type result for
solutions to (2.1).

Corollary 4. Assume (2.2) and (2.13) and, for ε ∈ (0, 1), let uε ∈ C(Q) ∩ C2,1(Q) be a
solution of (2.1) in Q. Fix m ∈ N and T > 0 and assume that (m+2)

√
ε ≤ r0, T > 4(m+1)

and

(2.14)

{
uε(0, t) ≤ 0 for all t ∈ (0, T ),

uε(x, t) ≤ 1 for all (x, t) ∈ B(m+2)
√
ε × (0, T ).

There exists a constant η = η(m, θ0, Lb, n) ∈ (0, 1) such that

uε ≤ η in Bm
√
ε × (4(m+ 1), T ).

Proof. Noting that the function vε(y, t) = uε(
√
εy, t) is defined on Bm+2 × (0, T ), we set

w(x, t) = 1− vε(x, t) for (x, t) ∈ Bm+2 × (0, T ).

Observe that w is a solution of (2.12) in Bm+2 × (0, T ) and, by (2.14), that w is a
nonnegative function on Bm+2 × (0, T ) and satisfies

w(0, t) ≥ 1 for all t ∈ (0, T ).
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Let (x, t) ∈ Bm× (4(m+ 1), T ) and choose a finite sequence B1(x1), ..., B1(xm) ⊂ Bm of
balls so that x1 = 0, x ∈ B1(xm) and, if 1 ≤ i < m, then B1(xi+1) ∩B1(xi) 6= ∅. We apply
Theorem 3, with R = 2, to get, for some C = C(θ0, Lb, n) > 1,

w(0, t− 4m) ≤ C inf
y∈B1(x1)

w(y, t− 4(m− 1)).

Hence, if m = 1, we have

w(0, t− 4m) ≤ Cmw(x, t).

If m > 1, repeating the argument above we obtain

w(0, t− 4m) ≤ Cw(x2, t− 4(m− 1)) ≤ C2 inf
y∈B1(x2)

w(y, t− 4(m− 2))

≤ · · · ≤ Cm inf
y∈B1(xm)

w(y, t) ≤ Cmw(x, t).

Thus, we have w(0, t− 4m) ≤ Cmw(x, t), and, since w(0, t− 4m) ≥ 1 by (2.14), we get

1 ≤ Cm(1− vε(x, t)),

which yields

vε(x, t) ≤ 1− 1

Cm
,

and, hence, with η = 1− 1/Cm,

uε(x, t) ≤ η for all (x, t) ∈ Bm√ε × (4(m+ 1), T ). �

The asymptotic constancy. Let Π be a relatively open, possibly empty, subset of ∂Ω,
set ΩΠ := Ω ∪Π, and, for any δ > 0,

Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ} and ΩΠ
δ := {x ∈ Ω : dist(x, ∂Ω \Π) > δ}.

The next result is the first indication of what we call asymptotic constancy, which is a
straightforward generalization of [11, Theorem 14]. Roughly it says that, for ε small, if a
solution of (2.1) is bounded and small (say negative) in a small cylinder around the positive
time axis l and a portion of the parabolic boundary, then it is small (of order δ > 0) in a
large part of Q after some uniform time depending on δ.

Theorem 5. Assume (1.3), (1.6), (1.7), (1.9) and (2.2) and fix δ ∈ (0, r0). There exist
Tδ > 0 and ε0 ∈ (0, 1), which depend only on δ, θ0, b and Ω, such that, if, for ε ∈ (0, ε0),
uε ∈ C(Q) ∩ C2,1(Q) is a solution of (2.1) and satisfies, for some T (ε) ∈ (Tδ, ∞],

uε ≤ 1 in Ω × [0, T (ε)) and uε ≤ 0 in (Bδ ∪Π)× [0, T (ε)),

then

uε(x, t) ≤ δ for all (x, t) ∈ ΩΠ
δ × [Tδ, T (ε)).

For the proof of Theorem 5 it is necessary to first describe some preliminary facts that
are consequence of the asymptotic stability property of the vector field b.

We fix δ > 0 and set

τ(x) := sup{t ≥ 0 : X(t, x) 6∈ Bδ} for x ∈ Ω,

where X(t) = X(t, x) denotes the solution of

Ẋ(t;x) = b(X(t;x)) and X(0;x) = x.
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Since Ω is bounded and the origin is a globally asymptotically stable point of b, it is
immediate that, if

(2.15) Tδ := sup
x∈Ω

τ(x),

then

(2.16) 0 < Tδ <∞ and X(t, x) ∈ Bδ for all (x, t) ∈ Ω × t ≥ Tδ.

We consider the transport problem

(2.17)


Ut ≤ b ·DU in Ω × (0, Tδ],

min{Ut − b ·DU, U} ≤ 0 on Π × (0, Tδ],

U ≤ 0 in Bδ × {0}.

The first inequality in (2.17) should be understood in the viscosity subsolution sense and
while the second is a viscosity interpretation of the Dirichlet condition, U ≤ 0, on Π (see
[10]).

Lemma 2. Assume (1.3), (1.6), (1.7) and (1.8). If U ∈ USC(Ω × [0, Tδ]) is a subsolution
of (2.17), then U(x, Tδ) ≤ 0 for all x ∈ ΩΠ .

Proof. Fix any x ∈ ΩΠ and, for t ∈ [0, Tδ], set

u(t) = U(X(Tδ − t, x), t).

It is a standard observation (see Lemma A.1 in Appendix A) that u ∈ USC([0, Tδ]) is a
subsolution, if x ∈ Ω, of

(2.18) u′ ≤ 0 in (0, Tδ],

and, if x ∈ Π, of

(2.19)

{
u′ ≤ 0 in (0, Tδ),

u′ ≤ 0 or u ≤ 0 on {Tδ}.

Suppose that max[0, Tδ] u > 0. Since X(Tδ, x) ∈ Bδ and u(0) = U(X(Tδ, x), 0) ≤ 0, there
must exist α > 0 and τ ∈ (0, Tδ] such that the function [0, Tδ] 3 t→ u(t)− αt attains its
maximum on [0, Tδ] at τ . In view of (2.18), if x ∈ Ω, then α ≤ 0, which is a contradiction.
If x ∈ Π, then either α ≤ 0 or τ = Tδ and u(Tδ) ≤ 0, which is again a contradiction. Thus,
we conclude that u ≤ 0 on [0, Tδ]. In particular, u(Tδ) ≤ 0, which shows that U(x, Tδ) ≤ 0
for all x ∈ ΩΠ . �

We proceed with the proof of Theorem 5.

Proof of Theorem 5. Let Tδ > 0 be the number defined by (2.15). For any ε ∈ (0, 1), let Vε
denote the set of all (viscosity) subsolutions v ∈ USC(Ω × [0, Tδ]) of (2.3) such that

(2.20) v ≤ 1 on Ω × [0, Tδ] and v ≤ 0 on (Bδ ∪Π)× [0, Tδ],

and note that Vε, which is clearly nonempty, depends only on δ, Tδ, θ0, b and Ω.

It turns out that Vε has a maximum element. Indeed, for (x, t) ∈ Ω × [0, Tδ], set

vε(x, t) := sup{v(x, t) : v ∈ Vε}
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and consider its upper semicontinuous envelope

v̄ε(x, t) := lim
r→0

sup{vε(y, s) : (y, s) ∈ Ω × [0, Tδ], |(y, s)− (x, t)| < r}.

Standard arguments from the theory of viscosity solutions yield that v̄ε ∈ Vε and, since
0 ∈ Vε, v̄ε ≥ 0 on Ω × [0, Tδ].

Let U ∈ USC(Ω × [0, Tδ]) be the half-relaxed upper limit of v̄ε, that is, for (x, t) ∈
Ω × [0, Tδ],

U(x, t) := lim sup
ε→0

∗v̄ε(x, t);

we refer to Crandall, Ishii and Lions [3] for more discussion about the half relaxed upper
and lower limits.

It follows from Lemma 2 that

U(x, Tδ) ≤ 0 for all x ∈ ΩΠ ,

and, hence, in view of the uniformity encoded in the definition of U , there exists a constant
ε0 ∈ (0, 1), depending only on δ, θ0, b and Ω, such that

vε(x, Tδ) ≤ δ for all x ∈ ΩΠ
δ and ε ∈ (0, ε0).

