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Abstract. Following [I2] we discuss the large time behavior of solutions of
the Cauchy problem for the Hamilton-Jacobi equation ut + H(x,Du) = 0 in
Rn × (0,∞), where H(x, p) is continuous on Rn × Rn and strictly convex in
p. We present a general convergence result for viscosity solutions u(x, t) of the
Cauchy problem as t →∞.
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1. Introduction
In the last decade, there has been much interest on the asymptotic behavior of

viscosity solutions of the Cauchy problem for Hamilton-Jacobi equations or viscous
Hamilton-Jacobi equations. Namah and Roquejoffre [NR] and Fathi [F2] were the first
those who established fairly general convergence results for the Hamilton-Jacobi equa-
tion ut(x, t)+H(x, Du(x, t)) = 0 on a compact manifold M with smooth strictly convex
Hamiltonian H. The approach by Fathi to this large time asymptotic problem is based
on weak KAM theory [F1, F3, FS1] which is concerned with the Hamilton-Jacobi equa-
tion as well as with the Lagrangian or Hamiltonian dynamical structures behind it.
Barles and Souganidis [BS1, BS2] took another approach, based on PDE techniques, to
the same asymptotic problem. The weak KAM approach due to Fathi to the asymp-
totic problem has been developed and further improved by Roquejoffre [R] and Davini-
Siconolfi [DS]. It should be remarked here that the same kind of asymptotic behavior of
solutions of Hamilton-Jacobi equations has already been studied by Kruzkov [K], P.-L.
Lions [L], and Barles [B1].

In this review we are concerned with the Cauchy problem for the Hamilton-Jacobi
equation

ut + H(x,Du) = 0 in Rn × (0,∞), (1.1)
u(·, 0) = u0, (1.2)
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where H is a scalar function on Rn ×Rn, u = u(x, t) is the unknown scalar function
on Rn × [0,∞), and u0 is a given function on Rn.

The function H(x, p) is assumed here to be convex in p, and we call H the Hamil-
tonian and then the function L, defined by L(x, ξ) = supp∈Rn(ξ · p − H(x, p)), the
Lagrangian.

We are also concerned with the additive eigenvalue problem:

H(x,Dv) = c in Rn, (1.3)

where the unknown is a pair (c, v) ∈ R × C(Rn) for which v is a viscosity solution of
(1.3). This problem is also called the ergodic control problem due to the fact that PDE
(1.3) appears as the dynamic programming equation in ergodic control of deterministic
optimal control. We remark that the additive eigenvalue problem (1.3) appears as well
in the homogenization of Hamilton-Jacobi equations. See for this [LPV].

For notational simplicity, given φ ∈ C1(Rn), we will write H[φ](x) for H(x,Dφ(x))
or H[φ] for the function: x 7→ H(x,Dφ(x)) on Rn. For instance, (1.3) may be written
as H[v] = c in Rn. Also, we denote by S+

H (resp., S−H , and SH) the space of all viscosity
supersolutions (resp., subsolutions, and solutions) u of H[u] = 0 in Rn.

The paper is organized as follows: in Section 2 we state our assumptions on H and
then the main result in [I2] (Theorem 1 below). In Section 3 we present an outline of the
proof of Theorem 1. In Section 4 we discuss basic properties of Aubry sets. In Section
5 we give examples of H to which Theorem 1 applies, an example and two propositions
related to equilibrium points in Aubry sets, and an example for which the desirable
asymptotic behavior does not hold.

2. Main results
We make throughout the following assumptions on the Hamiltonian H.

(A1) H ∈ C(Rn ×Rn).
(A2) H is coercive, that is, for any R > 0,

lim
r→∞

inf{H(x, p) | x ∈ B(0, R), p ∈ Rn \B(0, r)} = ∞.

(A3) For any x ∈ Rn, the function: p 7→ H(x, p) is strictly convex in Rn.
(A4) There are functions φi ∈ C0+1(Rn) and σi ∈ C(Rn), with i = 0, 1, such that for

i = 0, 1,
H(x, Dφi(x)) ≤ −σi(x) almost every x ∈ Rn,

lim
|x|→∞

σi(x) = ∞, lim
|x|→∞

(φ0 − φ1) (x) = ∞.

By adding a constant to the function φ0, we assume henceforth that

φ0(x) ≥ φ1(x) for x ∈ Rn.

We introduce the classes Φ0 and Ψ0 of functions defined, respectively, by

Φ0 = {u ∈ C(Rn) | inf
Rn

(u− φ0) > −∞},
Ψ0 = {u ∈ C([0,∞)×Rn) | inf

(x,t)∈Rn×[0,T ]
(u(x, t)− φ0(x)) > −∞ for any T > 0}.
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We call a function m : [0,∞) → [0,∞) a modulus if it is continuous and nondecreas-
ing on [0,∞) and satisfies m(0) = 0. The space of all absolutely continuous functions
γ : [S, T ] → Rn will be denoted by AC([S, T ],Rn). For x, y ∈ Rn and t > 0, C(x, t)
(resp., C(x, t; y, 0)) will denote the spaces of all curves γ ∈ AC([0, t],Rn) satisfying
γ(t) = x (resp., γ(t) = x and γ(0) = y). For any interval I ⊂ R and γ : I → Rn, we
call γ a curve if it is absolutely continuous on any compact subinterval of I.

We have established the following theorem in [I2].

Theorem 1. (a) Let u0 ∈ Φ0 and assume that (A1)–(A4) hold. Then there is a unique
viscosity solution u ∈ Ψ0 of (1.1) and (1.2)and the function u is represented as

u(x, t) = inf
{∫ t

0

L(γ(s), γ̇(s))ds + u0(γ(0)) | γ ∈ C(x, t)
}

(2.1)

for (x, t) ∈ Rn × (0,∞).
(b) There is a solution (c, v) ∈ R × Φ0 of (1.3). Moreover the constant c is unique

in the sense that if (d,w) ∈ R× Φ0 is another solution of (1.3), then d = c.
(c) Let u ∈ Ψ0 be the viscosity solution of (1.1) and (1.2). Then there is a solution

(c, v) ∈ R× Φ0 of (1.3) for which, as t →∞,

u(x, t) + ct− v(x) → 0 in C(Rn).

Motivated by recent developments due to [BS1, BS2, F2, R, DS] concerning the
large time behavior of solutions of Hamilton-Jacobi equations, the author jointly with
Y. Fujita and P. Loreti (see [FIL1, FIL2]) has recently investigated the asymptotic
problem for viscous Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator and
the corresponding Hamilton-Jacobi equations. The above theorem generalizes main
results of [FIL2]. The new feature in [FIL1, FIL2, I2] is that we deal with Hamilton-
Jacobi equation (1.1) on Rn× (0,∞) and the domain Rn is noncompact while in [BS1,
BS2, F2, R, DS] the auhtors studied (1.1) on Ω× (0,∞) with Ω being compact. Barles
and Roquejoffre [BR] have recently studied the large time behavior of solutions of (1.1)
and (1.2) and obtained, among other results, a generalization of the main result in [NR]
to unbounded solutions. See also [II] for results in the same direction. The large time
behavior of solutions of Hamilton-Jacobi equations with boundary conditions has been
studied by [B1, R, M].

