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Abstract. We study the asymptotic behavior of the viscosity solution of the Cauchy

problem for the Hamilton-Jacobi equation ut +αx ·Du+H(Du) = f(x) in Rn× (0,∞),

where α is a positive constant and H is a convex function on Rn, and establish a

convergence result for the viscosity solution u(x, t) as t→ ∞.

1. Introduction and the main result

Recently there has been a great interest on the asymptotic behavior of viscosity solu-

tions of the Cauchy problem for Hamilton-Jacobi equations or viscous Hamilton-Jacobi

equations. Among others Fathi [F2] has first established a fairly general convergence

result for the Hamilton-Jacobi equation

(1.1) ut(x, t) +H(x,Du(x, t)) = 0

on a compact manifold M with smooth strictly convex HamiltonianH. Associated with

this problem is the stationary partial differential equation (PDE for short)

(1.2) c+H(x,Dv) = 0 in M,

where the unknown is the pair of a constant c ∈ R and a solution v of (1.2). Here

and in what follows we adapt the notion of viscosity solution to that of weak solution

for first order PDE. It is known (see [LPV]) that a constant c for which (1.2) has a

viscosity solution v is uniquely determined. The result obtained in [F2] is loosely stated
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as follows: for any viscosity solution u of (1.1) there is a viscosity solution v of (1.2) such

that u(x, t) − ct → v(x) uniformly on M as t → ∞. His approach to this asymptotic

problem is based on the weak KAM theorem [F1] and especially on Aubry-Mather sets.

A PDE approach to the same asymptotic problem has been developed by Barles and

Souganidis [BS]. Fathi’s approach has been developed by Roquejoffre [R] and Davini-

Siconolfi [DS].

Motivated by these developments the authors [FIL1] have recently investigated

the asymptotic problem for viscous Hamilton-Jacobi equations in Rn with Ornsten-

Uhlenbeck operator and have established a convergence result similar to the one stated

above. The equations treated in [FIL1] have the form

(1.3) ut − ∆u+ αx ·Du+H(Du) = f(x).

In this paper we study the Cauchy problem

ut + αx ·Du+H(Du) = f(x) in Rn × (0,∞),(1.4)

and

u|t=0 = φ.(1.5)

To be precise, here u represents the real-valued unknown function on Rn × [0,∞), α

is a given positive constant, H, f, φ are given real-valued functions on Rn, ut and Du

denote the t-derivative and x-gradient of u, respectively, and x ·y denotes the Euclidean

inner product of x, y ∈ Rn. The result in this paper extends, in regard to the genelarity

of H, f , and φ, our previous work [FIL2] on (1.4) and (1.5), where we assumed that H

has the form β|p|2 + b · p, with β > 0 and b ∈ Rn.

We assume the following conditions on H, f, φ throughout this paper:

(A1) H, f, φ ∈ C(Rn).

(A2) H is convex on Rn.

(A3) lim
|p|→∞

H(p)

|p|
= ∞.

PDE (1.4) can be seen as the dynamic programming equation of the control system

in which the state equation is given by

Ẋ(t) + αX(t) = ξ(t) for t ∈ (0, T ), X(0) = x,

where 0 < T < ∞, x ∈ Rn, and ξ ∈ L1(0, T ) is a control, and in which the value

function u is given by

(1.6) u(x, T ) = inf
ξ∈L1(0,T )

{

∫ T

0

[f(X(t)) + L(−ξ(t))] dt+ φ(X(T ))
}

,
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where L denotes the convex conjugate H∗ of H, i.e.,

L(ξ) := H∗(ξ) ≡ sup{ξ · p−H(p) | p ∈ Rn} for ξ ∈ Rn.

As is well-known, the function L is continuous on Rn and satisfies

lim
|ξ|→∞

L(ξ)

|ξ|
= ∞.

We assume furthermore that there is a convex function l : Rn → R having the

properties:

(A4) lim
|x|→∞

(L(x) − l(x)) = ∞.

(A5) inf{f(x) + l(−αx) | x ∈ Rn} > −∞.

(A6) inf{φ(x) +
1

α
l(−αx) | x ∈ Rn} > −∞.

In view of (A4) and (A5), we see that the function x 7→ f(x) + L(−αx) attains a

minimum over Rn, and we set

(1.7) c = min{f(x) + L(−αx) | x ∈ Rn} and fc(x) = f(x) − c for x ∈ Rn.

We observe as well that

(1.8) Z := {x ∈ Rn | f(x) + L(−αx) = c}

is a compact subset of Rn.

This set Z corresponds to the projected Aubry set although we do not need to

introduce the projected Aubry set for (1.4) in our approach. We shall return this point

in a future publication.

Our approach in this paper is based on the representation formula (1.6) of the

viscosity solution of (1.4) and (1.5) and a convex analysis lemma (see Lemma 2.2 below)

which takes advantage of the special form of (1.4).

A typical case where (A1)–(A6) are satisfied is: let H, f , and φ satisfy (A1)–(A3).

Assume furthermore that there is a constant C0 > 0 such that

f(x) ≥ −C0(|x| + 1), φ(x) ≥ −C0(|x| + 1) for x ∈ Rn.

In this situation, if we take l to be the function given by l(x) = (α+1)C0(|x|+1), then

conditions (A4)–(A6) hold.

For (x, y, T ) ∈ Rn × Rn × (0,∞) let C(x, T ) and C(x, y, T ) denote the spaces of

absolutely continuous functions X : [0, T ] → Rn satisfying, respectively, X(0) = x
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and (X(0), X(T )) = (x, y). Define the functions d : Rn × Rn → R ∪ {−∞} and

ψ : Rn → R ∪ {−∞} by

(1.9) d(x, y) = inf
{

∫ T

0

[fc(X(t)) + L(−αX(t) − Ẋ(t))] dt
∣

∣ T > 0, X ∈ C(x, y, T )
}

,

and

ψ(x) = inf
{

∫ T

0

[fc(X(t)) + L(−αX(t) − Ẋ(t))] dt(1.10)

+ φ(X(T ))
∣

∣ T > 0, X ∈ C(x, T )
}

,

respectively.

Define the function v : Rn → R ∪ {−∞} by

(1.11) v(x) = inf
y∈Z

(d(x, y) + ψ(y)).

Proposition 1.1. The functions d, ψ, and v are real-valued continuous functions on

Rn × Rn, Rn, and Rn, respectively.

Henceforth B(x,R) denotes the closed ball of Rn with center at x and radius R ≥ 0.