Finally, since, for each ε, the function

Ω × [0, Tδ] 3 (x, t) 7→ uε(x, s+ t),

with 0 ≤ s < T (ε)− Tδ, belongs to Vε, it follows that, if s ∈ [0, T (ε)− Tδ), then

uε(x, s+ Tδ) ≤ vε(x, Tδ) ≤ δ for all x ∈ ΩΠ
δ and ε ∈ (0, ε0],

and, thus,

uε(x, t) ≤ δ for all (x, t) ∈ ΩΠ
δ × [Tδ, T (ε)) and ε ∈ (0, ε0]. �

Next we use Corollary 4 and the previous theorem to obtain a refinement. Here we
assume an upper bound, say 1, only in a cylindrical neighborhood of the positive time axis
l and show that, if, in addition, the solutions are small, say less than 0 on the half line
l, then they are small, say less than δ, after a time, of order | log ε|, in a small cylindrical
neighborhood of l. We remark that a time period of order | log ε| is “very short” in the
logarithmic scale of time, that is, as ε→ 0, if exp(λε/ε) = O(| log ε|), then λε → 0.

Theorem 6. Assume (1.3), (1.6), (1.7), (1.9) and (2.2). For any δ > 0, there exist
ε0 ∈ (0, 1) and a family {τ(ε)}0<ε≤ε0 ⊂ (0, ∞), both depending on r0, θ0, b, δ and n, and
γ ∈ (0, 1), such that, if, for ε ∈ (0, ε0], u

ε is a solution of (2.1) with the property that, for
some T (ε) ∈ (τ(ε), ∞],

(2.21) uε ≤ 1 in Br0 × (0, T (ε)) and uε(0, t) ≤ 0 for all t ∈ (0, T (ε)),

then

uε ≤ δ in Bγr0 × (τ(ε), T (ε)).

Moreover, there exists a constant C > 0, which depends on r0, θ0, b, δ and n, such that

τ(ε) ≤ C(| log ε|+ 1) for all ε ∈ (0, ε0].
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Although it appears similar, Theorem 6 is actually very different from [11, Theorem 13].
Indeed the second condition in (2.21) on the solutions is required only at the origin, while
in [11, Theorem 13] it is assumed on a neighborhood of the origin. This refinement, which
is important for the proof of Theorem 2, depends technically on the barrier functions qε in
Lemma 1 and the Harnack inequality (Theorem 3).

Proof of Theorem 6. To simplify the argument, we assume that T (ε) =∞ since the general
case can be treated similarly.

Fix δ > 0, choose h ∈ C2([0, ∞)) satisfying (2.6) and m = m(θ0, n, ‖h′′‖L∞) ∈ N such
that

‖h′′‖L∞
b0θ0m2

≤ 1

2
and m ≥ 2

√
2n√
b0θ0

,

let η = η(θ0, Lb, n) ∈ (0, 1) be the constant in Corollary 4, set τ0 = 4(m + 1) and fix
ε1 = ε1(r0,m) ∈ (0, 1) so that

(m+ 2)
√
ε1 ≤ r0.

Then, for any ε ∈ (0, ε1], Corollary 4 gives

uε(x, t) ≤ η for all (x, t) ∈ Bm√ε × (τ0, ∞).

Define
vε := (1− η)−1 (uε − η) in Ω × [0, ∞),

and note that vε is a solution of (2.1), and, moreover,

vε ≤ 1 in Br0 × (0,∞) and vε ≤ 0 on Bm
√
ε × [τ0, ∞).

Let qε be given by (2.10) with R and r replaced by m and r0 respectively. It follows from
Lemma 1 and the comparison principle that, for any fixed s ≥ τ0,

vε(·, s+ ·) ≤ qε in Br0 × [0, τ1],

where τ1 = τ1(ε) > 0 is given by

θ0τ1
2

= log

(
r0
m
√
ε

)
.

Hence,

vε(·, ·+ τ1) ≤
‖h′′‖L∞
b0θ0m2

≤ 1

2
in Br0/2 × [τ0, ∞),

which, with T1(ε) := τ0 + τ1(ε), can be rewritten as

(2.22) uε ≤ η +
1− η

2
=

1

2
(1 + η) in Br0/2 × [T1(ε), ∞).

Next, for j = 2, , 3..., we choose εj ∈ (0, εj−1) so that

(m+ 2)
√
εj ≤

r0
2j−1

,

and, for any ε ∈ (0, εj), select τj = τj(ε) > τj−1(ε) so that

θ0τj(ε)

2
= log

(
r0

2j−1m
√
ε

)
,

and set, for ε ∈ (0, εj),

Tj(ε) := Tj−1(ε) + τ0 + τj(ε) = jτ0 +

j∑
i=1

τi(ε).
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We prove by induction that

(2.23) uε ≤
(

1 + η

2

)j
in Br0/2j × [Tj(ε), ∞).

Since (2.22) yields that (2.23) holds for j = 1, we assume that (2.23) is valid for some
j ∈ N, set

wε :=

(
2

1 + η

)j
uε(·, ·+ Tj(ε)) in Q,

observe that wε is a solution of (2.1), with aε(·, ·) replaced by aε(·, · + Tj(ε)) and satisfies
wε(0, t) ≤ 0 for all t ∈ [0, ∞) and wε ≤ 1 in Br0/2j × [0,∞).

Using Lemma 1 and Corollary 4 as before, with the same m and τ0, but with uε, r0 and
τ1 replaced by wε, r0/2

j and τj+1 respectively, we obtain

wε ≤ 1 + η

2
in Br0/2j+1 × (τ0 + τj+1(ε), ∞),

which, after been rewritten as

uε ≤
(

1 + η

2

)j+1

in Br0/2j+1 × [Tj+1(ε), ∞),

yields the claim.

Finally, selecting j ∈ N so that (
1 + η

2

)j
≤ δ,

setting ε0 = εj , γ = 2−j and τ(ε) = Tj(ε), and observing that, as ε→ 0+, τ(ε) = O(| log ε|)
we complete the proof. �

We have by now completed all the technical steps needed for the next theorem, which
is a nontrivial refinement of Theorem 5. It asserts that bounded solutions to (2.1), which
are small on the positive time axis l and a part of the parabolic boundary, are actually
small in almost the whole domain after some time of order | log ε|. This is the mathematical
statement of what we called asymptotic constancy.

Theorem 7. Assume (1.3), (1.6), (1.7), (1.9) and (2.2) and let {T (ε)}ε∈(0, 1) be a collection
of positive numbers. For each δ > 0 and C0 > 0, there exist constants ε0 ∈ (0, 1) and C > 0
such that, if, for ε ∈ (0, ε0], u

ε ∈ C2,1(Q) is a solution of (2.1) satisfying

uε ≤ C0 in Ω × [0, T (ε)) and uε ≤ 0 in ({0} ∪Π)× [0, T (ε)),

then

uε(x, t) ≤ δ for all (x, t) in ΩΠ
δ × (C| log ε|, T (ε)).

Proof. Theorem 6 yields constants ε1, γ ∈ (0, 1) and C1 > 0 such that, for all 0 < ε ≤ ε1,

uε ≤ δ

2
in Bγr0 × [C1| log ε|, T (ε)).

Theorem 5 applied to vε(x, t) := C−10 (uε(x, t + C1| log ε|) − δ) instead uε implies the
existence of Tδ and ε0 ∈ (0, ε1) such that, for any ε ∈ (0, ε0),

(2.24) vε ≤ δ

2C0
in ΩΠ

δ × [Tδ, T (ε)− C1| log ε|),
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which says that, for any ε ∈ (0, ε0),

uε ≤ δ in ΩΠ
δ × [Tδ + C1| log ε|, T (ε)),

and the proof is complete. �

Next we use the last result to control the difference between values of uε(·, t) and uε(0, t).

Theorem 8. Assume (1.3), (1.6), (1.7), (1.9) and (2.2). For each δ > 0 and C0 > 0 there
exist constants ε0 ∈ (0, 1) and C > 0 such that, if, for ε ∈ (0, ε0], u

ε is a solution of (2.1)
satisfying

|uε| ≤ C0 in Ω × [0, ∞),

then

|uε(x, t)− uε(0, t)| ≤ δ for all (x, t) in Ωδ × [C| log ε|, ∞).

Proof. We double the variables and define the function vε : Ω ×Ω × [0, ∞)→ R by

vε(x, y, t) := uε(x, t)− uε(y, t).