We will see in Example 4 of Section 5 that if H(x, p) does not satisfy strict convexity
(A3) and is just convex in p, then in general assertion (d) does not hold.

Assertion (b) of the above theorem determines uniquely a constant c, which we will
denote by cH , for which (1.3) has a viscosity solution in the class Φ0. The constant cH is
called the additive eigenvalue (or simply eigenvalue) or critical value for the Hamiltonian
H. This definition may suggest that c depends on the choice of (φ0, φ1). Actually, it
depends only on H, but not on the choice of (φ0, φ1), as the characterization of cH in
Proposition 9 below shows. It is clear that if (c, v) is a solution of (1.3), then (c, v + K)
is a solution of (1.3) for any K ∈ R. As is well-known (see [LPV]), the structure
of solutions of (1.3) is, in general, much more complicated than this one-dimensional
structure.
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For any solution (c, v) ∈ R×Φ0 of (1.3), we call the function v(x)−ct an asymptotic
solution of (1.1). It is clear that any asymptotic solution of (1.1) is a viscosity solution
of (1.1) and (1.2). On the other hand, if u is a viscosity solution of (1.1) and (1.2),
(c, v) ∈ R× Φ0, and, as t →∞, we have

u(·, t) + ct− v → 0 in C(Rn),

then (c, v) is a solution of (1.3) and hence an asymptotic solution of (1.1).
Note that L(x, ξ) ≥ −H(x, 0) for all x ∈ Rn and hence inf{L(x, ξ) | (x, ξ) ∈

B(0, R)×Rn} > −∞ for all R > 0. Note as well that for any (x, t) ∈ Rn × (0, ∞) and
γ ∈ C(x, t) the function: s 7→ L(γ(s), γ̇(s)) is measurable. Therefore it is natural and
standard to set ∫ t

0

L(γ(s), γ̇(s))ds = ∞,

with γ ∈ C(x, t), if the function: s 7→ L(γ(s), γ̇(s)) on [0, t] is not integrable. In this
sense the integral in formula (2.1) always makes sense.

In order to prove (c) of Theorem 1, we take an approach close to and inspired by the
generalized dynamical approach introduced by Davini and Siconolfi [DS] (see also [R]).
However our approach does not depend on the Aubry set for H and is much simpler
than the generalized dynamical approach by [DS].

In the following we always assume unless otherwise stated that (A1)–(A4) hold.

3. Outline of proof of Theorem 1.
We give here a brief description of the proof of Theorem 1. We begin with a lemma

(see [I2, Proposition 2.4]).

Lemma 2. Let Ω be an open subset of Rn, φ ∈ C0+1(Ω), and γ ∈ AC([a, b],Rn),
where a, b ∈ R satisfy a < b. Assume that γ([a, b]) ⊂ Ω. Then there is a function
q ∈ L∞(a, b,Rn) such that

d
dt

φ ◦ γ(t) = q(t) · γ̇(t) a.e. t ∈ (a, b),

q(t) ∈ ∂cφ(γ(t)) a.e. t ∈ (a, b).

Here ∂cφ denotes the Clarke differential of φ (see [C]), that is,

∂cφ(x) =
⋂
r>0

co {Dφ(y) | y ∈ B(x, r), φ is differentiable at y} for x ∈ Ω.

Lemma 3 ([I2, Proposition 2.5]). Let Ω be an open subset of Rn and w ∈ C(Ω) a
viscosity solution of H[w] ≤ 0 in Ω. Let a, b ∈ R satisfy a < b and let γ ∈ AC([a, b],Rn).
Assume that γ([a, b]) ⊂ Ω. Then

w(γ(b))− w(γ(a)) ≤
∫ b

a

L(γ(s), γ̇(s))ds.
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Proof. By Lemma 2, there is a function q ∈ L∞(a, b,Rn) such that

d
ds

w(γ(s)) = q(s) · γ̇(s) and q(s) ∈ ∂cw(γ(s)) a.e. s ∈ (a, b).

Noting that H(x, p) ≤ 0 for all p ∈ ∂cw(x) and all x ∈ Ω, we calculate that

w(γ(b))− w(γ(a)) =
∫ b

a

d
ds

w(γ(s))ds =
∫ b

a

q(s) · γ̇(s)ds

≤
∫ b

a

[L(γ(s), γ̇(s)) + H(γ(s), q(s))] ds ≤
∫ b

a

L(γ(s), γ̇(s))ds.

Proof of (a). A way of proving the existence of a viscosity solution u ∈ Ψ0 of (1.1)
and (1.2) is to show that the function u on Rn × (0,∞) given by

u(x, t) = inf
{∫ t

0

L(γ(s), γ̇(s))ds + u0(γ(0)) | γ ∈ C(x, t)
}

(3.1)

is a viscosity solution of (1.1) by using the dynamic programming principle.
In the proof of (a), u denotes always the function given by (3.1).

Lemma 4. There exists a constant C0 > 0 such that

u(x, t) ≥ φ0(x)− C0(1 + t) for all (x, t) ∈ Rn × [0,∞).

Proof. We choose C0 > 0 so that u0(x) ≥ φ0(x) − C0 and H(x,Dφ0(x)) ≤ C0 a.e.
x ∈ Rn. Fix any (x, t) ∈ Rn × (0,∞). For each ε > 0 there is a curve γ ∈ C(x, t) such
that

u(x, t) + ε >

∫ t

0

L(γ(s), γ̇(s))ds + u0(γ(0)).

By Lemma 3, we have

φ0(γ(t))− φ0(γ(0)) ≤
∫ t

0

[L(γ(s), γ̇(s)) + C0] ds,

and hence

u(x, t) + ε > φ0(γ(t))− φ0(γ(0))− C0t + u0(γ(0)) ≥ φ0(x)− C0(1 + t),

which shows that u(x, t) ≥ φ0(x)− C0(1 + t).

Lemma 5. We have

u(x, t) ≤ u0(x) + L(x, 0)t for all (x, t) ∈ Rn × (0,∞).
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We remark here that, thanks to (A1) and (A2), for each R > 0 there is an ε > 0
such that supB(0,R)×B(0,ε) L < ∞.
Proof. For γ(s) := x, we have

u(x, t) ≤
∫ t

0

L(γ(s), γ̇(s)) ds + u0(γ(0)) = u0(x) + L(x, 0)t.

Lemma 6. For each R > 0 there exists a modulus mR such that

u(x, t) ≥ u0(x)−mR(t) for all (x, t) ∈ B(0, R)× [0,∞).

Proof. Let C0 > 0 be as in the proof of Lemma 4. We choose C1 > 0 so that
H(x,Dφ1(x)) ≤ C1 a.e. x ∈ Rn. Fix R > 0, (x, t) ∈ B(0, R) × (0, 1), and ε ∈ (0, 1).
There is a curve γ ∈ C(x, t) such that

u(x, t) + ε >

∫ t

0

L(γ(s), γ̇(s))ds + u0(γ(0)). (3.2)

By the dynamic programming principle, for any τ ∈ [0, t], we have

u(x, t) + ε >

∫ t

τ

L(γ(s), γ̇(s))ds + u(γ(τ), τ).

