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Abstract

We study the long time behavior of solutions of the Cauchy problem for
semilinear parabolic equations with the Ornstein-Uhlenbeck operator in RN .
The long time behavior in the main results is stated with help of the corre-
sponding to ergodic problem, which complements, in the case of unbounded
domains, the recent developments on long time behaviors of solutions of (vis-
cous) Hamilton-Jacobi equations due to Namah, Roquejoffre, Fathi, Barles,
and Souganidis. We refer to [N, NR, R, F, BS1, BS2] for these develop-
ments. We also establish existence and uniqueness results for solutions of the
Cauchy problem and ergodic problem for semilinear parabolic equations with
the Ornstein-Uhlenbeck operator.
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1 Introduction

We study the long time behavior of solutions of the Cauchy problem for the parabolic
PDE with the Ornstein-Uhlenbeck operator

ut(x, t)−∆u(x, t) + αx ·Du(x, t) + H(Du(x, t)) = f(x) in RN × (0,∞),(1.1)

u(·, 0) = u0 on RN ,(1.2)

where u : RN × [0,∞) → R is the unknown function, α is a given positive constant,
∆ denotes the Laplace operator in RN , Du denotes the gradient of u, and H, f , and
u0 are given functions on RN . We refer the operator ∆− αx ·D on C2(RN) as the
Ornstein-Uhlenbeck operator.

As we will see, the “stationary states” of solutions u of (1.1) and (1.2) or “asymp-
totic solutions of (1.1) and (1.2)” are described by the following PDE

c−∆v(x) + αx ·Dv(x) + H(Dv(x)) = f(x) in RN ,(1.3)

where the unknown is the pair of a constant c ∈ R and a function v : RN → R.
These PDE arise typically as the dynamic programming equations for stochastic

optimal control or stochastic differential games of the systems described by con-
trolled Ornstein-Uhlenbeck processes. In this regard, PDE (1.3) corresponds to
ergodic control or ergodic differential games in which players try to optimize the
long time average of costs or gains. In this view point we often call (1.1) a viscous
Hamilton-Jacobi equation, H a Hamiltonian, and problem (1.3) an ergodic problem.

There has been a great interest on the behavior of solutions to nonlinear parabolic
PDE by many authors. This investigation was strongly influenced by the recent
developments on Hamilton-Jacobi equations and viscous Hamilton-Jacobi equations
due to Namah, Roquejoffre, Fathi, Barles, Souganidis. In these developments they
studied the asymptotic behavior of solutions of PDE on compact manifolds, for
instance, torus TN . We refer to [N, NR, R, F, BS1, BS2] for these developments.

A typical result in this line is stated as follows: if u is a (unique) viscosity solution
of Hamilton-Jacobi equation

ut(x, t) + H(x,Du(x, t)) = 0 in TN ,(1.4)

satisfying the initial condition

u(·, 0) = u0 on TN ,

where u0 ∈ C(RN), H ∈ C2(TN × RN), and H(x, ·) is uniformly convex on RN for
all x ∈ TN , then there is a constant c ∈ R and a viscosity solution v ∈ C(TN) of

c + H(x,Dv(x)) = 0 in TN ,
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such that u(·, t)− (ct + v) → 0 in C(TN) as t →∞. Here c does not depend on u0,
but v depends on u0. Here the function ct + v is a solution of (1.1) having a special
form which is frequently called a traveling front.

Our main interest here is if a similar long time behavior (i.e., the convergence
to traveling fronts) of solutions of PDE on unbounded domains is valid or not. Our
results in this paper answer affirmatively to this question. Indeed, we will show
the convergence to traveling fronts of solutions of viscous Hamilton-Jacobi equation
(1.1) as t →∞.

The paper is organized as follows. We establish existence and uniqueness results
for the Cauchy problem (1.1) and (1.2) in Section 2. In Section 3 we show local
Hölder continuity of solutions of (1.1) and (1.2) in the spatial variables x uniform in
the time variable t. In Section 4 we establish an existence result for ergodic problem
(1.3) as well as estimates on local Hölder continuities of the solutions. In Section
5, we establish a long time behavior of solutions of the Cauchy problem (1.1) and
(1.2). One of basic assumptions in Sections 2–5 is that Hamiltonian H is Lipschitz
continuous on RN . In Section 6 we remove this restriction by assuming stronger
requirement on f and u0, i.e., the Lipschitz continuity of f and u0.

We collect here the notation we use in this paper.
Notation: we write

Q = RN × (0,∞), QT = RN × (0, T ), and RT = RN × [0, T ).

Let Ω be a subset of Rm. Lip(Ω) denotes the space of Lipschitz continuous functions
on Ω. For g ∈ L∞(Ω) we write ‖g‖∞ = ‖g‖L∞(Ω). For g : Ω → R, g∗ and g∗ denote,
respectively, the upper semicontinuous and lower semicontinuous envelopes of g, i.e.,

g∗(x) = lim
r↘0

sup{g(y) | y ∈ Ω, |y − x| ≤ r} for x ∈ Ω,

g∗ = −(−g)∗.

For γ ∈ (0, 1] and k = 0, 1, 2, ..., Ck+γ(Ω) denotes the space of those functions
u ∈ Ck(Ω) whose k-th derivatives are Hölder continuous with exponent γ on compact
subsets of Ω. When 0 < γ < 1, we write Cγ(Ω) for C0+γ(Ω) as well. For Ω ⊂ Q,
C2+γ,1+ γ

2 (Ω) denotes the space of those functions u(x, t) whose second derivatives
in x and first derivative in t are both Hölder continuous with exponent γ in x and
with exponent γ

2
in t on compact subsets of Ω and whose first derivatives in x

is Hölder continuous with exponent 1+γ
2

in t on compact subsets of Ω. Similarly,

Cγ, γ
2 (Ω) denotes the space of those functions u(x, t) which are Hölder continuous

with exponent γ in x and with exponent γ
2

in t on compact subsets of Ω. For x, y ∈
RN , x · y and 〈x〉δ, where δ > 0, denote, respectively, the Euclidean inner product
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of x, y and (|x|2 + δ2)1/2. SN denotes the set of N × N real symmetric matrices.
For a ∈ RN and r > 0, B(a, r) denotes the closed ball {x ∈ RN | |x − a| ≤ r}.
We call a function ω : [0,∞) → [0,∞) a modulus if it is upper semicontinuous and
nondecreasing on [0,∞) and satisfies ω(0) = 0.

2 Comparison and existence theorems for the Cauchy

problem

In this section we study the Cauchy problem for the semilinear parabolic PDE

ut −∆u + αx ·Du + H(Du) = f(x) in Q,(2.1)

with initial data
u(·, 0) = u0 on RN .(2.2)

Here α > 0 is a given constant, H, f , and u0 are given continuous functions on RN ,
and u is the unknown function on Q.

For µ > 0 we define the function φµ ∈ C∞(RN) by

φµ(x) = eµ|x|2 for x ∈ RN .(2.3)

Let T ∈ (0,∞). We introduce the spaces E+
µ (Ω), E−µ (Ω), Eµ(Ω), with µ > 0, of

functions on Ω = RN , RT , or Q as follows:

E+
µ (RN) =

{
v : RN → R

∣∣∣ lim sup
|x|→∞

v(x)

φµ(x)
≤ 0

}

E+
µ (RT ) =

{
v : RT → R

∣∣∣ lim sup
|x|→∞

sup
0≤t<T

v(x, t)

φµ(x)
≤ 0

}
,

E+
µ (Q) =

{
v : Q → R

∣∣∣ lim sup
|x|→∞

sup
0≤t<T

v(x, t)

φµ(x)
≤ 0 for T > 0

}
,

and for Ω = RN , RT , or Q,

E−µ (Ω) := −E+
µ (Ω), Eµ(Ω) := E+

µ (Ω) ∩ E−µ (Ω).

Throughout this section µ denotes a fixed constant satisfying

0 < µ <
α

2
,(2.4)
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and we assume that
H ∈ Lip(RN).(2.5)

We write simply φ and LH for φµ and ‖DH‖∞, respectively, in this section.
We are now ready to state a comparison result for viscosity solutions of (2.1)

and (2.2).

Theorem 2.1. Let 0 < T ≤ ∞ and let u ∈ USC(RT ) and v ∈ LSC(RT ) be a
viscosity subsolution and a viscosity supersolution of (2.1), respectively. Assume
that

u ∈ E+
µ (RT ) and v ∈ E−µ (RT )(2.6)

and that u(x, 0) ≤ v(x, 0) for all x ∈ RN . Then u ≤ v on RT .

Proof. 1. We may assume that T < ∞. Indeed, once we know that the assertion
is valid for all 0 < T < ∞, then we conclude immediately that the assertion for
T = ∞ is valid as well.

We compute that for x ∈ RN ,

Dφ(x) = 2µφ(x)x, ∆φ(x) = 2µ(2µ|x|2 + N)φ(x),

−∆φ(x) + αx ·Dφ(x)− LH |Dφ(x)| = 2µφ(x)[(α− 2µ)|x|2 −N − LH |x|],
to deduce that there is a constant B > 0, depending only on µ, α, N , and LH , such
that

−∆φ(x) + αx ·Dφ(x)− LH |Dφ(x)| ≥ φ(x)−B for x ∈ RN .(2.7)

2. Choose a constant B > 0 so that (2.7) holds. Fix any ε > 0, and define the
functions uε ∈ USC(RT ) and vε ∈ LSC(RT ) by

uε(x, t) = u(x, t)− εφ(x)− εBt,

vε(x, t) = v(x, t) + εφ(x) + εBt.

Observe that uε,−vε ∈ USC(RT ) and that uε and vε are, respectively, a viscosity
subsolution and a viscosity supersolution of (2.1) in QT . Indeed, using (2.7), we
may compute formally that for U = uε,

Ut −∆U + αx ·DU + H(DU)

≤ ut −∆u + αx ·Du + H(Du)− εB − ε(−∆φ + αx ·Dφ− LH |Dφ|)
≤ f(x)− εB + εB = f(x),

which can be easily justified by using standard arguments in viscosity solutions
theory. Similarly we can easily verify that vε is a viscosity supersolution of (2.1) in
QT .

5



3. We observe by (2.6) that

lim
|x|→∞

sup
0≤t<T

uε(x, t) = −∞,

lim
|x|→∞

inf
0≤t<T

vε(x, t) = ∞.

Hence, there is a constant Rε > 0 such that

uε(x, t) ≤ vε(x, t) for (x, t) ∈ (RN \ intB(0, Rε))× [0, T ).

We apply a standard comparison theorem for viscosity sub- and supersolutions (e.g.,
Theorem 8.2 of [CIL]) on B(0, Rε)× [0, T ), to find that uε ≤ vε on B(0, Rε)× [0, T )
(and hence on RT ). Sending ε → 0 allows us to conclude that u ≤ v on RT . 2

The next theorem is one of main results in this section and establishes the exis-
tence and uniqueness of a solution of (2.1) and (2.2).