It is standard that vε solves in Ω ×Ω × (0, ∞) the doubled equation

vεt = tr[aε(x, t)D2
xv
ε] + tr[aε(y, t)D2

yv
ε] + b(x) ·Dxv

ε + b(y) ·Dyv
ε

= tr[Aε(x, y, t)D2vε] +B(x, y) ·Dvε,

where

B(x, y) := (b(x), b(y)) and Aε(x, y, t) :=

(
aε(x, t) 0

0 aε(y, t)

)
.

The conclusion follows if we apply Theorem 7, with Π = ∅, to ±vε, since vε(0, 0, t) = 0
for all t ≥ 0 and |vε| ≤ 2C0 in Ω ×Ω × [0, ∞).

The only issue is that the boundary of Ω×Ω does not have the C1− regularity required
for the theorem.

To overcome this difficulty, we only need to approximate Ω ×Ω by smaller C1-domains.
That is, for fixed δ > 0, we choose a C1-domain W ⊂ R2n so that

Ωδ ×Ωδ ⊂Wδ/2 ⊂W ⊂ Ω ×Ω,

where Wδ/2 := {(x, y) ∈W : dist((x, y), ∂W ) < δ/2}, and

B(x, y) ·N(x, y) < 0 for all (x, y) ∈ ∂W,

where N(x, y) denotes the outward unit normal vector at (x, y) ∈ ∂W . �

3. Quasi-potentials

We establish here an important continuity property under perturbations for the minimum
and the arg min map of the quasi-potentials we introduced earlier in the introduction.

We begin with some notation and the introduction of several auxiliary quantities needed
to define the perturbations. To this end, we fix c0 ∈ [gmin, gmax], define H0 ∈ C(Ω × Rn)
by

H0(x, p) = a(x, c0)p · p+ b(x) · p,
choose some δ0 > 0, and, for δ ∈ (0, δ0),

θ(δ) := max{|(a(x, c)− a(x, c0))ξ · ξ| : x ∈ Ω, ξ ∈ Rn, |ξ| ≤ 1, c ∈ [c0 − δ, c0 + δ]}.
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The continuity of a(x, c) (recall (1.5)) yields limδ→0 θ(δ) = 0, and, hence, selecting δ0 > 0
sufficiently small, we assume henceforth that

θ(δ) ≤ θ0/2 for all δ ∈ (0, δ0).

We define a±δ ∈ C(Ω, Sn) and H±δ ∈ C(Ω × Rn), respectively, by

a±δ (x) := a(x, c0)± θ(δ)I and H±δ (x, p) := a±δ (x)p · p+ b(x) · p,

and note that, for all (x, c) ∈ Ω × [c0 − δ, c0 + δ],

(θ0/2)I ≤ a−δ (x) ≤ a(x, c) ≤ a+δ (x) ≤ (θ−10 + θ0/2)I.

We choose χδ ∈ C(Rn; [0, 1]) such that

χδ = 1 in x ∈ Ωδ and χδ = 0 in Rn \Ωδ/2,

and define H±δ ∈ C(Ω × Rn) by

H+
δ (x, p) = χδ(x)H+

δ (x, p) + (1− χδ(x))(θ−10 |p|
2 + b(x) · p),

H−δ (x, p) = χδ(x)H−δ (x, p) + (1− χδ(x))(θ0|p|2 + b(x) · p),
and note that, for all (x, c) ∈ Ωδ/2 × [c0 − δ, c0 + δ] ∪ (Ω \Ωδ/2)× R and p ∈ Rn,

H−δ (x, p) ≤ a(x, c)p · p+ b(x) · p ≤ H+
δ (x, p).

We also have
H±δ (x, p) = H±δ (x, p) for all (x, p) ∈ Ωδ × Rn,

while, for all (x, p) ∈ (Ω \Ωδ/2)× Rn,

H+
δ (x, p) = θ−10 |p|

2 + b(x) · p and H−δ (x, p) = θ0|p|2 + b(x) · p.
If we set

α+
δ (x) = χδ(x)a+δ (x) + (1− χδ(x))θ−10 I and α−δ (x) = χδ(x)a−δ (x) + (1− χδ(x))θ0I,

then, for all (x, p) ∈ Ω × Rn,

H±δ (x, p) = α±δ (x)p · p+ b(x) · p.
Let V0 and V ±δ be respectively the maximal subsolutions of

(3.1)

{
H0(x,Du) = 0 in Ω,

u(0) = 0,

and

(3.2)

{
H±δ (x,Du) = 0 in Ω,

u(0) = 0.

We note by [11, Corollary 5] that V ±δ (x) > 0 and V0(x) > 0 for all x ∈ Ω \ {0}. Since

H−δ ≤ H0 ≤ H+
δ on Ω × Rn, it is clear that

(3.3) V +
δ ≤ V0 ≤ V

−
δ on Ω.

We set

M0 := min
∂Ω

V0, Γ0 := arg min(V0|∂Ω), M±δ := min
∂Ω

V ±δ , Γ±δ := arg min(V ±δ |∂Ω),

and note that
M+
δ ≤M0 ≤M−δ .
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We establish the following result about the continuity of M±δ and Γ±δ with respect to δ.

Theorem 9. Assume (1.3), (1.5), (1.6), (1.7) and (1.8). Then

(3.4) lim
δ→0+

M+
δ = lim

δ→0+
M−δ = M0

and

(3.5) lim sup
δ→0+

Γ+
δ ∪ lim sup

δ→0+
Γ−δ ⊂ Γ0.

The set limit in (3.5) is understood in the sense of Kuratowski, that is, for a given
{Γδ}δ∈(0, δ0) ⊂ Rn,

lim sup
δ→0+

Γδ :=
⋂

r∈(0, δ0)

⋃
δ∈(0, r)

Γδ = {x ∈ Rn : x = lim
k→∞

xk, xk ∈ Γδk , lim
k→∞

δk = 0}.

Now we prove Theorem 9.

Proof of Theorem 9. The uniform in x and δ coercivity of the Hamiltonians H±δ , that is

the fact that H±δ (x, p) → ∞ as |p| → ∞ uniformly in x and δ, yields that the families

{V ±δ }δ∈(0,δ0) are equi-Lipschitz continuous on Ω, and, since V ±δ (0) = 0, relatively compact

in C(Ω).

To prove (3.4) and (3.5), it is enough to show that, if {δj}j∈N ⊂ (0, δ0) is such that both

{V ±δj }j∈N converge in C(Ω) to some V ±0 ∈ C(Ω), that is

V ±0 = lim
j→∞

V ±δj uniformly on Ω,

then

(3.6) M0 = min
∂Ω

V +
0 = min

∂Ω
V −0 .

and

(3.7) arg min(V0|∂Ω) = arg min(V +
0 |∂Ω) = arg min(V −0 |∂Ω).

For notational convenience, we set

M±0 := min
∂Ω

V ±0 and Γ±0 = arg min(V ±0 |∂Ω).

It is well-known (see Lemma B.1 in the Appendix) that the V ±δ ’s satisfy in the viscosity
sense

H±δ (x,DV ±δ ) ≥ 0 on Ω and H±δ (x,DV ±δ ) ≤ 0 in Ω,

that is, the V ±δ ’s are solutions of the state-constraints problems

H±δ (x,DV ±δ ) = 0 in Ω.

By the stability of viscosity properties, the V ±0 ’s satisfy

H0(x,DV
±
0 (x)) ≤ 0 in Ω and H+

θ0
(x,DV +

0 (x)) ≥ 0 on Ω,

where

H+
θ0

(x, p) :=

{
H0(x, p) for (x, p) ∈ Ω × Rn,

θ−10 |p|2 + b(x) · p for (x, p) ∈ ∂Ω × Rn.
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Here we used that

lim sup
δ→0

∗H±δ (x, p) = lim inf
δ→0

∗H±δ (x, p) = H0(x, p) for all (x, p) ∈ Ω × Rn,

and

lim sup
δ→0

∗H+
δ (x, p) = H+

θ0
(x, p) for all (x, p) ∈ Ω × Rn.

The maximality of V0 implies that V −0 ≤ V0 on Ω and, since, in view of (3.3), V0 ≤
V −0 in Ω, we have V −0 = V0, which, obviously gives

(3.8) M0 = M−0 and Γ−0 = Γ0.

The argument for M+
0 and Γ+

0 is slightly more complicated.

Since (3.3) yields V +
0 ≤ V0, it is immediate that

M+
0 ≤M0.

Next we show that

(3.9) min{V0, M0} ≤ V +
0 in Ω,

which, together the previous inequality, give

(3.10) M+
0 = M0 and Γ0 ⊂ Γ+

0 .