Fix τ ∈ [0, t]. Using Lemmas 3 and 4, we get

u(x, t) + 1 >φ1(γ(t))− φ1(γ(τ))− C1(t− τ) + u(γ(τ), τ)
≥φ1(x)− φ1(γ(τ))− C1(t− τ) + φ0(γ(τ))− C0(τ + 1).

Consequently, using Lemma 5, we have

φ0(γ(τ))− φ1(γ(τ)) < u0(x) + |L(x, 0)|+ 1− φ1(x) + C1 + 2C0.

From this we see that there is a CR > 0 depending only on R, C0, C1, φ0, φ1, u0, and
L(·, 0) such that |γ(τ)| ≤ CR for all τ ∈ [0, t].

There is an Aε > 0, depending only on ε, u0, and CR, such that

|u0(y)− u0(z)| ≤ ε + Aε|y − z| for all y, z ∈ B(0, CR).

Observe by (A1) that for any r > 0,

lim
|ξ|→∞

inf
x∈B(0,r)

L(x, ξ)
|ξ| = ∞.

Hence there is a Bε > 0, depending only on CR, Aε, and L, such that L(x, ξ) ≥ Aε|ξ|−Bε

for all (x, ξ) ∈ B(0, CR)×Rn.
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From (3.2), we get

u(x, t) > −ε +
∫ t

0

(Aε|ξ̇(s)| −Bε) ds + u0(x)− ε−Aε|γ(0)− x| ≥ −2ε−Bεt,

from which we conclude that for any R > 0 we have u(x, t) ≥ u0(x) − mR(t) for all
(x, t) ∈ B(0, R)× [0,∞) and for some modulus mR.

By the dynamic programming principle, we infer (see [I2, Appendix] for the details)
that u is a viscosity solution of (1.1) in the sense that its upper (resp., lower) semi-
continuous envelope u∗ (resp., u∗) is a viscosity subsolution (resp., supersolution) of
(1.1).

Setting u(x, 0) = u0(x) for x ∈ Rn, we extend the domain of definition of u to
Rn × [0,∞). The resulting u is continuous at every point (x, 0) with x ∈ Rn.

We have the following comparison theorem for solutions of (1.1) and (1.2).

Theorem 7. Let T ∈ (0,∞) and Ω be an open subset of Rn. Let u, v : Ω× [0, T ) →
R. Assume that u, −v are upper semicontinuous on Ω × [0, T ) and that u and v are,
respectively, a viscosity subsolution and a viscosity supersolution of

ut + H(x,Du) = 0 in Ω× (0, T ). (3.3)

Moreover, assume that

lim
r→∞

inf{v(x, t)− φ1(x) | (x, t) ∈ (Ω \B(0, r))× [0, T )} = ∞, (3.4)

and that u ≤ v on (Ω× {0}) ∪ (∂Ω× [0, T )). Then u ≤ v in Ω× [0, T ).

Proof. We choose a C > 0 so that

H(x,Dφ1(x)) ≤ C a.e. x ∈ Rn,

and define the function w ∈ C(Rn × R) by w(x, t) := φ1(x) − Ct. Observe that
wt + H(x,Dw(x, t)) ≤ 0 a.e. (x, t) ∈ Rn+1.

We need only to show that for all (x, t) ∈ Ω and all A > 0,

min{u(x, t), w(x, t) + A} ≤ v(x, t). (3.5)

Fix any A > 0. We set wA(x, t) = w(x, t) + A for (x, t) ∈ Rn+1. The function wA

is a viscosity subsolution of (3.3). By the convexity of H(x, p) in p, the function ū
defined by ū(x, t) := min{u(x, t), wA(x, t)} is a viscosity subsolution of (3.3). Because
of assumption (3.4), we see that there is a R > 0 such that ū(x, t) ≤ v(x, t) for all
(x, t) ∈ (Ω \ B(0, R)) × [0, T ). We set ΩR := Ω ∩ intB(0, 2R), so that ū(x, t) ≤ v(x, t)
for all x ∈ ∂ΩR × [0, T ). Also, we have ū(x, 0) ≤ u(x, 0) ≤ v(x, 0) for all x ∈ ΩR.
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Next we wish to use standard comparison results. However, H does not satisfy the
usual assumptions for comparison. We thus take the sup-convolution of ū in the variable
t and take advantage of the coercivity of H. That is, for each ε ∈ (0, 1) we set

uε(x, t) := sup
s∈[0,T )

(
u(x, s)− (t− s)2

2ε

)
for all (x, t) ∈ ΩR ×R.

For each δ > 0, there is a γ ∈ (0, min{δ, T/2}) such that ū(x, t) − δ ≤ v(x, t) for
all (x, t) ∈ ΩR × [0, γ]. As is well-known, there is an ε ∈ (0, δ) such that uε is a
viscosity subsolution of (3.3) in ΩR×(γ, T −γ) and uε(x, t)−2δ ≤ v(x, t) for all (x, t) ∈(
ΩR × [0, γ]

) ∪ (∂ΩR × [γ, T − γ]). Observe that the family of functions: t 7→ uε(x, t)
on [γ, T −γ], with x ∈ ΩR, is equi-Lipschitz continuous, with a Lipschitz bound Cε > 0,
and therefore that for each t ∈ [γ, T − γ], the function z : x 7→ uε(x, t) in ΩR satisfies
H(x,Dz(x)) ≤ Cε a.e., which implies that the family of functions: x 7→ uε(x, t), with
t ∈ [γ, T − γ], is equi-Lipschitz continuous in ΩR.

Now, we may apply a standard comparison theorem, to get uε(x, t) ≤ v(x, t) for all
(x, t) ∈ ΩR × [γ, T − γ], from which we get ū(x, t) ≤ v(x, t) for all (x, t) ∈ Ω × [0, T ).
This completes the proof.

Using the above comparison theorem, we conclude that u ∈ C(Rn × [0,∞)) and
hence u ∈ Ψ0. We have thus proved assertion (a).

Proof of (b). In order to show the existence of a solution of (1.3), we let λ > 0 and
consider the problem

λvλ(x) + H(x, Dvλ(x)) = λφ0(x) in Rn. (3.6)

Thanks to the coercivity of H, it is not hard to construct a function ψ0 ∈ C1(Rn)
such that

H(x,Dψ0(x)) ≥ −C0 and ψ0(x) ≥ φ0(x) in Rn

for some constant C0 > 0. We may assume that H[φ0] ≤ C0 in Rn in the viscosity
sense.

We define the functions v±λ on Rn by

v+
λ (x) = ψ0(x) + λ−1C0 and v−λ (x) = φ0(x)− λ−1C0.