Theorem 2.2. Assume that

u0, f ∈ Eµ(RN) ∩ C(RN),(2.8)

f ∈ C0+γ(RN)(2.9)

for some constant γ ∈ (0, 1]. Then there is a unique solution u ∈ Eµ(Q) ∩ C(Q) ∩
C2,1(Q) of (2.1) and (2.2).

For the proof of the above theorem, we use the following lemma.

Lemma 2.3. Let v ∈ Eµ(RN) ∩ C(RN). Then for each ε > 0 there is a constant
K ≡ K(ε) > 0 such that

|v(x)− v(y)| ≤ ε(φµ(x) + φµ(y)) + K|x− y| for x, y ∈ RN .

Proof. Fix any ε > 0. Observe that

lim
|x|→∞

(v(x)− εφ(x)) = −∞,

and hence v− εφ is bounded above on RN . Similarly, the function v + εφ is bounded
below on RN . Choose a constant M > 0 so that

v(x)− εφ(x) ≤ M and v(x) + εφ(x) ≥ −M for x ∈ RN .

Next, choose a constant R > 0 so that

v(x)− εφ(x) ≤ −M and v(x) + εφ(x) ≥ M for x ∈ RN \B(0, R).
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Since v is uniformly continuous on B(0, R), there is a constant K ≡ K(ε) > 0 such
that

v(x)− v(y) ≤ ε + K|x− y| for x, y ∈ B(0, R).

It follows that for all x, y ∈ B(0, R),

v(x)− v(y) ≤ ε(φ(x) + φ(y)) + K|x− y|.

Let x, y ∈ RN . If x ∈ RN \B(0, R), then

v(x)− εφ(x) ≤ −M ≤ v(y) + εφ(y),

and hence
v(x)− v(y) ≤ ε(φ(x) + φ(y)) + K|x− y|.

Similarly, if y ∈ RN \B(0, R), then

v(x)− v(y) ≤ ε(φ(x) + φ(y)) + K|x− y|.

All together we have for all x, y ∈ RN ,

v(x)− v(y) ≤ ε(φ(x) + φ(y)) + K|x− y|,

which completes the proof. 2

Proof of Theorem 2.2. 1. Uniqueness of solutions of (2.1) and (2.2) follows
from Theorem 2.1. For the proof of the existence of a solution, we use the Perron
method. For the Perron method in viscosity solutions theory, we refer for instance
to Theorem 4.1 of [CIL].

By virtue of Lemma 2.3, for any ε ∈ (0, 1) there is a constant K(ε) > 0 such that
for all x, y ∈ RN ,

|u0(x)− u0(y)| ≤ ε(φ(x) + φ(y)) + K(ε)|x− y|.

Fix such a collection {K(ε) | ε ∈ (0, 1)} of positive numbers.
Let y ∈ RN , ε, δ ∈ (0, 1), and A > 0, and set

g(x, t) = u0(y) + ε(φ(x) + φ(y)) + K(ε)〈x− y〉δ + At for (x, t) ∈ Q.

We compute that for (x, t) ∈ Q,

gt(x, t)−∆g(x, t) + αx ·Dg(x, t) + H(Dg(x, t))

≥ A + ε(−∆φ(x) + αx ·Dφ(x)− LH |Dφ(x)|)
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+K(ε)

[
−

( N

〈x− y〉δ −
|x− y|2
〈x− y〉3δ

)
+

αx · (x− y)

〈x− y〉δ

]
+ H

(
K(ε)

x− y

〈x− y〉δ

)

≥ A + ε(−∆φ(x) + αx ·Dφ(x)− LH |Dφ(x)|)
+K(ε)

[
−N

δ
+ α

〈x− y〉2δ − δ2 − |y||x− y|
〈x− y〉δ

]
− |H(0)| − LHK(ε)

≥ A + ε
(
−∆φ(x) + αx ·Dφ(x)− LH |Dφ(x)|

)

−K(ε)
[
N

δ
+ α(δ + |y|) + LH

]
− |H(0)|.

We choose a constant B > 0 so that (2.7) holds. Since f ∈ Eµ(RN), for each ε ∈ (0, 1)
we may choose a constant C(ε) > 0 so that

|f(x)| ≤ εφ(x) + C(ε) for x ∈ RN .(2.10)

Also, for each ε ∈ (0, 1), we choose a constant δ(ε) ∈ (0, 1) so that K(ε)δ(ε) ≤ ε.
For each y ∈ RN and ε ∈ (0, 1) we set

A(y, ε) = K(ε)

(
N

δ(ε)
+ α(1 + |y|) + LH

)
+ |H(0)|+ εB + C(ε),

and define the functions ψ+ ∈ C∞(Q), parametrized by y, ε, by

ψ+(x, t; y, ε) = u0(y) + ε(φ(x) + φ(y)) + K(ε)〈x− y〉δ(ε) + A(y, ε)t.

Observe that, for any y ∈ RN and ε ∈ (0, 1), the function h(x, t) := ψ+(x, t; y, ε)
satisfies

ht(x, t)−∆h(x, t) + αx ·Dh(x, t) + H(Dh(x, t))

≥ A(y, ε) + ε(φ(x)−B)−K(ε)

(
N

δ(ε)
+ α(δ(ε) + |y|) + LH

)
− |H(0)|

≥ εφ(x) + C(ε)

≥ f(x) for (x, t) ∈ Q.

That is, the functions ψ+(·; y, ε) are classical (and hence viscosity) supersolutions of
(2.1). Observe also that

ψ+(x, t; y, ε) ≥ u0(y) + ε(φ(x) + φ(y)) + K(ε)〈x− y〉δ(ε) ≥ u0(x) for (x, t) ∈ Q,

and

ψ+(x, 0; x, ε) = u0(x) + 2εφ(x) + K(ε)δ(ε) ≤ u0(x) + 2εφ(x) + ε for x ∈ RN .
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2. We define the function U ∈ USC(Q) by

U(x, t) = inf{ψ+(x, t; y, ε) | y ∈ RN , ε ∈ (0, 1)}.
Then U∗, the lower semicontinuous envelope of U , is a viscosity supersolution of
(2.1) (see, e.g., Lemma 4.2 of [CIL] for this) and

u0(x) ≤ U∗(x, t) ≤ U(x, t) for (x, t) ∈ Q.

Also, noting that

U(x, 0) ≤ ψ+(x, 0; x, ε) < u0(x) + 2εφ(x) + ε for x ∈ RN and ε ∈ (0, 1),

we see that
U(x, 0) = U∗(x, 0) = u0(x) for x ∈ RN .

3. Similarly we define the function V ∈ LSC(Q) by

V (x, t) = sup{ψ−(x, t; y, ε) | y ∈ RN , ε ∈ (0, 1)},
where

ψ−(x, t; y, ε) := u0(y)− ε(φ(x) + φ(y))−K(ε)〈x− y〉δ(ε) − A(y, ε)t,

and then observe as before that V ∗ is a viscosity subsolution of (2.1) and that for
(x, t) ∈ Q,

u0(x) ≥ V ∗(x, t) ≥ V (x, t) and V (x, 0) = V ∗(x, 0) = u0(x).

4. Define u : Q → R by

u(x, t) = sup{ v(x, t) | V ≤ v ≤ U on Q, v is a viscosity subsolution of (2.1)}.
Then u∗ and u∗ are a viscosity subsolution and a viscosity supersolution of (2.1),
respectively, and

V ≤ u ≤ U on Q.

In particular, we see that as t ↘ 0,

u(x, t) → u0(x), u∗(x, t) → u0(x), u∗(x, t) → u0(x) locally uniformly on RN .

5. Next we show that u ∈ Eµ(Q). Indeed, we have

|u(x, t)− u0(0)|
≤ max{U(x, t)− u0(0), u0(0)− V (x, t)}
≤ ε(φ(x) + φ(0)) + K(ε)〈x〉δ(ε) + A(0, ε)t for (x, t) ∈ Q, ε ∈ (0, 1),
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which guarantees that u ∈ Eµ(Q).
Now, we apply Theorem 2.1 to u∗ and u∗, to find that

u∗ ≤ u∗ in Q,

that is, u ∈ C(Q).
6. Schauder theory for parabolic PDE (see the appendix or [LSU]) assures

that for each R > 0 there is a classical solution v ∈ C(ΩR) ∩ C2+γ,1+ γ
2 (ΩR), where

ΩR := int B(0, R)× (0, R), of

{
vt −∆v + αx ·Dv + H(Dv) = f(x) in ΩR,
v = u on ∂pΩR,

(2.11)

where ∂pΩR := (∂B(0, R)×(0, R))∪(B(0, R)×{0}). This and standard comparison
results for viscosity solutions yield that u = v on ΩR, which show that u ∈ C2,1(ΩR).
Since R > 0 is arbitrary, we find that u ∈ C2,1(Q). The proof is now complete.
2

Remark 2.4. In the above proof, since V ≤ u ≤ U on Q, we get

|u(x, t)− u0(x)| ≤ max{U(x, t)− u0(x), u0(x)− V (x, t)}
≤ inf

0<ε<1
(2εφ(x) + ε + A(x, ε)t) for (x, t) ∈ Q.

Setting

AR(ε) = max{A(x, ε) | x ∈ B(0, R)}
≡ K(ε)

( N

δ(ε)
+ α(R + 1) + LH

)
+ |H(0)|+ εB + C(ε) for R > 0,

and

ρR(t) = inf
0<ε<1

[
ε(1 + 2eµR2

) + AR(ε)t
]

for t ≥ 0 and R > 0,(2.12)

we have

|u(x, t)− u0(x)| ≤ ρR(t) for (x, t) ∈ B(0, R)× [0,∞) and R > 0.(2.13)

Note that ρR ∈ USC([0,∞)) and ρR(0) = 0 for all R > 0 and that we may select
δ(ε) for ε ∈ (0, 1) by the formula

δ(ε) = ε min
{
1,

1

K(ε)

}
. 2(2.14)
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3 Estimates of uniform continuities

In the following we investigate estimates on local uniform continuities of solutions
of (2.1).

In this section, as in the previous section, let µ be a fixed constant satisfying
(2.4) and assume the Lipschitz continuity (2.5) of H. We write φ and LH for φµ and
‖DH‖∞, respectively.

We introduce the operators Ξ : C2(R2N) → C(R2N) by

Ξ g(x, y) = ∆xg(x, y) + ∆yg(x, y) + 2
N∑

i=1

∂2

∂xi∂yi

g(x, y).