Theorem 1.2. There is a unique viscosity solution u ∈ C(Rn × [0,∞)) of (1.4) and

(1.5) which satisfies for any 0 < T <∞,

(1.12) lim
r→∞

inf{u(x, t) +
1

α
L(−αx) | (x, t) ∈ (Rn \B(0, r))× [0, T )} = ∞.

The main result in this paper is the following.

Theorem 1.3. Let u ∈ C(Rn × [0,∞)) be the unique viscosity solution of (1.4) and

(1.5) satisfying (1.12). Then

(1.13) lim
t→∞

max
x∈B(0,R)

|u(x, t) − (ct+ v(x))| = 0 for R > 0.

We remark that formula (1.11) for the asymptotic solution v has been shown in [DS]

for a fairly general Hamilton-Jacobi equation in the periodic setting. The function v is

a viscosity solution of

(1.14) c+ αx ·Dv +H(Dv) = f(x) in Rn.

For instance, this follows from Theorem 1.3 and the stability of viscosity solutions of

(1.4) under locally uniform convergence.
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The paper is organized as follows: in Section 2 we establish the convex analysis

lemma mentioned above and some of basic properties of the functions d, ψ, and u.

Section 3 is devoted to the proof of Theorem 1.3. In Section 4 we establish the existence

part of Theorem 1.2 together with some estimates on the solution of (1.4) and (1.5). In

Section 5 we establish a comparison theorem for viscosity solutions of (1.4).

2. Preliminaries

We prepare in this section to prove the main theorem.

We normalize as follows by replacing f by fc:

(2.1) c ≡ min{f(x) + L(−αx) | x ∈ Rn} = 0.

We may as well assume, by replacing l by the convex envelope g∗∗ of the function g

given by g(x) = min{L(x), l(x) +A(|x| + 1)}, where A is a constant chosen sufficiently

large, that

L(x) ≥ l(x) for x ∈ Rn,(2.2)

f(x) + l(−αx) ≥ 0 for x ∈ Rn,(2.3)

φ(x) +
1

α
l(−αx) ≥ −C for x ∈ Rn,(2.4)

where C is a positive constant.

We use the following two technical lemmas for convex functions.

Lemma 2.1. Let T > 0. For any convex function g ∈ C(Rn) and absolutely continuous

curve X : [0, T ] → Rn we have

d

dt
g(X(t)) = ξ · Ẋ(t) for all ξ ∈ D−g(X(t))

for almost all t ∈ (0, T ).

See [Br, Lemme 3.3] for a proposition similar to the above. The following proof is

an adaptation of that of [Br, Lemme 3.3].

Proof. Since g is locally Lipschitz continuous in Rn, the function t 7→ g(X(t)) is

absolutely continuous on [0, T ]. Therefore, there is a null set N of (0, T ) such that

for all s ∈ (0, T ) \ N the functions X and t 7→ g(X(t)) are differentiable at s. Let

s ∈ (0, T ) \N and ξ ∈ D−g(X(s)). For h > 0 sufficiently small, we have

g(X(s+ h)) − g(X(s)) ≥ ξ · (X(s+ h) −X(s))

and

g(X(s− h)) − g(X(s)) ≥ ξ · (X(s− h) −X(s)).
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Dividing these by h and sending h→ 0, we find that

d

dt
g(X(t))

∣

∣

∣

t=s
= ξ · Ẋ(s),

which completes the proof.

Lemma 2.2. Under the same hypotheses as in Lemma 2.1, we have

∫ T

0

g(−αX(t)− Ẋ(t)) dt ≥

∫ T

0

g(−αX(t)) dt+
1

α
[g(−αX(T ))− g(−αX(0))]

Proof. We observe by Lemma 2.1 that for almost all t ∈ (0, T ) and for all ξ ∈

D−g(−αX(t)),

d

dt
g(−αX(t)) = − αξ · Ẋ(t),

and therefore

g(−αX(t) − Ẋ(t)) ≥ g(−αX(t))− ξ · Ẋ(t)

= g(−αX(t)) +
1

α

d

dt
g(−αX(t)).

Next, integrating the above over [0, T ], we get

∫ T

0

g(−αX(t)− Ẋ(t)) dt ≥

∫ T

0

[

g(−αX(t)) +
1

α

d

dt
g(−αX(t))

]

dt

=

∫ T

0

g(−αX(t)) dt+
1

α
(g(−αX(T ))− g(−αX(0))),

which was to be shown.

Lemma 2.3. The function d is a continuous function on Rn × Rn and has the prop-

erties:

(2.5) d(x, y) ≤ d(x, z) + d(z, y) and d(x, x) = 0 for all x, y, z ∈ Rn.

Proof. 1. Fix any x, y ∈ Rn and ε > 0. Choose T > 0 and X ∈ C(x, y, T ) so that

d(x, y) + ε >

∫ T

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt.

By virtue of Lemma 2.2 we get

d(x, y) + ε >
1

α
(L(−αy) − L(−αx)),

6



which readily yields

(2.6) d(x, y) ≥
1

α
(L(−αy) − L(−αx)) for x, y ∈ Rn.

In particular we find that d(x, y) ∈ R for all x, y ∈ Rn. We have as well

(2.7) d(x, y) ≥
1

α
(l(−αy) − l(−αx)) for x, y ∈ Rn.

2. We fix R > 0 and x, y ∈ B(0, R). We set

CR = ‖f‖L∞(B(0,R)) + ‖L‖L∞(B(0,αR+1)).

We assume that x 6= y. Define the curve X ∈ C(x, y, |x− y|) by

X(t) = x+
t

|x− y|
(y − x) for 0 ≤ t ≤ |x− y|,

and observe that

(2.8) d(x, y) ≤

∫ |x−y|

0

[

f(X(t)) + L(−αX(t) − Ẋ(t))
]

dt ≤ CR|x− y|.

Next we consider the case when x = y. Fix any T > 0 and set X(t) = x for t ∈ [0, T ].

Then we have

d(x, y) ≤

∫ T

0

[f(x) + L(−αx)] dt ≤ CRT,

and hence, we find that (2.8) holds also in the case when x = y. From (2.6) and (2.8),

we see that d(x, x) = 0 for all x ∈ Rn.

3. Let x, y, z ∈ Rn. Let T > 0, S > 0, X ∈ C(x, z, T ), and Y ∈ C(z, y, S). Define

Z ∈ C(x, y, T + S) by

Z(t) =

{

X(t) for 0 ≤ t ≤ T,

Y (t− T ) for T ≤ t ≤ T + S.