It is easily seen that v+
λ and v−λ are viscosity supersolution and a viscosity subsolution

of (3.6). Since φ0 ≤ ψ0 in Rn, we have v−λ (x) < v+
λ (x) for all x ∈ Rn. By the Perron

method, we find a viscosity solution vλ of (3.6) such that

v−λ (x) ≤ vλ(x) ≤ v+
λ (x) for all x ∈ Rn. (3.7)

We formally compute that

λφ0(x) = λvλ(x) + H(x,Dvλ(x)) ≥λφ0(x)− C0 + H(x,Dvλ(x)),
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and hence H(x,Dvλ(x)) ≤ C0. This together with the coercivity of H yields the local
equi-Lipschitz continuity of the family {vλ}λ>0. As a consequence, the family {vλ −
vλ(0)}λ>0 ⊂ C(Rn) is uniformly bounded and equi-Lipschitz continuous on bounded
subsets of Rn.

By (3.7), we have λφ0(x)−C0 ≤ λvλ(x) ≤ λψ0(x)+C0 for all x ∈ Rn. In particular,
the set {λvλ(0)}λ∈(0,1) ⊂ R is bounded. Thus we may choose a sequence {λj}j∈N ⊂
(0, 1) such that, as j →∞,

λj → 0, − λjvλj
(0) → c,

vλj − vλj (0) → v in C(Rn)

for some c ∈ R and some function v ∈ C0+1(Rn). Since

|λ(vλ(x)− vλ(0))| ≤ λLR|x| for all x ∈ B(0, R), R > 0

and for some constant LR > 0, we find that −λjvλj → c in C(Rn) as j → ∞. By the
stability of the viscosity property, we deduce that (c, v) is a solution of (1.3). We need
to show that v ∈ Φ0. For this we just refer to [I2].

It remains to prove the uniqueness of the constant c. We have the following com-
parison theorem.

Theorem 8 ([I2, Theorem 3.2]). Let Ω be an open subset of Rn and ε > 0. Let
u, v : Ω → R be, respectively, an upper semicontinuous viscosity subsolution of H[u] ≤
−ε in Ω and a lower semicontinuous viscosity supersolution of H[v] ≥ 0 in Ω. Assume
that v ∈ Φ0 and u ≤ v on ∂Ω. Then u ≤ v on Ω.

We skip the proof of the above theorem. Using the above theorem, it is easy to
conclude the uniqueness of the constant c.

The following characterization of cH is valid.

Proposition 9. We have: cH = inf{a ∈ R | S−H−a 6= ∅}, where H − a denotes the
function: (x, p) 7→ H(x, p)− a.

Proof. We write c temporarily for the right hand side of the above equality. It is
clear that c ≤ cH .

To complete the proof, we suppose that c < cH and will get a contradiction. By
(b) of Theorem 1, there is a function v ∈ Φ0 ∩ SH−cH . It is obvious that v ∈ S+

H−c.
Note by the stability of the viscosity property that S−H−c 6= ∅. Fix w ∈ S−H−c. We may
choose a C > 0 so that the function u(x) := min{w(x), φ1(x)+C} is a viscosity solution
of H[u] ≤ c in Rn. Moreover we may assume by replacing C by a larger constant if
necessary that u−C ≤ v in Rn. We apply the Perron method to find a φ ∈ SH−c, but
this contradicts the uniqueness assertion of (b) of Theorem 1.

Proof of (c). We assume that cH = 0 in the following proof. Indeed, this condition
can be achieved by replacing H and L by H − cH and L + cH , respectively.
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Let {St}t≥0 be the semi-group of mappings on Φ0 defined by Stu0 = u(·, t), where
u ∈ Ψ0 is the unique viscosity solution of (1.1) and (1.2).

Let I ⊂ R be an interval and φ ∈ Φ0 a viscosity subsolution of H[φ] = 0 in Rn. We
denote by E(I, φ) the space of all curves γ ∈ C(I,Rn) such that for any [a, b] ⊂ I,

γ ∈ AC([a, b],Rn) and
∫ b

a

L(γ(t), γ̇(t)) dt ≤ φ(γ(b))− φ(γ(a)).

Such an element γ ∈ E(I, φ) is called an extremal curve.
We need the following lemma.

Lemma 10 ([I2, Corollary 6.2]). Let x ∈ Rn and φ ∈ SH ∩Φ0. Then there exists a
curve γ ∈ E((−∞, 0], φ) such that γ(0) = x.

The following lemma is a variant of [DS, Lemma 5.2].

Lemma 11 ([I2, Proposition 7.1]). Let K be a compact subset of Rn. Then there
exist a constant δ ∈ (0, 1) and a modulus ω for which if u0 ∈ Φ0, φ ∈ S−H , γ ∈
E([0, T ], φ), γ([0, T ]) ⊂ K, T > τ ≥ 0 and τ

T−τ ≤ δ, then

ST u0(γ(T ))− Sτu0(γ(0)) ≤ φ(γ(T ))− φ(γ(0)) +
τT

T − τ
ω

(
τ

T − τ

)
.

We skip here the proof of the above two lemmas.

We fix any u0 ∈ Φ0 and define the functions u± : Rn → R by

u+(x) = lim sup
t→∞

Stu0(x), u−(x) = lim inf
t→∞

Stu0(x).

It is not hard to see that the function u(x, t) := Stu0(x) is bounded and uniformly
continuous on B(0, R) × [0,∞) for any R > 0, the proof of which we refer to [I2,
Lemmas 5.1, 5.6, and 5.7]. From this, we see that u± ∈ C(Rn) and that u+(x) =
lim sup∗t→∞ u(x, t) and u−(x) = lim inf∗t→∞u(x, t) for all x ∈ Rn. As is standard in
viscosity solutions theory, we have u+ ∈ S−H and u− ∈ S+

H . Moreover, by the convexity
of H(x, ·), we have u− ∈ S−H (and hence u− ∈ SH). Also, we have u± ∈ Φ0 (see [I2,
Lemma 5.1]).

To conclude the proof, it is enough to show that u+(x) = u−(x) for all x ∈ Rn.
We fix any x ∈ Rn. By Lemma 10, we find an extremal curve γ ∈ E((−∞, 0], u−)

such that γ(0) = x.
We show that γ((−∞, 0]) is bounded in Rn. To see this, let C > 0 be a constant and

set ψ(x) = min{φ1(x) + C, u−(x)} for x ∈ Rn. We then fix C so that H(x,Dψ(x)) ≤ 0
a.e. x ∈ Rn. Using Lemma 3, we get

ψ(γ(0))− ψ(γ(−t)) ≤
∫ 0

−t

L(γ(s), γ̇(s)) ds ≤ u−(γ(0))− u−(γ(−t)) for all t ≥ 0.
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Hence we have u−(γ(−t)) − ψ(γ(−t)) ≤ u−(x) − ψ(x) for all t ≥ 0. Since
lim|y|→∞(u−(y)− ψ(y)) = ∞, we see that γ((−∞, 0]) is a bounded subset of Rn.

By the definition of u+, we may choose a divergent sequence {tj} ⊂ (0,∞) such
that limj→∞ u(x, tj) = u+(x). Since the sequence {γ(−tj)} is bounded in Rn, we may
assume by replacing {tj} by one of its subsequences if necessary that γ(−tj) → y as
j →∞ for some y ∈ Rn.