We proceed with the proof of (3.9). Fix l ∈ (0, M0), choose γ1 ∈ (0, δ0) so that

V0 > l on Ω \Ωγ1 ,

fix µ ∈ (0, 1) sufficiently close to 1 so that

µV0 > l on Ω \Ωγ1 ,

and choose γ2 ∈ (0, γ1) so that

µ(a(x, c0) + θ(δ)I) ≤ a(x, c0) for all x ∈ Ω and δ ∈ (0, γ2).

Observe that, if uµ(x) := µV0(x), then, for all δ ∈ (0, γ2),

uµ > l in Ω \Ωδ,

and, for all δ ∈ (0, γ2), in the viscosity sense,

H+
δ (x,Duµ) = µ(µ(a(x, c0) + θ(δ))|DV0|2 + b(x) ·DV0)

≤ µ(a(x, c0)|DV0|2 + b ·DV0) ≤ µH0(x,DV0) ≤ 0 in Ω.

Now set ulµ := min{uµ, l} and note that the convexity of H+
δ (x, p) in p yields that, if

δ ∈ (0, γ2), then

H+
δ (x,Dulµ) = H+

δ (x,Dulµ) ≤ 0 in Ωδ.

Also, if δ ∈ (0, γ2), then, since ulµ(x) = l in an open neighborhood Nδ ⊂ Ω of Ω \Ωδ,

Hδ(x,Dulµ(x)) = 0 in Nδ.

Thus we deduce that, for any δ ∈ (0, γ2), u
l
µ is a subsolution of H+

δ (x,Dulµ) ≤ 0 in Ω,

and, hence, ulµ ≤ V +
δ in Ω by the maximality of V +

δ . Sending δ → 0, along the sequence

{δj}, µ→ 1 and l→M0 in this order, we conclude that (3.9) holds.
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Next we show that Γ+
0 ⊂ Γ0. Let z ∈ Γ+

0 \ Γ0 and observe that, since V0(z) > M0, there

is an open, relatively to Ω, neighborhood Nz ⊂ Ω, such that V0 > M0 in Nz, while (3.9)
gives V +

0 ≥M0 in Nz.

Let ρ ∈ C1(Rn) be a defining function of Ω, that is, Ω = {x ∈ Rn : ρ(x) < 0} and
|Dρ| 6= 0 on ∂Ω, and, in particular, Dρ/|Dρ| = ν on ∂Ω.

For any ε > 0, x 7→ V +
0 (x)−ερ(x) achieves a minimum at z overNz. SinceH+

θ0
(x,DV +

0 ) ≥
0 on Ω, we have

0 ≤ H+
θ0

(z, εDρ(z)) = ε(εθ−10 |Dρ(z)|2 + b(z) ·Dρ(z)),

which is a contradiction, in view of the fact that the right hand side is negative if ε is
sufficiently small.

It follows that Γ+
0 \ Γ0 = ∅, that is, Γ+

0 ⊂ Γ0, which, together with (3.10), proves the
claim. �

4. Barrier functions

We adapt and modify here the main argument of building barrier functions of [11] to
obtain information on the behavior of the solutions uε of (2.1) along the positive time axis
l, that is on uε(0, t), for a sufficiently long time interval [0, T (ε)), under the assumption
that the matrices aε ∈ C(QT (ε)) are bounded by α ∈ C(QT (ε)) from above or from below.

Recall that, for any α ∈ C(Ω, Sn(θ0)), Hα ∈ C(Ω × Rn) be the Hamiltonian given by
Hα(x, p) = α(x)p · p + b(x) · p, Vα ∈ Lip(Ω) is the quasi-potential corresponding to (α, b),
and Mα = min∂Ω Vα, and set

Σα := {x ∈ Ω : Vα(x) ≤Mα} Γα := Σα ∩ ∂Ω,

and, any m > 0,

Σm
α := {x ∈ Ω : Vα(x) ≤ m}.

We consider the again (2.1) for a family of aε ∈ C(Q,Sn(θ0)) with ε ∈ (0, 1).

We state two results one for an upper and one for the lower bound. The upper bound is
valid up to λ smaller than Mα in the logarithmic time scale, and the lower bound is valid
up to∞, provided uε, on the boundary portion Γα× [0, T (ε)), is larger than a lower bound.

We begin with the former, which corresponds to [11, Theorem 1 (i)] in its nature. The
latter is related to [11, Theorem 1(ii)].

Theorem 10. Assume (1.2) and (1.10) and fix α ∈ C(Ω, Sn(θ0)), T (ε) ∈ (0, ∞] and
m ∈ (0, Mα). If, for aε ∈ C(QT (ε);Sn(θ0)), where ε ∈ (0, 1), such that

aε(x, t) ≤ α(x) in (x, t) ∈ QT (ε),

uε ∈ C(QT (ε)) ∩ C2,1(QT (ε)) is a subsolution of (2.1) in QT (ε) such that

uε(x, 0) ≤ 0 for all x ∈ Σm
α and sup

QT (ε)

uε <∞,

then, for any δ > 0, there exists ε0 ∈ (0, 1) such that, if ε ∈ (0, ε0), then

uε(0, t) ≤ δ for all t ∈ [0, exp((m− δ)/ε) ∧ T (ε)].

The lower bound is stated next.
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Theorem 11. Assume (1.2), (1.10), fix α ∈ C(Ω, Sn(θ0)), T (ε) ∈ (0, ∞] and m > Mα. If,
for aε ∈ C(Q̄T (ε); Sn(θ0)), where ε ∈ (0, 1), such that

aε(x, t) ≥ α(x) in (x, t) ∈ QT (ε),

uε ∈ C(QT (ε)) ∩ C2,1(QT (ε)) is a solution of (2.1) and (1.2) such that{
uε(x, 0) ≥ 0 for all x ∈ Σm

α ,

uε(x, t) ≥ 0 for all (x, t) ∈ (Σm
α ∩ ∂Ω)× (0, T (ε)),

and

inf
QT (ε)

uε > −∞,

then, for any δ > 0, there exists ε0 ∈ (0, 1) such that, if ε ∈ (0, ε0), then

uε(0, t) ≥ −δ for all t ∈ [0, T (ε)].

The proofs of Theorem 10 and Theorem 11 use the next two lemmata. We state them
without proof for which we refer to [11].

Lemma 3. Assume (1.10) and fix α ∈ C(Ω, Sn(θ0)). For any r ∈ (0, r0), there exist
vr ∈ C2(Ω) and η ∈ (0, 1) such that

(4.1)


Hα(x,Dvr) ≤ −η in Ω \Br,
Hα(x,Dvr) ≤ 1 in Br,

‖vr − Vα‖L∞(Ω) < r.

Lemma 4. Assume (1.10) and fix α ∈ C(Ω, Sn(θ0)). For each m > Mα, there exists
wm ∈ Lip(Ω) and η > 0 such that

(4.2) 0 < min
Ω

wm ≤ max
Ω

wm < m,

and, in the viscosity supersolution sense,

(4.3) Hα(x,−Dwm) ≥ η in Ω and D2wm(x) ≤ η−1I in Ω.

We continue with the proof of Theorem 10 which parallels that of [11, Theorem 8].

Proof of Theorem 10. For r ∈ (0, r0) to be fixed below, let v = vr ∈ C2(Ω̄) (for notational
simplicity we omit the subscript r in what follows) and η > 0 be given by Lemma 3, set,
for x ∈ Ω,

wε(x) := exp

(
v(x)−m+ 2r

ε

)
,

compute, for any (x, t) ∈ Q,

tr[aε(x, t)D2wε] + b(x) ·Dwε

=
wε

ε

(
aε(x, t)Dv ·Dv + b ·Dv + ε tr[aε(x, t)D2w]

)
≤ wε

ε

(
α(x)Dv ·Dv + b(x) ·Dv + ε tr[aε(x, t)D2w]

)
≤ wε

ε

(
Hα(x,Dv) + ε tr[aε(x, t)D2w]

)
.
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and choose ε0 ∈ (0, 1) so that, for all ε ∈ (0, 1),

ε0
(
tr aε(x, t)D2v

)
+
≤ min{η, r, 1};

note that ε0 can be chosen so as to depend on aε only through θ0.

We assume henceforth that ε ∈ (0, ε0) and observe that, from the computation above,
we get

(4.4) tr[aε(x, t)D2wε] + b(x) ·Dwε ≤

{
0 for all (x, t) ∈ Ω \Br × (0, ∞),

2
εw

ε for all (x, t) ∈ Br × (0,∞).