Then we calculate that

∫ T+S

0

[f(Z(t)) + L(−αZ(t) − Ż(t))] dt

=

∫ T

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+

∫ S

0

[f(Y (t)) + L(−αY (t) − Ẏ (t))] dt
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and observe that

d(x, y) ≤

∫ T

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt

+

∫ S

0

[f(Y (t)) + L(−αY (t) − Ẏ (t))] dt,

and conclude that

(2.9) d(x, y) ≤ d(x, z) + d(z, y) for x, y, z ∈ Rn.

4. Let R > 0 and x, y, ξ, η ∈ B(0, R). We observe that

d(x, y)− d(ξ, η) ≤ d(x, ξ) + d(ξ, η) + d(η, y)− d(ξ, η)

= d(x, ξ) + d(η, y) ≤ CR(|x− ξ| + |η − y|).

By symmetry we have

|d(x, y)− d(ξ, η)| ≤ CR(|x− ξ| + |y − η|).

Thus we see that d is locally Lipschitz continuous on Rn × Rn.

Lemma 2.4. ψ ∈ C(Rn).

Proof. 1. We show first that

(2.10) ψ(x) ≥ −
1

α
l(−αx) − C for x ∈ Rn,

which, in particular, implies that ψ(x) ∈ R for all x ∈ Rn. Let x ∈ Rn and ε > 0.

Choose T > 0 and X ∈ C(x, T ) so that

ψ(x) + ε >

∫ T

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ φ(X(T )).

Hence, by Lemma 2.2, we get

ψ(x) + ε >

∫ T

0

[f(X(t)) + l(−αX(t) − Ẋ(t))] dt+ φ(X(T ))

≥
1

α
(l(−αX(T )) − l(−αx)) + φ(X(T )) ≥ −

1

α
l(−αx) − C,

proving (2.10).

2. Let ε > 0 and x, y ∈ B(0, R). Set as before

CR = ‖f‖L∞(B(0,R)) + ‖L‖L∞(B(0,αR+1)).
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We show that

(2.11) |ψ(x) − ψ(y)| ≤ CR|x− y|.

We may assume that x 6= y. Choose T > 0 and X ∈ C(x, T ) so that

ψ(x) + ε >

∫ T

0

[f(X(t)) + L(−αX(T ) − Ẋ(t))] dt+ φ(X(T )).

Define Y ∈ C(y, T + |x− y|) by

Y (t) =







y +
t

|x− y|
(x− y) for 0 ≤ t ≤ |x− y|,

X(t− |x− y|) for |x− y| ≤ t ≤ T + |x− y|.

Then we have

ψ(y) ≤

∫ T+|x−y|

0

[f(Y (t)) + L(−αY (t) − Ẏ (t))] dt+ φ(Y (T + |x− y|))

=

∫ |x−y|

0

[f(Y (t)) + L(−αY (t) − Ẏ (t))] dt

+

∫ T

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ φ(X(T ))

<CR|x− y| + ε+ ψ(x).

From this we obtain (2.11) and conclude the proof.

We are now in a position to prove Proposition 1.1.

Proof of Proposition 1.1. In view of Lemmas 2.3 and 2.4, we only need to show

that v is continuous on Rn. For each R > 0 the collection of the functions

x 7→ d(x, y) + ψ(y)

on B(0, R), with y ∈ Z, is uniformly bounded and equi-continuous because of Lemmas

2.3 and 2.4 and the compactness of Z. From this observation, it is easy to see that

v ∈ C(B(0, R)) for all R > 0, which shows that v ∈ C(Rn).

Lemma 2.5. Let R > 0 and ε > 0. Then there is a constant T > 0 such that for each

x, y ∈ B(0, R) there are S ∈ (0, T ] and X ∈ C(x, y, S),

d(x, y) + ε >

∫ S

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt.
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Proof. Let R > 0 and ε ∈ (0, 1). Fix (x̄, ȳ) ∈ B(0, R) × B(0, R). Choose T̄ > 0 and

Y ∈ C(x̄, ȳ, T̄ ) so that

d(x̄, ȳ) +
ε

4
>

∫ T̄

0

[f(Y (t)) + L(−αY (t) − Ẏ (t))] dt.

Let CR be a positive constant such that

‖f‖L∞(B(0,R+1)) + ‖L‖L∞(B(0,α(R+1)+1)) ≤ CR.

Fix δ ∈ (0, 1) so that

2CRδ ≤
ε

4
,

|d(x, y)− d(x̄, ȳ)| <
ε

2
for x ∈ B(x̄, δ), y ∈ B(ȳ, δ).

Let x ∈ B(x̄, δ) and y ∈ B(ȳ, δ). Define ξ ∈ C(x, x̄, δ) and η ∈ C(ȳ, y, δ), respectively, by

ξ(t) = x+
t

δ
(x̄− x) for 0 ≤ t ≤ δ,

η(t) = ȳ +
t

δ
(y − ȳ) for 0 ≤ t ≤ δ.

Noting that ξ̇(t), η̇(t) ∈ B(0, 1) for all t ∈ [0, δ], we see that
∫ δ

0

[f(ξ(t)) + L(−αξ(t) − ξ̇(t))] dt ≤ CRδ,

∫ δ

0

[f(η(t)) + L(−αη(t) − η̇(t))] dt ≤ CRδ.

Next define the function X ∈ C(x, y, T̄ + 2δ) by

X(t) =











ξ(t) for t ∈ [0, δ],

Y (t− δ) for t ∈ [δ, T̄ + δ],

η(t− T − δ) for t ∈ [T̄ + δ, T̄ + 2δ].

Then we have
∫ T̄+2δ

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt

=

∫ δ

0

[f(ξ(t)) + L(−αξ(t) − ξ̇(t))] dt

+

∫ T̄

0

[f(Y (t)) + L(−αY (t) − Ẏ (t))] dt

+

∫ δ

0

[f(η(t)) + L(−αη(t) − η̇(t))] dt

≤ 2CRδ + d(x̄, ȳ) +
ε

4
≤ d(x̄, ȳ) +

ε

2

< d(x, y) + ε.
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Thus we conclude that for each (x̄, ȳ) ∈ B(0, R)×B(0, R) there are constants S̄ > 0

and δ > 0 such that for any x ∈ B(x̄, δ) and y ∈ B(ȳ, δ) we have

d(x, y) + ε >

∫ S̄

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt

for some X ∈ C(x, y, S̄).

By the compactness of B(0, R) × B(0, R), there is a finite collection of (xk, yk) ∈

B(0, R)×B(0, R), Sk > 0, and δk > 0, where k = 1, 2, ..., N , such that

B(0, R) ×B(0, R) ⊂

N
⋃

k=1

B(xk, δk) ×B(yk, δk),

and such that for any k ∈ {1, 2, ..., N}, x ∈ B(xk, δk), and y ∈ B(yk, δk),

d(x, y) + ε >

∫ Sk

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt

for some X ∈ C(x, y, Sk). Setting T = max1≤k≤N Sk, we observe that for any (x, y) ∈

B(0, R) ×B(0, R),

d(x, y) + ε >

∫ S

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt

for some S ∈ (0, T ] and X ∈ C(x, y, S). The proof is now complete.

