On the criticality of viscous Hamilton-Jacobi equations

Naoyuki Ichihara (Hiroshima University)

In this talk we discuss a nonlinear additive eigenvalue problem (ergodic problem) for the following viscous Hamilton-Jacobi equation:

$$\lambda - \frac{1}{2} \Delta \phi + \frac{c(x)}{2} |D\phi|^2 + \beta V(x) = 0 \quad \text{in} \quad \mathbb{R}^N, \quad \phi(0) = 0,$$

(EP)

where β is a real parameter, and functions $c(x)$, $V(x)$ satisfy the following conditions:

(H1) $c \in C^2_b(\mathbb{R}^N)$ and $\kappa_1 \leq c(x) \leq \kappa_2$ in \mathbb{R}^N for some $\kappa_1, \kappa_2 > 0$.

(H2) $V \in C^2_b(\mathbb{R}^N)$, $V \geq 0$, and $|x|^2 V(x) \to 0$ as $|x| \to \infty$.

We seek for a pair $(\lambda, \phi) \in \mathbb{R} \times C^2(\mathbb{R}^N)$ satisfying (EP) in the classical sense. Note that the constraint $\phi(0) = 0$ is imposed to avoid the ambiguity of additive constants with respect to ϕ. Our objective is to investigate qualitative properties of the 'principal eigenvalue' and the associated 'ground state' for (EP).

Theorem 1. Let (H1) and (H2) hold.

(i) For each $\beta \in \mathbb{R}$, there exists a real constant $\lambda^* = \lambda^*(\beta)$ such that (EP) has a solution $\phi \in C^2(\mathbb{R}^N)$ if and only if $\lambda \leq \lambda^*$.

(ii) The mapping $\beta \mapsto \lambda^*(\beta)$ is non-positive, non-increasing, and concave.

(iii) There exists a $\beta_c \geq 0$ such that $\lambda^*(\beta) = 0$ for $\beta \leq \beta_c$ and $\lambda^*(\beta) < 0$ for $\beta > \beta_c$.

(iv) Let β_c be the constant in (iii). Then, $\beta_c = 0$ for $N \leq 2$ and $\beta_c > 0$ for $N \geq 3$.

Theorem 2. Let (H1) and (H2) hold. Let β_c be the constant in Theorem 1.

(i) For any $\beta \geq \beta_c$, there exists at most one solution ϕ of (EP) with $\lambda = \lambda^*(\beta)$.

(ii) Suppose that $\beta > \beta_c$. Then, the solution ϕ satisfies

$$C^{-1} |x| - C \leq \phi(x) \leq C(1 + |x|), \quad x \in \mathbb{R}^N$$

for some $C > 0$.

(ii) Suppose that $\beta = \beta_c$. Then, the solution ϕ satisfies

$$C^{-1} \log(1 + |x|) - C \leq \phi(x) \leq C \log(1 + |x|) + C, \quad x \in \mathbb{R}^N$$

for some $C > 0$.

Email: naoyuki@hiroshima-u.ac.jp. Supported in part by JSPS KAKENHI Grant Number 24740089.
Equation (EP) is closely related to the following minimizing problems:

Minimize \(J_\beta(\xi) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\int_0^T \left\{ \frac{|\xi_t|^2}{2c(X_t^\xi)} - \beta V(X_t^\xi) \right\} dt \right] \),

subject to \(X_t^\xi = x - \int_0^t \xi_s \, ds + W_t, \quad t \geq 0 \),

where \(W = (W_t) \) is an \(N \)-dimensional standard Brownian motion defined on some probability space, and \(\xi = (\xi_t) \) stands for an \(\mathbb{R}^N \)-valued control process belonging to a suitable admissible class. It turns out that the optimal value \(\Lambda(\beta) := \inf_\xi J_\beta(\xi) \) coincides with \(\lambda^*(\beta) \) given in Theorem 1. Furthermore, the solution \(\phi \) of (EP) with \(\lambda = \lambda^*(\beta) \) plays a crucial role in constructing an optimal control. More precisely, let \(X = (X_t) \) be the feedback diffusion governed by the stochastic differential equation

\[
dX_t = -c(X_t)D\phi(X_t) \, dt + dW_t, \quad X_0 = x, \tag{1}
\]

where \(\phi = \phi(x) \) is a solution of (EP) with \(\lambda = \lambda^*(\beta) \). Then, the following theorem holds.

Theorem 3. Let (H1) and (H2) hold. Let \(\beta_c \) be the constant in Theorem 1.

(i) Suppose that \(\beta < \beta_c \). Then \(X \) is transient.

(ii) Suppose that \(\beta > \beta_c \). Then \(X \) is positive recurrent.

(iii) Suppose that \(\beta = \beta_c \). Then \(X \) is recurrent.

Let \(X = (X_t) \) be the diffusion governed by (1), and set \(\xi^*_t := c(X_t)D\phi(X_t) \).

Theorem 4. Suppose that (H1) and (H2) hold. Let \(\lambda^*(\beta) \) be the constant given in Theorem 1. Then, \(\Lambda(\beta) = \lambda^*(\beta) = J_\beta(\xi^*) \) for \(\beta \geq \beta_c \) and \(\Lambda(\beta) = \lambda^*(\beta) = J_\beta(0) \) for \(\beta \leq \beta_c \).

References