Let C0 > 0 be a Lipschitz bound of b, and note that, if Hα(x, p) ≤ 0, then |p| ≤ C0θ
−1
0 ,

which implies that Vα(x) ≤ C0|x|2/(2θ0) ≤ C0r
2/(2θ0) for all x ∈ Br. We may thus assume

by replacing, if needed, r > 0 by a smaller number that Vα ≤ r in Br. Accordingly we have

v −m+ 2r ≤ Vα −m+ 3r ≤ −m+ 4r in Br,

and

(4.5) wε ≤ exp

(
−m+ 4r

ε

)
in Br.

Observe also that

v −m+ 2r > Vα −m+ r ≥ r in Ω \Σm
α ,

and

(4.6) wε > exp
(r
ε

)
in Ω \Σm

α .

Next set dε = 2
ε exp(−m+4r

ε ) and

zε(x, t) = wε(x) + dεt for (x, t) ∈ Ω × [0, ∞).

It is immediate from (4.4) and (4.5) that

(4.7) zεt ≥ ε tr[aεD2zε] + b ·Dzε in Q.

We choose C1 > 0 so that, for all ε ∈ (0, 1),

uε ≤ C1 on Q,

and by replacing, if necessary, ε0 > 0 by a smaller number we may assume that, for all
ε ∈ (0, ε0),

C1 < exp
(r
ε

)
.

It follows from (4.6) that

zε ≥ wε ≥ exp
(r
ε

)
> C1 ≥ uε on (Ω \Σm

α )× [0, ∞);

note that, since m < Mα, we have ∂Ω ⊂ Ω \Σm
α .

On the other hand, for any x ∈ Σm
α , we have

zε(x, 0) = wε(x) > 0 ≥ uε(x, 0),

and, hence,
uε ≤ zε on ∂pQ.

We find from the above, (4.7) and the comparison principle that

uε ≤ zε on Q,
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and, in particular, for any t ∈ [0, exp((m− 5r)/ε)],

uε(0, t) ≤ zε(0, t) ≤ wε(0) +
2

ε
exp

(
−r
ε

)
≤ exp

(
−m+ 3r

ε

)
+

2

ε
exp

(
−r
ε

)
.

It is now clear that, for a given δ > 0, we may choose r > 0 and ε0 ∈ (0, 1) so that if
ε ∈ (0, ε0), and, then

uε(0, t) ≤ exp

(
−m+ 3r

ε

)
+

2

ε
exp

(
−r
ε

)
< δ for all t ∈ [0, exp((m− δ)/ε)]. �

We continue with

Proof of Theorem 11. We fix r ∈ (0, r0) small enough so that, as in the previous proof,
Vα(x) ≤ r for all x ∈ Br and m− 5r > Mα. In view of Lemma 3 and Lemma 4, we may
choose v ∈ C2(Ω), w ∈ Lip(Ω) and η > 0 so that, in addition to (4.1), 0 < minΩ w <
maxΩ w < m− 5r, and, in the viscosity supersolution sense,

Hα(x,−Dw) ≥ η and D2w ≤ η−1I in Ω.

Setting u = −w, ρ− = minΩ w and ρ+ = maxΩ w, we get that ρ+ < m − 5r, 0 > −ρ− ≥
u(x) ≥ −ρ+ for all x ∈ Ω and, in the viscosity subsolution sense,

Hα(x,Du) ≥ η and D2u ≥ −η−1I in Ω.

For ε ∈ (0, 1), we set

zε = − exp

(
v −m+ 2r

ε

)
+ exp

(u
ε

)
− exp

(
−ρ−

ε

)
,

and find that, in the viscosity subsolution sense,

tr[aεD2zε] + b ·Dzε ≥− 1

ε
exp

(
v −m+ 2r

ε

)(
Hα(x,Dv) + ε tr[aεD2v]

)
+

1

ε
exp

(u
ε

) (
Hα(x,Du) + ε tr[aεD2u]

)
in Q.

Let ε0 ∈ (0, 1) be a constant to be specified later and assume henceforth that ε ∈ (0, ε0).
Observing that in the viscosity subsolution sense,

tr[aεD2u] ≥ −η−1 tr aε ≥ −n(θ0η)−1 in Q,

and
tr[aεD2v] ≥ −‖D2v‖L∞(Ω) tr aε ≤ −nθ−10 ‖D

2v‖L∞(Ω) in Q,

and setting, for x ∈ Ω,

f(x) =− 1

ε
exp

(
v(x)−m+ 2r

ε

)(
Hα(x,Dv(x)) + εnθ−10 ‖D

2v‖L∞(Ω)

)
+

1

ε
exp

(
u(x)

ε

)(
η − εn(ηθ0)

−1) ,
we obtain, in the viscosity subsolution sense,

(4.8) tr[aεD2zε] + b ·Dzε ≥ f(x) in Q.

Choosing ε0 ∈ (0, 1) so that

ε0nθ
−1
0 ‖D

2v‖L∞(Ω) ≤ min{η, 1} and ε0n(ηθ0)
−1 ≤ η

2
,
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we get

η − εn(ηθ0)
−1 ≥ η

2
and Hα(x,Dv) + εnθ−10 ‖D

2v‖L∞(Ω) ≤

{
0 for all x ∈ Ω \Br,
2 for all x ∈ Br,

and, accordingly,

f ≥


0 in Ω \Br,

−2

ε
exp

(
−m+ 4r

ε

)
+

η

2ε
exp

(
−ρ+

ε

)
in Br.

Since ρ+ < m− 5r, we have

−2 exp

(
−m+ 4r

ε

)
+
η

2
exp

(
−ρ+

ε

)
≥ −2 exp

(
−ρ+ − r

ε

)
+
η

2
exp

(
−ρ+

ε

)
= exp

(
−ρ+

ε

)(
−2 exp

(
−r
ε

)
+
η

2

)
.

We may assume by replacing ε0 ∈ (0, 1) by a smaller number that

2 exp

(
−r
ε0

)
≤ η

2
,

and, therefore,

−2 exp

(
−m+ 4r

ε

)
+
η

2
exp

(
−ρ+

ε

)
≥ 0,

which ensures that f ≥ 0 in Ω, and, hence, zε, as a function of (x, t) ∈ Q, is a subsolution
of (2.1).

Next observe that

zε < 0 on Ω,

and, if Vα(x) > m,

zε(x) ≤ − exp

(
Vα(x)−m+ r

ε

)
≤ − exp

(r
ε

)
.

Fix a constant C1 > 0 so that, for ε ∈ (0, 1), uε ≥ −C1 on Q, and, assume henceforth
that ε0 ∈ (0, 1) is small enough so that

exp

(
r

ε0

)
≥ C1.

Consequently, we have

zε(x) ≤


− exp

(
r
ε

)
≤ −C1 ≤ uε(x, t) for all (x, t) ∈ (Ω \Σm

α )× [0, ∞),

0 ≤ uε(x, 0) for all x ∈ Σm
α ,

0 ≤ uε(x, t) for all (x, t) ∈ (Σm
α ∩ ∂Ω)× (0, ∞),

that is

zε(x) ≤ uε(x, t) for all (x, t) ∈ ∂pQ,
and, hence, by the comparison principle, we get

zε(x) ≤ uε(x, t) for all (x, t) ≤ Q.
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Finally, we note that

zε(0) = − exp

(
v(0)−m+ 2r

ε

)
− exp

(
−ρ−

ε

)
≥ − exp

(
−m+ 4r

ε

)
− exp

(
−ρ−

ε

)
→ 0 as ε→ 0,

which completes the proof. �

5. The proof of Theorem 2

We begin with the proof of the assertions of Theorem 2 concerning (A) and (A′), which
can be restated as follows.

Theorem 12. Assume (1.5), (1.2), (1.10) and (1.18) and, for ε ∈ (0, 1), let uε ∈ C(Q) ∩
C2,1(Q) be a solution of (1.1). Assume furthermore that the collection {uε}ε∈(0, 1) is uni-
formly bounded on Q and suppose that there exist sequences µk < λk and εk ∈ (0, 1), and
constants 0 < a1 < a2 and β1, β2 ∈ R such that limk→∞ εk = 0, and, for all k ∈ N,

0 < a1 ≤ µk < λk ≤ a2, uεk(0, exp(µk/εk)) = β1 and uεk(0, exp(λk/εk)) = β2.

If either β1 < β2 or β2 < β1, then

lim sup
k→∞

λk ≥M(β2).