Lemma 2.6. For each R > 0 and ε > 0 there is a constant T > 0 such that for any

x ∈ B(0, R),

ψ(x) + ε >

∫ S

0

[f(X(t)) + L(−αX(t) − Ẋ(t)] dt+ φ(X(S))

for some S ∈ (0, T ] and X ∈ C(x, S).

The proof of this lemma is similar to that of Lemma 2.5 and we omit presenting it

here.

We shall give a proof of Theorem 1.2 in Section 4 and we concede its validity in

the following arguments in this and the next sections. In what follows we let u ∈

C(Rn × [0,∞)) denote the unique viscosity solution of (1.4) and (1.5).

Lemma 2.7. For (x, T ) ∈ Rn × (0,∞),

u(x, T ) = inf
{

∫ T

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ φ(X(T ))
∣

∣ X ∈ C(x, T )
}

.
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Lemma 2.8. For each R > 0 there is a constant C1(R) > 0 such that

|u(x, T )| ≤ C1(R) for (x, T ) ∈ B(0, R)× [0,∞).

Lemma 2.9. For each R > 0 there is a constant C2(R) > 0 such that for x ∈ B(0, R),

T > 0, and X ∈ C(x, T ), if

u(x, T ) + 1 >

∫ T

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ φ(X(T )),

then

|X(t)| ≤ C2(R) for t ∈ (0, T ).

The proof of the above three lemmas will be presented in Section 4.

3. Proof of Theorem 1.3

This section will be devoted to the proof of Theorem 1.3.

1. Fix R > 0 and we show that

lim
t→∞

max
B(0,R)

|u(x, t)− v(x)| = 0.

Note in view of Proposition 1.1 and the compactness of Z that

v(x) = min{d(x, y) + ψ(y) | y ∈ Z}.

2. Choose ρ > 0 so that Z ⊂ B(0, ρ). Fix any ε > 0 and choose a constant T > 0

so that for any (x, y) ∈ B(0, R) ×B(0, ρ),

d(x, y) + ε >

∫ A

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt,(3.1)

ψ(y) + ε >

∫ B

0

[f(Y (t)) + L(−αY (t) − Ẏ (t))] dt+ φ(Y (B))(3.2)

for some A, B ∈ (0, T ], X ∈ C(x, y, A), and Y ∈ C(y, B).

3. We show that for all t ≥ 2T and x ∈ B(0, R),

u(x, t) ≤ v(x) + 2ε.

Fix x ∈ B(0, R) and choose y ∈ Z so that

v(x) = d(x, y) + ψ(y).
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We choose A, B ∈ (0, T ], X ∈ C(x, y, A), and Y ∈ C(y, B) so that (3.1) and (3.2) hold.

For any t ≥ 2T we define ξ ∈ C(x, t) by

ξ(s) =











X(s) for s ∈ [0, A],

y for s ∈ [A, t−B],

Y (s− (t−B)) for s ∈ [t−B, t].

Using the fact that f(y) + L(−αy) = 0 because y ∈ Z, we observe that

∫ t

0

[f(ξ(s)) + L(−αξ(s)− ξ̇(s))] ds+ φ(ξ(t))

=

∫ A

0

[f(X(s)) + L(−αX(s)− Ẋ(s))] ds+

∫ t−B

A

[f(y) + L(−αy)] ds

+

∫ B

0

[f(Y (s)) + L(−αY (s) − Ẏ (s))] ds+ φ(Y (B))

<d(x, y) + ε+ 0 + ψ(y) + ε = v(x) + 2ε.

From this and Lemma 2.7, we find that for all t ≥ 2T ,

u(x, t) ≤ v(x) + 2ε,

which shows that

lim
t→∞

max
B(0, R)

max{u(x, t) − v(x), 0} = 0.

4. Fix ε ∈ (0, 1). Let C1(R) > 0 and C2(R) > 0 be the constants, respectively, from

Lemmas 2.8 and 2.9. We may assume that

Z ⊂ B(0, C2(R)).

We may assume that

‖f‖L∞(B(0,C2(R)) + ‖L‖L∞(B(0,αC2(R)+1)) ≤ C1(R),

1

α
‖L‖L∞(B(0,R)) ≤ C1(R).

Choose a constant δ ∈ (0, 1) so that

2C2(R)δ ≤ ε.

We set

Zδ = {x ∈ Rn | dist (x, Z) < δ}.
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Since f(x)+L(−αx) ≥ L(−αx)− l(−αx) for all x ∈ Rn by (2.3), recalling (A4), we

see that the function f(x) + L(−αx) attains a minimum over the closed set Rn \ Zδ.

Let γ be the minimum value of this function over Rn \ Zδ. Note that γ > 0. We set

T = γ−1(C + 2C1(R) + 1).

5. Let x ∈ B(0, R) and t ≥ T . We select X ∈ C(x, t) in view of Lemma 2.7 so that

u(x, t) + ε >

∫ t

0

[f(X(s)) + L(−αX(s) − Ẋ(s))] ds+ φ(X(t)).

From this, calculating as in the proof of Lemma 2.2 and using (2.2) and (2.4), we find

that

u(x, t) + 1 >

∫ t

0

[f(X(s)) + L(−αX(s))] ds−
1

α
L(−αx) − C.

Hence we have

(3.3)

∫ t

0

[f(X(s)) + L(−αX(s))] ds < C + 2C1(R) + 1.

We show that

(3.4) X(s) ∈ Zδ for some s ∈ [0, t].

Indeed, if this is not the case, we get

f(X(s)) + L(−αX(s)) ≥ γ for all s ∈ [0, t].

Consequently we get

∫ t

0

[f(X(s)) + L(−αX(s))] ds ≥ γt ≥ γT = C + 2C1(R) + 1,

which contradicts (3.3).

By (3.4), we can choose τ ∈ (0, t) and z ∈ Z such that |X(τ) − z| < δ. By Lemma

2.9, we get

|X(s)| ≤ C2(R) for s ∈ [0, t].

Define ξ ∈ C(X(τ), z, δ) and η ∈ C(z,X(τ), δ), respectively, by

ξ(s) = X(τ) +
s

δ
(z −X(τ)) for s ∈ [0, δ],

η(s) = z +
s

δ
(X(τ) − z) for s ∈ [0, δ].

