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Abstract. We study the large time behavior of solutions of the
Cauchy problem for the Hamilton-Jacobi equation ut + H(x,Du) = 0
in Rn× (0,∞), where H(x, p) is continuous on Rn×Rn and convex in p.
We establish a general convergence result for viscosity solutions u(x, t) of
the Cauchy problem as t →∞.

1. Introduction and the main results
In recent years, there has been much interest on the asymptotic behavior of viscosity

solutions of the Cauchy problem for Hamilton-Jacobi equations or viscous Hamilton-
Jacobi equations. Fathi [F2] was the first who established a fairly general convergence
result for the Hamilton-Jacobi equation ut(x, t)+H(x,Du(x, t)) = 0 on a compact man-
ifold M with smooth strictly convex Hamiltonian H. His approach to this large time
asymptotic problem is based on the weak KAM theory [F1, F3, FS1] which is concerned
with the Hamilton-Jacobi equation as well as with the Lagrangian or Hamiltonian dy-
namical structures behind it. Barles and Souganidis [BS1, BS2] took another approach,
based on PDE techniques, to the same asymptotic problem. The weak KAM approach
due to Fathi to the asymptotic problem has been developed and further improved by
Roquejoffre [R] and Davini-Siconolfi [DS]. Motivated by these developments the author
jointly with Y. Fujita and P. Loreti (see [FIL1]) has recently investigated the asymptotic
problem for viscous Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator

ut −∆u + αx ·Du + H(Du) = f(x) in Rn × (0,∞),

and the corresponding Hamilton-Jacobi equations

ut + αx ·Du + H(Du) = f(x) in Rn × (0,∞),
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where H is a convex function on Rn, ∆ denotes the Laplace operator, and α is a positive
constant, and has established a convergence result similar to those obtained by [BS, F2,
R, DS].

In this paper we investigate the Cauchy problem

ut + H(x,Du) = 0 in Rn × (0,∞), (1.1)

u(·, 0) = u0, (1.2)

where H is a scalar function on Rn ×Rn, u ≡ u(x, t) is the unknown scalar function
on Rn × [0,∞), ut = ∂u/∂t, Du = (∂u/∂x1, ..., ∂u/∂xn), and u0 is a given function on
Rn describing the initial data. The function H(x, p) is assumed here to be convex in p,
and we call H the Hamiltonian and then the function L, defined by

L(x, ξ) = sup
p∈Rn

(ξ · p−H(x, p)),

the Lagrangian. We refer to [Rf] for general properties of convex functions.
We are also concerned with the additive eigenvalue problem:

H(x,Dv) = c in Rn, (1.3)

where the unknown is a pair (c, v) ∈ R × C(Rn) for which v is a viscosity solution of
(1.3). This problem is also called the ergodic control problem due to the fact that PDE
(1.3) appears as the dynamic programming equation in ergodic control of deterministic
optimal control theory. We remark that the additive eigenvalue problem (1.3) appears
in the homogenization of Hamilton-Jacobi equations. See for this [LPV].

For notational simplicity, given φ ∈ C1(Rn), we will write H[φ](x) for H(x,Dφ(x))
or H[φ] for the function: x 7→ H(x,Dφ(x)) on Rn. For instance, (1.3) may be written
as H[v] = c in Rn.

We make the following assumptions on the Hamiltonian H.
(A1) H ∈ C(Rn ×Rn).
(A2) H is coercive, that is, for any R > 0,

lim
r→∞

inf{H(x, p) | x ∈ B(0, R), p ∈ Rn \B(0, r)} = ∞.

(A3) For any x ∈ Rn, the function: p 7→ H(x, p) is strictly convex in Rn.
(A4) There are functions φi ∈ C0+1(Rn) and σi ∈ C(Rn), with i = 0, 1, such that for

i = 0, 1,
H(x, Dφi(x)) ≤ −σi(x) almost every x ∈ Rn,

lim
|x|→∞

σi(x) = ∞, lim
|x|→∞

(φ0 − φ1) (x) = ∞.

By adding a constant to the function φ0, we assume henceforth that

φ0(x) ≥ φ1(x) for x ∈ Rn.
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We introduce the class Φ0 of functions by

Φ0 = {u ∈ C(Rn) | inf
Rn

(u− φ0) > −∞}.
We call a modulus a function m : [0,∞) → [0,∞) if it is continuous and nonde-

creasing on [0,∞) and if m(0) = 0. The space of all absolutely continuous functions
γ : [S, T ] → Rn will be denoted by AC([S, T ],Rn). For x, y ∈ Rn and t > 0, C(x, t)
(resp., C(x, t; y, 0)) will denote the spaces of all curves γ ∈ AC([0, t],Rn) satisfying
γ(t) = x (resp., γ(t) = x and γ(0) = y). For any interval I ⊂ R and γ : I → Rn, we
call γ a curve if it is absolutely continuous on any compact subinterval of I.

We will establish the following theorems.

Theorem 1.1. Let u0 ∈ Φ0 and assume that (A1)–(A4) hold. Then there is a unique
viscosity solution u ∈ C(Rn × [0,∞)) of (1.1) and (1.2) satisfying

inf{u(x, t)− φ0(x) | (x, t) ∈ Rn × [0, T ]} > −∞ (1.4)

for any T ∈ (0,∞). Moreover the function u is represented as

u(x, t) = inf
{∫ t

0

L(γ(s), γ̇(s)) ds + u0(γ(0)) | γ ∈ C(x, t)
}

for (x, t) ∈ Rn × (0,∞).

Theorem 1.2. Let (A1)–(A4) hold. Then there is a solution (c, v) ∈ R× Φ0 of (1.3).
Moreover the constant c is unique in the sense that if (d,w) ∈ R×Φ0 is another solution
of (1.3), then d = c.

The above theorem determines uniquely a constant c, which we will denote by cH ,
for which (1.3) has a viscosity solution in the class Φ0. The constant cH is called the
critical value or additive eigenvalue for the Hamiltonian H. This definition may suggest
that c depends on the choice of (φ0, φ1). Actually, it depends only on H, but not on
the choice of (φ0, φ1), as the characterization of cH in Proposition 3.4 below shows. It
is clear that if (c, v) is a solution of (1.3), then (c, v + K) is a solution of (1.3) for any
K ∈ R. As is well-known, the structure of solutions of (1.3) is, in general, much more
complicated than this one-dimensional structure.

Theorem 1.3. Let (A1)–(A4) hold and u0 ∈ Φ0. Let u ∈ C(Rn × [0,∞)) be the
viscosity solution of (1.1) and (1.2) satisfying (1.4). Then there is a viscosity solution
v0 ∈ Φ0 of (1.3), with c = cH , such that as t →∞,

u(x, t) + ct− v0(x) → 0 uniformly on compact subsets of Rn.

We call the function v0(x)−ct obtained in the above theorem the asymptotic solution
of (1.1) and (1.2). See Theorem 8.1 for a representation formula for the function v0.

In order to prove the convergence result of Theorem 1.3, we follow the generalized
dynamical approach introduced by Davini and Siconolfi [DS] in broad outline.
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In the following we always assume that (A1)–(A4) hold.
The paper is organized as follows: in Section 2 we collect some basic observations

needed in the following sections. Section 3 is devoted to the additive eigenvalue problem
and to establishing Theorem 1.2. In Section 4 we establish a comparison theorem for
(1.1) and (1.2), from which the uniqueness part of Theorem 1.1 follows. In Section 5
we study the Aubry set and critical curves for the Lagrangian L. Section 6 deals with
the existence of a viscosity solution u of the Cauchy problem (1.1)–(1.2) together with
some estimates on u. Section 7 combines the results in the preceding sections, to prove
Theorem 1.3. In Section 8 we show a representation formula asymptotic solution for
large time of (1.1) and (1.2). In Section 9 we give two sufficient conditions for H to
satisfy (A4) and a two-dimensional example in which the Aubry set contains a non-
empty disk, with positive radius, consisting of non-equilibrium points. In Appendix
we show in a general setting that value functions associated with Hamiltonian H are
viscosity solutions of the Hamilton-Jacobi equation H = 0.

The author would like to thank Dr. Naoyuki Ichihara for pointing out many errors
and misprints in a prvious version of this paper.

2. Preliminaries
In this section we collect some basic observations which will be needed in the fol-

lowing sections.
We will be concerned with functions f on Rn×Rn. We write D1f and D2f for the

gradients of f , respectively, in the first n variables and in the last n variables. Similarly,
we use the symbols D±

1 f and D±
2 f to denote the sub- and superdifferentials of f in the

first or last n variables.
We remark that, since H(x, ·) is convex for any x ∈ Rn, for any u ∈ C0+1(Ω), where

Ω ⊂ Rn × (0,∞) is open, it is a viscosity subsolution of (1.1) in Ω if and only if it
satisfies (1.1) almost everywhere (a.e. for short) in Ω. A similar remark holds true for
the stationary problem (1.3).

Also, as is well-known, the coercivity assumption (A2) on H guarantees that if
v ∈ C(Ω), where Ω is an open subset of Rn, is a viscosity subsolution of (1.3) in Ω,
then it is locally Lipschitz in Ω.

Another remark related to the convexity of H is that given nonempty, uniformly
bounded, family S of subsolutions of (1.3) in Ω, where Ω is an open subset of Rn, the
pointwise infimum u(x) := inf{v(x) | v ∈ S} gives a viscosity subsolution u of (1.3) in
Ω. For instance, this can be checked by invoking the notion of semicontinuous viscosity
solutions due to Barron-Jensen [BJ1, BJ2]. Indeed, due to this theory (see also [B,
BC,I3]), v ∈ C0+1(Ω) is a viscosity subsolution of (1.3) if and only if H(x, p) ≤ c for all
p ∈ D−v(x) and all x ∈ Ω. It is standard to see that if p ∈ D−u(x) for some x ∈ Ω,
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then there are sequences {xk}k∈N ⊂ Ω, {vk}k∈N ⊂ S, and {pk}k∈N ⊂ Rn such that
pk ∈ D−vk(xk) for all k ∈ N and (xk, pk, vk(xk)) → (x, p, u(x)) as k → ∞. Here, we
have H(xk, pk) ≤ c for all k ∈ N and conclude that H(x, p) ≤ c for all p ∈ D−u(x)
and all x ∈ Ω. If, instead, S is a family of viscosity supersolutions of (1.3) in Ω, then
a classical result in viscosity solutions theory assures that u, defined as the pointwise
infimum of all functions v ∈ S, is a viscosity supersolution of (1.3) in Ω. In particular,
if S is a family of viscosity solutions of (1.3) in Ω, then the function u, defined as the
pointwise infimum of v ∈ S, is a viscosity solution of (1.3) in Ω.

Proposition 2.1. For each R > 0 there exist constants δR > 0 and CR > 0 such that
L(x, ξ) ≤ CR for all (x, ξ) ∈ B(0, R)×B(0, δR).

Proof. Fix any R > 0. By the continuity of H, there exists a constant MR > 0 such
that H(x, 0) ≤ MR for all x ∈ B(0, R). Also, by the coercivity of H, there exists a
constant ρR > 0 such that H(x, p) > MR +1 for all (x, p) ∈ B(0, R)×∂B(0, ρR). We set
δR = ρ−1

R . Let ξ ∈ B(0, δR) and x ∈ B(0, R). Let q ∈ B(0, ρR) be the maximum point
of the function: f(p) := H(x, p)− ξ · p on B(0, ρR). Noting that f(0) = H(x, 0) ≤ MR

and f(p) > MR + 1 − δRρR = MR for all p ∈ ∂B(0, ρR), we see that q ∈ intB(0, ρR)
and hence ξ ∈ D−

2 H(x, q), which implies that L(x, ξ) = ξ · q −H(x, q). Consequently,
we get

L(x, ξ) ≤ δRρR − min
p∈Rn

H(x, p) = 1− min
B(0,R)×Rn

H.

Now, choosing CR > 0 so that 1−minB(0,R)×Rn H ≤ CR, we obtain

L(x, ξ) ≤ CR for all (x, ξ) ∈ B(0, R)×B(0, δR).

Proposition 2.2. Let (x, ξ) ∈ Rn × Rn. Then (x, ξ) ∈ int dom L if and only if
ξ ∈ D−

2 H(x, p) for some p ∈ Rn.

Proof. Fix x̂, ξ̂ ∈ Rn. Suppose first that ξ̂ ∈ D−
2 H(x̂, p̂) for some p̂ ∈ Rn. Define the

function f on Rn ×Rn by

f(x, p) = H(x, p)− ξ̂ · p + L(x̂, ξ̂).

Note that the function f(x̂, ·) attains the minimum value 0 at p̂ and it is strictly convex
on Rn. Fix r > 0 and set

m = min
p∈∂B(p̂,r)

f(x̂, p),

and note, because of the strict convexity of f(x̂, ·), that m > 0. Note also that the
function: x 7→ minp∈∂B(p̂,r) f(x, p) is continuous on Rn. Hence there is a constant
δ > 0 such that

min{f(x, p) | x ∈ B(x̂, δ), p ∈ ∂B(p̂, r)} >
m

2
, (2.1)

max{f(x, p̂) | x ∈ B(x̂, δ)} <
m

4
. (2.2)
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Fix any (x, ξ) ∈ B(x̂, δ) × B(0, m
4 ) and consider the affine function g(p) := r−1ξ ·

(p− p̂) + m
4 . We show that

f(x, p) > g(p) for all p ∈ Rn \B(p̂, r). (2.3)

To see this, we fix any p ∈ Rn \ B(p̂, r) and set q = p̂ + r(p − p̂)/|p − p̂| ∈ ∂B(p̂, r).
Then, by (2.1), we have

f(x, q) >
m

2
.

Using the convexity of f(x, ·) and noting that q = (1− r
|p−p̂| )p̂ + r

|p−p̂|p, we get

f(x, q) ≤
(
1− r

|p− p̂|
)
f(x, p̂) +

r

|p− p̂|f(x, p)

and hence, by using (2.2), we get

f(x, p) ≥ r−1|p− p̂|f(x, q) + (1− r−1|p− p̂|)f(x, p̂)

>r−1|p− p̂|m
2

+ (1− r−1|p− p̂|)m

4
=

m

4
(1 + r−1|p− p̂|). (2.4)

On the other hand, we have

g(p) ≤ m

4
(r−1|p− p̂|+ 1).

This combined with (2.4) shows that (2.3) is valid.
Next, observing that f(x, p̂)− g(p̂) < m

4 − g(p̂) = 0 by (2.2) and using (2.3), we see
that the function: p 7→ f(x, p)− g(p) attains its global minimum at a point in B(p̂, r).
Fix such a minimum point px,ξ ∈ B(p̂, r), which is indeed uniquely determined by the
strict convexity of f(x, ·). We have

0 ∈ D−
2 f(x, px,ξ)−Dg(px,ξ) = D−

2 H(x, px,ξ)− ξ̂ − r−1ξ.

That is,
ξ̂ + r−1ξ ∈ D−

2 H(x, px,ξ),

which is equivalent to saying that

px,ξ ∈ D−
2 L(x, ξ̂ + r−1ξ).

In particular, we have (x, ξ̂ + r−1ξ) ∈ domL and (x̂, ξ̂) ∈ int dom L.

Next, we suppose that (x̂, ξ̂) ∈ int dom L. Then it is an easy consequence of the
Hahn-Banach theorem that there is a p̂ ∈ Rn such that ξ̂ ∈ D−

2 H(x̂, p̂).

Remark. Let (x, ξ) ∈ int dom L. According to the above theorem (and its proof),
there is a unique p(x, ξ) ∈ D−

2 L(x, ξ). That is, on the set int dom L, the multi-valued
map D−

2 L can be identified with the single-valued function: (x, ξ) 7→ p(x, ξ). By the
above proof, we see moreover that for each r > 0 there is a constant δ > 0 such that
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p(y, η) ∈ B(p(x, ξ), r) for all (y, η) ∈ B(x, δ)×B(ξ, δ). From this observation, we easily
see that the function: (x, ξ) 7→ p(x, ξ) is continuous on int dom L. Indeed, one can show
that L is differentiable in the last n variables and D2L is continuous on int dom L.

Proposition 2.3. Let K ⊂ Rn ×Rn be a compact set. Set

S = {(x, ξ) ∈ Rn ×Rn | ξ ∈ D−
2 H(x, p) for some p ∈ Rn such that (x, p) ∈ K}.

Then S is a compact subset of Rn ×Rn and S ⊂ int dom L.

Proof. We choose a constant R > 0 so that K = B(0, R)×B(0, R).
To see that S is compact, we first check that S ⊂ R2n is a closed set. Let

{(xk, ξk)}k∈N ⊂ S be a sequence converging to (x0, ξ0) ∈ R2n. For each k ∈ N there
corresponds a point pk ∈ B(0, R) such that

ξk ∈ D−
2 H(xk, pk).