Proof. Since the arguments are similar here we treat only the case β1 < β2.
We argue by contradiction and suppose that

(5.1) lim sup
k→∞

λk < M(β2).

Let δ > 0 be a constant to be fixed later, define α+
δ and H+

δ as in Section 3, with c0
replaced by β2, and, as in Section 3, let V +

δ be the maximal subsolution of

H+
δ (x,Du) = 0 in Ω, u(0) = 0,

and set M+
δ = min∂Ω V

+
δ .

Since Theorem 9 yields

lim
δ→0+

M+
δ = M(β2),

in view of (5.1), we may choose δ > 0 so that

lim sup
k→∞

λk + δ < M+
δ .

We fix m ∈ R so that

lim sup
k→∞

λk + δ < m < M+
δ ,

and, by passing to a subsequence if necessary, we may assume that

λk ≤ m− δ for all k ∈ N.

Set

Σ = {x ∈ Ω : V +
δ (x) ≤ m},

and note that Σ is a compact subset of Ω.



METASTABILITY FOR PARABOLIC EQUATIONS WITH DRIFT 25

In view of the continuity of the map t 7→ uε(0, t), reselecting, if needed, β1, µk and λk,
we may assume that, all t ∈ [exp(µk/εk), exp(λk/εk)] and k ∈ N,

(5.2) β2 −
δ

2
< β1 ≤ uεk(0, t) ≤ β2.

Now we choose γ ∈ (0, δ/2) small enough, so that

(5.3) Σ ⊂ Ωγ and β2 − β1 > 2γ.

Theorem 8 gives ε0 ∈ (0, 1) such that, if ε ∈ (0, ε0),

(5.4) |uε(x, t)− uε(0, t)| < γ for all (x, t) ∈ Ωγ × [exp (a1/ε) , ∞).

We assume that εk < ε0 for all k ∈ N, and combine (5.4) and (5.2), to find

(5.5) |uε(x, t)− β2| ≤ δ for all (x, t) ∈ Ωγ × [exp(µk/εk), exp(λk/εk)],

and

uεk(x, exp(µk/εk)) ≤ β1 + γ for all x ∈ Ωγ and k ∈ N.
Since (5.5) implies that

a(x, uεk(x, t)) ≤ αδ(x) for all (x, t) ∈ Ω × [exp(µk/εk), exp(λk/εk)], k ∈ N,

setting {
vk(x, t) = uεk(x, t+ exp(µk/εk))− β1 − γ,
ak(x, t) = a(x, uεk(x, t+ exp(µk/εk))),

we see that

vkt = εk tr[ak(x, t)D2vk] + b(x) ·Dvk for all (x, t) ∈ Q.
Furthermore, we have

vk(x, 0) ≤ 0 for all x ∈ Ωγ ,
which ensures that

vk(x, 0) ≤ 0 for all x ∈ Σ.
An application of Theorem 10, with εk, v

k and γ in place of ε, uε and δ, respectively,
guarantees that, for sufficiently large k, we have

vk(0, t) ≤ γ for all t ∈ [0, exp(λk/εk)− exp(µk/εk)],

which, in particular, yields

vk(0, exp(λk/εk)− exp(µk/εk)) ≤ γ.
This shows that

uεk(0, exp(λk/εk)) ≤ β1 + 2γ < β2,

which is a contradiction. �

Next, we prove the assertions of Theorem 2 concerning (B) and (B′), which we state as
follows.

Theorem 13. Assume (1.5), (1.2), (1.10) and (1.18) and, for ε ∈ (0, 1), let uε ∈ C(Q) ∩
C2,1(Q) be a solution of (1.1) and (1.2). Assume further that there exist sequences µk < λk
and εk ∈ (0, 1) and constants 0 < a1 < a2 and β1, β2 ∈ [gmin, gmax] such that limk→∞ εk = 0,
and, for all k ∈ N,

0 < a1 ≤ µk < λk ≤ a2, uεk(0, exp(µk/εk)) = β1 and uεk(0, exp(λk/εk)) = β2.
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If gmin < β1 < β2 < gmax, then

lim
r→0+

sup
|c−β2|≤r

G(c) ≥ β2,

and if gmin < β2 < β1 < gmax, then

lim
r→0+

inf
|c−β2|≤r

G(c) ≤ β2.

Proof. Since the arguments are similar, here we only consider the case where gmin < β2 <
β1 < gmax holds.

We suppose that

(5.6) lim
r→0+

inf
|c−β2|≤r

G(c) > β2,

and obtain a contradiction.
For a small constant δ > 0 to be chosen later, define α−δ and H−δ as in Section 3, with c0

replaced by β2, let V −δ be the quasi-potential corresponding to (α−δ , b), that is the maximal
subsolution of

H−δ (x,Du) = 0 in Ω and u(0) = 0.

and V β2 the quasi-potential corresponding to the pair (a(·, β2), b), set

M−δ = min
∂Ω

V −δ , Γ−δ = arg min(V −δ |∂Ω) and Γ β2 = arg min(V β2 |∂Ω),

and observe that, in view of assumptions (1.12) and (1.15),

lim
r→0+

inf
|c−β2|≤r

G(c) = min
Γβ2

g.

Hence, by (5.6), we get

min
Γβ2

g > β2.

Furthermore, in view of (3.5), we may choose δ > 0 so that

(5.7) min
Γ−δ

g > β2 + δ.

Finally replacing, if necessary, β1, µk and λk we may assume

β1 ≥ uε(0, t) ≥ β2 for all t ∈ [exp(µk/εk), exp(λk/εk)], k ∈ N,

and

(5.8) β1 < β2 + δ/2.

Since the maximum principle gives gmin ≤ uε ≤ gmax in Q, we find that Theorem 8 yields
ε0 ∈ (0, 1) such that, if ε ∈ (0, ε0), then

(5.9) |uε(x, t)− uε(0, t)| < δ/2 for all (x, t) ∈ Ωδ/2 × [exp(a1/ε), ∞).

Consequently, if k ∈ N is sufficiently large, then εk < ε0 and

(5.10) |uεk(x, t)− β2| < δ for all (x, t) ∈ Ωδ/2 × [exp(µk/εk), exp(λk/εk)].

Henceforth, passing if necessary to a subsequence, we assume that (5.10) holds for all
k ∈ N and, thus

(5.11) α−δ (x) ≤ a(x, uεk(x, t)) for all (x, t) ∈ Ω × [exp(µk/εk), exp(λk/εk)], k ∈ N.



METASTABILITY FOR PARABOLIC EQUATIONS WITH DRIFT 27

We set Π = {x ∈ ∂Ω : g(x) > β2+δ} and note by (5.7) that Π is an open neighborhood,
relative to ∂Ω, of Γ−δ and

{x ∈ Ω : V −δ (x) ≤M−δ } = {x ∈ Ω : V −δ (x) ≤M−δ } ∪ Γ
−
δ ⊂ Ω

Π ,

and deduce that, for γ > 0 sufficiently small,

(5.12) {x ∈ Ω : V −δ (x) ≤M−δ + γ} ⊂ ΩΠ
γ .

We fix γ > 0 so that (5.12) and 5γ < β1 − β2 hold, set

Σ = {x ∈ Ω : V −δ (x) ≤M−δ + γ},
and select a sequence {νk}k∈N so that

(5.13)

{
µk < νk < λk, uεk(0, exp(νk/εk)) = β1 − 3γ for all k ∈ N,

β1 ≥ uεk(0, t) ≥ β1 − 3γ for all t ∈ [exp(µk/εk), exp(νk/εk)], k ∈ N.

Furthermore, observe that

Σ ⊂ ΩΠ
γ ,

and, in view of (5.7) and (5.8),

(5.14) g(x) > β1 + δ/2 > β1 for all x ∈ Π.
Similarly to (5.9), using Theorem 8, we may assume that, for some r ∈ (0, r0),

|uεk(x, t)− uεk(0, t)| < γ for all (x, t) ∈ Br × [exp(a1/εk),∞) and k ∈ N.

We set

vk(x, t) = uεk(x, t+ exp(µk/εk))− β1 + γ for (x, t) ∈ Q, k ∈ N,

and note that

vk(x, 0) ≥ 0 for all x ∈ Br.
We apply Theorem 10, with ε, uε and α replaced respectively by εk, −vk and θ−10 I, to

deduce that, for sufficiently large k ∈ N and for some ρ > 0,

−vk(0, t) ≤ γ for all t ∈ [0, exp(ρ/εk)],

that is,

uεk(0, t) ≥ β1 − 2γ for all t ∈ [exp(µk/εk), exp(µk/εk) + exp(ρ/εk)],

In view of the choice of νk, this implies that for sufficiently large k ∈ N,

(5.15) exp(νk/εk) > exp(µk/εk) + exp(ρ/εk).