Note that −Ξ is a degenerate elliptic operator on R2N , i.e., if g ∈ C2(R2N) attains
a maximum at (0, 0), then

−Ξ g(0, 0) = −
N∑

i=1

d2

dt2
g(tei, tei)

∣∣∣∣
t=0

≥ 0,

where ei denotes the unit vector with unity as its i-th entry for i = 1, 2, ..., N . Note
also that for u, v ∈ C2(RN), if we set g(x, y) := u(x)− v(y), then

Ξ g(x, y) = ∆u(x)−∆v(y) for x, y ∈ RN ,

and that for ϕ ∈ C2(RN), if we set g(x, y) := ϕ(x− y), then

Ξ g(x, y) = 0 for x, y ∈ RN .

Let ϕ, ψ1, ψ2 ∈ C2(RN). Setting

g(x, y) = ϕ(x− y)(ψ1(x) + ψ2(y)),

we compute that

Dg(x, y) = (ψ1(x) + ψ2(y))(Dϕ(x− y),−Dϕ(x− y))

+ϕ(x− y)(Dψ1(x), Dψ2(y)),

D2g(x, y) = (ψ1(x) + ψ2(y))

(
D2ϕ(x− y) −D2ϕ(x− y)
−D2ϕ(x− y) D2ϕ(x− y)

)

+

(
Dϕ(x− y)⊗Dψ1(x) −Dϕ(x− y)⊗Dψ1(x)
Dϕ(x− y)⊗Dψ2(y) −Dϕ(x− y)⊗Dψ2(y)

)
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+

(
Dψ1(x)⊗Dϕ(x− y) Dψ2(x)⊗Dϕ(x− y)
−Dψ1(x)⊗Dϕ(x− y) −Dψ2(x)⊗Dϕ(x− y)

)

+ϕ(x− y)

(
D2ψ1(x) 0

0 D2ψ2(y)

)
,

Ξ g(x, y) = ϕ(x− y)(∆ψ1(x) + ∆ψ2(y)).(3.1)

Theorem 3.1. Let u ∈ C(RT ) ∩ C2,1(QT ) be a solution of (2.1) and (2.2). Let
γ ∈ (0, 1] and assume that

u ∈ Eµ(RT ),(3.2)

|f(x)− f(y)| ≤ Cf |x− y|γ(φµ(x) + φµ(y)) for x, y ∈ RN(3.3)

|u0(x)− u0(y)| ≤ C0|x− y|γ(φµ(x) + φµ(y)) for x, y ∈ RN .(3.4)

Then there exists a constant C1 > 0, depending only on α, γ, µ, C0, Cf , ‖DH‖∞,
and N , such that

|u(x, t)− u(y, t)| ≤ C1|x− y|γ(φµ(x) + φµ(y)) for x, y ∈ RN , t ∈ [0, T ).(3.5)

Proof. 1. We use the notation: PT = R2N × (0, T ) and ST = R2N × [0, T ). We
define the function w ∈ C(ST ) ∩ C2,1(PT ) by

w(x, y, t) = u(x, t)− u(y, t),

and observe that for all (x, y, t) ∈ PT ,

wt − Ξ w + αx ·Dxw + αy ·Dyw − LH |Dxw + Dyw|(3.6)

≤ f(x)− f(y) ≤ Cf |x− y|γ(φ(x) + φ(y)).

2. Let δ > 0, ε > 0, A > 0, and C > 0 be constants to be fixed later on. Define
the function ζ ∈ C(ST ) by

ζ(x, y, t) = C(|x− y|γ + δ)(φ(x) + φ(y) + A) +
ε

T − t
.

Using (3.1), we compute that for (x, y, t) ∈ PT , if x 6= y, then

ζt =
ε

(T − t)2
≥ ε

T 2
,

Ξ ζ = C(|x− y|γ + δ)(∆φ(x) + ∆φ(y)),

αx ·Dxζ + αy ·Dyζ = αγC|x− y|γ(φ(x) + φ(y) + A)

+C(|x− y|γ + δ)(αx ·Dφ(x) + αy ·Dφ(y)),

LH |Dxζ + Dyζ| ≤ CLH(|x− y|γ + δ) (|Dφ(x)|+ |Dφ(y)|) ,
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and

ζt − Ξ ζ + αx ·Dxζ + αy ·Dyζ − LH |Dxζ + Dyζ|
≥ ε

T 2
+ C(|x− y|γ + δ)[(−∆φ(x) + αx ·Dφ(x)− LH |Dφ(x)|)

+(−∆φ(y) + αy ·Dφ(y)− LH |Dφ(y)|)] + αγC|x− y|γ(φ(x) + φ(y) + A).

We choose a constant B ≡ B(α, µ, LH , N) > 0 so that (2.7) holds. Then we have

ζt − Ξ ζ + αx ·Dxζ + αy ·Dyζ − LH |Dxζ + Dyζ|
≥ ε

T 2
− 2δB + C|x− y|γ(φ(x) + φ(y) + αγA− 2B) if x 6= y.

We fix constants A and C as

A =
2B

αγ
, C = max{C0, Cf},

so that

w(x, y, 0) ≤ ζ(x, y, 0) for x, y ∈ RN ,

ζt − Ξ ζ + αx ·Dxζ + αy ·Dyζ − LH |Dxζ + Dyζ|
≥ ε

T 2
− 2δB + Cf |x− y|γ(φ(x) + φ(y)) if x 6= y.

3. We want to show that

w(x, y, t) ≤ C|x− y|γ(φ(x) + φ(y) + A) for (x, y, t) ∈ ST .(3.7)

Note that (3.7) yields (3.5), with C1 = C(1 + A), since φ(x) ≥ 1. To show (3.7), we
argue by contradiction and thus suppose that

sup{w(x, y, t)− C|x− y|γ(φ(x) + φ(y) + A) | (x, y, t) ∈ ST} > 0.

Then we can choose a constant ε > 0 so that

sup{w(x, y, t)− C(|x− y|γ + ε)(φ(x) + φ(y) + A)− ε

T − t
| (x, y, t) ∈ ST} > 0.

We fix

δ = ε min
{
1,

1

3BT 2

}
.

Note that 0 < δ ≤ ε and
ε

T 2
> 2δB,

13



and consequently,
sup
ST

(w − ζ) > 0,

and

ζt − Ξ ζ + αx ·Dxζ + αy ·Dyζ − LH |Dxζ + Dyζ|(3.8)

> Cf |x− y|γ(φ(x) + φ(y)) if x 6= y.

Since u ∈ Eµ(RT ), we have

lim
|x|+|y|→∞

sup
0≤t<T

(w − ζ)(x, y, t) = −∞.

Also, for each R > 0 we have

lim
t↗T

sup
(x,y)∈B(0,R)×B(0,R)

(w − ζ)(x, y, t) = −∞.

Thus the function w− ζ attains a positive maximum at a point (x̄, ȳ, t̄) ∈ ST . Since
w(x, y, 0) ≤ ζ(x, y, 0) for all x, y ∈ RN , we find that t̄ > 0. Since w(x, x, t) −
ζ(x, x, t) = −ζ(x, x, t) < 0 for all (x, t) ∈ QT , we see that x̄ 6= ȳ. By the maximum
principle, we have

(w − ζ)t(x̄, ȳ, t̄) = 0, D(w − ζ)(x̄, ȳ, t̄) = 0, D2(w − ζ)(x̄, ȳ, t̄) ≤ 0.

These together with (3.6) yields

ζt − Ξ ζ + αx ·Dxζ + αy ·Dyζ − LH |Dxζ + Dyζ|(3.9)

≤ Cf |x− y|γ(φ(x) + φ(y)) at (x, y, t) = (x̄, ȳ, t̄).

This contradicts (3.8), which proves (3.7) and hence (3.5). 2

Theorem 3.2. In addition to the hypotheses of Theorem 3.1, assume that for each
ε ∈ (0, 1) there is a constant M(ε) > 0 such that

|u(x, t)| ≤ εφµ(x) + M(ε) for (x, t) ∈ RT .(3.10)

Then for each R > 0 there is a modulus ρR such that

|u(x, t)− u(x, s)| ≤ ρR(|t− s|) for x ∈ B(0, R) and t, s ∈ [0,∞).(3.11)
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Proof. 1. By Theorem 3.1, we have

|u(x, t)− u(y, t)| ≤ C1|x− y|γ(φ(x) + φ(y)) for x, y ∈ RN and t ∈ [0,∞)

for some constant C1 > 0.
2. We show that for each ε ∈ (0, 1) there is a constant K(ε) > 0 such that for all

x, y ∈ RN and t ≥ 0,

|u(x, t)− u(y, t)| ≤ ε(φ(x) + φ(y)) + K(ε)|x− y|.(3.12)

For this fix any ε ∈ (0, 1), x, y ∈ RN , and t ≥ 0. If C1|x − y|γ ≤ ε, then we have
(3.12) for any K(ε) > 0. If C1|x− y|γ ≥ ε, then we have

1 ≤
(

C1

ε

) 1
γ |x− y|,

and hence, by (3.10),

|u(x, t)− u(y, t)| ≤ ε(φ(x) + φ(y)) + M(ε)

≤ ε(φ(x) + φ(y)) + M(ε)
(

C1

ε

) 1
γ |x− y|.

Thus we find that (3.12) holds with

K(ε) = M(ε)
(

C1

ε

) 1
γ

.

3. Now fix s ≥ 0. Recalling Remark 2.4 and applying estimate (2.13), with
u(x, t + s) and u(x, s), respectively, in place of u(x, t) and u0(x), we find a modulus
ρR for each R > 0 such that

|u(x, t + s)− u(x, t)| ≤ ρR(t) for (x, t) ∈ B(0, R)× [0,∞).(3.13)

Indeed, the function ρR : [0,∞) → [0,∞) defined by

ρR(t) = inf
0<ε<1

[ε(1 + 2eµR2

) + AR(ε)t]

has the required properties, where

AR(ε) = K(ε)

(
N

δ(ε)
+ α(R + 1) + LH

)
+ |H(0)|+ εB + C(ε)

with function δ : (0, 1) → (0, 1) given by

δ(ε) = ε min{1, 1

K(ε)
},

and with constant B and function C : (0, 1) → (0,∞) selected so that (2.7) and
(2.10) hold. From (3.13) we conclude immediately that (3.11) holds. 2
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4 Ergodic problem

In this section we study the ergodic control problem

c−∆v(x) + αx ·Dv(x) + H(Dv(x)) = f(x) in RN ,(4.1)

where the unknown is a pair of a constant c and a function v ∈ C2(RN). This is the
equation which will describe the traveling fronts of solutions of (2.1) as t →∞.

Throughout this section we assume (2.5), that is, the Lipschitz continuity of H
and that

f ∈ Eµ(RN) ∩ C0+γ(RN),(4.2)

for some constants 0 < µ < α/2 and γ ∈ (0, 1], where Eµ(RN) denotes the space
introduced in Section 2. Furthermore let LH and φ denote the Lipschitz constant of
H, i.e., LH = ‖DH‖∞, and φµ, respectively.