This is equivalent to saying that

ξk · pk = L(xk, ξk) + H(xk, pk). (2.5)

We may assume by replacing the sequence {(xk, ξk, pk)} by its subsequence if necessary
that {pk} is convergent. Let p0 ∈ B(0, R) be the limit of the sequence {pk}. Since L is
lower semicontinuous, we get from (2.5) in the limit as k →∞,

ξ0 · p0 ≥ L(x0, ξ0) + H(x0, p0),

which implies that ξ0 ∈ D−
2 H(x0, p0). Hence, we have (x0, ξ0) ∈ S and see that S is

closed.
Next we show that S is bounded. Since H ∈ C(R2n) and the function: p 7→ H(x, p)

is convex for any x ∈ Rn, we see that there is a constant M > 0 such that the functions:
p 7→ H(x, p), with x ∈ B(0, R), is equi-Lipschitz continuous on B(0, R) with a Lipschitz
bound M . This implies that

|ξ| ≤ M for all (x, ξ) ∈ S,

since if (x, ξ) ∈ S, then ξ ∈ D−
2 H(x, p) for some p ∈ B(0, R) and |ξ| ≤ M . Thus we

have seen that S ⊂ B(0, R) × B(0,M). The set S is bounded and closed in R2n and
therefore it is compact.

Finally, we apply Proposition 2.2 to (x, ξ) ∈ S, to see that (x, ξ) ∈ int dom L.

Proposition 2.4. Let φ ∈ C0+1(Rn) and γ ∈ AC([a, b],Rn), where a, b ∈ R satisfy
a < b. Then there is a function q ∈ L∞(a, b,Rn) such that

d
dt

φ ◦ γ(t) = q(t) · γ̇(t) a.e. t ∈ (a, b),

q(t) ∈ ∂cφ(γ(t)) a.e. t ∈ (a, b).
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Here ∂cφ denotes the Clarke differential of φ (see [C]), that is,

∂cφ(x) =
⋂
r>0

co {Dφ(y) | y ∈ B(x, r), φ is differentiable at y} for x ∈ Rn.

Proof. Let ρ ∈ C∞(Rn) be a standard mollification kernel, i.e., ρ ≥ 0, spt ρ ⊂ B(0, 1),
and

∫
Rn ρ(x) dx = 1.

Set ρk(x) := knρ(kx) and φk(x) := ρk ∗ φ(x) for x ∈ Rn and k ∈ N. Here the
symbol “∗” indicates the usual convolution of two functions. Set

ψ(t) = φ ◦ γ(t), ψk(t) = φk ◦ γ(t), and qk(t) = Dφk ◦ γ(t) for t ∈ [a, b], k ∈ N.

We have ψ̇k(t) = qk(t) · γ̇(t) a.e. t ∈ (a, b), and, by integration,

ψk(t)− ψk(a) =
∫ t

a

qk(s) · γ̇(s) ds for all t ∈ [a, b]. (2.6)

Passing to a subsequence if necessary, we may assume that for some q ∈ L∞(a, b,Rn),

qk → q weakly star in L∞(a, b,Rn) as k →∞.

Therefore, from (2.6) we get in the limit as k →∞,

ψ(t)− ψ(a) =
∫ t

a

q(s) · γ̇(s) ds for all t ∈ [a, b].

This shows that
ψ̇(t) = q(t) · γ̇(t) a.e. t ∈ (a, b).

Noting that {qk} is weakly convergent to q in L2(a, b,Rn), by Mazur’s theorem, we
may assume that there is a sequence {pk} such that

pk → q strongly in L2(a, b,Rn) as k →∞,

pk ∈ co {qj | j ≥ k} for all k ∈ N.

We may further assume that

pk(t) → q(t) a.e. t ∈ (a, b) as k →∞.

We fix a set I ⊂ (a, b) of full measure so that

pk(t) → q(t) for all t ∈ I as k →∞. (2.7)

Now, for any x ∈ Rn and any k ∈ N, noting that

Dφk(x) =
∫

Rn

ρk(x− y)Dφ(y) dy,
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we find that

Dφk(x) ∈ co{Dφ(y) | y ∈ B(x, k−1), φ is differentiable at y}.

From this, we get

qk(t) ∈ co{Dφ(x) | x ∈ B(γ(t), k−1), φ is differentiable at x} for all t ∈ [a, b],

and therefore

pk(t) ∈ co{Dφ(x) | x ∈ B(γ(t), k−1), φ is differentiable at x} for all t ∈ [a, b]. (2.8)

Combining (2.7) and (2.8), we get

q(t) ∈
⋂
r>0

co{Dφ(x) | x ∈ B(γ(t), r), φ is differentiable at x} for all t ∈ I.

That is, we have
q(t) ∈ ∂cφ(γ(t)) a.e. t ∈ (a, b).

Proposition 2.5. Let w ∈ C0+1(Rn) be such that H(x,Dw(x)) ≤ f(x) in Rn in
the viscosity sense, where f ∈ C(Rn). Let a, b ∈ R be such that a < b and let γ ∈
AC([a, b],Rn). Then

∫ b

a

L(γ(s), γ̇(s)) ds ≥ w(γ(b))− w(γ(a))−
∫ b

a

f(γ(s)) ds.

Proof. By Proposition 2.4, there is a function q ∈ L∞(a, b,Rn) such that

d
ds

w(γ(s)) = q(s) · γ̇(s) a.e. s ∈ (a, b),

q(s) ∈ ∂cw(γ(s)) a.e. s ∈ (a, b).

We calculate that
∫ b

a

L(γ(s), γ̇(s)) ds ≥
∫ b

a

[γ̇(s) · q(s)−H(γ(s), q(s))] ds

≥
∫ b

a

[
d
ds

w(γ(s))− f(γ(s))
]

ds

=w(γ(b))− w(γ(a))−
∫ b

a

f(γ(s)) ds.

3. Additive eigenvalue problem
In this section we prove Theorem 1.2. Our proof below is parallel to that in [LPV].
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Lemma 3.1. There is a function ψ0 ∈ C1(Rn) such that

H(x,Dψ0(x)) ≥ − C0 for all x ∈ Rn, (3.1)

ψ0(x) ≥φ0(x) for all x ∈ Rn (3.2)

for some constant C0 > 0.

Proof. We choose a modulus ρ so that

H(x, p) ≥ 0 for all (x, p) ∈ B(0, r)× [Rn \B(0, ρ(r))] and all r ≥ 1,

‖Dφ0‖L∞(B(0,r)) ≤ ρ(r) for all r ≥ 1.

Because of this choice, we have

φ0(x)− φ0(|x|−1x) ≤
∫ |x|

1

ρ(r) dr for all x ∈ Rn \B(0, 1).

We define the function ψ0 ∈ C1(Rn) by

ψ0(x) = max
B(0,1)

φ0 +
∫ |x|

0

ρ(r) dr.

Observe that

|Dψ0(x)| = ρ(|x|) for all x ∈ Rn,

H(x,Dψ0(x)) ≥ 0 for all x ∈ Rn \B(0, 1),

and also that

φ0(x) ≤ φ0(|x|−1x) +
∫ |x|

0

ρ(r) dr ≤ ψ0(x) for all x ∈ Rn \B(0, 1),

and therefore

φ0(x) ≤ ψ0(x) for all x ∈ Rn. (3.3)

Choosing a constant C0 > 0 so that

C0 ≥ max
x∈B(0,1)

|H(x,Dψ0(x))|,

we have

H(x,Dψ0(x)) ≥ −C0 for all x ∈ Rn.

This together with (3.3) completes the proof.

We need the following comparison theorem, which generalizes comparison results in
[A].
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Theorem 3.2. Let Ω be an open subset of Rn. Let f ∈ C(Ω), λ ≥ 0 and ε ≥ 0.
Assume that λ + ε > 0. Let u, v : Ω → R be, respectively, an upper semicontinuous
viscosity subsolution of

λu + H[u] ≤ λf − ε in Ω, (3.4)

and a lower semicontinuous viscosity supersolution of

λv + H[v] ≥ λf in Ω. (3.5)

Assume that f, v ∈ Φ0 and u ≤ v on ∂Ω. Then u ≤ v on Ω.

The main idea in the following proof how to use the convexity property of H is
similar to that in [I1].
Proof. It is enough to show that, for any µ > 0, uµ := u− µ ≤ v in Ω. Noting that uµ

is a viscosity subsolution of λuµ + H[uµ] ≤ λf − ε − µλ in Ω and that ε + µλ > 0, we
may always assume by replacing u by uµ if necessary that ε > 0.

Let A > 0 and define uA ∈ C(Ω) by

uA(x) = min{φ1(x) + A, u(x)}.
Observe that there is a constant R ≡ R(A) > 0 such that

H(x,Dφ1(x)) ≤ − ε a.e. in Ω \B(0, R),

f(x) ≥φ1(x) + A for all x ∈ Ω \B(0, R).

Choose a constant A0 > 0 so that

φ1(x) + A0 > u(x) for all x ∈ Ω ∩B(0, R),

and we assume henceforth that A ≥ A0.
For almost all x ∈ Ω, we have

DuA(x) =

{
Du(x) if u(x) ≤ φ1(x) + A,

Dφ1(x) if u(x) ≥ φ1(x) + A.

Therefore, for almost all x ∈ Ω, if u(x) ≤ φ1(x) + A, then

λuA(x) + H(x,DuA(x)) = λu(x) + H(x,Du(x)) ≤ λf(x)− ε,

and if u(x) ≥ φ1(x) + A, then |x| > R, H(x,Dφ1(x)) ≤ −ε, λuA(x) ≤ λf(x), and
therefore

λuA(x) + H(x, DuA(x)) = λf(x) + H(x,Dφ1(x)) ≤ λf(x)− ε.

This observation assures that uA is a viscosity subsolution of (3.4). The function uA

has the property that uA(x) = φ1(x) + A if |x| is sufficiently large. Since

lim
|x|→∞

(v(x)− φ1(x)) = ∞,
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we deduce that there is a constant M > 0 such that

uA(x) ≤ v(x) for all x ∈ Ω \B(0,M).

By a standard comparison theorem applied in Ω ∩ B(0, 2M), we obtain uA(x) ≤ v(x)
for all x ∈ Ω ∩ B(0, 2M), from which it follows that uA(x) ≤ v(x) for all x ∈ Ω. For
each x ∈ Ω, if we choose A ≥ A0 large enough, then uA(x) = u(x) and conclude that
u(x) ≤ v(x).

Theorem 3.3. (1) There is a solution (c, v) ∈ R× Φ0 of (1.3). (2) If (c, v), (d,w) ∈
R× Φ0 are solutions of (1.3), then c = d.

Proof. We start by showing assertion (2). Let (c, v), (d,w) ∈ R × Φ0 be solutions of
(1.3). Suppose that c 6= d. We may assume that c < d. Also, we may assume by adding
a constant to v that v(x0) > w(x0) at some point x0 ∈ Rn. On the other hand, by
Theorem 3.2, we have v ≤ w for all x ∈ Rn, which is a contradiction. Thus we must
have c = d.

In order to show existence of a solution of (1.3), we let λ > 0 and consider the
problem

λvλ(x) + H(x, Dvλ(x)) = λφ0(x) in Rn. (3.6)

Let ψ0 ∈ C1(Rn) and C0 > 0 be from Lemma 3.1. We may assume by replacing C0

by a larger number if necessary that σ0(x) ≥ −C0 for all x ∈ Rn. Note that H[φ0] ≤ C0

in Rn in the viscosity sense.
We define the functions v±λ on Rn by

v+
λ (x) = ψ0(x) + λ−1C0 and v−λ (x) = φ0(x)− λ−1C0.

It is easily seen that v+
λ and v−λ are viscosity supersolution and a viscosity subsolution

of (3.6). In view of (3.2), we have v−λ (x) < v+
λ (x) for all x ∈ Rn. By the Perron method

in viscosity solutions theory, we find that the function vλ on Rn given by

vλ(x) = sup{w(x) | v−λ ≤ w ≤ v+
λ in Rn,

λw + H[w] ≤ λφ0 in Rn in the viscosity sense}.
is a viscosity solution of (3.6). Because of the definition of vλ, we have

φ0(x)− λ−1C0 ≤ vλ(x) ≤ ψ0(x) + λ−1C0 for all x ∈ Rn. (3.7)

Using the left hand side inequality of (3.7), we formally calculate that

λφ0(x) = λvλ(x) + H(x,Dvλ(x)) ≥λφ0(x)− C0 + H(x,Dvλ(x)),

and therefore

H(x,Dvλ(x)) ≤C0.
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Indeed, this last inequality holds in the sense of viscosity solutions. This together with
the coercivity of H yields the local equi-Lipschitz continuity of the family {vλ}λ>0. As
a consequence, the family {vλ − vλ(0)}λ>0 ⊂ C(Rn) is locally uniformly bounded and
locally equi-Lipschitz continuous on Rn.

Going back to (3.7), we see that

λφ0(x)− C0 ≤ λvλ(x) ≤ λψ0(x) + C0 for all x ∈ Rn.

In particular, the set {λvλ(0)}λ∈(0,1) ⊂ R is bounded. Thus we may choose a sequence
{λj}j∈N such that, as j →∞,

λj → 0, − λjψλj
(0) → c,

ψλj (x)− ψλj (0) → v(x) on bounded sets ⊂ Rn

for some real number c and some function v ∈ C0+1(Rn). Since

|λ(vλ(x)− vλ(0))| ≤ λLR|x| for all x ∈ B(0, R),

all R > 0, and some constants LR > 0, we find that

−λjψλj (x) → c uniformly on bounded sets ⊂ Rn as j →∞.

By a stability property of viscosity solutions, we deduce that v is a viscosity solution of
(1.3) with c in hand.

Now, we show that v ∈ Φ0. Fix any λ ∈ (0, 1). As we have observed above, there is a
constant C1 > 0, independent of λ, such that |λvλ(0)| ≤ C1. Set wλ(x) = vλ(x)− vλ(0)
for x ∈ Rn. Note that wλ is a viscosity solution of

λwλ + λvλ(0) + H(x, Dwλ) = λφ0 in Rn.

We may choose a constant R > 0 so that

H(x,Dφ0(x)) ≤ −C1 a.e. Rn \B(0, R),

and then a constant C2 ≥ C1, independent of λ ∈ (0, 1), so that

max{|φ0(x)|, |wλ(x)|} ≤ C2 for all x ∈ B(0, R).

Set w = φ0 − 2C2. Obviously we have

w ≤ wλ in B(0, R),

and

λw + λvλ(0) + H(x,Dw(x)) ≤ λφ0 + C1 − C1 ≤ λφ0 a.e. x ∈ Rn \B(0, R).
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Noting that wλ ∈ Φ0, we apply Theorem 3.2 to w and wλ, to obtain

w ≤ wλ in Rn \B(0, R).

Sending λ → 0, we get
φ0 − 2C2 ≤ v in Rn \B(0, R),

which shows that v ∈ Φ0, completing the proof.

Proposition 3.4. The critical value cH is characterized as

cH = inf{a ∈ R | there exists a viscosity solution v ∈ C(Rn) of H[v] ≤ a in Rn}.

Proof. We write d for the right hand side of the above formula. Let φ ∈ Φ0 be a
viscosity solution of H[φ] = cH in Rn. If a ≥ cH , then H[φ] ≤ a in Rn in the viscosity
sense. Thus we have d ≤ cH . Suppose that d < cH . Then there is a constant e ∈ (d, cH)
and a viscosity solution of H[ψ] ≤ e in Rn. By Theorem 3.2, we see that ψ + C ≤ φ in
Rn for any C ∈ R, which is clearly a contradiction. Thus we have d = cH .

4. A comparison theorem for the Cauchy problem
In this section we establish the following comparison theorem. Let T ∈ (0,∞).

Theorem 4.1. Let Ω be an open subset of Rn. Let u, v : Ω × [0, T ) → R. Assume
that u, −v are upper semicontinuous on Ω× [0, T ) and that u and v are, respectively, a
viscosity subsolution and a viscosity supersolution of

ut + H(x,Du) = 0 in Ω× (0, T ). (4.1)

Moreover, assume that

lim
r→∞

inf{v(x, t)− φ1(x) | (x, t) ∈ (Ω \B(0, r))× [0, T )} = ∞, (4.2)

and that u ≤ v on (Ω× {0}) ∪ (∂Ω× [0, T )). Then u ≤ v in Ω× [0, T ).

Proof. We choose a constant C > 0 so that

H(x,Dφ1(x)) ≤ C a.e. x ∈ Rn,

and define the function w ∈ C(Rn ×R) by

w(x, t) := φ1(x)− Ct.

Observe that wt + H(x, Dw(x, t)) ≤ 0 a.e. (x, t) ∈ Rn+1.
We need only to show that for all (x, t) ∈ Ω and all A > 0,

min{u(x, t), w(x, t) + A} ≤ v(x, t). (4.3)

14



Fix any A > 0. We set wA(x, t) = w(x, t) + A for (x, t) ∈ Rn+1. The function wA

is a viscosity subsolution of (4.1). By the convexity of H(x, p) in p, the function ū

defined by ū(x, t) := min{u(x, t), wA(x, t)} is a viscosity subsolution of (4.1). Because
of assumption (4.2), we see that there is a constant R > 0 such that ū(x, t) ≤ v(x, t) for
all (x, t) ∈ (Ω\B(0, R))× [0, T ). We set ΩR := Ω∩ intB(0, 2R), so that ū(x, t) ≤ v(x, t)
for all x ∈ ∂ΩR × [0, T ). Also, we have ū(x, 0) ≤ u(x, 0) ≤ v(x, 0) for all x ∈ ΩR.

Next we take the sup-convolution of ū in the variable t. That is, for each ε ∈ (0, 1)
we set

uε(x, t) := sup
s∈[0,T )

(
u(x, s)− (t− s)2

2ε

)
for all (x, t) ∈ ΩR ×R.