Next we set

wk(x, t) = uεk(x, t+ exp(µk/εk))− β1 + 3γ for (x, t) ∈ Q, k ∈ N,

and note that, in view of (5.13) and (5.14),{
wk(0, t) ≥ 0 for all t ∈ [0, exp(νk/εk)− exp(µk/εk)]

wk(x, t) = g(x)− β1 + 3γ ≥ 0 for all (x, t) ∈ Π × [0, ∞).

Recalling (5.15), we apply Theorem 7, with ε and uε replaced by εk and −wk, to get, for
sufficiently large k,

−wk(x, exp(νk/ε)− exp(µk/εk)) ≤ γ for all x ∈ ΩΠ
γ ,
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which reads

uεk(x, exp(νk/ε)) ≥ β1 − 4γ for all x ∈ ΩΠ
γ .

Finally, we set

zk(x, t) = uεk(x, t+ exp(νk/εk))− β1 + 4γ for (x, t) ∈ Q,
observe that {

zk(x, 0) ≥ 0 for all x ∈ Σ,
zk(x, t) = g(x)− β1 + 4γ ≥ 0 for all (x, t) ∈ Π × [0, ∞),

and invoke Theorem 11, to conclude that for sufficiently large k ∈ N,

zk(0, exp(λk/εk)− exp(νk/εk)) ≥ −γ,
and, hence,

uεk(0, exp(λk/εk)) ≥ β1 − 5γ > β2,

which is a contradiction. �

6. Proof of the main theorem

The proof of Theorem 1 is an easy consequence of Theorem 2 as shown in [6,8]. For the
reader’s convenience, we reproduce it here. We begin with an introductory lemma.

Lemma 5. Assume (1.5), (1.10) and (1.4) and let uε ∈ C(Q) ∩ C2,1(Q) be a solution of
(1.1) and (1.2). For any δ > 0 there exist λ0 > 0 and ε0 ∈ (0, 1) such that

(6.1) |uε(0, t)− g(0)| ≤ δ for all t ∈ [0, exp(λ0/ε)] and ε ∈ (0, ε0).

Proof. Let V ∈ Lip(Ω) be the quasi-potential associated with (θ−10 I, b). We choose m > 0
small enough so that m < min∂Ω V and

{x ∈ Ω : V (x) ≤ m} ⊂ {x ∈ Ω : |g(x)− g(0)| ≤ δ/2}.

Applying Theorem 10, with aε(x, t) = a(x, uε(x, t)) and α(x) = θ−10 I and uε replaced by
±(uε − g(0))− δ/2, we get that, for each γ > 0, there is ε0 ∈ (0, 1) such that

±(uε(0, t)− g(0))− δ/2 ≤ γ for all t ∈ [0, exp((m− γ)/ε)] and ε ∈ (0, ε0).

We fix γ > 0 small enough so that γ < min{δ/2, m}, and we get (6.1) with λ0 = m−γ. �

Proof of Theorem 1. In view of Theorem 8, we only need to show that

(6.2) lim
ε→0

uε(0, exp(λ/ε)) = c(λ).

The comparison principle yields that

gmin ≤ uε ≤ gmax on Q.

We fix λ > 0 and we consider first the case λ < M(c0), which implies that c(λ) = c0, and
prove that

(6.3) lim sup
ε→0

uε(0, exp(λ/ε)) ≤ c(λ) = c0.

We argue by contradiction and suppose that

(6.4) lim sup
ε→0

uε(0, exp(λ/ε)) > c0.
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Using the continuity of the function M , we choose β1, β2 ∈ R so that

c0 < β1 < β2 < lim sup
ε→0

uε(0, exp(λ/ε)) and M(β2) > λ,

and note that, in view of Lemma 5, there are constants λ0 ∈ (0, λ) and ε0 ∈ (0, 1) such
that

(6.5) uε(0, exp(λ0/ε)) ≤ β1 for all ε ∈ (0, ε0).

On the other hand, (6.4) yields a sequence {εk}k∈N ⊂ (0, ε0) such that εk → 0 and

uεk(0, exp(λ/εk)) ≥ β2 for all k ∈ N,

while, (6.5) gives

uεk(0, exp(λ0/εk)) ≤ β1 for all k ∈ N.
The continuity of t 7→ uεk(0, t) implies that, for each k ∈ N, there exist µk, λk ∈ [λ0, λ]

such that λ0 ≤ µk < λk ≤ λ and

uεk(0, exp(µk/εk)) = β1 and uεk(0, exp(λk/εk)) = β2.

Hence we have

gmin ≤ c0 < β1 < β2 < lim sup
ε→0

uε(0, exp(λ/ε)) ≤ gmax and λk ≤ λ < M(β2) for allk ∈ N,

which contradicts the assertion of Theorem 2 concerning condition (A).

A similar argument shows that

lim inf
ε→0

uε(0, exp(λ/ε)) ≥ c(λ),

and, thus, we have (6.2) in the case where λ < M(c0).

Next we consider the case where λ ≥ M(c0) and c1 = c0 and recall that, by definition,
c(λ) = c0. We first suppose that

lim sup
ε→0

uε(0, exp(λ/ε)) > c0.

We use (1.16) and the piecewise continuity of G to select β2 ∈ R so that G is continuous
at β2, c0 < β2 < lim supε→0 u

ε(0, exp(λ/ε)) and G(β2) < β2, and, hence, for δ > 0 small
enough, we have G(c) < β2 − δ for all c ∈ [β2 − δ, β2 + δ].

Choosing, for instance, β1 = (c0 + β2)/2, so that c0 < β1 < β2, and, using Lemma 5 as
in the previous case, we may choose sequences εk → 0, and {µk}, {λk} such that, for some
λ0 > 0 and for all k ∈ N,

λ0 ≤ µk < λk ≤ λ, uεk(0, exp(µk/εk)) = β1 and uεk(0, exp(λk/εk)) = β2.

This is a situation that condition (B) of Theorem 2 holds, which is a contradiction. Thus,
we conclude that

lim sup
ε→0

uε(0, exp(λ/ε)) ≤ c0.

A similar argument shows

lim inf
ε→0

uε(0, exp(λ/ε)) ≥ c0,

and, hence, we have (6.2) when λ ≥M(c0) and c1 = c0.

Now we consider the case where λ ≥M(c0) and c1 > c0. The definition of c1 implies that
G(c) > c for all c ∈ [c0, c1) and min{G(c)− c : c ∈ (c1, c2)} ≤ 0 for all c2 > c1. Moreover,



30 HITOSHI ISHII1,∗ AND PANAGIOTIS E. SOUGANIDIS2

c(λ) ∈ [c0, c1], M(c) 6= λ for all c ∈ [c0, c(λ)), and, if c(λ) < c1, then M(c(λ)) = λ. Since
M is continuous and λ ≥M(c0), it follows that λ > M(c) for all c ∈ [c0, c(λ)).

Suppose that

lim sup
ε→0

uε(0, exp(λ/ε)) > c(λ).

We assume first that c(λ) = c1, which implies that c1 < gmax. Then (1.16) yields β2 ∈ R
so that G is continuous at β2, G(β2) < β2 and c1 < β2 < lim supε→0 u

ε(0, exp(λ/ε)). Fixing
β1 ∈ (c1, β2), we argue, as in the previous case, with c1 in place of c0 and find sequences
εk → 0, {µk} and {λk}, and constants λ0 > 0 and δ > 0 such tha for all k ∈ N,

λ0 ≤ µk < λk ≤ λ, uεk(0, exp(µk/εk) = β1, uεk(0, exp(λk/εk)) = β2,

and

G(c) < β2 − δ for all c ∈ [β2 − δ, β2 + δ],

which together contradict Theorem 2.

Assume next that c(λ) < c1. As noted above, we have M(c(λ)) = λ and M(c) < λ for
all c ∈ [c0, c(λ)), and, in particular,

(6.6) M(c) ≤ λ for all c ∈ [c0, c(λ)].