In order to solve (4.1), we first consider the approximate problem

λvλ(x)−∆vλ(x) + αx ·Dvλ(x) + H(Dvλ(x)) = f(x) in RN ,(4.3)

where λ ∈ (0, 1) is a given constant to be sent zero. If H is a convex function,
(4.3) may be regarded as the dynamic programming equation of an optimal control
problem, where λ represents the discount factor. In this view point, especially when
we call (4.1) an ergodic problem, we call (4.3) a discounted problem.

Theorem 4.1. Let u ∈ USC(RN) and v ∈ LSC(RN) be a viscosity subsolution and
a viscosity supersolution of (4.3), respectively. Assume that

u ∈ E+
µ (RN) and v ∈ E−µ (RN).(4.4)

Then u ≤ v in RN . 2

Proof. Recall (2.7) and fix a constant B > 0 such that

−∆φ + αx ·Dφ− LH |Dφ| ≥ φ−B in RN .

Fix such a constant B and, for ε ∈ (0, 1), define the functions uε, vε on RN , respec-
tively, by

uε(x) = u(x)− ε(φ(x) + λ−1B),

vε(x) = v(x) + ε(φ(x) + λ−1B).
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Observe that uε,−vε ∈ USC(RN) and that uε and vε are a viscosity subsolution
and a viscosity supersolution of (4.3), respectively. We examine these just for uε by
calculating formally

λuε −∆uε + αx ·Duε + H(Duε)

≤ λu−∆u + αx ·Du + H(Du)− ε(B −∆φ + αx ·Dφ− LH |Dφ|)
≤ f(x) for x ∈ RN .

By (4.4) we have

lim
|x|→∞

uε(x) = −∞ and lim
|x|→∞

vε(x) = ∞,

and hence, we find a constant R ≡ R(ε) > 0 such that uε ≤ vε on RN \ int B(0, R).
We apply a standard comparison result to uε and vε on B(0, R), to conclude that
uε ≤ vε on B(0, R). Therefore we have uε ≤ vε in RN . Since ε > 0 is arbitrary, we
conclude that u ≤ v in RN . 2

Theorem 4.2. There is a unique solution vλ ∈ C2(RN)∩Eµ(RN) of (4.3). Moreover
there is a constant C > 0, independent of λ, such that

λ|vλ(0)| ≤ C.(4.5)

Proof. We will apply the Perron method to find a viscosity solution of (4.3). In
view of (2.7), we fix a constant B > 0 so that

−∆φ(x) + αx ·Dφ(x)− LH |Dφ(x)| ≥ φ(x)−B for all x ∈ RN .

Since f ∈ Eµ(RN), there is a function M : (0, 1] → (0,∞) such that

|f(x)| ≤ εφ(x) + M(ε) for x ∈ RN and ε ∈ (0, 1].

For ε ∈ (0, 1], we set

g(x) = εφ(x) + A for x ∈ RN ,

where A := λ−1(M(ε) + εB + |H(0)|), and calculate that

λg(x)−∆g(x) + αx ·Dg(x) + H(Dg(x))

≥ λA + ε(φ(x)−B)− |H(0)| = εφ(x) + M(ε) ≥ f(x) for x ∈ RN .
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We define the functions U ∈ USC(RN) and V ∈ LSC(RN) by

U(x) = inf
0<ε≤1

[εφ(x) + λ−1(M(ε) + εB + |H(0)|)],
V (x) = −U(x).

It is easy to check that U∗ and V ∗ are a viscosity supersolution and a viscosity
subsolution of (4.3), respectively.

Next define v : RN → R by

v(x) = sup{w(x) | V (x) ≤ w(x) ≤ U(x) for x ∈ RN ,

w is a viscosity subsolution of (4.3)}.

Then, in view of the Perron method, v∗ and v∗ are a viscosity subsolution and a
viscosity supersolution of (4.3), respectively. Note that, since V ≤ v ≤ U in RN ,

|v(x)| ≤ εφ(x) + λ−1(M(ε) + εB + |H(0)|),(4.6)

for all ε ∈ (0, 1] and x ∈ RN . Consequently, v∗, v∗ ∈ Eµ(RN). Now we apply Theorem
4.1, to find that v∗ ≤ v∗ in RN . That is, v ∈ C(RN). By virtue of Schauder theory
(see the appendix or [LSU]), we find that v ∈ C2(RN).

Uniqueness of solutions of (4.3) is a direct consequence of Theorem 4.1. Finally,
(4.5), with C = 1 + M(1) + B + |H(0)|, follows from (4.6). 2

Theorem 4.3. Assume that (3.3) holds for some constant Cf > 0. Let vλ ∈
C2(RN) ∩ Eµ(RN) be the unique solution of (4.3). Then there is a constant K > 0,
independent of λ ∈ (0, 1), such that

|vλ(x)− vλ(y)| ≤ K|x− y|γ(φ(x) + φ(y)) for x, y ∈ RN , λ ∈ (0, 1).(4.7)

Proof. The following proof parallels that of Theorem 3.1. Set w(x, y) := vλ(x)−
vλ(y) for x, y ∈ RN . Note that for x, y ∈ RN ,

λw − Ξ w + αx ·Dxw + αy ·Dyw − LH |Dxw + Dyw| ≤ f(x)− f(y),

where, as in Section 3, Ξ denotes the operator: C2(RN) → C(RN) given by

Ξ g(x, y) = ∆xg(x, y) + 2
N∑

i=1

∂2

∂xi∂yi

g(x, y) + ∆yg(x, y).
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Recall that when we set g(x, y) = ϕ(x − y)(ψ1(x) + ψ2(y)), where ϕ ∈ C2(Ω),
Ω ⊂ RN is an open set, and ψ1, ψ2 ∈ C2(RN), we have for x, y ∈ RN , if x− y ∈ Ω,

λg − Ξ g + αx ·Dxg + αy ·Dyg − LH |Dxg + Dyg|
≥ λg + ϕ(x− y)(−∆ψ1 + αx ·Dψ1 − LH |Dψ1|)

+ϕ(x− y)(−∆ψ2 + αx ·Dψ2 − LH |Dψ2|)
+α(x− y) ·Dϕ(x− y)(ψ1 + ψ2).

Let B > 0 be a constant such that

−∆φ(x) + αx ·Dφ(x)− LH |Dφ(x)| ≥ φ(x)−B for all x ∈ RN .

Let δ > 0 be a constant to be sent to zero and A > 0 a constant to be fixed later.
Define g ∈ C(R2N) by

g(x, y) = Cf [δ + (|x− y|γ + δ2)(φ(x) + φ(y) + A)].

Then, for x, y ∈ RN , if x 6= y, we have

λg − Ξ g + αx ·Dxg + αy ·Dyg − LH |Dxg + Dyg|
≥ λg + Cf (|x− y|γ + δ2)(φ(x) + φ(y)− 2B)

+αγCf |x− y|γ(φ(x) + φ(y) + A)

≥ Cf (λδ + (|x− y|γ + δ2)(φ(x) + φ(y)− 2B) + αγA|x− y|γ)
> Cf [δ(λ− 2δB) + |x− y|γ(φ(x) + φ(y)) + (αγA− 2B)|x− y|γ].

Now, we assume that δ ≤ λ/(2B) and fix

A =
2B

αγ
,

so that αγA = 2B and λ ≥ 2δB. Observe that for x, y ∈ RN , if x 6= y, then

λg − Ξ g + αx ·Dxg + αy ·Dyg − LH |Dxg + Dyg| > Cf |x− y|γ(φ(x) + φ(y)).(4.8)

We argue by contradiction, in order to prove that w ≤ g on R2N . Thus we
suppose that

sup
R2N

(w − g) > 0.

Noting that
lim

|x|+|y|→∞
(w − g)(x, y) = −∞,
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we find an open bounded set G ⊂ R2N such that w ≤ g on R2N \G. Let (x̂, ŷ) ∈ G
be a maximum point of the function w− g over G. Then we have (w− g)(x̂, ŷ) > 0,
which assures that (x̂, ŷ) ∈ G and x̂ 6= ŷ. Since

λw − Ξ w + αx ·Dxw + αy ·Dyw − LH |Dxw + Dyw|
≤ Cf |x− y|γ(φ(x) + φ(y)) for x, y ∈ RN ,

by the maximum principle we get

λg − Ξ g + αx ·Dxg + αy ·Dyg − LH |Dxg + Dyg|
≤ Cf |x− y|γ(φ(x) + φ(y)) at (x, y) = (x̂, ŷ),

which contradicts (4.8). This shows that w ≤ g on R2N and moreover that

vλ(x)− vλ(y) ≤ Cf |x− y|γ
(
φ(x) + φ(y) +

2B

αγ

)
for all x, y ∈ RN ,

which guarantees (4.7), with K = Cf (1 + 2B/(αγ)). 2

We are ready to prove the following assertion.

Theorem 4.4. Assume that (3.3) holds for some constant Cf > 0. Then there is
a solution (c, v) ∈ R× C2(RN) of (4.1) such that

v ∈ ⋂
ν>µ

Eν(RN).(4.9)

Proof. Let vλ ∈ C2(RN)∩Eµ(RN), with λ ∈ (0, 1), be the unique solution of (4.3).
In view of Theorems 4.2 and 4.3 there is a constant C > 0 independent of λ ∈ (0, 1)
such that

λ|vλ(0)| ≤ C,

|vλ(x)− vλ(y)| ≤ C|x− y|γ(φ(x) + φ(y)) for x, y ∈ RN .(4.10)

Define wλ, zλ ∈ C2(RN), with λ ∈ (0, 1), by wλ(x) := vλ(x)−vλ(0) and zλ(x) :=
λvλ(x), respectively. Then we have for all x, y ∈ RN ,

|zλ(0)| ≤ C,

|zλ(x)− zλ(0)| ≤ λC|x|γ(φ(x) + 1),(4.11)

|wλ(x)| ≤ C|x|γ(φ(x) + 1),(4.12)

|wλ(x)− wλ(y)| ≤ C|x− y|γ(φ(x) + φ(y)).
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Accordingly, {wλ}λ∈(0,1) is a uniformly bounded and equi-continuous family on any
balls of RN . Thus we can choose a sequence {λj}j∈N ⊂ (0, 1) such that, as j →∞,

λj → 0, zλj(0) → c,

wλj → v in C(RN)

for some c ∈ RN and v ∈ C(RN). By (4.11) we have, as j →∞,

zλj(x) → c uniformly on balls of RN .

By the stability of viscosity solutions (see, e.g., Lemma 6.1 of [CIL]), we find that v
satisfies (4.1) in the viscosity sense. By using Schauder estimates (see the appendix
or [LSU]), we deduce that v ∈ C2(RN). Let ν > µ. Since

lim
|x|→∞

|x|γφµ(x)

φν(x)
= 0,

we see from (4.12) that v ∈ Eν(RN). The proof is now complete. 2

Theorem 4.5. Let (c, v), (d, w) ∈ R×C2(RN) be solutions of ergodic problem (4.1)
such that v, w ∈ Eν(RN) for some ν < α/2. Then c = d and there is a constant
C ∈ R such that v − w = C in RN .