For each δ > 0, there is a γ ∈ (0, min{δ, T/2}) such that ū(x, t) − δ ≤ v(x, t) for
all (x, t) ∈ ΩR × [0, γ]. As is well-known, there is an ε ∈ (0, δ) such that uε is a
viscosity subsolution of (4.1) in ΩR×(γ, T −γ) and uε(x, t)−2δ ≤ v(x, t) for all (x, t) ∈(
ΩR × [0, γ]

) ∪ (∂ΩR × [γ, T − γ]). Observe that the family of functions: t 7→ uε(x, t)
on [γ, T −γ], with x ∈ ΩR, is equi-Lipschitz continuous, with a Lipschitz bound Cε > 0,
and therefore that for each t ∈ [γ, T − γ], the function z : x 7→ uε(x, t) in ΩR satisfies
H(x,Dz(x)) ≤ Cε a.e., which implies that the family of functions: x 7→ uε(x, t), with
t ∈ [γ, T − γ], is equi-Lipschitz continuous in ΩR.

Now, we may apply a standard comparison theorem, to get uε(x, t) ≤ v(x, t) for all
(x, t) ∈ ΩR × [γ, T − γ], from which we get ū(x, t) ≤ v(x, t) for all (x, t) ∈ Ω × [0, T ).
This completes the proof.

5. Aubry sets and critical curves
Let c ≡ cH be the critical value for H. In this and the following sections we assume

without loss of generality that c = 0. Indeed, if we set Hc(x, y) = H(x, y) − c and
Lc(x, y) = L(x, y) + c for (x, y) ∈ R2n, then the stationary Hamilton-Jacobi equation
H[v] = c for v is exactly Hc[v] = 0 for v and the evolution equation ut + H[u] = 0 for
u is the equation wt + Hc[w] = 0 for w(x, t) := u(x, t) + ct. Note moreover that Lc is
the Lagrangian of the Hamiltonian Hc, i.e., Lc(x, ξ) = sup{ξ · p − Hc(x, p) | p ∈ Rn}
for all x, ξ ∈ Rn. With these relations in mind, by replacing H and L by Hc and Lc,
respectively, we may assume that c = 0.

We consider the Hamilton-Jacobi equation

H(x,Du(x)) = 0 in Rn (5.1)

and study the (projected) Aubry set for the Lagrangian L (for the Hamiltonian H, or
for (5.1)).

Henceforth S−H , S+
H , and SH denote the sets of continuous viscosity subsolutions,

of continuous viscosity supersolutions, and of continuous viscosity solutions of (5.1),
respectively.
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Following the ideas in [FS2] with small variations in the presentation, we introduce
the Aubry set A for (5.1) as follows. We define the function dH : Rn ×Rn → R by

dH(x, y) = sup{v(x) | v ∈ S−H , v(y) = 0}, (5.2)

and then the Aubry set A for (5.1) by

A = {y ∈ Rn | dH(·, y) ∈ SH}. (5.3)

Since the equation, H[v] = 0 in Rn, has a viscosity solution in the class Φ0 by
Theorem 3.3 (or 1.2), the set

{v ∈ S−H | v(y) = 0}

is nonempty and, because of the coercivity assumption on H, it is locally equi-Lipschitz
continuous. Therefore, the function dH(·, y) defined by (5.2) is locally Lipschitz contin-
uous on Rn and vanishes at x = y for any y ∈ Rn. Since the pointwise supremum of
a family of viscosity subsolutions of (5.1) defines a function which is a viscosity subso-
lution of (5.1), for any y ∈ Rn, we have dH(·, y) ∈ S−H . In view of the Perron method,
we deduce that, for any y ∈ Rn, the function dH(·, y) is a viscosity solution of (5.1) in
Rn \ {y}. Thus we see that

y ∈ Rn \ A ⇐⇒ ∃ p ∈ D−
1 dH(y, y) such that H(y, p) < 0. (5.4)

For any y, z ∈ Rn, the function w(x) := dH(x, y) − dH(z, y) is a viscosity subsolution
of (5.1) and satisfies w(z) = 0. Therefore we have w(x) ≤ dH(x, z). That is, we have
the triangle inequality for dH :

dH(x, y) ≤ dH(x, z) + dH(z, y) for all x, y, z ∈ Rn.

To continue, we make the following normalization. We fix a viscosity solution φ ∈ Φ0

of H[φ] = 0 in Rn. We choose a constant r > 0 so that σi(x) ≥ 0 for all x ∈ Rn\B(0, r).
There is a constant M > 0 such that φ(x) − M ≤ φ1(x) for all x ∈ B(0, r). We set
ζ1(x) = min{φ(x) −M,φ1(x)} for x ∈ Rn. Since lim|x|→∞(φ − φ1)(x) = ∞, we have
ζ1(x) = φ1(x) for all x ∈ Rn \ B(0, R) and some R > r. Note that H(x,Dζ1(x)) =
H(x,Dφ(x)) = 0 a.e. in B(0, r), H(x,Dζ1(x)) ≤ max{H(x,Dφ(x)), H(x,Dφ1(x))} ≤ 0
a.e. in B(0, R) \ B(0, r), and H(x,Dζ1(x)) = H(x, Dφ1(x)) = −σ1(x) a.e. in Rn \
B(0, R). Therefore, by replacing φ1 and σ1 by ζ1 and max{σ1, 0}, respectively, we may
assume that σ1 ≥ 0 in Rn. Similarly, we define the function ζ0 ∈ C0+1(Rn) by setting
ζ0(x) = min{φ(x)−M, φ0(x)} and observe that H[ζ0] ≤ 0 in Rn in the viscosity sense
and that supRn |ζ0 − φ0| < ∞, which implies that u ∈ Φ0 if and only if infRn(u− ζ0) >

−∞. Henceforth we write φ0 for ζ0. A warning is that the function σ0 = 0 corresponds
to the current φ0 and does not have the property: lim|x|→∞ σ0(x) = ∞.
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Proposition 5.1. The following formula is valid for all x, y ∈ Rn:

dH(x, y) = inf
{∫ t

0

L(γ(s), γ̇(s)) ds
∣∣ t > 0, γ ∈ C(x, t; y, 0)

}
. (5.5)

Proof. We write ρ(x, y) for the right hand side of (5.5) in this proof.
Let x, y ∈ Rn, t > 0, and γ ∈ C(x, t; y, 0). Since H[dH(·, y)] ≤ 0 in Rn in the

viscosity sense, by Proposition 2.5, we have
∫ t

0

L(γ(s), γ̇(s)) ds ≥ dH(γ(t), y)− dH(γ(0), y) = dH(x, y).

From this we get
dH(x, y) ≤ ρ(x, y) for all x, y ∈ Rn.

Next we show that for each y ∈ Rn the function ρ(·, y) is locally Lipschitz continuous
on Rn.

Fix any R > 0. By Proposition 2.1, there are constants εR > 0 and CR > 0 such
that L(x, ξ) ≤ CR for all (x, ξ) ∈ B(0, R) × B(0, εR). Fix any x, y ∈ B(0, R) and
δ > 0, and set T := (δ + |x− y|)/εR and ξ = εR(x− y)/(δ + |x− y|). Define the curve
γ ∈ C(x, T ; y, 0) by γ(s) = y + sξ. Noting that ξ ∈ B(0, εR), we get

ρ(x, y) ≤
∫ T

0

L(γ(s), γ̇(s)) ds =
∫ T

0

L(y + sξ, ξ) ds ≤ CRT = ε−1
R CR(δ + |x− y|).

Letting δ → 0 yields
ρ(x, y) ≤ ε−1

R CR|x− y|,
which, in particular, shows that ρ(x, x) ≤ 0. It is easy to see that for any x, y, z ∈ Rn,
ρ(x, y) ≤ ρ(x, z) + ρ(z, y). Therefore, for any x, y, z ∈ B(0, R), we have

|ρ(x, y)− ρ(z, y)| ≤ ε−1
R CR|x− z|.

In order to prove that ρ(x, y) ≤ dH(x, y) for all x, y ∈ Rn, it is sufficient to show
that for any y ∈ Rn, the function v := ρ(·, y) is a viscosity subsolution of H[v] = 0
in Rn. This is a consequence of a well-known observation on value functions like v.
Indeed, Theorem A.1 in Appendix applied to the current v, with S = {y} and Ω = Rn,
assures that v ∈ S−H .

Proposition 5.2. A is a closed subset of Rn.

Proof. Let {yk} ⊂ A be a sequence converging to y ∈ Rn. By (A2) the sequence
{dH(·, yk)} is locally equi-Lipschitz on Rn. In particular, there is a constant C > 0 such
that max{dH(yk, y), dH(y, yk)} ≤ C|yk− y| for all k ∈ N. By the triangle inequality for
dH , we have

|dH(x, y)− dH(x, yk)| ≤ max{dH(yk, y), dH(y, yk)} ≤ C|yk − y| for all x ∈ Rn.
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Consequently, as k → ∞, we have dH(x, yk) → dH(x, y) uniformly for x ∈ Rn. By the
stability of viscosity solutions under uniform convergence, we find that dH(·, y) ∈ SH ,
proving that y ∈ A and therefore that A is a closed set.

Proposition 5.3. For any compact K ⊂ Rn \ A there are a function φK ∈ Φ0 and a
constant δ > 0 such that, in the viscosity sense, H[φK ] ≤ 0 in Rn and H[φK ] ≤ −δ in
a neighborhood of K.

Proof. Let y ∈ Rn \ A. There is a function ϕ ∈ C1(Rn) such that ϕ(y) = 0, ϕ(x) <

dH(x, y) for all x ∈ Rn \ {y}, and H(y, Dϕ(y)) < 0. With a sufficiently small constant
δ > 0, we set

ψ(x) = max{ϕ(x) + δ, dH(x, y)} for all x ∈ Rn,

to get a function having the properties: (i) H[ψ] ≤ 0 in Rn in the viscosity sense, (ii)
H[ψ] ≤ −ε in intB(y, ε) in the viscosity sense, and (iii) ψ ∈ Φ0. Thus we see that for
each y ∈ Rn \A there is a pair (ψy, εy) ∈ Φ0× (0,∞) such that H[ψy] ≤ 0 in Rn in the
viscosity sense and H[ψy] ≤ −εy in intB(y, εy) in the viscosity sense. By a compactness
argument, we find a finite sequence {yj}m

j=1 such that K ⊂ ⋃m
j=1 intB(yj , εj), where

εj := εyj . We set ε = min{εj | j = 1, 2, ..., m} and

φK(x) =
1
m

m∑

j=1

ψj(x) for all x ∈ Rn, where ψj := ψyj .

It is easily seen that H[φK ] ≤ 0 in Rn in the viscosity sense, H[φK ] ≤ −ε/m in a
neighborhood of K in the viscosity sense, and φK ∈ Φ0.

Proposition 5.4. A 6= ∅.
Proof. Suppose that A = ∅. There is a constant R > 0 such that H[φ1] ≤ −1 in
Rn \ B(0, R) in the viscosity sense. By Proposition 5.3, there are a function ψ ∈ Φ0

and a constant ε ∈ (0, 1) such that H[ψ] ≤ 0 a.e. in Rn and H[ψ] ≤ −ε a.e. in B(0, R).
By setting v = 1

2 (ψ + φ1), we get a function v ∈ C0+1(Rn) which satisfies H[v] ≤ −ε/2
a.e. in Rn. Hence, by the definition of the additive eigenvalue c, we have c ≤ −ε/2.
Since c = 0, we get a contradiction.

Proposition 5.5. Let φ ∈ C0+1(Rn) be a viscosity solution of H[φ] ≤ 0 in Rn, y a
point in Rn, and ε > 0 a constant. Assume that H[φ] ≤ −ε a.e. in B(y, ε). Then
y 6∈ A.

Proof. Let φ, y, and ε be as above. We argue by contradiction and suppose that
y ∈ A. Set u = dH(·, y). By continuity, there is a constant δ > 0 such that the function
v ∈ C0+1(Rn), defined by v(x) = φ(x) + δ min{|x− y|, ε}, satisfies H[v] ≤ 0 a.e. in Rn.
By the definition of dH , we have u(x) ≥ v(x) − v(y) for all x ∈ Rn, which shows that
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u(x) > φ(x)− φ(y) for all x ∈ ∂B(y, ε/2) and u(y) = φ(y)− φ(y) = 0. We approximate
φ by a sequence of functions φk ∈ C1(Rn), with k ∈ N, obtained by mollifying φ. Here,
of course, the uniform convergence φk(x) → φ(x) is assumed on any compact subsets of
Rn as k → ∞. We may assume as well that H[φk] ≤ −ε/2 on B(y, ε/2). Noting that
as k →∞,

lim
k→∞

min
x∈∂B(y,ε/2)

(u(x)− φk(x)− φk(y)) → min
x∈∂B(y,ε/2)

(u(x)− φ(x)− φ(y)) > u(y) = 0,

we deduce that if k is sufficiently large, then u− φk attains a local minimum at a point
xk ∈ B(y, ε/2). For such a k, since H[u] ≥ 0 in Rn in the viscosity sense, we get

H(xk, Dφk(xk)) ≥ 0.

On the other hand, by our choice of φk, we have

H(x, Dφk(x)) ≤ −ε/2 for all x ∈ B(y, ε/2),

and, in particular, H(xk, Dφk(xk)) ≤ −ε/2. Thus we get a contradiction, which proves
that y 6∈ A.

Proposition 5.6. Let y ∈ Rn. Then y 6∈ A if and only if there exist functions φ, σ ∈
C(Rn) such that σ ≥ 0 in Rn, σ(y) > 0, and φ is a viscosity subsolution of H[φ] ≤ −σ

in Rn.

Proof. This is a consequence of Propositions 5.3 and 5.5.

Proposition 5.7. A is a compact subset of Rn.

Proof. Since lim|x|→∞ σ1(x) = ∞, φ1 has the properties: H[φ1] ≤ 0 in Rn in the
viscosity sense and H[φ1] ≤ −1 in Rn \B(0, R) in the viscosity sense for some constant
R > 0, which shows together with the previous proposition that A ⊂ B(0, R). Thus, in
view of Proposition 5.2, we conclude that A is compact.

Proposition 5.8. Let u ∈ SH . Then

u(x) = inf{u(y) + dH(x, y) | y ∈ A} for all x ∈ Rn. (5.6)

Proof. We write v(x) for the right hand side of (5.6). Since v is defined as the pointwise
infimum of a family of viscosity solutions, the function v is a viscosity solution of H[v] =
0 in Rn. Since u(x)− u(y) ≤ dH(x, y) for all x, y ∈ Rn, we see that u(x) ≤ v(x) for all
x ∈ Rn. On the other hand, for any x ∈ A, we have u(x) = u(x) + dH(x, x) ≥ v(x).

It remains to show that u(x) ≥ v(x) for all x ∈ Rn \ A. Fix any ε > 0. Choose a
compact neighborhood V of A so that v(x) ≤ u(x) + ε for all x ∈ V . Fix a constant
R > 0 so that H(x,Dφ1(x)) ≤ −1 a.e. x ∈ Rn\B(0, R). By Proposition 5.3, there are a
function ψ ∈ C0+1(Rn) such that H[ψ] ≤ 0 a.e. in Rn and H[ψ] ≤ −δ a.e. in B(0, R)\V
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for some constant δ ∈ (0, 1). We set w(x) = 1
2 (φ1(x) + ψ(x)) for all x ∈ Rn and observe

that H[w] ≤ − δ
2 a.e. in Rn \V . Let λ ∈ (0, 1) and set vλ(x) = (1−λ)v(x)+λw(x)−2ε

for x ∈ Rn. Observe that H[vλ] ≤ −λδ
2 in Rn \ V and that for λ ∈ (0, 1) sufficiently

small, vλ(x) ≤ u(x) for all x ∈ V . We apply Theorem 3.2, to get vλ(x) ≤ u(x) for all
x ∈ Rn \V and all λ sufficiently small. That is, if λ ∈ (0, 1) is sufficiently small, then we
have vλ(x) ≤ u(x) for all x ∈ Rn. From this, we find that v(x) ≤ u(x) for all x ∈ Rn.

Proposition 5.9. Let S, T ∈ R be such that S < T and let C > 0 and R > 0. Let
γ ∈ AC([S, T ], Rn) be such that

∫ T

S

L(γ(t), γ̇(t)) dt ≤ C, γ(S) ∈ B(0, R), and γ(T ) ∈ B(0, R).

Then there is a constant M1 > 0, depending only on C, R, min{T −S, 1}, φ0, φ1, and
σ1, such that

|γ(t)| ≤ M1 for all t ∈ [S, T ]. (5.7)

Moreover, there is a constant M2 > 0 and for each ε > 0 a constant Cε > 0 such that
for all a, b ∈ [S, T ] satisfying a < b,

∫ b

a

|γ̇(t)| dt ≤ εM2 + Cε(b− a).

Here the constants M2 and Cε depend only on M1 and L.

Proof. We set τ = 1
2 min{T − S, 1}, so that 0 < 2τ ≤ T − S. We set

C1 = C + 2 max
B(0,R)

|φ1|,

and choose an R1 ≥ R so that σ1(x) > τ−1C1 for all x ∈ Rn \B(0, R1). Next we set

C2 = C + 3 max
B(0,R1)

|φ0|+ 3 max
B(0,R1)

|φ1|,

and choose an R2 ≥ R1 so that (φ0 − φ1)(x) > C2 for all x ∈ Rn \B(0, R2).
Using Proposition 2.5, we get

φ1(γ(T ))− φ1(γ(S)) ≤
∫ T

S

L(γ, γ̇) dt−
∫ T

S

σ1(γ(t)) dt. (5.8)

Hence we get ∫ T

S

σ1(γ) dt ≤ C + 2 max
B(0,R)

|φ1| = C1.