Fix any ε > 0, and choose a τ > 0 so that u−(y) + ε > u(y, τ). Let δ ∈ (0, 1) and ω
be those from Lemma 11. Let j ∈ N be so large that τ(tj − τ)−1 ≤ δ. We now apply
Lemma 11, to get

u(x, tj) = u(γ(0), tj) ≤ u(γ(−tj), τ) + u−(γ(0))− u−(γ(−tj)) +
τtj

tj − τ
ω

(
τ

tj − τ

)
.

Sending j →∞ yields

u+(x) ≤ u(y, τ) + u−(x)− u−(y) < u−(y) + ε + u−(x)− u−(y) = u−(x) + ε,

from which we conclude that u+(x) ≤ u−(x). This completes the proof.

4. Aubry sets
Let c = cH . Following [FS2], we introduce the Aubry set for H[u] = c. We define

the function dH ∈ C(Rn ×Rn) by

dH(x, y) = sup{v(x) | v ∈ S−H−c, v(y) = 0} (4.1)

and AH as the set of those y ∈ Rn for which the function dH(·, y) is a viscosity solution
of H[u] = c in Rn. We call AH the Aubry set for H or for H[u] = c.

Unless otherwise stated, we henceforth assume as in the proof of (c) of Theorem 1
that c = 0.

The following proposition describes some of basic properties of dH (see [I2, Section
8]).

Proposition 12. We have:
(a) dH is locally Lipschitz continuous in Rn ×Rn.
(b) dH(y, y) = 0 for all y ∈ Rn.
(c) dH(·, y) ∈ S−H for all y ∈ Rn.
(d) dH(·, y) is a viscosity solution of H = 0 in Rn \ {y} for all y ∈ Rn.
(e) dH(x, z) ≤ dH(x, y) + dH(y, z) for all x, y, z ∈ Rn.

We see from (d) of the above proposition that

y ∈ Rn \ AH ⇐⇒ ∃ p ∈ D−
1 dH(y, y) such that H(y, p) < 0, (4.2)

where D−
1 d(x, y) denotes the subdifferential at x of the function: x 7→ d(x, y).

We have the following variational formula for dH .
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Proposition 13 ([I2, Proposition 8.2]). The following formula is valid for all x, y ∈
Rn:

dH(x, y) = inf
{∫ t

0

L(γ(s), γ̇(s))ds
∣∣ t > 0, γ ∈ C(x, t; y, 0)

}
. (4.3)

We skip here the proof of the above proposition.

Proposition 14. We have y ∈ Rn\AH if and only if there are functions φ, σ ∈ C(Rn)
such that σ ≥ 0 in Rn, σ(y) > 0, and H[φ] ≤ −σ in Rn in the viscosity sense.

Proof. Assume that y ∈ Rn \ AH . Set u = dH(·, y). In view of (4.2), there is a
function ψ ∈ C1(Rn) such that u(y) = ψ(y), u(x) > ψ(x) for all x ∈ Rn \ {y}, and
H(y,Dψ(y)) < 0. We may moreover assume that lim|x|→∞(u−ψ)(x) = ∞. If we choose
ε > 0 sufficiently small and set φ(x) = max{u(x), ψ(x) + ε} for x ∈ Rn, then φ ∈ S−H
and moreover there is a function σ ∈ C(Rn) satisfying σ ≥ 0 in Rn and σ(y) > 0 such
that H(x,Dφ(x)) ≤ −σ(x) in Rn in the viscosity sense.

Next, assume that there are functions φ, σ ∈ C(Rn) such that σ ≥ 0 in Rn, σ(y) > 0,
and H(x, Dφ(x)) ≤ −σ(x) in Rn in the viscosity sense. We may choose a compact
neighborhood V of y so that σ(x) > 0 in V . By a small perturbation of φ if necessary,
we may assume that dH(x, y) > φ(x)− φ(y) for all x ∈ V \ {y}. We need to show that
y ∈ Rn \ AH . For this, we suppose that y ∈ AH and will get a contradiction. Let
{φk}k∈N ⊂ C1(Rn) be a sequence converging to φ in C(Rn) such that H(x,Dφk(x)) ≤
−σ(x)/2 in V . Let yk ∈ V be a minimum point of dH(·, y)−φk over V . Since dH(·, y)−φ
has a strict minimum at y over V , we deduce that yk → y as k →∞. Consequently, for
sufficiently large k, we have H(yk, Dφ(yk)) ≥ 0, which is a contradiction.

Proposition 15. The Aubry set AH is a nonempty compact subset of Rn.

Proof. By Proposition 14, it is easy to see that Rn \ AH is an open subset of Rn,
which says that AH is a closed subset of Rn.

Since cH = 0, by (b) of Theorem 1, there is a function φ ∈ SH ∩ Φ0. Since
lim|x|→∞ σ1(x) = ∞, we may choose a C > 0 so that the function ψ(x) :=
min{φ(x), φ1(x) + C} is a viscosity subsolution of H[ψ] = 0 in Rn. Since lim|x|→∞(φ−
φ1)(x) = ∞, we see that H(x,Dψ(x)) ≤ −σ1(x) in Rn \ B(0, R) in the viscosity sense
for some R > 0. We choose r > R so that σ1(x) > 0 for Rn \ B(0, r) and conclude by
Proposition 14 that AH ⊂ B(0, r).

It remains to show that AH 6= ∅. To do so, we suppose that AH = ∅ and will get a
contradiction. Let ψ and r > 0 be as above. In view of Proposition 14, there are finite
sequences {yj}N

j=1 ⊂ B(0, r) and {ψj}N
j=1, {fj}N

j=1 ⊂ C(Rn) such that fj ≥ 0 in Rn for
all j, H[ψj ] ≤ −fj in Rn in the viscosity sense for all j, and B(0, r) ⊂ ⋃N

j=1{x ∈ Rn |
fj(x) > 0}. Set u = 1

N+1

(
ψ +

∑N
j=1 ψj

)
, and observe by the convexity of H that u is

a viscosity solution of H[u] ≤ − 1
N+1

(
σ +

∑n
j=1 fj

)
in Rn, from which we deduce that

there is a ε > 0 such that u ∈ S−H−ε. This is a contradiction in view of Proposition 9.
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In the PDE viewpoint, the following uniqueness property features Aubry sets.

Theorem 16. Let v ∈ S−H and w ∈ S+
H ∩Φ0. Assume that v ≤ w on AH . Then v ≤ w

on Rn.