As a consequence of Theorems 4.4 and 4.5, we have the following structure
theorem on the solutions of ergodic problem (4.1).

Corollary 4.6. Under the hypotheses of Theorem 4.4, let (c, v) ∈ R×C2(RN) be a
solution of (4.1) such that v ∈ Eν(RN) for some constant ν < α/2. Then the set of
solutions in Eν(RN) of (4.1) is given by

{(c, v + C) ∈ R× C2(RN) | C ∈ R}.

Proof of Theorem 4.5. 1. To show that c = d, we argue by contradiction.
Thus we suppose that c 6= d. We may assume that c > d. Define u ∈ C2(RN) by
u(x) = v(x)− w(x) and note that

−∆u + αx ·Du− LH |Du| ≤ d− c in RN .(4.13)

By adding a constant to u we may assume that supRN u > 0.
Recall that there is a constant Bν > 0 such that

−∆φν(x) + αx ·Dφν(x)− LH |Dφν(x)| ≥ φν(x)−Bν for x ∈ RN .(4.14)
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Choose a constant ε > 0 small enough so that εBν < c − d and set U(x) = εφν(x)
for x ∈ RN . By the growth condition on v and w, we have

lim
|x|→∞

(u− U)(x) = −∞.

Hence there is an open bounded set Ω ⊂ RN such that u ≤ U in RN \Ω. By (4.13)
and (4.14), setting η = u− U , we have

−∆η(x) + αx ·Dη(x)− LH |Dη(x)| ≤ d− c− ε(φν(x)−Bν) < 0 for x ∈ RN .

By the maximum principle applied to η on the domain Ω, we have

η ≤ 0 in Ω,

which shows that u ≤ U in RN . If we let ε ↘ 0, we find that u ≤ 0 in RN , which is
a contradiction. Thus we see that c = d.

2. Next we show that for some constant C ∈ R,

v − w = C in RN .(4.15)

In view of (4.14), there is a constant R > 0 such that

−∆φν(x) + αx ·Dφν(x)− LH |Dφν(x)| > 0 for x ∈ RN \ int B(0, R).

We write u = v − w as before and show that

sup
RN

u = max
B(0,R)

u.(4.16)

For ε > 0 we set η(x) = u(x)− εφν(x) and observe that

−∆η(x) + αx ·Dη(x)− LH |Dη(x)| < 0 for x ∈ RN \ int B(0R).

By the maximum principle, this shows that η cannot attain a maximum over RN \
int B(0, R) at any point in its interior. Noting that

lim
|x|→∞

η(x) = −∞,

we see that (4.16) holds.
3. Now, to show (4.15), we utilize the strong maximum principle (see [PW] for

a general reference). By (4.16) we have

sup
RN

u = max
B(0,r)

u for any r > R.

We apply the strong maximum principle to u on B(0, r), with arbitrary r > R,
to conclude that u is a constant function on B(0, r), with r > R, which clearly
guarantees that u(x) = u(0) for all x ∈ RN . This completes the proof. 2
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Remark 4.7. The above proof shows that if v ∈ E+
ν (RN) ∩ C2(RN) and w ∈

E−ν (RN) ∩ C2(RN) are a subsolution and a supersolution of (4.1) with a common
constant c, then the same conclusion as Theorem 4.5 holds, i.e., v = w + C in RN

for some constant C ∈ R. Moreover, since the strong maximum principle (see [BD])
still holds for viscosity subsolutions u ∈ USC(RN) of

−∆u + αx ·Du− LH |Du| ≤ 0

on any balls of RN , the above argument with minor modifications guarantees that if
v ∈ E+

ν (RN) ∩USC(RN) and w ∈ E−ν (RN) ∩C2(RN) (or v ∈ E+
ν (RN) ∩C2(RN) and

w ∈ E−ν (RN)∩LSC(RN)) are a viscosity (resp., classical) subsolution and a classical
(resp., viscosity) supersolution of (4.1) with a common constant c, then v − w = C
for some constant C ∈ R.

5 Long time behavior of solutions

In this section we study the long time behavior of solutions of (1.1). The main result
in this section is stated as follows.

Theorem 5.1. Let µ be a constant satisfying (2.4). Assume (2.5), (2.8), and that
(3.3) and (3.4) hold for some constants γ ∈ (0, 1], Cf > 0, and C0 > 0. Let ν be
a constant satisfying µ < ν < α/2. Let u ∈ Eµ(Q) ∩ C(Q) ∩ C2,1(Q) be the unique
solution of (2.1) and (2.2) and (c, v) ∈ R× (C2(RN) ∩ Eν(RN)) a solution of (4.1).
Then there is a constant a ∈ R such that

lim
t→∞ max

B(0,R)
|u(x, t)− (ct + v(x) + a)| = 0 for all R > 0.(5.1)

Remark 5.2. Of course, such solutions u and (c, v) as in the above theorem exist
due to Theorems 2.2 and 4.4. Note that (2.9) follows from (3.3).

In this section we devote ourselves to proving Theorem 5.1, and we henceforth
assume the hypotheses of the theorem.

As before, we write LH for ‖DH‖∞. Set

fc(x) = f(x)− c for x ∈ RN ,

uc(x, t) = u(x, t)− ct for (x, t) ∈ Q.

Then uc and (c, v) solve, respectively, the Cauchy problem (2.1) and (2.2) and the
ergodic problem (4.1), with fc in place of f . Assertion (5.1) now reads

lim
t→∞ max

B(0,R)
|uc(x, t)− (v(x) + a)| = 0 for R > 0.

23



Replacement of u and f by uc and fc, respectively, reduces the proof of Theorem
5.1 to the case of c = 0. Therefore we assume in the remainder of this section that
c = 0.

In what follows we denote by η the function defined by

η(x, t) = u(x, t)− v(x) on Q.

Since v satisfies
−∆v + αx ·Dv + H(Dv) = f(x) in RN ,(5.2)

we have
ηt −∆η + αx ·Dϕ− LH |Dη| ≤ 0 in Q.

We write φ and ψ for φµ and φν , respectively. Fix a constant B > 1 so that

−∆ψ(x) + αx ·Dψ(x)− LH |Dψ(x)| ≥ ψ(x)−B for x ∈ RN .

Let ϕ denote the function defined by ϕ(x, t) = (ψ(x)−B)e−t on Q. It follows that

ϕt −∆ϕ + αx ·Dϕ− LH |Dϕ| ≥ 0 in Q.

We divide the proof of Theorem 5.1 into several lemmas.

Lemma 5.3. There is a function L : (0, 1] → (0,∞) and for each R > 0 a modulus
σR such that

|u(x, t)| ≤ εφν(x) + L(ε) for (x, t) ∈ Q, ε ∈ (0, 1],(5.3)

|u(x, t)− u(x, s)| ≤ σR(|t− s|) for x ∈ B(0, R), t, s ∈ [0,∞), R > 0.(5.4)

Proof. Once (5.3) has been shown, (5.4) is a consequence of Theorem 3.2. Thus
we only need to prove (5.3).

Fix ε ∈ (0, 1]. Since η ∈ Eν(Q), we have

|η(x, 0)| ≤ εψ(x) + Mψ(ε) for x ∈ RN ,

lim
|x|→∞

sup
0≤t≤T

(η − εϕ)(x, t) = −∞ for T > 0

for some constant Mψ(ε) > 0. For each T > 0 we choose a constant R > 0, which
depends on T and ε, so that

η ≤ εϕ on (RN \B(0, R))× [0, T ].

Note that
εψ(x) + Mψ(ε) = εϕ(x, 0) + εB + Mψ(ε) for x ∈ RN
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and hence

η(x, t) ≤ εϕ(x, t) + εB + Mψ(ε) for (x, t) ∈ (∂B(0, R)× [0, T ]) ∪ (B(0, R)× {0}).
Applying the maximum principle, we obtain

η(x, t) ≤ εϕ(x, t) + εB + Mψ(ε) for (x, t) ∈ B(0, R)× [0, T ].

Consequently we get

η(x, t) ≤ εϕ(x, t) + εB + Mψ(ε) for (x, t) ∈ RN × [0, T ],

and furthermore

η(x, t) ≤ εϕ(x, t) + εB + Mψ(ε) for (x, t) ∈ Q.

Similarly, we get

η(x, t) ≥ −εϕ(x, t)− εB −Mψ(ε) for (x, t) ∈ Q.

Thus we have

|η(x, t)| ≤ εψ(x) + εB + Mψ(ε) for (x, t) ∈ Q,

which was to be shown. 2

Lemma 5.4. The sets {u(·, t) | t ≥ 0} and {u(·, · + t) | t ≥ 0} are precompact in
C(RN) and C(Q), respectively.

Proof. By Theorem 3.1 and (5.3), the collection {u(·, t) | t ≥ 0} is uniformly
bounded and equi-continuous on bounded subsets of RN . Similarly, by Theorem
3.1, (5.3), and (5.4), the collection {u(·, · + t) | t ≥ 0} is uniformly bounded and
equi-continuous on bounded subsets of Q. Therefore, the Ascoli-Arzela theorem
guarantees the needed precompactness. 2

We define the functions v+, v− : RN → R by

v+(x) = lim sup
t→∞

u(x, t),

v−(x) = lim inf
t→∞ u(x, t).

Let C1 > 0 be the constant from (3.5) and L a function from Lemma 5.3. It follows
from (3.5) and (5.3) that for g = v+ and v−,

|g(x)− g(y)| ≤ C1|x− y|γ(φ(x) + φ(y)) for x, y ∈ RN ,(5.5)

|g(x)| ≤ εψ(x) + L(ε) for x ∈ RN and ε ∈ (0, 1].(5.6)

In particular, we have v± ∈ Cγ(RN).
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Lemma 5.5. The functions v+ and v− are solutions in C2(RN) of (5.2).

Proof. We only give the proof for v+ since the proof for v− is similar.
For T > 0 we define uT ∈ C(Q) by uT (x, t) = u(x, t+T ). Note that the functions

uT are classical solutions of (2.1). Next, for T > 0 we define vT : Q → R by

vT (x, t) = sup{uS(x, t) | S ≥ T}.
Then (5.3) and (5.4), with vT in place of u, hold for all T > 0, which shows that
vT ∈ C(Q) for all T > 0, and the functions vT are viscosity subsolutions of (2.1).
The convergence

vT (x, t) → v+(x),

as T →∞, is monotone for all (x, t) ∈ Q and hence, by the Dini lemma, it is uniform
on bounded subsets of Q. Regarding v+ as a function on Q which is independent of
the t-variable, we see by the stability of viscosity subsolutions in the local uniform
convergence that v+ is a viscosity subsolution of (2.1). Since v+ is independent of
the t-variable, v+ is a viscosity subsolution of (5.2).