Fix any t ∈ [S + τ, T ]. Noting that
∫ t

t−τ

σ1(γ(s)) ds ≤ C1,
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we choose an a ∈ [S, t] so that σ1(γ(a)) ≤ τ−1C1, which guarantees, by our choice of
R1, that γ(a) ∈ B(0, R1).

Using Proposition 2.5 again, we get

φ1(γ(T ))− φ1(γ(t)) ≤
∫ T

t

L(γ, γ̇) ds,

φ0(γ(t))− φ0(γ(a)) ≤
∫ t

a

L(γ, γ̇) ds,

φ1(γ(a))− φ1(γ(S)) ≤
∫ a

S

L(γ, γ̇) ds.

Adding these, we get

φ0(γ(t))− φ1(γ(t)) ≤
∫ T

S

L(γ, γ̇) dt + 3 max
B(0,R1)

|φ1|+ max
B(0,R1)

|φ0| ≤ C2.

Therefore, by the choice of R2, we obtain

γ(t) ∈ B(0, R2).

Now let t ∈ [S, S + τ ]. Since
∫ t+τ

t

σ1(γ(s)) ds ≤ C1,

we may choose a b ∈ [t, t + τ ] such that σ1(γ(b)) ≤ τ−1C1, which implies that γ(b) ∈
B(0, R1). As above, we get

φ0(γ(T ))− φ0(γ(b)) ≤
∫ T

b

L(γ, γ̇) ds,

φ1(γ(b))− φ1(γ(t)) ≤
∫ b

t

L(γ, γ̇) ds,

φ0(γ(t))− φ0(γ(S)) ≤
∫ t

S

L(γ, γ̇) ds,

and moreover

φ0(γ(t))− φ1(γ(t)) ≤
∫ T

S

L(γ, γ̇) dt + 3 max
B(0,R1)

|φ0|+ max
B(0,R1)

|φ1| ≤ C2,

which guarantees that γ(t) ∈ B(0, R2). Thus, setting M1 = R2, we see that (5.7) holds.
Fix any a, b ∈ [S, T ] satisfying a < b and any ε > 0. As before, we have

φ0(γ(T ))− φ0(γ(b)) +
∫ b

a

L(γ, γ̇) dt + φ0(γ(a))− φ0(γ(S)) ≤
∫ T

S

L(γ, γ̇) dt ≤ C,

from which we get ∫ b

a

L(γ, γ̇) dt ≤ C + 4 max
B(0,M1)

|φ0|. (5.9)
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Setting

C3 := C + 4 max
B(0,M1)

|φ0| and Mε := max
(x,p)∈B(0,M1)×B(0,ε−1)

|H(x, p)|

and noting that for (x, ξ) ∈ B(0,M1)×Rn,

L(x, ξ) ≥ max
p∈B(0,ε−1)

[ξ · p−H(x, p)] ≥ max
p∈B(0,ε−1)

ξ · p−Mε = ε−1|ξ| −Mε,

we get from (5.9)

ε−1

∫ b

a

|γ̇(t)| dt ≤ C3 + Mε(b− a),

that is, we have ∫ b

a

|γ̇(t)|dt ≤ εC3 + εMε(b− a).

This completes the proof.

Proposition 5.10. Let y ∈ Rn. The following conditions are equivalent:

(1) y ∈ A.

(2) inf
{∫ t

0

L(γ, γ̇) ds | t ≥ δ, γ ∈ C(y, t; y, 0)
}

= 0 for some δ > 0.

(3) inf
{∫ t

0

L(γ, γ̇) ds | t ≥ δ, γ ∈ C(y, t; y, 0)
}

= 0 for any δ > 0.

We remark here in view of Proposition 5.1 that for any y ∈ Rn,

0 = dH(y, y) = inf
{∫ t

0

L(γ(s), γ̇(s)) ds
∣∣ t > 0, γ ∈ C(y, t; y, 0)

}
.

In particular, we have L(x, 0) ≥ 0 for all x ∈ Rn.
Proof. We start by observing that for any y ∈ Rn, t > 0, and γ ∈ C(y, t; y, 0),

∫ t

0

L(γ, γ̇) ds ≥ φ1(γ(t))− φ1(γ(0)) = 0.

It is easy to see that (2) and (3) are equivalent each other. Thus it is enough to
prove that (1) implies (2) and that (3) implies (1).

We assume that y 6∈ A, and will show that (3) does not hold. In view of Proposition
5.3, there is a function ψ ∈ C0+1(Rn) and a constant δ > 0 such that H[ψ] ≤ 0 a.e. in
Rn and H[ψ] ≤ −δ a.e. in B(y, 2δ). Let t > 0 and γ ∈ C(y, t; y, 0) be such that

∫ t

0

L(γ, γ̇) ds < 1.

We select a function f ∈ C(Rn) so that 0 ≤ f ≤ δ in Rn, f(x) ≥ δ for all x ∈ B(y, δ),
and f(x) = 0 for all x ∈ Rn \ B(y, 2δ). Then, noting that H[ψ] ≤ −f in Rn in the
viscosity sense, by virtue of Proposition 2.5, we have

∫ t

0

L(γ, γ̇) ds ≥ ψ(γ(t))− ψ(γ(0)) +
∫ t

0

f(γ(s)) ds ≥ δ|I|,
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where I = {s ∈ [0, t] | γ(s) ∈ B(y, δ)} and |I| denotes the one-dimensional Lebesgue
measure of I. By Proposition 5.9, there is a constant Cδ > 0, depending only on δ, L,
y, φ0, and φ1, such that ∫ t

0

|γ̇(s)| ds ≤ δ

2
+ Cδt.

Therefore, setting τ = δ/(2Cδ), we see that if t ≥ τ , then γ(s) ∈ B(y, δ) for all s ∈ [0, τ ].
Accordingly, if t ≥ τ , we have

∫ t

0

L(γ, γ̇) ds ≥ δτ.

This shows that (3) does not hold.
Next we suppose that (2) does not hold, and will show that y 6∈ A. We see imme-

diately from this assumption that L(y, 0) > 0, which implies that minp∈Rn H(y, p) =
H(y, q) < 0 for some q ∈ Rn. By Proposition 2.1, there are constants ε > 0 and C > 0
such that L(x, p) ≤ C for all (x, p) ∈ B(y, ε)×B(0, ε). We may assume as well that

dH(x, y) < 1 and H(x, q) ≤ 0 for all x ∈ B(y, ε).

Let r ∈ (0, ε) be a constant to be fixed later on. Fix x ∈ B(y, r) \ {y}, t > 0, and
γ ∈ C(x, t; y, 0) so that ∫ t

0

L(γ, γ̇) ds < 1.

According to Proposition 5.9, there is a constant Cε > 0, independent of the choice of
γ, such that ∫ t

0

|γ̇(s)|ds <
ε

2
+ Cεt.

In particular, there is a constant τ > 0 (for instance, we may choose τ = ε/(2Cε)) such
that γ(s) ∈ B(y, ε) for all s ∈ [0, min{t, τ}].

Since (2) does not hold, we may choose a constant a > 0 so that

inf
{∫ T

0

L(η, η̇) ds | T ≥ τ, η ∈ C(y, t; y, 0)
}

> a.

We divide our considerations into two cases. The first case is when t ≤ τ . Then we
have γ(s) ∈ B(y, ε) for all s ∈ [0, t] and hence

q · (x− y) = q · (γ(t)− γ(0)) =
∫ t

0

q · γ̇(s) ds

≤
∫ t

0

[L(γ(s), γ̇(s)) + H(γ(s), q)] ds ≤
∫ t

0

L(γ, γ̇) ds.

In the other case when t > τ , we define η ∈ C(y, t + ε−1|y − x|; y, 0) by

η(s) =

{
γ(s) for s ∈ [0, t],

x + (s− t)ε|y − x|−1(y − x) for s ∈ [t, t + ε−1|x− y|].
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Noting that (η(s), η̇(s)) ∈ B(y, r)×B(0, ε) for all s ∈ (t, t + ε−1|x− y|), we have

a ≤
∫ t+ε−1|x−y|

0

L(γ, γ̇) ds =
∫ t

0

L(γ, γ̇) ds +
∫ t+ε−1|x−y|

t

L(η(s), η̇(s)) ds

≤
∫ t

0

L(γ, γ̇) ds + Cε−1|x− y| ≤
∫ t

0

L(γ, γ̇) ds + Cε−1r.

We fix r ∈ (0, ε) so that Cε−1r ≤ a
2 . Consequently we get
∫ t

0

L(γ, γ̇) ds ≥ a

2
.

Hence we have ∫ t

0

L(γ, γ̇) ds ≥ min{p · (x− y), a/2},
from which we get

min{q · (x− y), a/2} ≤ dH(x, y) for all x ∈ B(y, r).

This shows that q ∈ D−
1 dH(y, y). Since H(y, q) < 0, we conclude that y 6∈ A.

We need the following theorem.

Theorem 5.11. Let y ∈ A. Then there is a curve γ : R → A such that γ(0) = y and

dH(γ(b), γ(a)) =
∫ b

a

L(γ(t), γ̇(t)) dt = −dH(γ(a), γ(b)). (5.10)

for any a, b ∈ R, with a < b.

According to [DS], curves satisfying (5.10) are called critical curves for the La-
grangian L (or for the Hamiltonian H).

We need the following proposition to prove Theorem 5.11.

Proposition 5.12. Let S, T ∈ R be such that S < T and let {γk}k∈N ⊂ AC([S, T ],Rn)
be a sequence converging to a function γ ∈ C([S, T ],Rn) in the topology of uniform
convergence. Assume that

lim inf
k→∞

∫ T

S

L(γk(t), γ̇k(t)) dt < ∞.

Then γ ∈ AC([S, T ],Rn) and
∫ T

S

L(γ(t), γ̇(t)) dt ≤ lim inf
k→∞

∫ T

S

L(γk(t), γ̇k(t)) dt. (5.11)

Proof. We choose a constant R > 0 so that |γk(t)| ≤ R for all t ∈ [S, T ] and all
k ∈ N. Passing to a subsequnece of {γk}k∈N if necessary, we may assume that there is
a constant C > 0 such that∫ T

S

L(γk(t), γ̇k(t)) dt ≤ C for all k ∈ N. (5.12)
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We choose a constant C1 > 0 so that H(x, 0) ≤ C1 for all x ∈ B(0, R), which guarantees
that L(x, ξ) ≥ −C1 for all (x, ξ) ∈ B(0, R)×Rn. For each ε > 0 we set

M(ε) = max{|H(x, p)| | (x, p) ∈ B(0, R)×B(0, ε−1)},
so that for (x, ξ) ∈ B(0, R)×Rn,

L(x, ξ) ≥ max{ξ · p−H(x, p) | p ∈ B(0, ε−1)} ≥ ε−1|ξ| −M(ε).

Now, we let B ⊂ [S, T ] be measurable and k ∈ N, and observe by (5.12) that
∫

B

(L(γk(t), γ̇k(t)) + C1) dt ≤ C + C1(T − S),

and consequently ∫

B

(ε−1|γ̇k(t)|+ C1 −M(ε)) dt ≤ C + C1(T − S).

Hence we have ∫

B

|γ̇k(t)| dt ≤ ε(C + C1(T − S)) + εM(ε)|B|.

Reselecting M(ε) > 0 if necessary, we may replace this estimate by
∫

B

|γ̇k(t)|dt ≤ ε + M(ε)|B|. (5.13)

We deduce from (5.13) that for any ε > 0 and any mutually disjoint intervals [ai, bi] ⊂
[S, T ], with i = 1, 2, ..., m,

m∑

i=1

|γ(bi)− γ(ai)| ≤ ε + M(ε)
m∑

i=1

(bi − ai),

which shows that γ ∈ AC([S, T ],Rn) and
∫

B

|γ̇(t)|dt ≤ ε + M(ε)|B| (5.14)

for any measurable subset B of [S, T ].
Next let f ∈ AC([S, T ],Rn) and observe by using integration by parts that as k →∞

∫ T

S

f(t) · γ̇k(t) dt =(f · γk)(T )− (f · γk)(S)−
∫ T

S

ḟ(t) · γk(t) dt

→ (f · γ)(T )− (f · γ)(S)−
∫ T

S

ḟ(t) · γ(t) dt

=
∫ T

S

f(t) · γ̇(t) dt.

Now, we introduce the Lagrangian Lα, with α > 0, as follows. Fix α > 0 and define
the function Hα : R2n → (0,∞] by

Hα(x, p) = H(x, p) + δB(0,α)(p),
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where δC denotes the indicator function of C ⊂ Rn defined by δC(p) = 0 if p ∈ C and
= ∞ otherwise, and the function Lα : R2n → R as the Lagrangian of Hα, that is,
Lα(x, ξ) = sup{ξ · p−Hα(x, p) | p ∈ Rn} for (x, ξ) ∈ R2n. It is easy to see that, for all
(x, ξ) ∈ R2n, Lα(x, ξ) ≤ Lβ(x, ξ) ≤ L(x, ξ) if α < β, that limα→∞ Lα(x, ξ) = L(x, ξ) for
all (x, ξ) ∈ R2n, and that for any (x, ξ) ∈ R2n, if p ∈ D−

2 Lα(x, ξ), then |p| ≤ α. Also, as
is well-known, for any α > 0, Lα is differentiable in the last n variables everywhere and
Lα and D2Lα are continuous on R2n. In view of the monotone convergence theorem,
in order to prove (5.11), we need only to show that for any α > 0,

∫ T

S

Lα(γ(t), γ̇(t)) dt ≤ lim inf
k→∞

∫ T

S

L(γk(t), γ̇k(t)) dt (5.15)

To show (5.15), we fix α > 0 and note by convexity that for a.e. t ∈ (S, T ) and any
k ∈ N,

Lα(γk(t), γ̇k(t)) ≥ Lα(γk(t), γ̇(t)) + D2Lα(γk(t), γ̇(t)) · (γ̇k(t)− γ̇(t)).

Since

|Lα(γk(t), γ̇(t))| ≤ |Lα(γk(t), 0)|+ α|γ̇(t)| ≤ max
x∈B(0,α)

|Lα(x, 0)|+ α|γ̇(t)| ∈ L1(S, T ),

by the Lebesgue dominated convergence theorem, we get

lim
k→∞

∫ T

S

Lα(γk(t), γ̇(t)) dt =
∫ T

S

Lα(γ(t), γ̇(t)) dt.

Next, we set fk(t) = D2Lα(γk(t), γ̇(t)) and f(t) = D2Lα(γ(t), γ̇(t)) for t ∈ [S, T ]
and k ∈ N. Then fk, f ∈ L∞(S, T,Rn) for all k ∈ N, and |fk(t)| ≤ α and |f(t)| ≤ α

a.e. t ∈ (S, T ) for all k ∈ N. We may choose a sequence {gj}j∈N ⊂ AC([S, T ],Rn) so
that gj(t) → f(t) a.e. t ∈ (S, T ) as j → ∞ and |gj(t)| ≤ α for all t ∈ [S, T ], j ∈ N.
Note that fk(t) → f(t) a.e. t ∈ (S, T ) as k → ∞ and recall that the almost everwhere
convergence implies the convergence in measure. For each ε > 0 we set

µ(ε, k) = |{t ∈ (S, T ) | |(fk − f)(t)| > ε}| for k ∈ N,

ν(ε, j) = |{t ∈ (S, T ) | |(gj − f)(t)| > ε}| for j ∈ N,

and observe that limk→∞ µ(ε, k) = limj→∞ ν(ε, j) = 0 for any ε > 0.
Fix any ε > 0, δ > 0, and k, j ∈ N. Observing that

|{t ∈ (S, T ) | |(fk − gj)(t)| > 2ε}| ≤ µ(ε, k) + ν(ε, j)

and using (5.14) with ε replaced by δ or 1, we get
∣∣∣∣∣
∫ T

S

(fk − gj)(t) · γ̇k(t) dt

∣∣∣∣∣ ≤
∫

|fk−gj |>2ε

2α|γ̇k(t)|dt +
∫

|fk−gj |≤2ε

2ε|γ̇k(t)|dt

≤ 2α[δ + M(δ)(µ(ε, k) + ν(ε, j))] + 2ε(1 + M(1)(T − S)).
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Similarly we get
∣∣∣∣∣
∫ T

S

(gj − f)(t) · γ̇(t) dt

∣∣∣∣∣ ≤
∫

|gj−f |>ε

2α|γ̇(t)| dt +
∫

|gj−f |≤ε

ε|γ̇(t)| dt

≤ 2α(δ + M(δ)ν(ε, j)) + ε(1 + M(1)(T − S)).

Hence we have∣∣∣∣∣
∫ T

S

(fk · γ̇k − f · γ̇) dt

∣∣∣∣∣ ≤ 4α(δ + M(δ)(µ(ε, k) + ν(ε, j))) + 3ε(1 + M(1)(T − S))

+

∣∣∣∣∣
∫ T

S

gj · (γ̇k − γ̇) dt

∣∣∣∣∣ .