Proof. Fix any ε > 0. Choose a compact neighborhood V of AH so that v(x) ≤
w(x) + ε for all x ∈ V . As in the proof of Proposition 9, we may find a ψ ∈ C(Rn) and
a δ > 0 such that H[ψ] ≤ −δ in Rn \ V in the viscosity sense and ψ(x) = φ1(x) for all
x, with |x| sufficiently large. Let λ ∈ (0, 1) and set vλ(x) = (1−λ)v(x)+λψ(x)− 2ε for
x ∈ Rn. Observe that H[vλ] ≤ −λδ in Rn \ V and that for λ ∈ (0, 1) sufficiently small,
vλ(x) ≤ w(x) for all x ∈ V . We may apply standard comparison results, to get vλ(x) ≤
w(x) for all x ∈ Rn \ V and all λ sufficiently small. Hence, for λ ∈ (0, 1) sufficiently
small, we have vλ(x) ≤ w(x) for all x ∈ Rn. From this, we obtain v(x) ≤ w(x) for all
x ∈ Rn.

The above theorem has the following corollary.

Corollary 17. Let u ∈ SH ∩ Φ0. Then

u(x) = inf{u(y) + dH(x, y) | y ∈ AH} for all x ∈ Rn. (4.4)

5. Examples
We give two sufficient conditions for H to satisfy (A4).

Example 1. Let H0 ∈ C(Rn ×Rn) and f ∈ C(Rn). Set H(x, p) = H0(x, p) − f(x)
for (x, p) ∈ Rn ×Rn. We assume that

lim
|x|→∞

f(x) = ∞, (5.1)

and that there exists a δ > 0 such that

sup
Rn×B(0,δ)

|H0| < ∞. (5.2)

Fix such a δ > 0 and set Cδ = supRn×B(0,δ) |H0|. Then we define φi ∈ C0+1(Rn),
with i = 0, 1, by setting φ0(x) = − δ

2 |x| and φ1(x) = −δ|x|, and observe that for i = 0, 1,

H0(x, Dφi(x)) ≤ Cδ for all x ∈ Rn \ {0}.

Hence, for i = 0, 1, we have

H0(x,Dφi(x)) ≤ 1
2
f(x) + Cδ − 1

2
min
Rn

f for all x ∈ Rn \ {0}.

If we set
σi(x) =

1
2
f(x)− Cδ +

1
2

min
Rn

f for x ∈ Rn and i = 0, 1,
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then H satisfies (A4) with these φi and σi, i = 0, 1. It is clear that if H0 satisfies
(A1)–(A3), then so does H.

Example 2. Let α > 0 and let H0 ∈ C(Rn) be a strictly convex function satisfying
the superlinear growth condition

lim
|p|→∞

H0(p)
|p| = ∞.

Let f ∈ C(Rn). We set

H(x, p) = αx · p + H0(p)− f(x) for (x, p) ∈ Rn ×Rn.

This class of Hamiltonians H is very close to that treated in [FIL2].
Clearly, this function H satisfies (A1)–(A3). Let L0 denote the convex conjugate

H∗
0 of H0. By the strict convexity of H0, we see that L0 ∈ C1(Rn). Define the

function ψ ∈ C1(Rn) by ψ(x) = − 1
αL0(−αx). Then we have Dψ(x) = DL0(−αx) and

therefore, by the convex duality, H0(Dψ(x)) = Dψ(x) ·(−αx)−L0(−αx) for all x ∈ Rn.
Consequently, for all x ∈ Rn, we have

H(x,Dψ(x)) = αx ·Dψ(x) + H0(Dψ(x))− f(x) = −L0(−αx)− f(x).

Now we assume that there is a convex function l ∈ C(Rn) such that

lim
|x|→∞

(l(−αx) + f(x)) =∞, (5.3)

lim
|ξ|→∞

(L0 − l)(ξ) =∞. (5.4)

Let h denote the convex conjugate of l. We define φ ∈ C0+1(Rn) by φ(x) = − 1
α l(−αx)

for x ∈ Rn. This function ψ is almost everywhere differentiable. Let x ∈ Rn be any
point where φ is differentiable. By a computation similar to the above for ψ, we get

αx ·Dφ(x) + h(Dφ(x))− f(x) ≤ −l(−αx)− f(x). (5.5)

By assumption (5.4), there is a C > 0 such that L0(ξ) ≥ l(ξ)− C for all ξ ∈ Rn. This
inequality implies that H0 ≤ h + C in Rn. Hence, from (5.5), we get

H(x,Dφ(x)) ≤ −l(−αx)− f(x) + C.

We now conclude that the function H satisfies (A4), with the functions φ0 = φ, φ1 = ψ,
σ0(x) = l(−αx) + f(x)− C, and σ1(x) = L(−αx) + f(x).

It is assumed here that H0 is strictly convex in Rn, while it is only assumed in [FIL2]
that H0 is just convex in Rn, so that L0 may not be a C1 function.

The reason why the strict convexity of H0 is not needed in [FIL2] is in the fact that
Hamiltonians H in this class have a simple structure of the Aubry sets. Indeed, if c is
the additive eigenvalue of H, then minp∈Rn H(x, p) = c for all x ∈ AH . Given such a
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property of the Aubry set, the proof of (c) of Theorem 1 can be simplified greatly and
does not require the C1 regularity of L0 (see [FIL2]), while such a regularity is needed
in the proof of Lemma 11 in the general case. Any x ∈ AH is called an equilibrium point
if minp∈Rn H(x, p) = c. A characterization of an equilibrium point x ∈ AH is given by
the condition that L(x, 0) = −c. The property of Aubry sets AH mentioned above can
be stated that the set AH comprises only of equilibrium points.

The following example illustrates the fact that Aubry sets may not contain any
equilibrium point.

Example 3. We consider the two-dimensional case. We fix α, β ∈ R so that 0 < α < β
and choose a function g ∈ C([0,∞)) so that g(r) = 0 for all r ∈ [α, β], g(r) > 0 for all
r ∈ [0, α) ∪ (β,∞), and limr→∞ g(r)/r2 = ∞. We define the functions H0,H ∈ C(R4)
by

H0(x, p) = (p1 − x2)2 + (p2 + x1)2 − |x|2,
H(x, p) = H0(x, p)− g(|x|).

It is easily seen that the function H satisfies (A1)–(A3). Let δ > 0 and set ψ(x) = −δ|x|2
for x ∈ R2. We observe that Dψ(x) = −2δx and H0(x,Dψ(x)) = 4δ2|x|2 for all x ∈ R2.
Therefore, for any δ > 0, if we set φ0(x) = −δ|x|2 and φ1(x) = −2δ|x|2 for x ∈ R2,
then (A4) holds with these φ0 and φ1.

Noting that the zero function z = 0 is a viscosity subsolution of H[z] = 0 in R2, we
find that the additive eigenvalue cH is nonpositive. We fix any r ∈ [α, β] and consider
the curve γ ∈ AC([0, 2π]) given by γ(t) := r(cos t, sin t). We denote by U the open
annulus intB(0, β)\B(0, α) for simplicity of notation. Let φ ∈ C0+1(R2) be a viscosity
solution of H[φ] = cH in Rn. Such a viscosity solution indeed exists according to (b)
of Theorem 1. Due to Lemma 2, there is a function q = (q1, q2) ∈ L∞(0, 2π,R2) such
that for almost all t ∈ (0, 2π),

d
dt

φ(γ(t)) = r(−q1(t) sin t + q2(t) cos t) and q(t) ∈ ∂cφ(γ(t)).