Finally let v ∈ C2(RN) ∩ Eν(RN) be a solution of (5.2). As we have already
remarked in Remark 4.7, v+(x) = v(x) + C for all x ∈ RN and some constant
C ∈ R. Hence, v+ is in C2(RN) and satisfies (5.2). 2

We introduce the ω-limit set Ω(u) of u as the set of those functions w ∈ C(Q)
for which there is a sequence {tj}j∈N ⊂ (0,∞) such that, as j → ∞, tj → ∞
and u(x, t + tj) → w(x, t) uniformly on bounded subsets of Q. By the stability of
viscosity solutions of (2.1) in C(Q), we see that any w ∈ Ω(u) is a viscosity solution
of (2.1), which is a classical solution of (2.1) as well. By definition, it is obvious that

v−(x) ≤ w(x, t) ≤ v+(x) for (x, t) ∈ Q and w ∈ Ω(u).

Lemma 5.6. There is a function w− ∈ Ω(u) such that w−(0, 1) = v−(0).

Proof. By the definition of v−(0), there is a sequence {tj}j∈N ⊂ (1,∞) such
that u(0, tj) → v−(0) as j → ∞. In view of Lemma 5.4, there are a subsequence
{sj}j∈N ⊂ {tj}j∈N and a function w− ∈ C(RN) such that as j →∞,

u(·, ·+ sj − 1) → w− in C(Q).

It is clear that w− ∈ Ω(u) and v−(0) = w−(0, 1). 2

Now, we are ready to prove Theorem 5.1

Proof of Theorem 5.1. 1. By Lemma 5.5, the functions v+ and v− are a viscosity
subsolution and a viscosity supersolution of (5.2), respectively. Hence, Remark
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4.7 ensures that there are constants a, b ∈ R such that v+(x) = v(x) + a and
v−(x) = v(x) + b for all x ∈ RN . Since v+(x) ≥ v−(x) for all x ∈ RN , we have
a ≥ b. If a = b, then we find by the definition of v± and by the precompactness
of {u(·, t) | t ≥ 0} in C(RN) (due to Lemma 5.4) that u(·, t) → v + a in C(RN) as
t →∞.

2. Thus we only need to show that a = b.
Now, we prove that there is a sequence {tj}j∈N ⊂ (0,∞) such that

u(·, tj) → v− in C(RN) as j →∞.(5.7)

By Lemma 5.6, there is a function w− ∈ Ω(u) such that w−(0, 1) = v−(0). Since
w−(x, t) ≥ v−(x) for all (x, t) ∈ Q, the function ζ ∈ C(Q) ∩ C2,1(Q) defined by
ζ(x, t) = v−(x)−w−(x, t) attains a maximum at the point (0, 1) ∈ Q. This function
ζ satisfies

ζt −∆ζ + αx ·Dζ − LH |Dζ| ≤ 0 in Q.

By applying the strong maximum principle to ζ, we find that

ζ(x, t) = ζ(0, 1) = 0 for (x, t) ∈ RN × [0, 1).

That is, w−(x, t) = v−(x) for all (x, t) ∈ RN × [0, 1). By the definition of Ω(u), there
is a sequence {tj}j∈N ⊂ (0,∞) such that as j →∞, tj →∞ and

u(·, tj) → w−(·, 0) = v− in C(RN),

which shows (5.7).
3. For T > 0 we define the function ηT ∈ C2,1(Q) by ηT (x, t) = u(x, t + T ) −

v(x)− b. Note that for any T > 0 the function ηT satisfies

ηT
t −∆ηT + αx ·DηT − LH |DηT | ≤ 0 in Q.

Fix any ε > 0 and note that

εϕ(x, 0) + εB ≥ 0 for x ∈ RN .

Recalling (5.3), we may choose a constant C ≡ C(ε) > 0 such that

|u(x, t)| ≤ ε

2
ψ(x) + C for (x, t) ∈ Q.

We may choose a constant R ≡ R(ε) > 0 such that

ε

2
ψ(x) + C − v(x)− b ≤ εϕ(x, 0) for x ∈ RN \B(0, R).
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Then we get

ηT (x, 0) ≤ εϕ(x, 0) for x ∈ RN \B(0, R), T > 0.

According to (5.7), we may fix a constant T ≡ T (ε) > 0 so that

ηT (x, 0) ≤ ε for x ∈ B(0, R).

We now have
ηT (x, 0) ≤ εϕ(x, 0) + εB + ε for x ∈ RN .

By (5.3), we have

lim
|x|→∞

sup
0≤t≤S

(ηT (x, t)− εϕ(x, t)− ε(1 + B)) = −∞ for S > 0.

We apply the comparison principle to ηT and εϕ + ε(1 + B) as usual, to conclude
that

ηT (x, t) ≤ εϕ(x, t) + ε(1 + B) for (x, t) ∈ Q.

In particular, we have

u(0, t + T ) ≤ v(0) + b + εϕ(0, t) + ε(1 + B) ≤ v(0) + b + ε(1 + B) for t ≥ 0.

Here we used the fact that ϕ(0, t) < 0. Sending t →∞ along a sequence yields

v+(0) ≤ v(0) + b + ε(1 + B),

which guarantees that a ≤ b as ε > 0 is arbitrary. This completes the proof. 2

6 Locally Lipschitz Hamiltonian H

In this section, under the weaker assumption that H is locally Lipschitz continuous
on RN and the stronger assumption that f, u0 ∈ Lip(RN), we establish the compari-
son, existence, regularity results for the Cauchy problem (2.1) and (2.2) and ergodic
problem (4.1), as well as and the long time behavior of solutions for the Cauchy
problem. The proof of these results will be based on the results obtained in the
previous sections.

We assume throughout this section that

H ∈ C0+1(RN),(6.1)

f ∈ Lip(RN),(6.2)

u0 ∈ Lip(RN).(6.3)
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We set

M = max
{
‖Du0‖∞,

‖Df‖∞
α

}
.(6.4)

In this section we will frequently consider PDE

ut −∆u + αx ·Du + HM(Du) = f(x) in Q,(6.5)

where HM is a fixed function HM ∈ Lip(RN) having the property:

HM(p) = H(p) for p ∈ B(0,M).(6.6)

Theorem 6.1. Problem (2.1) and (2.2) has a unique solution u ∈ C(Q)
⋂

C2,1(Q)
such that

sup
RT

|u(x, t)|
|x|+ 1

< ∞ for T > 0.(6.7)

Moreover,

|Du(x, t)| ≤ M for (x, t) ∈ Q,(6.8)

|u(x, t)− u(x, s)| ≤ ωR(|t− s|) for x ∈ B(0, R), t, s ∈ [0,∞),(6.9)

for all R > 0, where ωR is a modulus and M is the constant given by (6.4).

Proof. 1. We show first the existence of a solution u ∈ C(Q) ∩ C2,1(Q) of
(2.1) and (2.2) which satisfies (6.8). In view of Theorem 2.2, there is a solution
u ∈ C(Q) ∩ C2,1(Q) ∩ Eµ(Q) of (6.5) and (2.2). If u satisfies (6.8), then, because of
(6.6), u satisfies (2.1) as well. Thus it is enough to show that u satisfies (6.8). For
this we follow the proof of Theorem 3.1 with minor modifications.

2. Fix 0 < T < ∞. We define w ∈ C(ST ) ∩ C2,1(PT ), where ST = R2N × [0, T )
and PT = R2N × (0, T ), by w(x, y, t) = u(x, t)− u(y, t), and observe that

wt − Ξ w + αx ·Dxw + αy ·Dyw − L|Dxw + Dyw|(6.10)

≤ f(x)− f(y) ≤ αM |x− y| in PT ,

where L := ‖DHM‖∞ and Ξ : C2(RN) → C(RN) is the operator defined by

Ξ g(x, y) = ∆xg(x, y) + ∆yg(x, y) + 2
N∑

i=1

∂2g

∂xi∂yi

(x, y).

For B > 1 large enough, the function ϕ(x, t) := (φµ(x)−B)e−t +B on Q satisfies

ϕt −∆ϕ + αx ·Dϕ− L|Dϕ| ≥ 0 in Q,(6.11)
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as we saw before, and ϕ ≥ 0 on Q. Fix any ε > 0 and set

η(x, y, t) = M |x− y|+ ε
(
ϕ(x, t) + ϕ(y, t) +

1

T − t

)
for (x, y, t) ∈ ST .

Using (6.11), we then calculate that for (x, y, t) ∈ QT , if x 6= y, then

ηt − Ξ η + αx ·Dxη + αy ·Dyη − L|Dxη + Dyη|(6.12)

≥ ε

T 2
+ αM |x− y| > αM |x− y|.

By our choice of M , we have

w(x, y, 0) ≤ M |x− y| ≤ η(x, y, 0) for (x, y) ∈ R2N .

Since u ∈ Eµ(Q), we have

lim
R→∞

sup{w(x, y, t)− η(x, y, t) | (x, y, t) ∈ ST , |x|+ |y| ≥ R} = −∞.

In view of (6.10) and (6.12), we may apply the maximum principle to w − η on
B(0, R)×B(0, R)× [0, T ), with R > 0 sufficiently large, to conclude that

w(x, y, t) ≤ η(x, y, t) for (x, y, t) ∈ ST ,

from which, since ε > 0 and T > 0 are arbitrary, we obtain

u(x, t)− u(y, t) ≤ M |x− y| for (x, y, t) ∈ R2N × [0,∞).

This immediately yields (6.8).
3. Now we turn to the uniqueness assertion. Let v ∈ C2,1(Q)∩C(Q) be another

solution of (2.1) and (2.2) satisfying (6.7), and we show that v = u on Q. It is
enough to show that u = v on QT for all 0 < T < ∞.

Fix any 0 < T < ∞. We only show that u ≤ v on QT since the proof of the
inequality u ≥ v on QT is similar. Let A > 0 be a constant to be fixed later. Fix
any 0 < ε < 1 and set

w(x, t) = u(x, t)− v(x, t)− ε(|x|2 + At) for (x, t) ∈ QT .

In view of the growth condition (6.7) on u and v, we see that this function w attains
a maximum over QT . Fix a maximum point (x̄, t̄) ∈ QT of w and observe that

0 = w(0, 0) ≤ w(x̄, t̄) ≤ C1(|x̄|+ 1)− ε|x̄|2 ≤ − ε

2
|x̄|2 +

C2
1

2ε
+ C1,
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where C1 > 0 is a constant such that

|u(x, t)|+ |v(x, t)| ≤ C1(|x|+ 1) for (x, t) ∈ QT .

Consequently, we have

ε2|x̄|2 ≤ C1(2ε + C1) ≤ 2C1 + C2
1 .(6.13)

We want to prove that
max
QT

w = 0.(6.14)

For this we need to show that t̄ = 0. Indeed, if t̄ = 0, then

0 ≤ w(0, 0) ≤ max
QT

w = w(x̄, 0) ≤ u(x̄, 0)− v(x̄, 0) ≤ 0.