Since the function c is continuous at λ, we may choose η > 0 so that c(r) < c1 for all
r ∈ [λ, λ+η]. For any r ∈ (λ, λ+η], noting that r > M(c0), we find by the definition of c(r)
that M(c(r)) = r, which together with (6.6) implies that c(r) > c(λ). We choose γ ∈ (0, η)
small enough so that c(λ+ γ) < lim supε→0 u

ε(0, exp(λ/ε)). If we set β2 = c(λ+ γ) and fix
β1 ∈ (c(λ), β2), then we have c(λ) < β1 < β2 < lim supε→0 u

ε(0, exp(λ/ε)).
As before, we choose sequences εk → 0, {µk} and {λk} such that, for some λ0 > 0 and

for all k ∈ N,

λ0 ≤ µk < λk ≤ λ, uεk(0, exp(µk/εk)) = β1, uεk(0, exp(λk/εk)) = β2.

Furthermore, noting that M(β2) = M(c(λ + γ)) = λ + γ > λ, we may choose δ > 0 so
that λk < M(β2)− δ for all k ∈ N. This contradicts Theorem 2.

Thus, in the case when λ ≥M(c0) and c1 > c0, we have

lim sup
ε→0

uε(0, exp(λ/ε)) ≤ c(λ),

and, by similar considerations, we find

lim inf
ε→0

uε(0, exp(λ/ε)) ≥ c(λ),

and we conclude that (6.2) holds when λ ≥M(c0) and c1 > c0.

A similar argument proves that (6.2) holds when λ ≥ M(c0) and c1 < c0, and the proof
is complete. �

Appendix A. A subsolution property

For T > 0 and a (relatively) open subset Π of ∂Ω, we consider the problem

(A.1)

{
Ut ≤ b(x) ·DU in Ω × (0, T ],

min{Ut − b(x) ·DU, U} ≤ 0 on Π × (0, T ].
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Lemma A.1. Let U ∈ USC(QT ) be a subsolution of (A.1), fix z ∈ ΩΠ and set

u(t) = U(X(T − t, z), t) for t ∈ [0, T ].

Then u ∈ USC([0, T ]) and, if z ∈ Ω, it is a subsolution of

(A.2) u′ ≤ 0 in (0, T ]

and, if z ∈ Π, it is a subsolution of

(A.3)

{
u′ ≤ 0 in (0, T ),

min{u′, u} ≤ 0 on {T}.

We note that observations like the lemma above concerning the restriction of viscosity
solutions to lower dimensional manifolds go back to Crandall and Lions [4, Proposition
I.13].

Proof. Let φ ∈ C1((0, T ]) and assume that u− φ has a strict maximum at t̂ ∈ (0, T ].

For α > 0 consider the function Φ : QT → R given by

Φ(x, t) := U(x, t)− φ(t)− α|x−X(T − t, z)|2,
let (xα, tα) ∈ QT be a maximum point of Φ, set x̂ = X(T − t̂, z), and observe that, as
α→∞, (xα, tα)→ (x̂, t̂), α|xα −X(T − tα, z)|2 → 0 and U(xα, tα)→ U(x̂, t̂).

Then, for α sufficiently large, we may assume that (xα, tα) ∈ Ω × (0, T ] if either z ∈ Ω
or t̂ < T , and (xα, tα) ∈ ΩΠ × (0, T ] if z ∈ Π.

If (xα, tα) ∈ Ω× (0, T ], (A.1) yields

φ′(tα)− 2α(X(T − tα, z)− xα) · Ẋ(T − tα, z) ≤ 2αb(xα) · (xα −X(T − tα, z)),
and then

φ′(tα) ≤ 2α(xα −X(T − tα, z)) · (b(xα)− b(X(T − tα, z)))
≤ 2‖Db‖L∞(Ω)α|xα −X(T − tα, z))|2.

Similarly, if (xα, tα) ∈ Π × (0, T ], then we get

φ′(tα) ≤ 2‖Db‖L∞(Ω)α|xα −X(T − tα, z))|2 or U(xα, tα) ≤ 0.

Sending α→∞ yields

φ′(t̂) ≤ 0 if either z ∈ Ω or t̂ < T,

and
φ′(t̂) ≤ 0 or u(t̂) ≤ 0 if z ∈ Π and t̂ = T.

�

Appendix B. The supersolution property up to the boundary

For H(x, p) = α(x)p · p+ b(x) · p and α ∈ C(Ω, Sn(θ0)) consider the

(B.1)

{
H(x,Du) = 0 in Ω,

u(0) = 0.

Lemma B.1. The maximal subsolution V ∈ Lip(Ω) of (B.1) with V (0) = 0 satisfies, in
the viscosity sense,

H(x,DV ) ≥ 0 on Ω.
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Note that the importance of the lemma above is that the viscosity inequality holds up to
the boundary.

Proof. Let φ ∈ C1(Ω) and assume that V − φ has a strict minimum at x̂ ∈ Ω and V (x̂) =
φ(x̂).

To prove the assertion of the lemma, we argue by contradiction and suppose thatH(x̂, Dφ(x̂)) <
0.

Indeed, if x̂ = 0, then

H(x̂, Dφ(x̂)) = α(0)Dφ(0) ·Dφ(0) ≥ 0,

and, henceforth, we may assume that x̂ 6= 0.

We may choose constants r > 0 and ε > 0 so that 0 6∈ Br(x̂) and

H(x,Dφ) ≤ 0 for all x ∈ Ω ∩Br(x̂),(B.2)

ε+ φ(x) < V (x) for all x̂ ∈ Ω ∩ ∂Br(x̂).(B.3)

It follows from (B.2) that, in the viscosity sense,

H(x,Dφ) ≤ 0 in Ω ∩Br(x̂).

Set

W (x) = max{V (x), ε+ φ(x)} for x ∈ Ω,
and observe that Ω = N ∪M , where N = Ω ∩ Br(x̂), M = {x ∈ Ω : V (x) > ε + φ(x)}
(note that N, M are both open subsets of Ω),

H(x,DW ) ≤ 0 in N in the viscosity sense,

W = V in M and x̂ ∈ M . Hence, W is a subsolution of (B.1), such that W (x̂) > V (x̂),
which contradicts the maximality of V . �

Appendix C. A comparison theorem

We follow the arguments of [10, Corollary 2.2 & Remark 2.4] to give a proof of following
lemma.

Lemma C.1. Let a0 ∈ C(Rn,Sn(θ0)) and H(x, p) = a0(x)p · p + b(x) · p. If v ∈ Lip(Ω)
and w ∈ LSC(Ω) are respectively a subsolution and a supersolution of the state-constraints
problem

H(x,Du) = 0 in Ω,

that is, v and w satisfy, respectively,

H(x,Dv) ≤ 0 in Ω and H(x,Dw) ≥ 0 on Ω,

and v(0) ≤ w(0), then u ≤ v on Ω.

Note that the viscosity property of v and w at the origin is indeed not required in the
lemma above. That is, it is enough to assume that v and w are a subsolution of

H(x,Dv) ≤ 0 in Ω \ {0},

and a supersolution of

H(x,Dw) ≥ 0 on Ω \ {0}.
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Proof. Fix ε > 0 and choose r ∈ (0, r0) sufficiently small so that

max
∂Br

v ≤ min
∂Br

w + ε,

set Ω(r) := Ω \Br, define h ∈ C(∂Ω(r)) and vε ∈ Lip(Ω) by

vε = v + ε and h(x) =

{
min∂Br w if x ∈ ∂Br,
max∂Ω v if x ∈ ∂Ω,

and observe that vε and w are, respectively, a subsolution and a supersolution of the Dirichlet
problem in the viscosity sense (see [10]):{

H(x,Du) = 0 in Ω(r),

u = h or H(x,Du) = 0 on ∂Ω(r).

It follows from [11, Corollary 4] that there exists ψ ∈ Lip(Ω(r)) which is a subsolution
of H(x,Dψ) ≤ −η in Ω(r) for some η > 0 and note, that we may assume by adding, if
necessary a constant, that ψ ≤ v on Ω(r).

Define vε ∈ Lip(Ω(r)) by vε(x) = (1 − ε)v(x) + εψ(x) and note that vε is a subsolution
of {

H(x,Du) ≤ −εη in Ω(r),

u ≤ h or H(x,Du) ≤ −εη on ∂Ω(r).

It is clear that the domain Ω(r) satisfies the uniform interior cone condition and, hence,
we apply [10, Corollary 2.2 & Remark 2.4] to vε and wε, to conclude that vε ≤ wε in Ω(r),
from which, after sending ε→ 0, we get v ≤ w on Ω. �
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