Noting that

ξ(s), η(s) ∈ B(0, C2(R)) for s ∈ [0, δ],

ξ̇(s), η̇(s) ∈ B(0, 1) for s ∈ [0, δ],
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we see that

∫ δ

0

[f(ξ(s)) + L(−αξ(s)− ξ̇(s))] ds ≤ C1(R)δ,

∫ δ

0

[f(η(s)) + L(−αη(s) − η̇(s))] ds ≤ C1(R)δ.

We define the function Y ∈ C(x, t+ 2δ) by

Y (s) =



















X(s) for s ∈ [0, τ ],

ξ(s− τ) for s ∈ [τ, τ + δ],

η(s− τ − δ) for s ∈ [τ + δ, τ + 2δ],

X(s− 2δ) for s ∈ [τ + 2δ, t+ 2δ].

We calculate that

∫ t+2δ

0

[f(Y (s)) + L(−αY (s) − Ẏ (s))] ds+ φ(Y (t+ 2δ))

=

∫ t

0

[f(X(s)) + L(−αX(s)− Ẋ(s))] ds+ φ(X(t))

+

∫ δ

0

[f(ξ(s) + L(−αξ(s) − ξ̇(s))] ds

+

∫ δ

0

[f(η(s)) + L(−αη(s) − η̇(s))] ds

<u(x, t) + ε+ 2C1(R)δ ≤ u(x, t) + 2ε.

On the other hand, we have

d(x, z) ≤

∫ τ+δ

0

[f(Y (s)) + L(−αY (s) − Ẏ (s))] ds,

and, since Y (· + τ + δ)|[0,t−τ+δ] ∈ C(z, t− τ + δ),

ψ(z) ≤

∫ t+2δ

τ+δ

[f(Y (s)) + L(−αY (s) − Ẏ (s))] ds+ φ(Y (t+ 2δ)).

These together yield

d(x, z) + ψ(z) ≤ u(x, t) + 2ε,

Since z ∈ Z, we get

v(x) ≤ u(x, t) + 2ε.

This shows that

lim
t→∞

max
x∈B(0,R)

max{v(x) − u(x, t), 0} = 0.
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4. Existence of a solution of the Cauchy problem

In this section we establish the existence part of Theorem 1.2 together with some

estimates on the solution of (1.4) and (1.5). Our strategy here for proving existence of

a viscosity solution of (1.4) and (1.5) is to prove (i) the continuity of the function u on

Rn × [0,∞) given by

u(x, T ) = inf
{

∫ T

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ φ(X(T )) | X ∈ C(x, T )
}

and then (ii) to show that the function u is a viscosity solution of (1.4) and (1.5) by

using the dynamic programming principle.

We assume as in the previous sections that (A1)–(A4) and (2.1)–(2.4) hold.

Lemma 4.1. We have

u(x, T ) ≥ −
1

α
l(−αx) − C for (x, T ) ∈ Rn × [0,∞),

where C is the constant from (2.4).

Proof. For each ε ∈ (0, 1) and (x, T ) ∈ Rn × (0,∞) there is a curve X ∈ C(x, T ) such

that

u(x, T ) + ε >

∫ T

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ φ(X(T )).

We then compute with use of Lemma 2.2 that

u(x, T ) + ε >

∫ T

0

[f(X(t)) + l(−αX(t) − Ẋ(t))] dt+ φ(X(T ))

≥
1

α
[l(−αX(T ))− l(−αx)] + φ(X(T ))

≥ −
1

α
l(−αx) − C.

Lemma 4.2. For all (x, T ) ∈ Rn × (0,∞), we have

u(x, T ) ≤ φ(x) + (f(x) + L(−αx))T.

Proof. For any (x, T ) ∈ Rn × (0,∞), by choosing the curve X(t) ≡ x, we find that

u(x, T ) = inf
{

∫ T

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt

+ φ(X(T ))
∣

∣ X ∈ C(x, T )
}

≤

∫ T

0

[f(x) + L(−αx)] dt+ φ(x) = φ(x) + [f(x) + L(−αx)]T.
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Lemma 4.3. Let x0 ∈ Z. For (x, T ) ∈ Rn × [1, ∞) we have

u(x, T ) ≤ φ(x0) + ‖f‖L∞(B(0,ρ0(x))) + ‖L‖L∞(B(0,ρ1(x))),

where ρ0(x) = max{|x|, |x0|} and ρ1(x) := αρ0(x) + |x− x0|.

Notice at this point that Lemmas 4.1, 4.2, and 4.3 yield Lemma 2.8.

Proof. Define the curve X ∈ C(x, T ) by

X(t) =

{

x+ t(x0 − x) for 0 ≤ t ≤ 1,
x0 for 1 ≤ t.

Observe that

|X(t)| ≤ max{|x|, |x0|} = ρ0(x),

|Ẋ(t)| ≤ |x− x0|,

|αX(t) + Ẋ(t)| ≤ αρ0(x) + |x− x0| = ρ1(x).

Therefore we get

u(x, T ) ≤

∫ T

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ φ(X(T ))

=

∫ 1

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ φ(x0)

≤

∫ 1

0

(

‖f‖L∞(B(0,ρ0(x))) + ‖L‖L∞(B(0,ρ1(x)))

)

dt+ φ(x0)

= ‖f‖L∞(B(0,ρ0(x))) + ‖L‖L∞(B(0,ρ1(x))) + φ(x0).

We have to pay attention on the dependence of our estimates on φ in the follow-

ing arguments. To describe the necessary dependence on φ, we introduce collections

{MR}R>0 of positive constants and {ωR}R>0 of moduli such that for all R > 0,

‖φ‖L∞(B(0,R)) + |φ(x0)| ≤MR,(4.1)

|φ(x) − φ(y)| ≤ ωR(|x− y|) for x, y ∈ B(0, R).(4.2)

Here and henceforth a mudulus means a real-valued function ω ∈ C([0,∞)) such that

ω is non-decreasing on [0,∞) and ω(0) = 0. In what follows we fix such a pair of

collections {MR}R>0 and {ωR}R>0 and set Λ = ({MR}R>0, {ωR}R>0) for notational

simplicity.
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Lemma 4.4. Let x0 ∈ Z. For each R > 0 there is a constant C(R) > 0, depending on

φ only through MR and φ(x0), such that for (x, T ) ∈ B(0, R)× (0,∞) and X ∈ C(x, T ),

if

u(x, T ) + 1 >

∫ T

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ φ(X(T )),

then

|X(t)| ≤ C(R) for t ∈ [0, T ].

Note that the above lemma is equivalent to Lemma 2.9 except the description of the

dependence of the constant C(R) on φ.

