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1 Introduction
We consider the partial differential equation

(P)e F(z,z/e,uf(z), Dut(z),0D*uf(x)) = 0 in R",

where ¢ and 0 = 0(e) are two positive parameters, F € C(R™ x R™ x R x R" x §"),
S™ denotes the space of real symmetric n x n matrices, u® is the unknown, and Du®
and D?u® denote the gradient and Hessian of u¢, respectively. The parameter § will be
given as a function of ¢, that is, § = d(¢). A typical example of §(¢) is: §(e) = &%, where
0 <a < oo. We always assume
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(A1) F is uniformly elliptic, that is, there are constants 0 < § < © for which if
X, Y €S and Y > 0, then

F(ac,y,u,p,X) -OtrY S F(xayau;p7X+Y) S F(x,y,u,p,X) — HtrY,
(A2) the function: y — F(x,y,u,p, X) is periodic with period Z™, that is,
F(x7y+z7u7an):F(xayauap7X) fOI' alleZ";

and

(A3) there is a constant A > 0 such that the function: u — F(z,y,u,p, X) — Au is
non-decreasing in R for any (z,y,p, X) € R® x R” x R" x §".

We investigate the asymptotic behavior of the solution u® of (P). as € — 0. The
parameters € and § represent the processes of homogenization and vanishing viscosity
in (P),, respectively, and our motivation to the study of (P). is to get a better un-
derstanding of the interaction in the asymptotics between the effects of the periodic
homogenization and vanishing viscosity in (P)..

Let us briefly describe our results in view of the interaction of the effects of the ho-
mogenization and vanishing viscosity. For this purpose we formulate the cell problems.
Henceforth C(R™/Z™) denotes the space of periodic functions u on R™ with period Z™.
Fix (&, 4, p, X) € R" x R x R™ x 8". The first cell problem is to find a pair of p € R
and v € C(R™/Z") such that u is a (viscosity) solution of

(CP), F(#,y,8,p, X + D*v(y)) =p  inR™

The second cell problem is to find a pair (g,v) € R x C(R™/Z™) such that v is a
(viscosity) solution of

(CP)12 F(&,y,4,p+ Du(y), D*v(y)) =p  in R".

The third cell problem is to find a pair (4, v) € RxC(R™/Z™) such that v is a (viscosity)
solution of

(CP)y F(z,y,4,p+ Dv(y),0)=p  inR™

In this paper we deal with fully nonlinear PDE which may be degenerate elliptic and
which may not have classical solutions, and we adapt the notion of viscosity solutions
(see [CIL2]). Henceforth we suppress the word “viscosity” and, for instance, we call a
viscosity solution simply a solution.

Under appropriate hypotheses each of these problems (CP)s3, (CP)12, and (CP); has
a solution (i, v) and moreover, the value of y is determined uniquely while the function
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v is not determined uniquely. The correspondence of (Z, @, p, X ) to this value p is called
the homogenized or effective function and denoted by Fy(&,a,p, X), Fia(%, @, p), and
Fy (2,4, p), respectively, in problems (CP)s, (CP)12, and (CP)j.

Four cases arise in our study of the asymptotics for (P).. Case 1: lim._d(e) €
(0,00). Case 2: lim.¢d(e) = 0 and lim.,¢d(e)/e = oco. Case 3: lim.od(e)/e €
(0,00). Case 4: lim.,0d(e)/e = 0. We may assume by a simple normalization that
lime_,0d(e) = 1 in Case 1 and lim_,0d(¢)/e = 1 in Case 3.

Our main results state that under appropriate hypotheses, the solutions u® of (P),
converge uniformly on R"”, to the solution u € BUC(R") of

Fy(z,u(x), Du(z), D*u(z)) = 0 in R",

Fy(z,u(x), Du(z),0) =0 in R,
Fia(z,u(z), Du(x)) =0 in R",

and

Fy(z,u(z), Du(x)) =0 in R"

in Cases 1, 2, 3, and 4, resepctively. Indeed, these results in Cases 1 and 3 have already
been obtained in [E2].