Now, since gj ∈ AC([S, T ],Rn), we have

lim
k→∞

∫ T

S

gj · (γ̇k − γ̇) dt = 0,

and hence

lim sup
k→∞

∣∣∣∣∣
∫ T

S

(fk · γ̇k − f · γ̇) dt

∣∣∣∣∣ ≤ 4α(δ + M(δ)ν(ε, j)) + 3ε(1 + M(1)(T − S))

for any ε > 0, δ > 0, and j ∈ N. Sending j →∞ and then ε, δ → 0, we see that

lim
k→∞

∫ T

S

D2Lα(γk(t), γ̇(t)) · γ̇k(t) dt =
∫ T

S

D2Lα(γ(t), γ̇(t)) · γ̇(t) dt.

Finally, noting by the Lebesgue dominated convergence theorem that

lim
k→∞

∫ T

S

D2Lα(γk(t), γ̇(t)) · γ̇(t) dt =
∫ T

S

D2Lα(γ(t), γ̇(t)) · γ̇(t) dt,

we conclude that

lim
k→∞

∫ T

S

(Lα(γk(t), γ̇(t)) + D2Lα(γk(t), γ̇(t)) · (γ̇k(t)− γ̇(t))) dt =
∫ T

S

L(γ(t), γ̇(t)) dt,

from which it follows that
∫ T

S

Lα(γ(t), γ̇(t)) dt ≤ lim inf
k→∞

∫ T

S

Lα(γk(t), γ̇k(t)) dt ≤ lim inf
k→∞

∫ T

S

L(γk(t), γ̇k(t)) dt,

completing the proof.

Proof of Theorem 5.11. Let k ∈ N. By Proposition 5.10, we may find a curve
γk ∈ AC([0, Tk],Rn), where Tk ≥ k, such that

γk(0) = γk(Tk) = y,

∫ Tk

0

L(γk(t), γ̇k(t)) dt <
1
k

.
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Define the curve ηk : [−Tk, Tk] → Rn by

ηk(t) =

{
γk(t) if t ∈ [0, Tk],

γk(t + Tk) if t ∈ [−Tk, 0],

and observe that

ηk(−Tk) = ηk(Tk) = ηk(0) = y,∫ Tk

−Tk

L(ηk(t), η̇k(t)) dt = 2
∫ Tk

0

L(γk(t), γ̇k(t)) dt <
2
k

. (5.16)

From this, using Proposition 5.9, we see that the sequence {ηk}k≥j is uniformly bounded
and equi-continuous on [−j, j] for any j ∈ N. By the Ascoli-Arzela theorem, we may
assume by passing to a subsequence if necessary that the sequence {ηk}k∈N is convergent
to a function η ∈ C(R,Rn) in the topology of uniform convergence on bounded sets.
Since ηk(0) = y for all k ∈ N, we have η(0) = y.

In view of Proposition 5.9, we may choose a constant M > 0 so that ηk(t) ∈ B(0,M)
for all t ∈ [−Tk, Tk] and all k ∈ N. Fix any a, b ∈ R such that a < b. Let k ∈ N be
such a large number that −k < a < b < k. By Proposition 2.5, we have

dH(ηk(Tk), ηk(b)) ≤
∫ Tk

b

L(ηk(t), η̇k(t)) dt,

dH(ηk(a), ηk(−Tk)) ≤
∫ a

−Tk

L(ηk(t), η̇k(t)) dt.

Using these, we get
∫ Tk

−Tk

L(ηk(t), η̇k(t)) dt ≥ dH(ηk(a), y)

+
∫ b

a

L(ηk(t), η̇k(t)) dt + dH(y, ηk(b)). (5.17)

Due to the coercivity of H, the family {dH(·, y) | y ∈ B(0,M)} is equi-Lipschitz con-
tinuous on B(0,M). Thus, there is a constant C > 0 such that |dH(x, y)| ≤ C for all
x, y ∈ B(0,M). We now get from (5.17)

∫ b

a

L(ηk(t), η̇k(t)) dt ≤ 2
k

+ 2C.

Now, by Proposition 5.12, we see that η ∈ AC([−j, j],Rn) for any j ∈ N and that
for any a, b ∈ R, with a < b,

∫ b

a

L(η(t), η̇(t)) dt ≤ lim inf
k→∞

∫ b

a

L(ηk(t), η̇k(t)) dt. (5.18)

Going back to (5.17) and using the inequality

dH(η(b), η(a)) ≤
∫ b

a

L(η(t), η̇(t)) dt,
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we obtain

0 ≥ dH(η(a), y) +
∫ b

a

L(η(t), η̇(t)) dt + dH(y, η(b))

≥
∫ b

a

L(η(t), η̇(t)) dt + dH(η(a), η(b))

≥ dH(η(b), η(a)) + dH(η(a), η(b)) ≥ dH(η(a), η(a)) = 0.

From this, we see that
∫ b

a

L(η(t), η̇(t)) dt = dH(η(b), η(a)) = −dH(η(a), η(b)).

To complete the proof, we show that η(t) ∈ A for all t ∈ R. Fix any z ∈ Rn \ A
and, in view of Proposition 5.3, select a φ ∈ S−H so that H[φ] ≤ −ε in a neighborhood
of z in the viscosity sense, where ε > 0 is a constant. We choose a function σ ∈ C(Rn),
which satisfies σ ≥ 0 in Rn and σ(z) > 0, so that H[φ] ≤ −σ in Rn in the viscosity
sense. By Proposition 2.5, we get

∫ Tk

−Tk

σ(ηk(t)) dt = φ(ηk(Tk))− φ(ηk(−Tk)) +
∫ Tk

−Tk

σ(ηk(t)) dt

≤
∫ Tk

−Tk

L(ηk(t), η̇k(t)) dt <
2
k

.

From this we deduce that ∫

R

σ(η(t)) dt = 0,

which guarantees that η(t) 6= z for all t ∈ R. This is enough to conclude that η(t) ∈ A
for all t ∈ R.

Proposition 5.13. Let γ ∈ C(R,Rn) be a curve. The following three conditions are
equivalent:

(1) γ is critical.

(2) For any φ ∈ S− and a, b ∈ R satisfying a < b,

φ(γ(b))− φ(γ(a)) =
∫ b

a

L(γ(t), γ̇(t)) dt.

(3) For any a, b ∈ R satisfying a < b,

−dH(γ(a), γ(b)) =
∫ b

a

L(γ(t), γ̇(t)) dt.

Proof. We define the function ρH : Rn ×Rn → R by

ρH(x, y) = inf{v(x) | v ∈ S−H , v(y) = 0},
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and observe that φ(x) − φ(y) ≥ ρH(x, y) for all x, y ∈ Rn and all φ ∈ S−H , that
ρH(·, y) ∈ S−H for all y ∈ Rn, that for any x, y ∈ Rn,

ρH(x, y) = inf{v(x)− v(y) | v ∈ S−H} = − sup{v(y)− v(x) | v ∈ S−H} = −dH(y, x).

Now, we assume that (3) holds. Let φ ∈ S−H and fix a, b ∈ R so that a < b. Using
the above observations, we get

∫ b

a

L(γ(t), γ̇(t)) dt = −dH(γ(a), γ(b)) = ρH(γ(b), γ(a)) ≤ φ(γ(b))− φ(γ(a)).

Combining this with Proposition 2.5, we see that (2) holds.
Next, it is clear that (2) implies (1) since dH(·, γ(a)), −dH(γ(a), ·) ∈ S−H . Also, it is

clear by the definition of critical curves that (1) implies (3).

Proposition 5.14. Let γ be a critical curve. Then there is a function q ∈ L∞(R,Rn)
such that for any φ ∈ S−H ,

L(γ(t), γ̇(t)) = q(t) · γ̇(t) a.e. t ∈ R, (5.19)

H(γ(t), q(t)) = 0 a.e. t ∈ R, (5.20)

q(t) ∈ ∂cφ(γ(t)) a.e. t ∈ R. (5.21)

Proof. Fix any critical curve γ. It is enough to show that for each k ∈ N there is a
function q ∈ L∞(k, k + 1,R) satisfying (5.19), (5.20), and (5.21), with R replaced by
the interval (k, k + 1).

Fix any k ∈ N and any φ ∈ S−. We write a = k and b = k + 1 for notational
simplicity. By Proposition 2.4, there is a function q ∈ L∞(a, b,Rn) such that

d
dt

φ(γ(t)) = q(t) · γ̇(t) a.e. t ∈ (a, b), (5.22)

q(t) ∈ ∂cφ(γ(t)) a.e. t ∈ (a, b). (5.23)

Since φ ∈ S−H , in view of (5.23) we get

H(γ(t), q(t)) ≤ 0 a.e. t ∈ (a, b). (5.24)

Integrating (5.22) over (a, b) and using Proposition 5.13 yield

φ(γ(b))− φ(γ(a)) =
∫ a

a

q(t) · γ̇(t) dt ≤
∫ b

a

[L(γ(t), γ̇(t)) + H(γ(t), q(t))] dt

≤
∫ b

a

L(γ(t), γ̇(t)) dt = φ(γ(b))− φ(γ(a)).

This shows that
∫ b

a

q(t) · γ̇(t) dt =
∫ b

a

[L(γ(t), γ̇(t)) + H(γ(t), q(t))] dt =
∫ b

a

L(γ(t), γ̇(t)) dt. (5.25)
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In particular, we get ∫ b

a

H(γ(t), q(t)) dt = 0,

which together with (5.24) yields

H(γ(t), q(t)) = 0 a.e. t ∈ (a, b).

Similarly, since

q(t) · γ̇(t) ≤ L(γ(t), γ̇(t)) + H(γ(t), q(t)) = L(γ(t), γ̇(t)) a.e. t ∈ (a, b),

from (5.25) we see that

q(t) · γ̇(t) = L(γ(t), γ̇(t)) a.e. t ∈ (a, b).

Thus the function q satisfies conditions (5.19), (5.20), and (5.21) in (a, b), with our
current choice of φ. We need to show that for any ψ ∈ S−H ,

q(t) ∈ ∂cψ(γ(t)) a.e. t ∈ (a, b).

The argument above shows that there is a function r ∈ L∞(a, b,Rn) for which conditions
(5.19), (5.20), and (5.21) in (a, b), with q and φ replaced by r and ψ, respectively. Then
we have

r(t) · γ̇(t) = L(γ(t), γ̇(t)) + H(γ(t), r(t)) a.e. t ∈ (a, b),

which implies that
r(t) = D2L(γ(t), γ̇(t)) a.e. t ∈ (a, b).

By the same reasoning, we get

q(t) = D2L(γ(t), γ̇(t)) a.e. t ∈ (a, b).

Therefore we have
q(t) = r(t) ∈ ∂cψ(γ(t)) a.e. t ∈ (a, b).

This completes the proof.

6. Cauchy problem
In this section we prove Theorem 1.1 together with some estimates on the solution

of (1.1) and (1.2) which satisfies (1.4).
Our strategy here for proving existence of a viscosity solution of (1.1) and (1.2)

which satisfies (1.4) is to prove (i) the continuity of the function u on Rn× [0,∞) given
by

u(x, t) = inf
{∫ t

0

L(γ(s), γ̇(s)) ds + u0(γ(0)) | γ ∈ C(x, t)
}

(6.1)

and then (ii) to show that the function u is a viscosity solution of (1.1) and (1.2) by
using the dynamic programming principle.

We assume henceforth by adding a constant to φ0 and φ1 if necessary that u0 ≥ φ0

in Rn.
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Lemma 6.1. We have

u(x, t) ≥ φ0(x) for all (x, t) ∈ Rn × [0,∞).

Proof. Fix any (x, t) ∈ Rn × (0,∞). For each ε > 0 there is a curve γ ∈ C(x, t) such
that

u(x, t) + ε >

∫ t

0

L(γ(s), γ̇(s)) ds + u0(γ(0)).

By Proposition 2.5, since H[φ0] ≤ 0 a.e., we have

u(x, t) + ε > φ0(γ(t))− φ0(γ(0)) + u0(γ(0)) ≥ φ0(x),

which shows that u(x, t) ≥ φ0(x).

Lemma 6.2. We have

u(x, t) ≤ u0(x) + L(x, 0)t for all (x, t) ∈ Rn × (0,∞).

Proof. Fix any (x, t) ∈ Rn× (0,∞). By choosing the curve γx(t) ≡ x in formula (6.1),
we find that

u(x, t) ≤
∫ t

0

L(γx(s), γ̇x(s)) ds + u0(γx(0))

=
∫ t

0

L(x, 0) ds + u0(x) = u0(x) + L(x, 0)t.

Proposition 6.3 (Dynamic Programming Principle). For t > 0, s > 0, and
x ∈ Rn, we have

u(x, s + t) = inf
{∫ t

0

L(γ(r), γ̇(r)) dr + u(γ(0), s)
∣∣ γ ∈ C(x, t)

}
. (6.2)

We omit giving the proof of this proposition and we refer to [L] for a proof in a
standard case.

Lemma 6.4. For any R > 0, there is a constant CR > 0, depending only on R, u0,
and H, such that

u(x, t) ≤ CR for all (x, t) ∈ B(0, R)× (0,∞).

Proof. Fix R > 0 so that A ⊂ B(0, R). According to Proposition 2.1, there are
constants εR > 0 and CR > 0 such that

L(x, ξ) ≤ CR for all (x, ξ) ∈ B(0, R)×B(0, εR).

It is clear that CR and εR depends only on R and H. Set T := 2R/εR. Fix any x0 ∈ A
and any (x, t) ∈ B(0, R) × [T,∞). Set τ := t − T . Fix any critical curve γ0 satisfying
γ0(t− T ) = x0. Define the curve γ ∈ C(x, t) by

γ(s) =





t− s

T
x0 +

(
1− t− s

T

)
x for all s ∈ [t− T, t],

γ0(s) for all s ∈ [0, t− T ).
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Observe that γ(s) ∈ B(0, R) for s ∈ [t − T, T ], that γ̇(s) = T−1(x − x0) and hence
|γ̇(s)| ≤ εR for s ∈ (t−T, t), and therefore that L(γ(s), γ̇(s)) ≤ CR for all s ∈ (t−T, t).
Thus, using Proposition 5.13, we get

u(x, t) ≤
∫ t

0

L(γ(s), γ̇(s)) ds + u0(γ(0))

=
∫ t−T

0

L(γ(s), γ̇(s)) ds +
∫ t

t−T

L(γ(s), γ̇(s)) ds + u0(γ(0))

≤
∫ t−T

0

L(γ0(s), γ̇0(s)) ds +
∫ t

t−T

CR ds + u0(γ0(0))

=φ0(γ0(t− T )) + u0(γ0(0))− φ0(γ0(0)) + CRT.

Hence we get

u(x, t) ≤ max
B(0,R)

u0 + 2 max
B(0,R)

|φ0|+ CRT for all (x, t) ∈ B(0, R)× [T,∞).

On the other hand, by Lemma 6.2 we have

u(x, t) ≤ u0(x) + L(x, 0)T for all (x, t) ∈ B(0, R)× [0, T ],

where we have used the fact that L(x, 0) ≥ 0 for all x ∈ Rn. The proof is now complete.

Lemma 6.5. Let R > 0. Then there is a constant CR > 0 having the following property:
if (x, t) ∈ B(0, R)× (0,∞) and γ ∈ C(x, t) satisfy

u(x, t) + 1 >

∫ t

0

L(γ(s), γ̇(s)) ds + u0(γ(0)),

then
|γ(s)| ≤ CR for all s ∈ (0, t].

Proof. Let (x, t) ∈ B(0, R)× (0,∞) and γ ∈ C(x, t) be as in the above lemma. Due to
Lemma 6.4, there is a constant C1 ≡ C1(R) > 0, independent of t ∈ (0,∞), such that

u(x, t) ≤ C1 for all x ∈ B(0, R).

Note that C1(R) may be chosen so as to depend on u0 only through maxB(0,R1) u0,
where R1 is a positive constant such that R1 ≥ R and A ⊂ B(0, R1).

Let τ ∈ (0, t]. Using Proposition 2.5 and Lemma 6.1, we compute that

C1(R) + 1 ≥u(x, t) + 1 >

∫ τ

0

L(γ(s), γ̇(s)) ds

+
∫ t

τ

L(γ(s), γ̇(s)) ds + u0(γ(0))

≥φ1(γ(t))− φ1(γ(τ)) + u(γ(τ), τ)

≥φ1(x)− φ1(γ(τ)) + φ0(γ(τ)),
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which yields
φ0(γ(τ))− φ1(γ(τ)) ≤ φ1(x) + C1 + 1.

Since lim|x|→∞(φ0−φ1)(x) = ∞, we find a constant CR > 0 such that γ(τ) ∈ B(0, CR)
for all τ ∈ [0, t].

Lemma 6.6. For each R > 0 there is a modulus mR such that for (x, t) ∈ B(0, R) ×
(0, 1] and γ ∈ C(x, t), if

u(x, t) + 1 >

∫ t

0

L(γ(s), γ̇(s)) ds + u0(γ(0)),

then
|γ(t− s)− x| ≤ mR(s) for all s ∈ [0, t].

Proof. Let R > 0. Let (x, t) ∈ B(0, R)× (0, 1] and γ ∈ C(x, t) be as above. According
to Lemmas 6.4 and 6.5, there is a constant C ≡ C(R) ≥ R such that

|γ(s)| ≤ C for all s ∈ [0, t].

We choose a constant C1 ≡ C1(R) > 0 so that

sup
B(0,C)×(0,∞)

|u| ≤ C1.

As we have already observed, for any A > 0 there is a constant CA ≡ CA(R) > 0 such
that

L(x, ξ) ≥ A|ξ| − CA for all (x, ξ) ∈ B(0, C)×Rn.