Proof. Due to Lemmas 4.2 and 4.3, there is a constant C1(R) > 0, independent of

T ∈ [0,∞), such that

u(x, T ) ≤ C1(R) for x ∈ B(0, R).

Note that C1(R) may be chosen so as to depend on φ only through MR and φ(x0).

Let τ ∈ [0, T ]. Using Lemmas 2.2 and 4.1, we compute that

C1(R) + 1 ≥u(x, T ) + 1 >

∫ τ

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt

+

∫ T

τ

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ φ(X(T ))

≥

∫ τ

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ u(X(τ), T − τ)

≥

∫ τ

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt−
1

α
l(−αX(τ))− C

≥
1

α
[L(−αX(τ))− L(−αx) − l(−αX(τ))]− C,

which yields

L(−αX(τ)) − l(−αX(τ)) ≤ α(C + C1(R) + 1 + C2(R)),

where C2(R) > 0 is a constant such that

1

α
L(−αx) ≤ C2(R) for x ∈ B(0, R).

Thus, thanks to (A4), we find a constant C(R) > 0, depending on φ only through MR

and φ(x0), such that

|X(t)| ≤ C(R) for t ∈ [0, T ].
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Lemma 4.5. For each R > 0 there is a modulus σR, depending on φ only through MR

and φ(x0), such that for (x, T ) ∈ B(0, R)× (0, 1] and X ∈ C(x, T ), if

u(x, T ) + 1 >

∫ T

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ φ(X(T )),

then

|X(t)− x| ≤ σR(t) for t ∈ [0, T ].

Proof. According to Lemmas 4.3 and 4.4, there is a constant C(R) > 0, depending on

φ only through MR and φ(x0), such that

|X(t)| ≤ C(R) for t ≥ 0,

u(x, T ) ≤ C(R) for (x, T ) ∈ B(0, R)× [0,∞).

We choose a constant C1(R) > 0 so that

‖f‖L∞(B(0,C(R)) ≤ C1(R),

‖u‖L∞(B(0,C(R))×[0,∞)) ≤ C1(R).

In view of Lemmas 4.1, 4.2, 4.3, and 4.4, the constant C1(R) can be chosen so as to

depend on φ only through MR and φ(x0).

For any A > 0 there is a constant CA > 0 such that

L(x) ≥ A|x| − CA for x ∈ Rn.

Fix A > 0, and we calculate that

C(R) + 1 >

∫ τ

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ u(X(τ), T − τ)

≥

∫ τ

0

[−C1(R) + L(−αX(t) − Ẋ(t))] dt− C1(R)

≥

∫ τ

0

[−C1(R) +A|Ẋ(t) + αX(t)| − CA] dt− C1(R)

≥

∫ τ

0

[−C1(R) −AαC(R) + A|Ẋ(t)| − CA] dt− C1(R).

Hence we get

∫ τ

0

|Ẋ(t)| dt ≤ A−1(C(R) + 1 + C1(R)) + (αC(R) + A−1CA +A−1C1(R))τ.
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There is a modulus σR, depending on φ only through MR and φ(x0), such that

inf
A>0

[

A−1(C(R) + C1(R) + 1) + (αC(R) + A−1CA +A−1C1(R))t
]

≤ σR(t).

Fix such a modulus σR, and we have

∫ τ

0

|Ẋ(t)| dt ≤ σR(τ),

which implies that

|X(τ)− x| ≤ σR(τ).

Lemma 4.6. For each R > 0 there is a modulus νR, depending on φ only through Λ,

such that for (x, t) ∈ B(0, R)× [0, 1],

(4.3) |u(x, t) − φ(x)| ≤ νR(t).

Proof. For any ε ∈ (0, 1), R > 0, and (x, t) ∈ B(0, R) × (0, 1] there is a curve

X ∈ C(x, T ) such that

u(x, t) + ε >

∫ t

0

[f(X(s)) + L(−αX(s) − Ẋ(s))] ds+ φ(X(t)).

According to Lemma 4.5, there is a modulus σR, depending on φ only through Λ, such

that

|X(t)− x| ≤ σR(t) for t ∈ [0, 1].

Recall that

∫ t

0

[f(X(s)) + L(−αX(s)− Ẋ(s))] ds ≥
1

α
[L(−αX(t)) − L(−αx)].

Then we have

u(x, t) + ε >φ(x) +
1

α
[L(−αX(t))− L(−αx)] + [φ(X(t)) − φ(x)]

≥φ(x) +
1

α
µL,R(ασR(t)) + µφ,R(σR(t)),

where µL,R and µφ,R are the moduli of continuity of L(x) and of φ, respectively, on

the set B(0, Rα), with Rα = (R + σR(1)) max{1, α}. Since ε ∈ (0, 1) is arbitrary, the

above inequality guarantees together with Lemma 4.2 existence of a modulus νR, which

depends on φ only through Λ, such that (4.3) holds.
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Lemma 4.7. For each R > 0 there is a modulus γR, depending on φ only through Λ,

such that for x, y ∈ B(0, R) and T > 0,

(4.4) |u(x, T ) − u(y, T )| ≤ γR(|x− y|).

Proof. Let R > 0, x, y ∈ B(0, R), and T > 0. We may assume that |x− y| ≤ 1.

We consider the case when |x − y| ≥ T . By Lemma 4.6, there is a modulus νR,

depending on φ only through Λ, such that

|u(x, T ) − φ(x)| ≤ νR(T ),

|u(y, T )− φ(y)| ≤ νR(T ).

We may assume that

|φ(x) − φ(y)| ≤ νR(|x− y|).

Consequently we have

|u(x, T )− u(y, T )| ≤ |φ(x) − φ(y)| + |u(x, T )− φ(x)| + |u(y, T )− φ(y)|

≤ νR(|x− y|) + 2νR(T ) ≤ 3νR(|x− y|).

Next we consider the case when |x− y| ≤ T . Fix ε ∈ (0, 1). We select X ∈ C(x, T )

so that

u(x, T ) + ε >

∫ T

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ φ(X(T )).

We know that there is a constant C(R) ≥ R, which depends on φ only through Λ, such

that

|X(t)| ≤ C(R) for t ∈ [0, T ].

Define Y ∈ C(y, T ) by

Y (t) =







y +
t

|x− y|
(x− y) for 0 ≤ t ≤ |x− y|,

X(t− |x− y|) for |x− y| ≤ t ≤ T.

We may assume by replacing νR by a larger modulus if necessary that

|u(ξ, |x− y|) − φ(ξ)| ≤ νR(|x− y|) for ξ ∈ B(0, C(R)).