The last inclusion guarantees that H(x(t), q(t)) ≤ cH a.e. t ∈ (0, 2π). Hence, recalling
that α ≤ r ≤ β, we get

cH ≥ H0(x(t), q(t)) = |q(t)|2 − 2γ2(t)q1(t) + 2γ1(t)q2(t) a.e. t ∈ (0, 2π).

We calculate that for all T ∈ [0, 2π],

φ(γ(T ))− φ(γ(0)) = r

∫ T

0

(−q1(t) sin t + q2(t) cos t) dt

=
∫ T

0

(−q1(t)γ2(t) + q2(t)γ1(t)) dt ≤ 1
2

∫ T

0

(
cH − |q(t)|2)dt ≤ 1

2
cHT.

This clearly implies that cH = 0 and also that the function: t 7→ φ(γ(t)) is a constant.
Thus we find that φ(x) = h(|x|2) for some function h ∈ C0+1([α, β]).
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Next, we show that φ is a constant function in U . For any r ∈ (α, β) and any
x ∈ ∂B(0, r), we have Dφ(x) = 2h′(|x|2)x, and, in particular, x2∂φ/∂x1−x1∂φ/∂x2 = 0.
Therefore, for almost all x ∈ U , we have

0 ≥ H0(x,Dφ(x)) = (∂φ/∂x1 − x2)2 + (∂φ/∂x2 + x1)2 − |x|2 = |Dφ|2.

That is, we have Dφ(x) = 0 a.e. x ∈ U , which assures that φ is a constant in U .
Now we know that for any y ∈ U , the function: x 7→ dH(x, y) is a constant in a

neighborhood of y, which guarantees that U ⊂ AH and moreover that U ⊂ AH . For
the function z = 0, we have H[z] = −g(|x|) in Rn in the viscosity sense, which shows
that AH ⊂ U and hence AH = U .

Finally, we note that H(x, (x2,−x1)) = H0(x, (x2,−x1)) = −|x|2 < 0 for all x ∈ U ,
and conclude that any x ∈ AH = U is not an equilibrium points.

The following two propositions give sufficient conditions for points of the Aubry set
AH to be equilibrium points.

Proposition 18. If y is an isolated point of AH , then it is an equilibrium point.

Proof. Let y be an isolated point of AH . Since dH(·, y) ∈ SH , according to Lemma
10, there exists a curve γ ∈ E((−∞, 0], dH(·, y)) such that γ(0) = y.

We show that γ(t) ∈ AH for all t ≤ 0, which guarantees that

γ(t) = y for all t ≤ 0. (5.6)

For this purpose we fix any z ∈ Rn \ AH . By Proposition 14 there are two functions
φ ∈ S−H ∩ Φ0 and σ ∈ C(Rn) such that H[φ] ≤ −σ in Rn in the viscosity sense, σ ≥ 0
in Rn, and σ(z) > 0. By Lemma 3, for any fixed t > 0, we have

φ(y)− φ(γ(−t)) ≤
∫ 0

−t

L(γ(s), γ̇(s))ds−
∫ 0

−t

σ(γ(s)) ds

= dH(y, y)− dH(γ(−t), y)−
∫ 0

−t

σ(γ(s))ds.

Accordingly we have

∫ 0

−t

σ(γ(s))ds + dH(γ(−t), y) ≤ φ(γ(−t))− φ(γ(0)) ≤ dH(γ(−t), y).

Hence we get
∫ 0

−t
σ(γ(s))ds ≤ 0, which implies that γ(s) 6= z for all s ≤ 0. Thus we

conclude that (5.6) holds.
Now we have

0 = dH(y, y)− dH(γ(−1), y) =
∫ 0

−1

L(γ(t), γ̇(t))dt = L(y, 0),

which shows that y is an equilibrium point.
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Proposition 19. Assume that there exists a viscosity solution w ∈ C(Rn) of
H(x,Dw) = minp∈Rn H(x, p) in Rn. Then AH consists only of equilibrium points.

For instance, if H(x, 0) ≤ H(x, p) for all (x, p) ∈ R2n, then w = 0 satisfies
H(x,Dw(x)) = minp∈Rn H(x, p) for all x ∈ Rn in the viscosity sense. If H has the
form H(x, p) = αx ·p+H0(p)−f(x) as before, then H attains a minimum as a function
of p at a unique point q satisfying αx + D−H0(q) 3 0, or equivalently q = DL0(−αx),
that is,

min
p∈Rn

H(x, p) = αx · q + H0(q)− f(x),

where L0 denotes the convex conjugate H∗
0 of H0. Therefore, in this case, the function

w(x) := −(1/α)L0(−αx) is a viscosity solution of H[w] = minp∈Rn H(x, p) in Rn. In
these two cases, the Aubry sets consist only of equilibrium points.
Proof. Let cH = 0 as usual. We have minp∈Rn H(x, p) ≤ 0 for all x ∈ Rn. Note that
the function σ(x) := −minp∈Rn H(x, p) is continuous on Rn and that w is a viscosity
solution of H[w] = −σ in Rn. Applying Proposition 14, we see that if y ∈ Rn and
minp∈Rn H(y, p) < 0, then y 6∈ AH . That is, if y ∈ AH , then minp∈Rn H(y, p) = 0,
which is equivalent that y is an equilibrium point.

The following example shows that one cannot replace the strict convexity (A3) in
(c) of Theorem 1 by the convexity of H(x, p) in p.
Example 4. Consider the Hamiltonian H ∈ C(R2 ×R2) given by

H(x, p) = H0(x, p)− ||x| − 1|,

where H0(x, p) =
√

(p1 − x2)2 + (p2 + x1)2 − |x|. It is clear that H satisfies (A1) and
(A2). Also, H satisfies (A4) with φ0(x) = 0 and φ1(x) = −|x|. Moreover, H(x, p) is
convex in p on R2. However, it is not strictly convex in p, i.e., (A4) does not hold.

It is easily checked that the function φ0(x) = 0 is indeed a viscosity subsolution of
H(x,Dφ0(x)) = 0 in R2, which implies that cH ≤ 0 by Proposition 9.

Let L denote the Lagrangian of H, and we observe that

L(x, ξ) = L0(x, ξ) + |1− |x||,
L0(x, ξ) := sup

p∈R2
(p · ξ −H0(x, p)) = δB(0,1)(ξ) + x2ξ1 − x1ξ2 + |x|,

L0(x, ξ) ≥ δB(0,1)(ξ) ≥ 0,

where δB denotes the indicator function of the set B, i.e., δB(ξ) = 0 for ξ ∈ B and = ∞
for ξ ∈ Rn \B.