We argue by contradiction and thus suppose that t̄ > 0. By the maximum principle,
we have

Dw(x̄, t̄) = 0, wt(x̄, t̄) ≥ 0, −∆w(x̄, t̄) ≥ 0.(6.15)

In particular, we have

|Dv(x̄, t̄)| = |Du(x̄, t̄)− 2εx̄| ≤ M + R,

where R := 2
√

2C1 + C2
1 . Here we have used that |Du(x, t)| ≤ M for all (x, t) ∈ Q

by (6.8).
Now, setting L1 := ‖DH‖L∞(B(0,M+R)), we compute that, at (x̄, t̄),

0 = (u− v)t −∆(u− v) + αx ·D(u− v) + H(Du)−H(Dv)

≥ wt −∆w + αx ·Dw − L1|Du−Dv|+ ε(A− 2N + 2α|x|2)
≥ wt −∆w + αx ·Dw − L1|Dw|+ ε(A− 2N + 2α|x|2 − 2L1|x|).

We fix

A = 2 max
r∈R

(−αr2 + L1r + N) + 1 ≡ L2
1

2α
+ 2N + 1.

Then we have
wt −∆w + αx ·Dw − L1|Dw| < 0 at (x̄, t̄).

On the other hand, by (6.15) we must have

wt −∆w + αx ·Dw − L1|Dw| ≥ 0 at (x̄, t̄).
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These two inequalities are contradictory, which shows that t̄ = 0 and hence (6.14)
is valid. Sending ε → 0 yields

u(x, t) ≤ v(x, t) for (x, t) ∈ QT .

As noted before, we may conclude the desired uniqueness.
4. Since u satisfies (6.5), estimate (6.9) is a direct consequence of Theorem 3.2.

2

Remark 6.2. In order to get (6.8), one may use the standard Bernstein method as
well.

The uniqueness assertion in the above theorem can be extended to the following
comparison theorem for viscosity sub- and supersolutions of (2.1).

Theorem 6.3. Let v ∈ USC(Q) and w ∈ LSC(Q) be a viscosity subsolution and a
viscosity supersolution of (2.1), respectively. Assume that for each T > 0 there is a
constant CT > 0 such that

v(x, t) ∨ (−w(x, t)) ≤ CT (1 + |x|) for (x, t) ∈ QT ,(6.16)

and that v(x, 0) ≤ u0(x) ≤ w(x, 0) for all x ∈ RN . Then u ≤ v in Q.

For the proof, we can easily adapt the argument for the uniqueness in Theorem
6.1 to show that v ≤ u ≤ w, where u is the unique solution of (2.1) and (2.2)
satisfying (6.8). We omit here the details of the proof of Theorem 6.3.

Next, we discuss the ergodic problem (4.1).

Theorem 6.4. (a) There exists a solution (c, v) ∈ R× C2(RN) of (4.1) such that

‖Dv‖∞ ≤ ‖f‖∞
α

.(6.17)

(b) Let (c, v), (d, w) ∈ R× (C2(RN)∩ Lip(RN)) be solutions of (4.1). Then we have

c = d and v − w = C on RN

for some constant C ∈ R.
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Proof. 1. Let R := max{‖Dv‖∞, ‖Dw‖∞}. Assertion (b) is an immediate
consequence of Theorem 4.5, since (c, v) and (d, w) are solutions of (4.1), with H
replaced by a function HR having the properties

HR ∈ Lip(RN) and HR(p) = H(p) for p ∈ B(0, R).

2. Due to Theorem 6.1, there is a (unique) solution u ∈ C(Q)∩C2,1(Q) of (2.1)
satisfying

u(x, 0) = 0 for x ∈ RN and |Du(x, t)| ≤ ‖Df‖∞
α

for (x, t) ∈ Q.(6.18)

Let L = ‖Df‖∞
α

and choose a function HL ∈ Lip(RN) so that HL(p) = H(p) for all

p ∈ B(0, L). By Theorem 4.4, there is a solution (c, v) ∈ R×C2(RN) of (4.1), with
HL in place of H, such that v ∈ Eν(RN) for some ν ∈ (0, α/2). By Theorem 5.1
there is a constant a ∈ R such that

lim
t→∞ max

B(0,R)
|v(x)− (u(x, t)− ct− a)| = 0 for R > 0.

This together with (6.18) yields

|v(x)− v(y)| = lim
t→∞ |(u(x, t)− ct−a)− (u(y, t)− ct−a)| ≤ L|x− y| for x, y ∈ RN .

This shows that ‖Dv‖∞ ≤ L and hence that (c, v) is a solution of (4.1). 2

Finally we state the long time behavior of solutions of (2.1).

Theorem 6.5. Let u ∈ C(Q) ∩ C2,1(Q) be the unique solution of (2.1) and (2.2)
satisfying growth condition (6.7). Let (c, v) ∈ R× (C2(RN)∩Lip(RN)) be a solution
of (4.1). Then there is a constant a ∈ R such that

lim
t→∞ max

B(0,R)
|u(x, t)− (ct + v(x) + a)| = 0 for all R > 0.(6.19)

Proof. Noting that u satisfies

|Du(x, t)| ≤ M for (x, t) ∈ Q

by (6.8) and hence satisfies (6.5) and that (c, v) solves (4.1), with HM in place of
H, we conclude immediately from Theorem 5.1 that (6.19) is valid for some a ∈ R.
2
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Appendix

Here we discuss briefly the solvability of the initial-boundary value problem

ut −∆u + αx ·Du + H(Du) = f(x, t) in QT ,(A.1)

u = ψ on ∂pQT(A.2)

in C(QT )∩C2,1(QT ), where QT := U × (0, T ), U is an open ball in RN , 0 < T < ∞,
H ∈ Lip(RN), f ∈ C(QT ), and ψ ∈ C(QT ) are given functions, and ∂pQT :=
(∂U × [0, T ]) ∪ (U × {0}).

Our arguments will be based on Schauder theory for parabolic PDE presented
in Chapter IV of [LSU].

Let 0 < γ < 1. We first assume that

f ∈ Cγ,γ/2(QT ),(A.3)

ψ ∈ C2+γ,1+γ/2(QT ),(A.4)

ψt(x, 0)−∆ψ(x, 0) + αx ·Dψ(x, 0) + H(Dψ(x, 0)) = f(x, 0) for x ∈ ∂U.(A.5)

Theorem A.1. Under the assumptions (A.3)–(A.5) there is a unique solution u ∈
C2+γ,1+γ/2(QT ) of (A.1) and (A.2).

Outline of proof. We show that there is a constant τ > 0, independent of T , f ,
and ψ, such that there exists a solution u ∈ C2+γ,1+γ/2(QS) of (A.1) and (A.2) in QS,
with S = min{τ, T}, from which we conclude the proof by an induction argument.

Let τ ∈ (0, 1] be a constant to be fixed later on and set S := min{τ, T}.
Let X be the closed subset of C2+γ,1+γ/2(QS) consisting of all functions v sat-

isfying v = ψ on ∂pQS. Fix any v ∈ X and set g(x, t) = f(x, t) − H(Dv(x, t)) for
(x, t) ∈ QS. It is clear that g ∈ Cγ,γ/2(QS) and

ψt(x, 0)−∆ψ(x, 0) + αx ·Dψ(x, 0) = g(x, 0) for x ∈ ∂U.

This last equality is the first compatibility condition for the initial-boudary value
problem

ut −∆u + αx ·Du = g(x, t) in QS,(A.6)

u = ψ on ∂pQS.(A.7)

By virtue of Theorem 5.2 of Chapter IV in [LSU], there is a unique solution u ∈
C2+γ,1+γ/2(QS) of (A.6) and (A.7). Moreover there is a constant C > 0 independent
of ψ and g such that

‖u‖C2+γ,1+γ/2(QS) ≤ C(‖ψ‖C2+γ,1+γ/2(∂pQS) + ‖g‖Cγ,γ/2(QS)).(A.8)
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Thus we may define the mapping F : X → X by setting F (v) := u.
Fix any v1, v2 ∈ X and set w := F (v1) − F (v2) and gi(x, t) := f(x, t) −

H(Dvi(x, t)) for (x, t) ∈ QS and i = 1, 2. Noting that w satisfies (A.6) and (A.7),
with g = g1 − g2 and ψ = 0, we get from (A.8)

‖F (v1)− F (v2)‖C2+γ,1+γ/2(QS) ≤ C‖H(Dv1)−H(Dv2)‖Cγ,γ/2(QS).(A.9)

Since v(x, t) := t‖g1 − g2‖L∞(QS) and −v are a supersolution and a subsolution
of (A.6) and (A.7), with g = g1 − g2 and ψ = 0, we find by the maximum principle
that

‖F (v1)− F (v2)‖L∞(QS) ≤ S‖g1 − g2‖L∞(QS) ≤ SL‖D(v1 − v2)‖L∞(QS),(A.10)

where L > 0 is a positive constant such that ‖DH‖∞ ≤ L. From (A.9), we get

〈F (v1)− F (v2)〉(2+γ)
QS

≤ C(〈g1 − g2〉(γ)
QS

+ ‖g1 − g2‖L∞(QS))

≤ CL(〈D(v1 − v2)〉(γ)
QS

+ ‖D(v1 − v2)‖L∞(QS)),

where, for β ∈ (0, 1) and functions v on QS,

〈v〉(2+β)
QS

= 〈D2v〉(β)
x,QS

+ 〈Dv〉(
1+β

2
)

t,QS
+ 〈vt〉(

β
2
)

QS
,

〈v〉(β)
QS

= 〈v〉(γ)
x,QS

+ 〈v〉(
β
2
)

t,QS
,

〈v〉(β)
x,QS

= sup{|v(x, t)− v(y, t)|
|x− y|β | (x, t), (y, t) ∈ QS, x 6= y},

〈v〉(β)
t,QS

= sup{|v(x, t)− v(x, s)|
|t− s|β | (x, t), (x, s) ∈ QS, t 6= s}.

Hence, by using the interpolation lemma (see Lemma 3.2 of Chapter II in [LSU]),
for any w ∈ C2+γ,1+γ/2(QS), we have

〈Dw〉(γ)
QS

≤ C0(S
1
2 〈w〉(2+γ)

QS
+ S−

1+γ
2 ‖w‖L∞(QS)),

‖Dw‖L∞(QS) ≤ C0(S
1+γ
2 〈w〉(2+γ)

QS
+ S−

1
2‖w‖L∞(QS)).

for some constant C0 > 0 independent of S. These, (A.9), and (A.10) together yield

〈F (v1) − F (v2)〉(2+γ)
QS

+ S−1‖F (v1)− F (v2)‖L∞(QS)(A.11)

≤ LC0

(
CS

1
2 + (C + L)S

1+γ
2

)
〈v1 − v2〉(2+γ)

QS

+ LC0

(
CS

1−γ
2 + (C + L)S

1
2

)
S−1‖v1 − v2‖L∞(QS).
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Now, we fix τ ∈ (0, 1] so that

LC0

(
Cτ

1
2 + (C + L)τ

1
2

)
≤ 1

2
.