Fix A > 0, and we calculate that

C1 + 1 >

∫ t

τ

L(γ(s), γ̇(s)) ds + u(γ(τ), τ)

≥
∫ t

τ

[A|γ̇(s)| − CA] ds− C1.

Hence we get ∫ t

τ

|γ̇(s)| ds ≤ A−1(2C1 + 1) + A−1CA(t− τ).

There is a modulus mR such that

inf
A>0

[
A−1(2C1 + 1) + A−1CAr

] ≤ mR(r).

Fix such a modulus mR, and we have
∫ t

τ

|γ̇(s)|ds ≤ mR(t− τ),
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which implies that

|γ(t− s)− x| ≤ mR(s) for all s ∈ [0, t].

Lemma 6.7. For each R > 0 there is a modulus lR such that for (x, t) ∈ B(0, R)×[0, 1],

|u(x, t)− u0(x)| ≤ lR(t). (6.3)

Proof. Fix any ε ∈ (0, 1), R > 0, and (x, t) ∈ B(0, R) × (0, 1]. There is a curve
γ ∈ C(x, t) such that

u(x, t) + ε >

∫ t

0

L(γ(s), γ̇(s)) ds + u0(γ(0)).

According to Lemma 6.6, there is a modulus mR such that

|γ(t− s)− x| ≤ mR(s) for all s ∈ [0, t].

Recall that ∫ t

0

L(γ(s), γ̇(s)) ds ≥ φ0(γ(t))− φ0(γ(0)).

Then we have
u(x, t) + ε >u0(x) + [φ0(x)− φ0(γ(0))] + [u0(γ(0))− u0(x)]

≥u0(x)− µφ0,R(mR(t))− µu0,R(mR(t)),

where µφ0,R and µu0,R are the moduli of continuity of φ0 and of u0, respectively, on the
set B(0, R1), with R1 = R + mR(1). Since ε ∈ (0, 1) is arbitrary, the above inequality,
together with Lemma 6.2, guarantees existence of a modulus lR such that (6.3) holds.

Lemma 6.8. For each R > 0 there is a modulus kR such that for any x, y ∈ B(0, R),
t > 0,

|u(x, t)− u(y, t)| ≤ kR(|x− y|). (6.4)

Proof. Let R > 0. Let ε ≡ εR > 0 and C ≡ CR > 0 be constants such that L(x, ξ) ≤ C

for all (x, ξ) ∈ B(0, R) × B(0, ε). Let x, y ∈ B(0, R) and t > 0. We may assume that
|x− y| ≤ ε ≤ 1.

We first consider the case when |x− y| ≥ εt. By Lemma 6.7, there is a modulus lR

such that
|u(x, t)− u0(x)| ≤ lR(t), |u(y, t)− u0(y)| ≤ lR(t).

We may assume that
|u0(x)− u0(y)| ≤ lR(|x− y|).

Consequently we have

|u(x, t)− u(y, t)| ≤ |u0(x)− u0(y)|+ |u(x, t)− u0(x)|+ |u(y, t)− u0(y)|
≤ lR(|x− y|) + 2lR(t) ≤ 3lR(ε−1|x− y|).
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Next we consider the case when |x− y| ≤ εt. Fix δ ∈ (0, 1). We select γ ∈ C(x, t) so
that

u(x, t) + δ >

∫ t

0

L(γ(s), γ̇(s)) ds + u0(γ(0)).

We know that there is a constant C1 ≡ C1(R) ≥ R such that

|γ(s)| ≤ C1 for all s ∈ [0, t].

We may assume that C ≥ C1, so that |γ(s)| ≤ C for all s ∈ [0, t]. Set τ := ε−1|x − y|
and note that τ ≤ min{1, t}. Define η ∈ C(y, t) by

η(s) =





(
1− t− s

τ

)
y +

t− s

τ
x for all s ∈ [t− τ, t],

γ(s + τ) for all s ∈ [0, t− τ ].

Note that |η̇(s)| = τ−1|x− y| = ε for all s ∈ (t− τ, t). In view of Lemma 6.7, we may
assume by replacing lR by a larger modulus if necessary that

|u(ξ, τ)− u0(ξ)| ≤ lR(τ) for all ξ ∈ B(0, C).

Then we have

u(y, t) ≤
∫ t

t−τ

L(η(s), η̇(s)) ds +
∫ t−τ

0

L(η(s), η̇(s)) ds + u0(η(0))

≤Cτ +
∫ t

τ

L(γ(s), γ̇(s)) ds + u0(γ(τ)),

<Cτ + δ + u(x, t)−
∫ τ

0

L(γ(s), γ̇(s)) ds− u0(γ(0)) + u0(γ(τ))

≤Cτ + δ + u(x, t)− u(γ(τ), τ) + u0(γ(τ)) ≤ Cτ + δ + u(x, t) + lR(τ).

Therefore we get

u(y, t)− u(x, t) ≤ lR(τ) + Cτ = lR(ε−1|x− y|) + Cε−1|x− y|.

By symmetry, we get

|u(y, t)− u(x, t)| ≤ lR(ε−1|x− y|) + Cε−1|x− y|.

Thus we have in general

|u(y, t)− u(x, t)| ≤ 3lR(ε−1|x− y|) + Cε−1|x− y|.

We extend the domain of definition of u to Rn × [0,∞) by setting

u(x, 0) = u0(x) for all x ∈ Rn. (6.5)
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Theorem 6.9. u ∈ C(Rn × [0,∞)) and moreover, for any R > 0, u is bounded and
uniformly continuous on B(0, R)× [0,∞).

Proof. In view of Lemma 6.8, there is a pair of collections {CR}R>0 of positive con-
stants and {kR}R>0 of moduli such that for any R > 0,

‖u‖L∞(B(0,R)×(0,∞)) ≤ CR, (6.6)

|u(x, s)− u(y, s)| ≤ kR(|x− y|) for all x, y ∈ B(0, R), s ∈ [0,∞). (6.7)

Fix any s ≥ 0 and note by Proposition 6.3 that

u(x, s + t) = inf
{∫ t

0

L(γ(r), γ̇(r)) dr + u(γ(0), s)
∣∣ γ ∈ C(x, t)

}
.

Then we apply Lemma 6.7, with u(·, s) in place of u0, to conclude that for each R > 0
there is a modulus lR such that

|u(x, s + t)− u(x, s)| ≤ lR(t) for all (x, s) ∈ B(0, R)× [0,∞) and t > 0. (6.8)

That is, we have

|u(x, t)− u(x, s)| ≤ lR(|t− s|) for all x ∈ B(0, R) and t, s ∈ [0,∞).

This and Lemma 6.8 assure that u is uniformly continuous on B(0, R)× [0,∞) for any
R > 0. In particular, we see that u ∈ C(Rn × [0,∞)).

Theorem 6.10. The function u is a viscosity solution of (1.1) and (1.2).

Proof. Since u ∈ C(Rn × [0,∞)) by Theorem 6.9, we only need to apply Theorems
A.1 and A.2 together with Remark after these theorems to u, to conclude that u is a
viscosity solution of (1.1). Moreover, it is obvious that u satisfies (1.2).

7. Proof of Theorem 1.3
This section will be devoted to proving Theorem 1.3. As before, the critical value

cH is assume to be zero in this section.
Let {St}t≥0 be the semi-group of mappings on Φ0 defined by Stu0 = u(·, t), where

u is the unique viscosity solution of (1.1) and (1.2) satisfying (1.4).
In what follows we say that a sequence {fj}j∈N ⊂ C(Rn) converges to f in C(Rn)

if fj(x) → f(x) on every compact subsets of Rn as j →∞.
For u0 ∈ Φ0 we denote by ω(u0) the ω-limit set in C(Rn) of the trajectory {Stu0}t≥0

issuing from u0, which is defined as the set of those w ∈ C(Rn) such that

Stj u0 → w in C(Rn) as j →∞

for some sequence {tj}j∈N ⊂ (0,∞) diverging to infinity.
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In view of Lemmas 6.1 and 6.4 and Theorem 6.9, the function u(x, t) ≡ Stu0(x) is
bounded and uniformly continuous on B(0, R) × [0,∞) for any R > 0. By the Ascoli-
Arzela theorem, for any sequence {tj}j∈N ⊂ (0,∞) diverging to infinity, there is a
subsequence {tjk

}k∈N such that as k → ∞, u(x, tjk
) → w(x) uniformly on bounded

subsets of Rn for some function w ∈ C(Rn). By Lemma 6.1, we see that w ∈ Φ0. In
particular, we have ω(u0) 6= ∅, ω(u0) ⊂ Φ0, and moreover, ω(w) 6= ∅.

We denote the set of all critical curves by Γ. For any γ ∈ Γ, we write ω(γ) for the
set of curves η ∈ C(R,A) for which there is a sequence {tj}j∈N ⊂ (0,∞) such that as
j →∞,

tj →∞ and γ(t + tj) → η(t) on bounded intervals ⊂ R.

Then we set ω(Γ) =
⋃{ω(γ) | γ ∈ Γ}. Also, we set

M = {η(0) | η ∈ ω(Γ)}.
Here it is important to see as in the proof of Theorem 5.11 that ω(Γ) ⊂ Γ.

Lemma 7.1. Let u, v ∈ S−H and assume that u ≤ v in M. Then u ≤ v in A.

Proof. Fix any y ∈ A and choose a curve γ ∈ Γ so that γ(0) = y. By Proposition 5.13,
for any T > 0 we get

u(γ(T ))− u(γ(0)) = dH(γ(T ), γ(0)) = v(γ(T ))− v(γ(0)). (7.1)

Selecting {tj}j∈N diverging to infinity so that γ(·+ tj) → η in C(R,Rn) as j →∞ for
some η ∈ ω(γ) and sending j →∞ in (7.1), with T = tj , we get

u(y)− v(y) = u(η(0))− v(η(0)) ≤ 0.

Thus we have u(x) ≤ v(x) for all x ∈ A.

Lemma 7.2. Let u0 ∈ Φ0 and φ ∈ S−H . Then, for any critical curve γ, the function:
t 7→ Stu0(γ(t))− φ(γ(t)) is nonicreasing on [0,∞).

Proof. Let 0 < a < b < ∞ and set u(x, t) = Stu0(x) for (x, t) ∈ Rn × [0,∞). By using
the dynamic programming principle, we get

u(γ(b), b) ≤
∫ b

a

L(γ(t), γ̇(t)) dt + u(γ(a), a),

from which, since γ is a critical curve, we get

u(γ(b), b) ≤ φ(γ(b))− φ(γ(a)) + u(γ(a), a),

completing the proof.

Given functions f, g : Rn → R, we write [f, g] for the set of all functions h : Rn → R
which satisfy f ≤ h ≤ g in Rn.
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Lemma 7.3. Let f ∈ S−H ∩ Φ0 and g ∈ S+
H , and assume that f ≤ g in Rn. Then for

each ε > 0 there is a constant δ > 0 such that for any u0, v0 ∈ [f, g] ∩ C(Rn), if

max
x∈B(0,δ−1)

(u0(x)− v0(x)) ≤ δ, (7.2)

then
sup

(x,t)∈B(0,ε−1)×[0,∞)

(Stu0(x)− Stv0(x)) ≤ ε.

Proof. Fix any ε > 0. We choose a constant Aε > 0 so that

φ1(x) + Aε ≥ g(x) for all x ∈ B(0, ε−1),

and then choose an Rε > 0 so that

φ1(x) + Aε ≤ f(x) for all x ∈ Rn \B(0, Rε).

We set δ = min{ε, R−1
ε }. We then have

φ1(x) + Aε ≤ f(x) for all x ∈ Rn \B(0, δ−1). (7.3)

Let u0, v0 ∈ [f, g] ∩ C(Rn) satisfy (7.2). Set u(x, t) = Stu0(x) and v(x, t) = Stv0(x)
for (x, t) ∈ Rn × [0,∞). By Theorem 4.1, we find that

f(x) ≤ u(x, t) ≤ g(x) and f(x) ≤ v(x, t) ≤ g(x) for (x, t) ∈ Rn × [0,∞). (7.4)

Set w(x, t) = min{u(x, t), φ1(x) + Aε} for (x, t) ∈ Rn × [0,∞). Observe that w ∈ S−H
and by (7.3) and (7.4) that w(x, t) = φ1(x) + Aε ≤ f(x) ≤ v(x, t) for all (x, t) ∈
(Rn \B(0, δ−1))× [0,∞). By Theorem 4.1, we get

w(x, t) ≤ v(x, t) + ε for all (x, t) ∈ B(0, δ−1)× [0,∞),

and conclude that w ≤ v + ε in Rn × [0,∞).
Finally, we note that u(x, t) ≤ g(x) ≤ φ1(x) + Aε for B(0, ε−1)× [0,∞), to get

u(x, t) = w(x, t) ≤ v(x, t) + ε for all (x, t) ∈ B(0, ε−1)× [0,∞).

Lemma 7.4. For any function f ∈ C(Rn) there is a viscosity supersolution g ∈
C0+1(Rn) of (5.1) which satisfies g ≥ f in Rn.

Proof. We may assume that f ∈ C1(Rn) and f ≥ φ0 in Rn. We choose a constant
R > 0 so that A ⊂ B(0, R) and choose a function h ∈ C(Rn) so that h ≥ 0 in Rn,
h(x) = 0 for all x ∈ B(0, R), and h(x) ≥ H(x,Df(x)) + 1 for all x ∈ Rn \B(0, R + 1).
We set G(x, p) = H(x, p) − h(x) for (x, p) ∈ R2n and consider the additive eigenvalue
problem

G(x,Du) = a in Rn. (7.5)
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Note that G ≤ H in R2n and that G satisfies (A1)–(A4), with the same choice of
functions φ0, φ1. Theorem 3.3, applied to G in place of H, yields a solution (a, φ) ∈
R× (Φ0 ∩C0+1(Rn)) of (7.5). Since G ≤ H in R2n, we see that if ψ ∈ Φ0 is a viscosity
subsolution of H[ψ] = cH in Rn, then it is a viscosity subsolution of G[ψ] ≤ cH in Rn

and therefore in view of Proposition 3.4 that a ≤ cH = 0.
Fix a critical curve γ for H. Observe by Proposition 2.5 that for any T > 0,

φ(γ(T ))− φ(γ(0)) ≤
∫ T

0

(L(γ(t), γ̇(t)) + a + h(γ(t))) dt

=
∫ T

0

L(γ, γ̇) dt + aT = dH(γ(T ), γ(0)) + aT.

Sending T →∞ in the above yields a ≥ 0, from which we see that a = 0. Thus, φ is a
viscosity solution of H[φ] = h in Rn.

By adding a constant to φ if necessary, we may assume that φ(x) ≥ f(x) for all
x ∈ B(0, R + 1). We apply Theorem 3.2, with Ω = Rn \ B(0, R + 1), λ = 0, ε = 1,
and H replaced by G, to obtain φ(x) ≥ f(x) for all x ∈ Rn \B(0, R + 1), which yields
φ ≥ f in Rn. Since h ≥ 0 in Rn, we see that φ ∈ S+

H . Thus, g := φ has the required
properties.

Lemma 7.5. Let v, w ∈ ω(u0), and let {tj}j∈N, {rj}j∈N ⊂ (0,∞) be sequences diverg-
ing to infinity such that Stj u0 → v and Stj+rj u0 → w in C(Rn) as j → ∞. Then
Srj v → w in C(Rn) as j →∞.

Proof. Fix any ε > 0. By Lemma 7.4, there is a function g ∈ S+
H such that g ≥ u0 in

Rn. We may assume that φ0 ≤ u0 in Rn. By Theorem 4.1, we deduce that

Stu0, v ∈ [φ0, g],

and, in view of Lemma 7.3, we find a constant δ > 0 such that if

max
B(0,δ−1)

|Stj u0 − v| ≤ δ, (7.6)

then
sup

(x,t)∈B(0,ε−1)×[0,∞)

|Stj+tu0(x)− Stv(x)| ≤ ε. (7.7)

We may choose a J ∈ N such that (7.6) holds for all j ≥ J . Thus we see that (7.7)
holds for all j ≥ J and conclude that as j →∞,

Srj v = Stj+rj u0 + (Stj v − Stj+rj u0) → w in C(Rn).

Proposition 7.6. There exist a constant δ ∈ (0, 1) and a modulus m such that for any
u0 ∈ Φ0, γ ∈ Γ, ε ∈ (−δ, δ), and T > 0,

ST u0(γ(T )) ≤ u0(γ(εT )) +
∫ T

εT

L(γ(t), γ̇(t)) dt + |ε|Tm(|ε|).
For the proof of the above proposition we need the following lemma.
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Lemma 7.7. There exist a constant δ ∈ (0, 1) and a modulus m such that for any γ ∈ Γ
and any λ ∈ [1− δ, 1 + δ],

λ−1L(γ(t), λγ̇(t)) ≤ L(γ(t), γ̇(t)) + |λ− 1|m(|λ− 1|) a.e. t ∈ R.

Proof. Choose a constant R1 > 0 so that A ⊂ B(0, R1) and choose a constant R2 > 0
so that for any x ∈ B(0, R1) and any p ∈ Rn, if H(x, p) ≤ 0, then p ∈ B(0, R2). Define
the set S ⊂ Rn ×Rn by

S := {(x, ξ) ∈ B(0, R1)×Rn | ξ ∈ D−
2 H(x, p) for some p ∈ B(0, R2)}.