Let φ ∈ C(R2) be a subsolution of H(x,Dφ(x)) ≤ cH in R2. Consider the curve
γ(t) = (cos t, sin t), with t ∈ [0, 2π], and observe that

0 = φ(γ(2π))− φ(γ(0)) ≤
∫ 2π

0

(L(γ(t), γ̇(t)) + cH) dt = 2πcH ,

from which we see that cH ≥ 0. We now conclude that cH = 0.
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Let u0 ∈ BUC(Rn) be such that u0(e1) = 0, where e1 = (1, 0), and u0(x) > 0 for all
x ∈ R2 \ {e1}, and we consider the Cauchy problem

ut(x, t) + H(x, Du(x, t)) = 0 in R2 × (0,∞) and u(·, 0) = u0. (5.7)

The formula (2.1) for the solution u of (5.7) tells us that u(x, t) ≥ 0 for all (x, t) ∈
R2 × [0,∞), and for any k ∈ N,

u(e1, 2kπ) ≤
∫ 2kπ

0

L(γ(t), γ̇(t)) dt + u0(γ(0)) = 0,

where γ(t) = (cos t, sin t) for all t ≥ 0. In particular, we have u(e1, 2kπ) = 0 for all
k ∈ N.

We show that there is a ε > 0 such that

u(e1, (2k + 1)π) ≥ ε for all k ∈ N. (5.8)

Indeed, as we will show, (5.8) holds with ε = min{1/8,m/2}, where m = min{u0(x) |
x ∈ K} and K = {(x1, x2) ∈ B(0, 3/2) | x1 ≤ 0}.

Let k ∈ N. We set ε = min{1/8,m/2} and T = (2k+1)π. We argue by contradiction
that u(e1, T ) ≥ ε, and thus suppose that u(e1, T ) < ε. We can choose a γ ∈ C(x, T ) so
that

ε >

∫ T

0

L(γ(t), γ̇(t)) dt + u0(γ(0)). (5.9)

Next, noting that γ̇(t) ∈ B(0, 1) and hence |(d/dt)|γ(t)|| ≤ 1 a.e. t ∈ (0, T ), we
compute that for any t ∈ [0, T ],

(|γ(t)| − 1)2 = − 2
∫ T

t

(|γ(s)| − 1)
d|γ(s)|

ds
ds,

and therefore, by (5.9),

(|γ(t)| − 1)2 ≤ 2
∫ T

0

||γ(s)| − 1|ds < 2ε.

Hence we have ||γ(t)| − 1| < (2ε)
1
2 ≤ 1/2 for all t ∈ [0, T ]. That is, we have 1/2 <

|γ(t)| < 3/2 for all t ∈ [0, T ].
We now use the polar coordinates, that is, we choose functions r, θ ∈ AC([0, T ])

so that γ(t) = (r(t) cos θ(t), r(t) sin θ(t)) and r(t) ≥ 0 for all t ∈ [0, T ] and θ(T ) = 0.
Such functions r and θ exist because γ(t) 6= 0 for all t ∈ [0, T ]. Note that |γ̇(t)|2 =
ṙ(t)2 + r(t)2θ̇(t)2 ≤ 1 and L0(γ(t), γ̇(t)) = r(t)(1 − r(t)θ̇(t)) a.e. t ∈ [0, T ]. Inequality
(5.9) reads

ε >

∫ T

0

[
r(t)(1− r(t)θ̇(t)) + |r(t)− 1|

]
dt + u0(γ(0)).
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From this, since r(t) > 1/2 for all t ∈ [0, T ], we get ε > 1
2

∫ T

0
(1− r(t)θ̇(t)) dt. Note also

that |θ̇(t)| ≤ 1/r(t) < 2 a.e. t ∈ (0, T ). Combining these observations, we get

∣∣∣∣∣
∫ T

0

(1− θ̇(t)) dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ T

0

(1− r(t)θ̇(t)) dt

∣∣∣∣∣ +

∣∣∣∣∣
∫ T

0

(r(t)− 1)θ̇(t) dt

∣∣∣∣∣

< 2ε +
∫ T

0

|r(t)− 1||θ̇(t)| dt ≤ 2ε + 2
∫ T

0

|r(t)− 1| dt < 4ε,

from which we obtain |T + θ(0)| < 4ε ≤ 1/2 ≤ π/2. Hence we have θ(0) ∈ [−2kπ −
3π/2,−2kπ − π/2]. Thus we get γ(0) ∈ K and moreover ε > u0(γ(0)) ≥ m, but this
contradicts our choice of ε. We conclude that (5.8) holds and that the limit, as t →∞,
of u(e1, t) does not exist.

6. Characterizations of the asymptotic solutions
The function v in assertion (c) of Theorem 1 is characterized as follows.

Theorem 19 ([I2, Theorem 8.1]). Let v ∈ C(Rn) be the function from (c) of Theo-
rem 1. Then, for any x ∈ Rn,

v(x) = inf{dH(x, y) + dH(y, z) + u0(z) | y ∈ AH , z ∈ Rn}. (6.1)

We do not give here the proof of the above theorem.

Theorem 20. Let u0 and v be from Theorem 1. Assume that cH = 0. Then

v(x) = inf{φ(x) | φ ∈ SH , φ ≥ u−0 in Rn} for all x ∈ Rn, (6.2)

where u−0 is the function on Rn given by

u−0 (x) = sup{ψ(x) | ψ ∈ S−H , ψ ≤ u0 in Rn}.

The formula (6.2) has been obtained in [II, Theorem 2.2] under slightly different
assumptions.
Proof. We write temporarily

f(x) = inf{dH(x, y) + u0(y) | y ∈ Rn} for x ∈ Rn,

g(x) = inf{φ(x) | φ ∈ SH , φ ≥ u−0 in Rn} for x ∈ Rn.

By Theorem 19, we have v(x) = inf{dH(x, y) + f(y) | y ∈ AH} for all x ∈ Rn. Thus,
we need to show that

g(x) = inf{dH(x, y) + f(y) | y ∈ AH} for all x ∈ Rn. (6.3)

We write h(x) for the right hand side of (6.3).
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We first observe that f = u−0 . Indeed, since f ∈ S−H and f ≤ u0 in Rn, we see that
f ≤ u−0 in Rn. On the other hand, since u−0 ∈ S−H and u−0 ≤ u0 in Rn, we see that
u−0 (x) ≤ dH(x, y) + u0(y) for all x, y ∈ Rn and therefore u−0 ≤ f in Rn. Thus we have
u−0 = f in Rn.

Next we observe that dH(x, y)+u−0 (y) ≥ u−0 (x) for all x, y ∈ Rn, dH(·, y)+u−0 (y) ∈
SH for all y ∈ AH and hence g(x) ≤ inf{dH(x, y) + u−0 (y) | y ∈ AH} = h(x) for all
x ∈ Rn. In particular, we have u−0 (x) ≤ g(x) ≤ h(x) ≤ u−0 (x) for all x ∈ AH . Hence,
g(x) = h(x) for all x ∈ AH . Since u0 ∈ Φ0, we may choose a C > 0 so that u0 ≥ φ0−C
in Rn. We may assume without loss of generality that φ0 ∈ S−H . By the definition
of u−0 , we see that u−0 ≥ φ0 − C in Rn. This ensures that g ≥ φ0 − C and therefore
g, h ∈ Φ0. Finally, noting that g, h ∈ SH , we apply Theorem 16, to conclude that g = h
in Rn.
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