Then we have
∫ T

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ φ(X(T ))

≥

∫ T−|x−y|

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ u(X(T − |x− y|), |x− y|)

≥

∫ T−|x−y|

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ φ(X(T − |x− y|)) − νR(|x− y|).
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There is a constant C1(R) > 0 which depends on φ only through Λ such that

|f(ξ)|+ |L(αξ + η)| ≤ C1(R) for (ξ, η) ∈ B(0, C(R))×B(0, 1).

Also we have

u(y, T ) ≤

∫ T

0

[f(Y (t)) + L(−αY (t) − Ẏ (t))] dt+ φ(Y (T ))

≤

∫ |x−y|

0

[f(Y (t)) + L(−αY (t) − Ẏ (t))] dt

+

∫ T−|x−y|

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ φ(X(T − |x− y|))

≤C1(R)|x− y| +

∫ T−|x−y|

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt

+ φ(X(T − |x− y|)).

Therefore we get

u(y, T )− u(x, T ) < ε+ νR(|x− y|) + C1(R)|x− y|,

and moreover

u(y, T )− u(x, T ) ≤ νR(|x− y|) + C1(R)|x− y|,

which completes the proof of (4.4).

Lemma 4.8 (Dynamic Programming Principle). For S > 0, T > 0, and x ∈ Rn,

we have

u(x, S + T ) = inf
{

∫ T

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt(4.5)

+ u(X(T ), S)
∣

∣ X ∈ C(x, T )
}

.

We omit giving the proof of this lemma and we refer to [L] for a proof in a standard

case.

We extend the domain of definition of u to Rn × [0,∞) by setting

(4.6) u(x, 0) = φ(x) for x ∈ Rn.

Lemma 4.9. u ∈ C(Rn × [0,∞)).

Proof. In view of Lemma 4.7, there is a pair of collections {NR}R>0 and {γR}R>0 such

that for any R > 0,

‖u(·, S)‖L∞(B(0,R)) ≤ NR for S ∈ [0,∞),(4.7)

|u(x, S)− u(y, S)| ≤ γR(|x− y|) for x, y ∈ B(0, R), S ∈ [0,∞).(4.8)
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Fix any S ≥ 0 and note by Lemma 4.8 that

u(x, S + T ) = inf
{

∫ T

0

[f(X(t)) + L(−αX(t)− Ẋ(t))] dt+ u(X(T ), S)
∣

∣ X ∈ C(x, T )
}

.

Then apply Lemma 4.6, with φ = u(·, S) and Λ = ({NR}R>0, {γR}R>0), to conclude

that for each R > 0 there is a modulus νR such that

|u(x, S + T ) − u(x, S)| ≤ νR(T ) for (x, S) ∈ B(0, R)× [0,∞) and T > 0.

That is, we have

|u(x, t)− u(x, s)| ≤ νR(|t− s|) for x ∈ B(0, R) and t, s ∈ [0,∞).

This and Lemma 4.7 ensure that u is uniformly continuous on B(0, R)× [0,∞) for any

R > 0. In particular, we see that u ∈ C(Rn × [0,∞)). .

Theorem 4.10. The function u is a viscosity solution of (1.4) and (1.5).

Now, Lemma 4.1 and Theorem 4.10 above guarantee that the existence part of

Theorem 1.2 is valid.

Proof. Let ϕ ∈ C1(Rn × (0,∞)) and (x̂, t̂) ∈ Rn × (0,∞).

We first assume that u − ϕ attains a maximum at (x̂, t̂). We may assume without

loss of generality that (u− ϕ)(x̂, t̂) = 0, so that u ≤ ϕ in Rn × (0,∞).

Let ε ∈ (0, t̂) and z ∈ Rn. Setting X(t) := x̂+ tz, by Lemma 4.8, we get

ϕ(x̂, t̂) = u(x̂, t̂) ≤

∫ ε

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ u(X(ε), t̂− ε)

≤

∫ ε

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ ϕ(X(ε), t̂− ε)

and hence

0 ≤

∫ ε

0

[f(X(t)) + L(−αX(t) − z) − ϕt(X(t), t̂− t) +Dϕ(X(t), t̂− t) · z] dt.

Dividing this by ε and sending ε→ 0 yield

0 ≤ f(x̂) + L(−αx̂− z) − ϕt(x̂, t̂) +Dϕ(x̂, t̂) · z for z ∈ Rn,

which implies that for ξ ∈ Rn,

ϕt(x̂, t̂) + αx ·Dϕ(x̂, t̂) + ξ ·Dϕ(x̂, t̂) − L(ξ) ≤ f(x̂).
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Thus we get

ϕt(x̂, t̂) + αx ·Dϕ(x̂, t̂) +H(Dϕ(x̂, t̂)) ≤ f(x̂),

which was to be shown.

We next assume that u − ϕ attains a minimum at (x̂, t̂). We may assume that

u(x̂, t̂) = ϕ(x̂, t̂) and u ≥ ϕ in Rn × (0,∞).

Let ε ∈ (0, 1) and choose, in view of Lemma 4.8, X ∈ C(x̂, ε) so that

ϕ(x̂, t̂) + ε2 =u(x̂, t̂) + ε2

>

∫ ε

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ u(X(ε), t̂− ε)

≥

∫ ε

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ ϕ(X(ε), t̂− ε),

which yields

ε2 >

∫ ε

0

[f(X(t)) + L(−αX(t) − Ẋ(t))

− ϕt(X(t), t̂− t) +Dϕ(X(t), t̂− t) · Ẋ(t)] dt.

Theorefore, noting that for x = X(t), z = Ẋ(t),

L(−αx− z) +Dϕ(x, t̂− t) · z

= L(−αx− z) −Dϕ(x, t̂− t) · (−αx− z) − αx ·Dϕ(x, t̂− t)

≥ −αx ·Dϕ(x, t̂− t) −H(Dϕ(x, t̂− t)),

we get

(4.9)

∫ ε

0

[f(X(t))−ϕt(X(t), t̂−t)−αX(t)·Dϕ(X(t), t̂−t)−H(Dϕ(X(t), t̂−t))] dt < ε2.

We can extend the domain of definition of X to [0, t̂] so that X ∈ C(x̂, t̂) and

ε2 >

∫ t̂

0

[f(X(t)) + L(−αX(t) − Ẋ(t))] dt+ φ(X(t̂)).

Taking into account that X depends on ε, we write Xε for X . By Lemma 4.5, there is

a modulus ω such that |Xε(t) − x̂| ≤ ω(t) for all t ∈ [0, t̂] and ε ∈ (0, 1). Thus dividing

(4.9) by ε and sending ε→ 0 yield

f(x̂) − ϕt(x̂, t̂) − αx̂ ·Dϕ(x̂, t̂) −H(Dϕ(x̂, t̂)) ≤ 0,

which completes the proof.
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5. A comparison theorem for solutions of (1.4)

In this section we establish the following comparison theorem. Let 0 < T <∞.