By Proposition 2.3, the set S is a compact subset of int dom L. Thus we may choose a
constant ε > 0 so that

Sε := {(x, ξ) ∈ R2n | dist ((x, ξ), S) ≤ ε} ⊂ int dom L.

We fix an R3 > 0 so that S ⊂ B(0, R3) (the ball on the right hand side is a ball in
R2n) and set δ = min{1/2, ε/R3}, so that for any (x, ξ) ∈ S and any λ ∈ (1− δ, 1 + δ),
(x, λξ) ∈ Sε. Let m0 be a modulus of continuity of the uniformly continuous function
D2L on Sε.

Fix any critical curve γ. Since γ(t) ∈ A for all t ∈ R, we have γ(t) ∈ B(0, R1) for
all t ∈ R. According to Proposition 5.14, there is a function q ∈ L∞(R,Rn) such that

H(γ(t), q(t)) = 0 and γ̇(t) ∈ D−
2 H(γ(t), q(t)) a.e. t ∈ R. (7.8)

Therefore we have (γ(t), γ̇(t)) ∈ S a.e. t ∈ R. Hence, for λ ∈ (1− δ, 1 + δ), we have

(γ(t), λγ̇(t)) ∈ Sε a.e. t ∈ R.

Consequently, for µ ∈ (1− δ, 1 + δ), we have

|D2L(γ(t), γ̇(t))−D2L(γ(t), µγ̇(t))| ≤ m0(|1− µ||γ̇|) a.e. t ∈ R.

In view of (7.8), we have

D2L(γ(t), γ̇(t)) · γ̇(t) = L(γ(t), γ̇(t)) a.e. t ∈ R.

Now we compute that for any λ ∈ (1− δ, 1 + δ) and a.e. t ∈ R,

L(γ(t), λγ̇(t)) = L(γ(t), γ̇(t)) + (λ− 1)D2L(γ(t), (1 + θt(λ− 1)) γ̇(t)) · γ̇(t)

(for some θt ∈ (0, 1), and furthermore)

≤L(γ(t), γ̇(t)) + (λ− 1)D2L(γ(t), γ̇(t)) · γ̇(t)

+ |λ− 1||γ̇(t)|m0(|λ− 1||γ̇(t)|)
= λL(γ(t), γ̇(t)) + |λ− 1||γ̇(t)|m0(|λ− 1||γ̇(t)|).
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Setting m(r) = 2R3m0(R3r), for all λ ∈ (1− δ, 1 + δ) and a.e. t ∈ R, we have

λ−1L(γ(t), λγ̇(t)) ≤ L(γ(t), γ̇(t)) + |λ− 1|m(|λ− 1|).

Proof of Proposition 7.6. Let δ ∈ (0, 1) and m be those from Lemma 7.7. Fix any
u0 ∈ Φ0, γ ∈ Γ, and T > 0. Set u(x, t) = Stu0(x) for (x, t) ∈ Rn × [0,∞). Since

u(γ(T ), T ) = inf
{∫ T

0

L(η(t), η̇(t)) dt + u(η(0), 0)
∣∣ η ∈ C(γ(T ), T )

}
,

choosing η(t) := γ(λt + (1− λ)T ) in the above formula, we get

u(γ(T ), T ) ≤
∫ T

0

L(γ(λt + (1− λ)T ), λγ̇(λt + (1− λ)T )) dt + u(γ((1− λ)T ), 0).

By making the change of variables s = λt + (1− λ)T in the above inequality, we get

u(γ(T ), T ) ≤
∫ T

(1−λ)T

λ−1L(γ(s), λγ̇(s)) dt + u(γ((1− λ)T ), 0).

Using Lemma 7.7, we see immediately that

u(γ(T ), T ) ≤
∫ T

(1−λ)T

L(γ(s), γ̇(s)) dt + u(γ((1− λ)T ), 0) + |1− λ|m(|1− λ|)T.

Setting ε = 1− λ yields the desired inequality.

Henceforth we fix any u0 ∈ Φ0 and define functions v± : Rn → R by

v+(x) = lim sup
t→∞

Stu0(x), v−(x) = lim inf
t→∞

Stu0(x).

Since the function u(x, t) := Stu0(x) is bounded and uniformly continuous on B(0, R)×
[0,∞) for any R > 0, we see that v± ∈ C(Rn) and that v+(x) = lim sup∗t→∞ u(x, t)
and v−(x) = lim inf∗t→∞u(x, t) for all x ∈ Rn. As is standard in viscosity solutions
theory, we have v+ ∈ S−H and v− ∈ S+

H . Moreover, by the convexity of H(x, ·), we have
v− ∈ S−H . Also, from Lemma 6.1 we see that v± ∈ Φ0.

Lemma 7.8. Let w ∈ ω(u0) and γ ∈ Γ. Then

lim inf
t→∞

[
w(γ(t))− v−(γ(t))

]
= 0.

Proof. From the definition of v−, we deduce that v− ≤ w in Rn. We choose sequences
{tj}j∈N, {τj}j∈N ⊂ (0,∞) diverging to infinity so that as j →∞,

Stj u0(γ(0)) → v−(γ(0)) and Stj+τj u0 → w in C(Rn).

We then observe that for j ∈ N,

w(γ(τj))− v−(γ(τj)) = [w(γ(τj))− Stj+τj u0(γ(τj))] + [Stj+τj u0(γ(τj))− v−(γ(τj))]

≤ [w(γ(τj))− Stj+τj u0(γ(τj))] + [Stj u0(γ(0))− v−(γ(0))],
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which yields
lim inf
t→∞

[w(γ(t))− v−(γ(t))] ≤ 0.

Since w − v− ≥ 0 in Rn, we thus conclude that

lim inf
t→∞

[w(γ(t))− v−(γ(t))] = 0.

Proof of Theorem 1.3. We show that w ≤ v− on M for any w ∈ ω(u0). Once this
is done, we have v+ ≤ v− on M and therefore v+ = v− on M. Furthermore, by Lemma
7.1, we get v+ = v− on A, and by Proposition 5.9, we see that v+ ≤ v− in Rn. Since
v+ ≥ v− by the definition of v±, we conclude that v− = v+ in Rn and that u(·, t) → v−

in C(Rn) as t →∞.
It remains to show that w ≤ v− on M for all w ∈ ω(u0). Let w ∈ ω(u0) and y ∈M.

We choose a curve γ ∈ Γ so that there is a sequence {aj}j∈N ⊂ (0,∞) diverging to
infinity such that limj→∞ γ(aj) = y. Let δ ∈ (0, 1) and m be those from Proposition
7.6, so that for any T > 0, s ∈ R, and ε ∈ (−δ, δ),

ST w(γ(T + s))− w(γ(εT + s)) ≤
∫ T

εT

L(γ(t + s), γ̇(t + s)) dt + εTm(|ε|)
= v−(γ(T + s))− v−(γ(εT + s)) + εTm(|ε|). (7.9)

In view of Lemma 7.5, there is a sequence {bj}j∈N diverging to infinity such that
Sbj w → w in C(Rn) as j → ∞. We may assume by reselecting {aj}j∈N if necessary
that aj > bj for all j ∈ N and cj := aj − bj →∞ as j →∞. Also, we may assume that
γ(·+ cj) → η in C(R) as j → ∞. Fix any t ≥ 0. Setting T = bj , s = cj , and ε = t/bj

in (7.9) and sending j →∞, we get

w(y)− v−(y) ≤ w(η(t))− v−(η(t)).

From this, using Lemma 7.8, we find that w(y) − v−(y) ≤ 0, which guarantees that
w(y) = v−(y).

8. A formula for asymptotic solutions
In the previous section we show that the viscosity solution u of (1.1) and (1.2)

satisfying (1.4) approaches to v−(x)− ct in C(Rn) as t →∞, where (c, v−) is a solution
of (1.3).

In this section we give a formula for the function v−. Let c = cH . We define the
function dH,c ∈ C(Rn ×Rn) by

dH,c(x, y) = sup{v(x) | v ∈ C(Rn), H[v] ≤ c in the viscosity sense in Rn, v(y) = 0}
and Ac as the set of those y ∈ Rn for which the function dH,c(·, y) is a viscosity solution
of H[u] = c in Rn. We set Hc = H − c and Lc = L + c as before. Note that dH and A
defined for H = Hc in Section 5 are the same as dH,c and Ac, respectively. Recall that

v−(x) = lim inf
t→∞

(u(x, t) + ct) for all x ∈ Rn.
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Theorem 8.1. We have

v−(x) = inf{dH,c(x, y) + dH,c(y, z) + u0(z) | y ∈ Ac, z ∈ Rn} for any x ∈ Rn.

Proof. We may assume that c = 0, so that Ac = A and dH,c = dH . We write V (x) for
the right hand side of the above equality. We fix any x ∈ Rn.

Fix any ε > 0 and choose points y, z ∈ Rn so that

V (x) + ε > dH(x, y) + dH(y, z) + u0(z). (8.1)

By the definition of dH , there are T > 0, S > 0, ξ ∈ C(x, T ; y, 0), and η ∈ C(y, S; z, 0)
such that

dH(x, y) + ε >

∫ T

0

L(ξ, ξ̇) dt, (8.2)

dH(y, z) + ε >

∫ S

0

L(η, η̇) dt. (8.3)

By Proposition 5.10, for each k ∈ N, there are τk > 0 and ζk ∈ C(y, τk; y, 0) such that

ε >

∫ τk

0

L(ζk, ζ̇k) dt. (8.4)

We concatenate these three different kind of curves by setting

γk(t) =





η(t) for t ∈ [0, S],
ζk(t− S) for t ∈ [S, S + τk],
ξ(t− S − τk) for t ∈ [S + τk, S + τk + T ].

Note that γk ∈ C(x, S + τk + T ; z, 0) for all k ∈ N. Adding (8.1)–(8.4), for any k ∈ N,
we get

V (x) + 4ε >

∫ T+τk+S

0

L(γk, γ̇k) dt + u0(γk(0)) ≥ u(x, T + τk + S).

Therefore we obtain
V (x) + 4ε ≥ lim inf

t→∞
u(x, t) = v−(x),

and conclude that V (x) ≥ v−(x).
Again let ε > 0, and we choose a neighborhood U of A so that for any x ∈ U

there exists a point y ∈ A for which max{dH(x, y), dH(y, x)} ≤ ε. Choose an R > 0
so that σ1(x) ≥ 4 for all x ∈ Rn \ B(0, R) and in view of Proposition 5.3, a function
ψ ∈ C0+1(Rn) so that H[ψ] ≤ 0 a.e in Rn and H[ψ] ≤ −4δ a.e. in B(0, R) \ U for
some δ ∈ (0, 1). Setting φε = 1

2 (φ1 + ψ), we find functions φε and σ ∈ C(Rn) such that
H[φε] ≤ −σ a.e. in Rn, σ ≥ 0 in Rn, and σ(x) ≥ δ for all x ∈ Rn \U . We may assume
that φε ≥ u0 in Rn. By the definition of v−(x), there are T > 0 and γ ∈ C(x, T ) so that

T > δ−1(v−(x) + ε− φε(x)) and v−(x) + ε >

∫ T

0

L(γ, γ̇) dt + u0(γ(0)). (8.5)
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Using Proposition 2.5, we get
∫ T

0

L(γ, γ̇) dt ≥ φε(x)− φε(γ(0)) +
∫ T

0

σ(γ(t)) dt,

and hence
v−(x) + ε− φε(x) >

∫ T

0

σ(γ(t)) dt.

This together with our choice of T guarantees that there is a τ ∈ (0, T ) such that
γ(τ) ∈ U . Then, by (8.5), we have

v−(x) + ε >

∫ τ

0

L(γ, γ̇) dt +
∫ T

τ

L(γ, γ̇) dt + u0(γ(0))

≥ dH(γ(τ), γ(0)) + dH(x, γ(τ)) + u0(γ(0))

By our choice of U , there is a y ∈ A such that

dH(γ(τ), y) ≤ ε and dH(y, γ(τ)) ≤ ε.

Thus we have

v−(x) + 3ε > dH(γ(τ), γ(0)) + dH(x, γ(τ)) + u0(γ(0)) + dH(γ(τ), y) + dH(y, γ(τ))

≥ dH(x, y) + dH(y, γ(0)) + u0(γ(0)) ≥ V (x),

from which we obtain v−(x) ≥ V (x).

9. Examples
We give two sufficient conditions for H to satisfy (A4).
Let H0 ∈ C(Rn ×Rn) and f ∈ C(Rn). Set H(x, p) = H0(x, p) − f(x) for (x, p) ∈

Rn ×Rn. We assume that
lim

|x|→∞
f(x) = ∞, (9.1)

and that there exists a δ > 0 such that

sup
Rn×B(0,δ)

|H0| < ∞. (9.2)

Fix such a δ > 0 and set
Cδ = sup

Rn×B(0,δ)

|H0|.

Then we define φi ∈ C0+1(Rn), with i = 0, 1, by setting

φ0(x) = −δ

2
|x| and φ1(x) = −δ|x|,

and observe that for i = 0, 1,

H0(x, Dφi(x)) ≤ Cδ for all x ∈ Rn \ {0}.
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Hence, for i = 0, 1, we have

H0(x,Dφi(x)) ≤ 1
2
f(x) + Cδ − 1

2
min
Rn

f for all x ∈ Rn \ {0}.
If we set

σi(x) =
1
2
f(x)− Cδ +

1
2

min
Rn

f for x ∈ Rn and i = 0, 1,

then H satisfies (A4) with these φi and σi, i = 0, 1. It is clear that if H0 satisfies
(A1)–(A3), then so does H.

A smaller φ0 yields a larger space Φ0, and in applications of Theorems 1.1–1.3, it is
important to have a larger Φ0. We are thus interested in finding a smaller φ0. A method
better than the above in this respect is as follows. We assume that (9.1), (9.2), and
(A2) with H0 in place of H hold and that for each x ∈ Rn the function: p 7→ H0(x, p)
is convex in Rn. We fix a function θ ∈ C1(Rn) so that

lim
|x|→∞

θ(x) = ∞ and lim
|x|→∞

|Dθ(x)| = 0.

For instance, the function θ(x) = log(|x|2 +1) has these properties. Fix an ε > 0 so that
ε|Dθ(x)| ≤ δ/2 for all x ∈ Rn. Fix any λ ∈ (0, 1). Define the function G ∈ C(Rn×Rn)
by

G(x, p) = max{H0(x, p),H0(x, p− εDθ(x))} − (1− λ)f(x)− Cδ + (1− λ)min
Rn

f.

We note that for each x ∈ Rn the function: p 7→ G(x, p) is convex in Rn. Define the
function ψ ∈ C0+1(Rn) by

ψ(x) = inf{v(x) | v ∈ C0+1(Rn), G[Dv] ≤ 0 a.e. in Rn, v(0) = 0}.
Note that v(x) := − δ

2 |x| has the properties: G(x,Dv(x)) ≤ 0 a.e. x ∈ Rn and v(0) = 0.
Hence we have ψ(x) ≤ − δ

2 |x| for all x ∈ Rn. Because of the convexity of G(x, p) in p,
we see that ψ is a viscosity solution of G[ψ] ≤ 0 in Rn. This implies that ψ and ψ− εθ

are both viscosity solutions of

H(x,Dv) ≤ −λf(x) + Cδ − (1− λ)min
Rn

f in Rn.

With functions φ0 := ψ, φ1 := ψ − εθ, and σ0 = σ1 := λf − Cδ + (1 − λ)minRn f ,
the function H satisfies all the conditions of (A4). As is already noted, the function ψ

satisfies the inequality ψ(x) ≤ − δ
2 |x| for all x ∈ Rn. Moreover, for any γ ∈ (1/2, 1), the

function v(x) := −γδ|x| satisfies

G(x,Dv(x)) ≤ 0 a.e. x ∈ Rn \B(0, R)

for some constant R ≡ R(γ) > 0. It is now easy to see that if A > 0 is large enough,
then

ψ(x) ≤ min{−δ

2
|x|,−γδ|x|+ A} for all x ∈ Rn.
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Now we examine another class of Hamiltonians H. Let α > 0 and let H0 ∈ C(Rn)
be a strictly convex function satisfying the coercivity condition

lim
|p|→∞

H0(p) = ∞.

Let f ∈ C(Rn). We set

H(x, p) = αx · p + H0(p)− f(x) for (x, p) ∈ Rn ×Rn.

This class of Hamiltonians H is very close to that treated in [FIL2].
Clearly, this function H satisfies (A1), (A2), and (A3). Let L0 denote the convex

conjugate H∗
0 of H0. By the strict convexity of H0, we see that L0 ∈ C1(Rn). Define

the function ψ ∈ C1(Rn) by
ψ(x) = − 1

α
L0(−αx).

Then we have Dψ(x) = DL0(−αx) and therefore, by the convex duality, H0(Dψ(x)) =
Dψ(x) · (−αx)− L(−αx) for all x ∈ Rn. Consequently, for all x ∈ Rn, we have

H(x,Dψ(x)) = αx ·Dψ(x) + H0(Dψ(x))− f(x) = −L0(−αx)− f(x).