Since S ≤ τ ≤ 1, from (A.11) we get

〈F (v1)− F (v2)〉(2+γ)
QS

+ S−1‖F (v1)− F (v2)‖L∞(QS)(A.12)

≤ 1

2

(
〈v1 − v2〉(2+γ)

QS
+ S−1‖v1 − v2‖L∞(QS)

)
.

This shows that F is a contraction mapping on X, equipped with the metric

ρ(v1, v2) = 〈v1 − v2〉(2+γ)
QS

+ S−1‖v1 − v2‖L∞(QS).

By the contraction mapping theorem, there is a unique fixed point u ∈ X of F . It
is easily seen that u is a unique solution of (A.1) and (A.2) in QS. 2

Remark A.2. We have the following estimate in the above theorem: if u is the
solution of (A.1) and (A.2), then

‖u‖C2+γ,1+γ/2(QT ) ≤ C(‖ψ‖C2+γ,1+γ/2(∂pQT ) + ‖f‖Cγ,γ/2(QT ))(A.13)

for some constant C > 0, independent of ψ and f . We first note that for any
ϕ ∈ C2+γ,1+γ/2(∂pQT ) there is an extension of ϕ to QT , denoted again by ϕ, which
satisfies

‖ϕ‖C2+γ,1+γ/2(QT ) ≤ C0‖ϕ‖C2;γ,1+γ/2(∂pQT ),(A.14)

where C0 > 0 is a constant independent of ϕ. To prove (13), we may assume that
(A.14) is satisfied with ψ in place of ϕ. Going back to the proof of Theorem A.1,
the solution u of (A.1) and (A.2) in QS can be obtained as the limit of the sequence
{un} in C2+γ,1+γ/2(QS) defined by u1 = ψ and un+1 = F (un) for n ∈ N. Then, using
the interpolation inequalities, (A.8), and (A.12), we get

‖un‖C2+γ,1+γ/2(QS) ≤
n−1∑

k=1

‖uk+1 − uk‖C2+γ,1+γ/2(QS) + ‖u1‖C2+γ,1+γ/2(QS)

≤ C1

n−1∑

k=1

ρ(uk+1, uk) + ‖u1‖C2+γ,1+γ/2(QS)

≤ 2C1ρ(u2, u1) + ‖u1‖C2+γ,1+γ/2(QS)

≤ C2‖F (ψ)− ψ‖C2+γ,1+γ/2(QS) + ‖ψ‖C2+γ,1+γ/2(QS)

≤ C2‖F (ψ)‖C2+γ,1+γ/2(QS) + (C2 + 1)‖ψ‖C2+γ,1+γ/2(QS)

≤ CC2(‖ψ‖C2+γ,1+γ/2(QS) + ‖f −H(Dψ)‖Cγ,γ/2(QS))

+(C2 + 1)‖ψ‖C2+γ,1+γ/2(QS)

≤ C3(‖ψ‖C2+γ,1+γ/2(QS) + ‖f‖Cγ,γ/2(QS))
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for some positive constants C1, C2, and C3. This guarantees (A.13).

Next, we just assume that

f ∈ Cγ,γ/2(QT ),(A.15)

ψ ∈ C(QT ).(A.16)

Theorem A.3. Under the assumptions (A.15) and (A.16) there is a unique solution
u ∈ C(QT ) ∩ C2+γ,1+γ/2(QT ) of (A.1) and (A.2).

Outline of proof. We begin by noting that there is a sequence {ψn}n∈N ⊂
C∞(QT ) such that

ψn → ψ in C(QT ) as n →∞,

ψn,t −∆ψn + αx ·Dψn + H(Dψn) = f on ∂U × {0} for n ∈ N.

Fix such a sequence {ψn}. By virtue of Theorem A.1, for each n ∈ N there is a
unique solution un ∈ C2+γ,1+γ/2(QT ) of (A.1) and (A.2), with ψn in place of ψ.

Fix any 0 < T0 < T and U0 be an open ball such that U0 ⊂ U . Set Q0 =
U0 × (T0, T ). We will show that

‖un‖C2+γ,1+γ/2(Q0) ≤ C0 for n ∈ N(A.17)

for some constant C0 ≡ C0(U0, T0) > 0, independent of n. By the comparison
principle, we have

‖un − um‖L∞(QT ) ≤ ‖ψn − ψm‖C(∂pQT ) for n, m ∈ N.(A.18)

Conceding for the moment that (A.17) is valid, we see by using (A.18) that for
some function u ∈ C(QT ) ∩ C2+γ,1+γ/2(Q0),

un → u in C(QT ) ∩ C2,1(Q0) as n →∞.

In particular, u satisfies

{
ut −∆u + αx ·Du + H(Du) = f in Q0,
(u− ψ)|∂pQT

= 0.

In view of the arbitrariness of U0 and T0, we conclude that u is in C2+γ,1+γ/2(QT )
and is a solution of (A.1) and (A.2).

Thus we only need to show that (A.17) holds.
We follow the arguments at pp. 352–355 in [LSU]. To show (A.17), we fix n ∈ N

and write u for un. Choose R > 0 and x0 ∈ RN so that U = {x ∈ RN | |x−x0| < R}.
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For 0 < λ ≤ 1 we set Q(λ) = {x ∈ RN | |x − x0| < R(1 − λ
2
)} × (λ2T

2
, T ). We may

choose ζλ ∈ C∞(QT ) so that

ζλ ≥ 0, ζλ(x, t) = 1 for (x, t) ∈ Q(λ), ζλ(x, t) = 0 for (x, t) ∈ QT \Q(λ
2
),

‖Dkζλ‖L∞(QT ) ≤ C1λ
−k for k = 0, 1, 2, ‖ζλ

t ‖L∞(QT ) ≤ C1λ
−2

for some constant C1 > 0 independent of λ.
Define N : C2,1(QT ) → C(QT ) by

N (g)(x, t) = gt(x, t)−∆g(x, t) + αx ·Dg(x, t) + H(Dg(x, t)).

We may assume by replacing H and f by H(p)−H(0) and f(x)−H(0), respectively,
that H(0) = 0. The function v := ζλu satisfies

{
vt −∆v + αx ·Dv + H(Dv) = N (ζλu)− ζλ(N (u)− f(x)) in QT ,
v|∂pQT

= 0.

Setting f0 := N (ζλu)− ζλN (u) + ζλf, in view of (A.13), we have

‖v‖C2+γ,1+γ/2(QT ) ≤ C‖f0‖Cγ,γ/2(QT ).(A.19)

We have

N (ζλu)− ζλN (u) = ζλ
t u− (∆ζλ)u− 2Dζλ ·Du + α(x ·Dζλ)u

+H(uDζλ + ζλDu)− ζλH(Du).

Following arguments in [LSU], we obtain

‖ζλ
t u‖Cγ,γ/2(QT ) ≤ C2(λ

−2−γ‖u‖
L∞(Q( λ

2 ))
+ λ−2〈u〉(γ)

Q( λ
2 )

),

‖(∆ζλ)u‖Cγ,γ/2(QT ) ≤ C2(λ
−2−γ‖u‖

L∞(Q( λ
2 ))

+ λ−2〈u〉(γ)

Q( λ
2 )

),

‖Dζλ ·Du‖Cγ,γ/2(QT ) ≤ C2(λ
−1−γ‖Du‖

L∞(Q( λ
2 ))

+ λ−1〈Du〉(γ)

Q( λ
2 )

),

‖αx ·Dζλu‖Cγ,γ/2(QT ) ≤ C2(λ
−1−γ‖u‖

L∞(Q( λ
2 ))

+ λ−1〈u〉(γ)

Q( λ
2 )

),

‖ζλf‖Cγ,γ/2(QT ) ≤ C2(λ
−γ‖f‖L∞(QT ) + 〈f〉(γ)

Q( λ
2 )

)

for some constant C2 > 0, independent of λ. Also, noting that

‖H(uDζλ + ζλDu)‖Cγ,γ/2(QT ) ≤ ‖DH‖∞‖uDζλ + ζλDu‖Cγ,γ/2(QT )
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and replacing C2 by a larger constant if necessary, we get

‖H(uDζλ + ζλDu)‖Cγ,γ/2(QT )

≤ C2(λ
−1−γ‖u‖

L∞(Q( λ
2 ))

+ λ−γ‖Du‖
L∞(Q( λ

2 ))
+ λ−1〈u〉(γ)

Q( λ
2 )

+ 〈Du〉(γ)

Q( λ
2 )

).

Similarly we have

‖ζλH(Du)‖Cγ,γ/2(QT ) ≤ C2(λ
−γ‖Du‖

L∞(Q( λ
2 ))

+ 〈Du〉(γ)

Q( λ
2 )

).

Recalling that 0 < λ ≤ 1 and summing up the above inequalities, we get

‖f0‖Cγ,γ/2(QT ) ≤ C3(λ
−2−γ‖u‖

L∞(Q( λ
2 ))

+ λ−1−γ‖Du‖
L∞(Q( λ

2 ))
(A.20)

+λ−2〈u〉(γ)

Q( λ
2 )

+ λ−1〈Du〉(γ)

Q( λ
2 )

+λ−γ‖f‖
L∞(Q( λ

2 ))
+ 〈f〉(γ)

Q( λ
2 )

)

for some constant C3 > 0 independent of λ. Hence, using (A.19) and interpolation
inequalities (see Lemma 3.2 of Chapter II in [LSU]), we get

〈v〉(2+γ)
QT

≤ 2−3−γ〈u〉(2+γ)

Q( λ
2 )

+ C4(λ
−2−γ‖u‖

L∞(Q( λ
2 ))

+ λ−γ‖f‖Cγ,γ/2(QT ))

for some constant C4 > 0, which yields

λ2+γ〈u〉(2+γ)

Q(λ) ≤ 2−3−γλ2+γ〈u〉(2+γ)

Q( λ
2 )

+ C4(‖u‖
L∞(Q( λ

2 ))
+ ‖f‖Cγ,γ/2(QT )).

Recall that u = un depends on n ∈ N, and choose a constant M > 0 so that

‖un‖L∞(QT ) + ‖f‖Cγ,γ/2(QT ) ≤ M for n ∈ N.

Then

λ2+γ〈un〉(2+γ)

Q(λ) ≤ 1

2

(
λ

2

)2+γ

〈un〉(2+γ)

Q( λ
2 )

+ C4M for n ∈ N.

Since un ∈ C2+γ,1+γ/2(QT ), this yields

λ2+γ〈un〉(2+γ)

Q(λ) ≤ 2C4M for n ∈ N, λ ∈ (0, 1],

which guarantees (A.17).
Uniqueness is a consequence of the standard maximum principle. 2

39



References

[BC] M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solu-
tions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations
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