Theorem 5.1. Let u ∈ USC(Rn × [0, T )) and v ∈ LSC(Rn × [0, T )) be, respectively,

a viscosity subsolution and a viscosity supersolution of

(5.1) ut + αx ·Du+H(Du) = f(x) in Rn × (0, T ).

Assume that

lim
r→∞

inf{v(x, t) +
1

α
L(−αx) | (x, t) ∈ (Rn \B(0, r))× [0, T )} = ∞,

and that u(x, 0) ≤ v(x, 0) for all x ∈ Rn. Then u ≤ v in Rn × [0, T ).

We remark that the uniqueness part of Theorem 1.2 follows from the above theorem.

Thus we have completed the proof of Theorem 1.2, and now Theorems 1.2 and 4.10

together yield Lemma 2.7.

The proof below follows the outline of that of [I, Theorem 4].

Proof. Let Lα denote the function Lα ∈ C(Rn) given by

Lα(x) =
1

α
L(−αx).

It is enough to prove that for any R > 0 and for all (x, t) ∈ B(0, R)× [0, T ),

(5.2) min{u(x, t) + αt+ Lα(x), R} ≤ v(x, t) + αt+ Lα(x).

To show (5.2), we fix R > 0. Recalling that

lim
r→∞

inf{v(x, t) + Lα(x) | (x, t) ∈ (Rn \B(0, r))× [0, T )} = ∞,

we choose a constant r ≥ R so that

(5.3) v(x, t) + Lα(x) ≥ R+ 1 for (x, t) ∈ ∂B(0, r)× [0, T ).

For convex function F ∈ C(Rn) and ε > 0, we denote the ε inf-convolution by Fε, i.e.,

Fε(x) = inf{F (y) +
1

2ε
|x− y|2 | y ∈ Rn}.

Recall that Fε ∈ C1(Rn), Fε is convex in Rn, Fε ≤ F in Rn, and Fε(ξ) → F (ξ)

uniformly on compact subsets of Rn as ε → 0. We set Lα
ε := (Lα)ε. Note that for

x ∈ Rn,

Lα
ε (x) = inf

y∈Rn

(

1

α
L(−αy) +

1

2ε
|x− y|2

)

(5.4)

=
1

α
inf

z∈Rn

(

L(z) +
1

2αε
|αx+ z|2

)

=
1

α
Lαε(−αx).
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We fix δ > 0 so that for any ε ∈ (0, δ),

Lα
ε (x) + 1 ≥ Lα(x) for x ∈ B(0, r),

which guarantees that

v(x, t) + αt+ Lα
ε (x) ≥R for (x, t) ∈ ∂B(0, r)× [0, T ),

Lαε(−αx) + α ≥L(−αx) for x ∈ B(0, r).

Fix any ε ∈ (0, α), and set

uε(x, t) =u(x, t) + αt+ Lα
ε (x) for (x, t) ∈ Rn × [0, T ),

vε(x, t) = v(x, t) + αt+ Lα
ε (x) for (x, t) ∈ Rn × [0, T ).

Observe that uε and vε are, resepctively, a viscosity subsolution and supersolution of

(5.5) wt + αx ·Dw + sup
z∈Rn

(z ·Dw − fε(x, z)) = 0 in Rn × (0, T ),

where fε ∈ C(Rn ×Rn) is given by

fε(x, z) = L(z) + α+ f(x) + (αx+ z) ·DLα
ε (x).

Observe furthermore that

fε(x, z) ≥ 0 for (x, z) ∈ B(0, r)× Rn.

Indeed, by the convexity of Lαε, we have

Lαε(z) ≥ Lαε(−αx) +DLαε(−αx) · (z + αx) for z, x ∈ Rn,

and therefore, noting in view of (5.4) that

DLαε(−αx) = −DLα
ε (x) for x ∈ Rn,

we get

fε(x, z) ≥ Lαε(−αx) + α+ f(x) ≥ L(−αx) + f(x) ≥ 0 for (x, z) ∈ B(0, r)× [0, T ).

As observed in [A, I], for any non-decreasing function θ ∈ C(R) such that θ′(t) ≤ 1

a.e., the function θ ◦ uε is a viscosity subsolution of (5.5) in intB(0, r) × (0, T ). In

particular, the function: (x, t) 7→ min{uε(x, t), R} on B(0, r) × [0, T ) is a viscosity
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subsolution of (5.5) in intB(0, r) × (0, T ). For (x, t) ∈ ∂B(0, r) × [0, T ), we have

vε(x, t) ≥ R and hence,

min{uε(x, t), R} ≤ R ≤ vε(x, t).

Applying a standard comparison theorem (see [CIL, Ba, BC]) to viscosity sub- and

supersolutions of (5.5) in B(0, r)× [0, T ), we conclude that for (x, t) ∈ B(0, r)× [0, T ),

min{uε(x, t), R} ≤ vε(x, t),

and moreover that (x, t) ∈ B(0, r)× [0, T ),

min{u(x, t) + αt+ Lα(x), R} ≤ v(x, t) + αt+ Lα(x),

since ε ∈ (0, δ) is arbitrary.
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iens, C. R. Acad. Sci. Paris Sér. I 324 (1997) 1043–1046

[F2] A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci.
Paris Sér. I Math. 327 (1998), no. 3, 267–270.

[FIL1] Y. Fujita, H. Ishii, and P. Loreti, Asymptotic solutions of viscous Hamilton-
Jacobi equations with Ornstein-Uhlenbeck operator, preprint, 2005.

[FIL2] Y. Fujita, H. Ishii, and P. Loreti, Long-time behavior of solutions to Hamilton-
Jacobi equations on RN with quadratic gradient term, preprint.

[I] H. Ishii, Comparison results for Hamilton-Jacobi equations without growth con-
dition on solutions from above, Appl. Anal. 67 (1997), no. 3-4, 357–372.

27



[L] P.-L. Lions, Generalized solutions of Hamilton-Jacobi equations, Research Notes
in Mathematics, Vol. 69, Pitman (Advanced Publishing Program), Boston,
Mass.-London, 1982.

[LPV] P.-L. Lions, G. Papanicolaou, and S. Varadhan, Homogenization of Hamilton-
Jacobi equations, unpublished preprint.

[R] J.-M. Roquejoffre, Convergence to steady states or periodic solutions in a class of
Hamilton-Jacobi equations, J. Math. Pures Appl. (9) 80 (2001), no. 1, 85–104.

28