Now we assume that there is a convex function l ∈ C(Rn) such that

lim
|x|→∞

(l(−αx) + f(x)) =∞, (9.3)

lim
|ξ|→∞

(L0 − l)(ξ) =∞. (9.4)

Let h denote the convex conjugate of l. We define φ ∈ C0+1(Rn) by φ(x) = − 1
α l(−αx)

for x ∈ Rn. This function ψ is almost everywhere differentiable. Let x ∈ Rn be any
point where φ is differentiable. By a computation similar to the above for ψ, we get

αx ·Dφ(x) + h(Dφ(x))− f(x) ≤ −l(−αx)− f(x). (9.5)

By assumption (9.4), there is a constant C > 0 such that L0(ξ) ≥ l(ξ) − C for all
ξ ∈ Rn. This inequality implies that H0 ≤ h + C in Rn. Hence, from (9.5), we get

H(x,Dφ(x)) ≤ −l(−αx)− f(x) + C.

We now conclude that the function H satisfies (A4), with the functions φ0 = φ, φ1 = ψ,
σ0(x) = l(−αx) + f(x)− C, and σ1(x) = L(−αx) + f(x).

In [FIL2], it is assumed that H0 has a superlinear growth at infinity, while here it is
only assumed that H0 is coercive. It is assumed here that H0 is strictly convex in Rn,
while it is only assumed in [FIL2] that H0 is just convex in Rn, so that L0 may not be a
C1 function. The reason why the strict convexity of H0 is not needed in [FIL2] is in the
fact that Hamiltonians H in this class have a simple structure of the Aubry sets. Indeed,
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if c is the additive eigenvalue of H, then minp∈Rn H(x, p) = c for all x ∈ Ac. Given
such a simple property of the Aubry set, the proof of Theorem 1.3 can be simplified
greatly and does not require the C1 regularity of L0, while such a regularity is needed
in the proof of Lemma 7.8 in the general case. Any x ∈ Ac is called an equilibrium point
if minp∈Rn H(x, p) = c. A characterization of an equilibrium point x ∈ Ac is given by
the condition that L(x, 0) = −c. The property of Aubry sets A mentioned above can
be stated that the set A comprises only of equilibrium points.

The following example tells us that such a nice property of Aubry sets is not always
the case. Let n = 2 and here we write (x, y) for a generic point in R2. We choose a
function g ∈ C(R2) so that g ≥ 0 in R2, g(x, y) = 0 for all (x, y) ∈ R2 \ B((0, 0), 1),
and g(x, y) > 0 for all (x, y) ∈ B((0, 0), 1). Also, we choose a function h ∈ C(R2)
so that h(x, y) ≥ 0 for all (x, y) ∈ R2, h(x, y) = 0 for all (x, y) ∈ B((0, 0), 2), and
h(x, y) ≥ x2 + y2 − 4 for all (x, y) ∈ R2. We define the Hamiltonian H ∈ C(R4) by

H(x, y, p, q) = (p− g(x, y))2 + q2 − g(x, y)2 − h(x, y).

It is clear that this Hamiltonian H satisfies (A1)–(A3). Note that (9.1) and (9.2) are
satisfied with H0(x, y, p, q) = (p−g(x, y))2+q2−g(x, y)2 and f = h. Thus we see that H

satisfies (A4) as well. Note moreover that we may take the function: (x, y) 7→ δ|(x, y)|,
with any δ > 0, as φ0 in (A4).

Note that the zero function z = 0 is a viscosity solution of H[z] ≤ 0 in R2 and
that min(p,q)∈R2 H(x, y, p, q) = 0 for all (x, y) ∈ B((0, 0), 2). Therefore, in view of
Proposition 3.4, we deduce that the additive eigenvalue c for H is zero.

Now we claim that A = B((0, 0), 2). Since the zero function z = 0 satisfies H[z] =
−h(x, y) < 0 in R2\B((0, 0), 2), we see by Proposition 5.5 that A ⊂ B((0, 0), 2). Let φ ∈
C0+1(R2) be any viscosity subsolution of H[φ] = 0 in R2. Then, since H(x, y, p, q) =
(p−g(x, y))2 + q2−g(x, y)2 for any (x, y, p, q) ∈ R2×B((0, 0), 2), for almost all (x, y) ∈
B((0, 0), 2) we have

0 ≤ ∂φ

∂x
(x, y) ≤ 2g(x, y). (9.6)

Since g(x, y) = 0 for all (x, y) ∈ B((0, 0), 2) \ B((0, 0), 1), we find that Dφ = 0 a.e.
in B((0, 0), 2) \ B((0, 0), 1) and therefore that φ(x, y) = a for all (x, y) ∈ B((0, 0), 2) \
B((0, 0), 1) and some constant a ∈ R. The first inequality in (9.6) guarantees that
for each y ∈ (−1, 1) the function: x 7→ φ(x, y) is nondecreasing in (−1, 1). These
observations obviously implies that φ(x, y) = a for all (x, y) ∈ B((0, 0), 2). This shows
that for any (x0, y0) ∈ intB((0, 0), 2), the function dH(x, y) ≡ 0 in a neighborhood
of (x0, y0) and hence it is a viscosity solution of H[u] = 0 in R2. Thus we see that
intB((0, 0), 2) ⊂ A. By the fact that A is a closed set, we conclude that A = B((0, 0), 2).

Finally we remark that H(x, y, g(x, y), 0) = −g(x, y)2 < 0 for all (x, y) ∈
intB((0, 0), 1), which shows that any (x, y) ∈ intB((0, 0), 1) is an element of A, but
not an equilibrium point.
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Next we examine another example whose Aubry set does not contain any equilibrium
points. As before we consider the two-dimensional case. We fix α, β ∈ R so that
0 < α < β and choose a function g ∈ C([0,∞)) so that g(r) = 0 for all r ∈ [α, β],
g(r) > 0 for all r ∈ [0, α) ∪ (β,∞), and limr→∞ g(r)/r2 = ∞. We define the functions
H0,H ∈ C(R4) by

H0(x, y, p, q) = (p− y)2 − y2 + (q + x)2 − x2,

H(x, y, p, q) = H0(x, y, p, q)− g(
√

x2 + y2).

It is easily seen that this function H satisfies (A1)–(A3). Let δ > 0 and set ψ(x, y) =
δ(x2 + y2) for (x, y) ∈ R2. Writing ψx = ∂ψ/∂x and ψy = ∂ψ/∂x, we observe that
ψx(x, y) = 2δx, ψy(x, y) = 2δy, and H0(x, y, ψx, ψy) = 4δ2(x2 + y2) for all (x, y) ∈ R2.
Therefore, for any δ > 0, if we set φ0(x, y) = −δ(x2 + y2) and φ1(x, y) = −2δ(x2 + y2)
for (x, y) ∈ R2, then (A4) holds with these φ0 and φ1.

Noting that the zero function z = 0 is a viscosity subsolution of H[z] = 0 in R2,
we find that the additive eigenvalue c for H is nonpositive. We fix any r ∈ [α, β] and
consider the curve γ ∈ AC([0, 2π]) given by γ(t) ≡ (x(t), y(t)) := r(cos t, sin t). We
denote by U the open annulus intB((0, 0), β) \ B((0, 0), α) for notational simplicity.
Let φ ∈ C0+1(R2) be a viscosity solution of H[φ] = c in Rn. Such a viscosity solution
indeed exists according to Theorem 3.3. Due to Proposition 2.4, there are functions
p, q ∈ L∞(0, 2π,R2) such that for almost all t ∈ (0, 2π),

d
dt

φ(γ(t)) = r(−p(t) sin t + q(t) cos t),

(p(t), q(t)) ∈ ∂cφ(γ(t)).

The last inclusion guarantees that H(x(t), y(t), p(t), q(t)) ≤ c a.e. t ∈ (0, 2π). Hence,
recalling that α ≤ r ≤ β, we get

c ≥ H0(x(t), y(t), p(t), q(t)) = p(t)2 − 2y(t)p(t) + q(t)2 + 2x(t)q(t) a.e. t ∈ (0, 2π).

We calculate that

φ(γ(T ))− φ(γ(0)) = r

∫ T

0

(−p(t) sin t + q(t) cos t) dt

≤ 1
2

∫ T

0

(
c− p(t)2 − q(t)2

)
dt ≤ cT for all T ∈ [0, 2π].

This clearly implies that c = 0 and also that the function: t 7→ φ(γ(t)) is a constant.
Thus we find that φ(x, y) = h(x2 + y2) for some function h ∈ C0+1([α, β]).

Next, we show that φ is a constant function in U . At any r ∈ (α, β) and any
(x, y) ∈ ∂B((0, 0), r), we have

φx(x, y) = 2xh′(x2 + y2) and φy(x, y) = 2yh′(x2 + y2),
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and, in particular, yφx(x, y) − xφy(x, y) = 0. Therefore, for almost all (x, y) ∈ U , we
have

0 ≥ H0(x, y, φx, φy) = (φx − y)2 − y2 + (φy + x)2 − x2 = φ2
x + φ2

y.

That is, we have
φx(x, y) = φy(x, y) = 0 a.e. (x, y) ∈ U,

which assures that φ is a constant in U .
Now we know that for any y ∈ U , the function: x 7→ dH(x, y) is a constant in a

neighborhood of y, which guarantees that U ⊂ A and moreover that A = U .
Finally, we note that H(x, y, y,−x) = H0(x, y, y,−x) = −x2− y2 < 0 for all (x, y) ∈

U , and conclude that any (x, y) ∈ A = U is not an equilibrium points.
The following two propositions give sufficient conditions for points of the Aubry set

A to be equilibrium points. Here, of course, we assume that cH = 0.

Proposition 9.1. If y is an isolated point of A, then it is an equilibrium point.

Proof. Let γ ∈ Γ be such that γ(0) = y. Since y is an isolated point of A and γ(t) ∈ A
for all t ∈ R, we see that γ(t) = y for all t ∈ R. Hence we have

0 = dH(y, y) =
∫ 1

0

L(γ(t), γ̇(t)) dt = L(y, 0),

which shows that y is an equilibrium point.

Proposition 9.2. Assume that there exists a viscosity solution w ∈ C(Rn) of
H(x,Dw) = minp∈Rn H(x, p) in Rn. Then A consists only of equilibrium points.

For instance, if H(x, 0) ≤ H(x, p) for all (x, p) ∈ R2n, then w = 0 satisfies
H(x,Dw(x)) = minp∈Rn H(x, p) for all x ∈ Rn in the viscosity sense. If H has the
form H(x, p) = αx ·p+H0(p)−f(x) as before, then H attains a minimum as a function
of p at any point p satisfying αx + D−H0(p) 3 0 and therefore

min
p∈Rn

H(x, p) = αx · q + H0(q)− f(x),

where q ∈ D−L0(−αx) and L0 denotes the convex conjugate H∗
0 of H0. Therefore,

in this case, the function w(x) := −(1/α)L0(−αx) is a viscosity solution of H[w] =
minp∈Rn H(x, p) in Rn. In these two cases, the Aubry sets consist only of equilibrium
points.
Proof. Since cH = 0, we have minp∈Rn H(x, p) ≤ 0 for all x ∈ Rn. Note that the
function σ(x) := −minp∈Rn H(x, p) is continuous on Rn and that w is a viscosity
solution of H[w] = −σ in Rn. Applying Proposition 5.6 (or 5.5), we see that if y ∈ Rn

and minp∈Rn H(y, p) < 0, then y 6∈ A. That is, if y ∈ A, then minp∈Rn H(y, p) = 0,
which is equivalent to say that y is an equilibrium point.
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Appendix
We show here that value functions, associated with given Hamiltonian H or its

Lagrangian L, are viscosity solutions of H = 0.
Let H ∈ C(Rn × Rn) be a function such that for each x ∈ Rn the function:

p 7→ H(x, p) is convex in Rn, and let L be its Lagrangian. Let S be a nonempty subset
of Rn and v0 a real-valued function on S. We define the function v : Rn → [−∞,∞] by

v(x) = inf
{∫ t

0

L(γ(s), γ̇(s)) ds + v0(γ(0))
∣∣ t > 0, γ ∈ C(x, t), γ(0) ∈ S

}
.

Theorem A.1. Let Ω be an open subset of Rn, and assume that v ∈ C(Ω). Then v is
a viscosity subsolution of H[v] = 0 in Ω.

Proof. Let (ϕ, x) ∈ C1(Ω) × Ω and assume that v − ϕ attains a maximum at x. We
may assume without loss of generality that v(x) = ϕ(x). Define the multi-function
F : Ω → 2Rn

by

F (x) = {ξ ∈ Rn | Dϕ(x) · ξ ≥ L(x, ξ) + H(x,Dϕ(x))}.
Since, for any x ∈ Rn, the function: p 7→ H(x, p) is a real-valued convex function in
Rn, it is subdifferentiable everywhere, which shows that F (x) 6= ∅ for all x ∈ Ω. Also, it
is easily seen that F (x) is a closed convex set for any x ∈ Ω and that the multi-function
F is upper semicontinuous in Ω. By the standard existence result for the differential
inclusion (see, e.g., [AC, Theorem 2.1.3]), we see that there are a constant T > 0 and a
function η ∈ Lip([0, T ],Rn) such that η̇(s) ∈ −F (η(s)) a.e. s ∈ (0, T ) and η(0) = x.

Fix any ε ∈ (0, T ), t > 0, and γ ∈ C(η(ε), t) such that γ(0) ∈ S. We define the curve
ζ ∈ C(x, t + ε) by

ζ(s) =
{

γ(s) for s ∈ [0, t]
η(ε + t− s) for s ∈ (t, t + ε].

It is obvious that ζ(0) ∈ S. Noting that

ζ̇(s) = −η̇(ε + t− s) ∈ F (η(ε + t− s)) = F (ζ(s)) a.e. s ∈ (t, t + ε),

we have

Dϕ(ζ(s)) · ζ̇(s) = L(ζ(s), ζ̇(s)) + H(ζ(s), Dϕ(ζ(s))) a.e. s ∈ (t, t + ε).

Hence we get

v(x) = ϕ(x) = ϕ(ζ(t + ε)) = ϕ(ζ(t)) +
∫ t+ε

t

Dϕ(ζ(s)) · ζ̇(s) ds

≥ v(γ(t)) +
∫ t+ε

t

[L(ζ(s), ζ̇(s)) + H(ζ(s), Dϕ(ζ(s)))] ds

≥ v0(ζ(0)) +
∫ t

0

L(ζ(s), ζ̇(s)) ds +
∫ t+ε

t

H(ζ(s), Dϕ(ζ(s))) ds

≥ v(x) +
∫ t+ε

t

H(ζ(s), Dϕ(ζ(s))) ds.
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That is, we have ∫ t+ε

t

H(ζ(s), Dϕ(ζ(s)) ds ≤ 0.

Dividing this by ε and sending ε → 0, we obtain H(x, Dϕ(x)) ≤ 0.

Theorem A.2. Let Ω be an open subset of Rn such that S ∩ Ω = ∅, and assume that
v ∈ C(Ω). Then v is a viscosity supersolution of H[v] = 0 in Ω.

Proof. Let (ϕ, y) ∈ C1(Ω)×Ω be such that v − ϕ has a strict minimum at y. We will
show that H(y, Dϕ(y)) ≥ 0. To do this, we argue by contradicition and thus suppose
that H(y, Dϕ(y)) < 0. We may assume as usual that v(y) = ϕ(y). We choose a
constant r > 0 so that B(y, r) ⊂ Ω and H(x,Dϕ(x)) ≤ 0 for all x ∈ B(y, r). We set
m = min∂B(y,r)(v − ϕ). Note that m > 0 and v(x) ≥ ϕ(x) + m for all x ∈ ∂B(y, r).

Pick any t > 0 and γ ∈ C(y, t) such that γ(0) ∈ S. Since γ(0) 6∈ Ω, there is a
constant τ ∈ (0, t) such that γ(τ) ∈ ∂B(y, r) and γ(s) ∈ B(y, r) for all s ∈ [τ, t]. We
now compute that

v(x) = ϕ(γ(t)) = ϕ(γ(τ)) +
∫ t

τ

Dϕ(γ(s)) · γ̇(s) ds

≤ v(γ(τ))−m +
∫ t

τ

[L(γ(s), γ̇(s)) + H(γ(s), Dϕ(γ(s)))] ds

≤ v0(γ(0)) +
∫ τ

0

L(γ(s), γ̇(s)) ds +
∫ t

τ

L(γ(s), γ̇(s)) ds−m

≤ v0(γ(0)) +
∫ t

0

L(γ(s), γ̇(s)) ds−m.

Taking the infimum over γ ∈ C(x, t), with γ(0) ∈ S, and t > 0 in the above inequality,
we get v(x) ≤ v(x) −m, which is a contradiction. This proves that H(y, Dϕ(y)) ≥ 0.

Remark. We may apply above theorems to (1.1) as follows. We introduce the Hamil-
tonian H̃ ∈ C(Rn+1 ×Rn+1) defined by H̃(x, t, p, q) = q + H(x, p). The corresponding
Lagrangian L̃ is given by L̃(x, t, ξ, η) = L(x, ξ) + δ{1}(η), where L is the Lagrangian of
H and δ{1} denotes the indicator function of the set {1} ⊂ R. We set S = Rn × {0}
and Ω = Rn × (0,∞). Also, for given u0 ∈ C(Rn), we define the function v0 ∈ C(S)
by v0(x, 0) = u0(x). We then observe that

inf
{∫ t

0

L(γ(s), γ̇(s)) ds + u0(γ(0))
∣∣ γ ∈ C(x, t)

}

= inf
{∫ T

0

L̃(ζ(s), ζ̇(s)) ds + v0(ζ(0))
∣∣ T > 0, ζ ∈ C((x, t), T ), ζ(0) ∈ S

}
.
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