In Case 4 the vanishing of viscosity is fastest and the result says that in order to
find the limit PDE one firstly sets 6 = 0 in (P),, i.e., sends the “viscosity” to zero, and
secondly homogenizes the resulting PDE. On the other hand, in Case 2 the result says
that in order to find the limit PDE one firstly fixes § > 0 and homogenizes the PDE (as
in Case 1 one gets Fy(z,u, Du,§D?u) = 0), and secondly sends the “viscosity” to zero,
to obtain Fy(x,u, Du,0) = 0.

For a general overview of homogenizations of partial differential equations we refer
to [BLP].

The paper is organized as follows. Section 2 is devoted to studying cell problems. In
Section 3 theorems on the convergence of solutions of (CP). to that of the corresponding
homogenized equations are established. Section 4 provides proofs of technical lemmas
which are needed in Sections 2 and 3.

2 Cell problems

We begin this section by giving our assumptions on F'.

(A4) For each R > 0,
F € BUC(R" x R" x [-R, R] x B(0,R) x B"*"(0, R)),
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where B™*"(0, R) denotes the ball in 8™ of radius R with center at the origin.

We call any continuous function w : [0,00) — [0, 00) a modulus if w(0) = 0 and w is
non-decreasing in [0, co).

(A5) For each R > 0 there is a modulus wg such that for (u,p, X) € [-R, R|x R" x8"
a'nd x’ y’ 5’ 77 E Rn’

where || X|| = supgepo,1) [XE| = maxi=1, . |Ai(X)[, with A;(X) denoting the
eigenvalues of X.

(A6) For each R > 0 there is a constant Cr > 0 such that for (z,u,p) € R™ x
R, R] x R™,
|F (2, & u,p,0)] < Cr(1 +[p])-

(A7) For each R >0

lim inf{F(z,y,u,p,0) | (z,y,u,p) € R*™ x [-R,R] x R™, [p| > r} = 0.

r7—00

(A8) For each (z,u) € R™ x R and R > 0 there exists a constant L = L(R,z,u) > 0
such that for all y € R™ and p,q € B(0, R),

|F(at,y,u,p,0)—F(x,y,q,0)| S L|p_Q|
Fix (&,4,p, X) € R" x R x R" x 8". Define
F(y,q,Y)=F(&,y,0,p+¢X+Y) for (y,q,Y) e R" x R" x 8",

Then consider the following cell problem (CP): find a pair (p,v) € R x C(R"/Z"™) such
that v is a solution of

(CP) F(y,Dv(y),D*(y)) =p  inR™

We call such a pair (u,v) a solution of (CP).

Theorem 2.1. Assume that (A1), (A2), (A5), and (A6) hold. Then: (a) There
erists a solution (u,v) € R x C(R™/Z™) of (CP). (b) If (u,v) € R x C(R"/Z")
and (v,w) € R x C(R™/Z"™) are solutions of (CP), then u = v. If moreover (A8)
holds, then u(z) = v(x) + C for all z € R™ and for some constant C € R. (c) If
(u,v) € R x C(R™/Z"™) is a solution of (CP), then v is Lipschitz continuous in R™.
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To prove this theorem, we need Krylov-Safonov C'* estimates, which we state for
the equation of the form

(2.1) \u(z) + G(z, u(z), Du(z), D*u(z)) = 0 in R",

where A > 0 is a constant and G is a continuous function and satisfies:
(2.2) G € BUC(R" x [—R, R] x B(0,R) x B"*"(0, R)) for all R > 0.

(2.3) There are constants 0 < # < © < oo such that for all (z,p) € R" x R", u € R,
and X, Y € 8™, if Y > 0, then

G(z,u,p, X)—0trY < G(z,u,p, X +Y) <G(z,u,p, X) —0trY.

Note that condition (2.3) implies the Lipschitz continuity of G(z,u,p, X) in the
variable X. More precisely,

|G(-'I;7 u,p, X) - G($7uapa Y)‘ < ’I’I,@”X - Y”

forallz,pe R*", ue R, and X,Y € S™.

(2.4) The function v — G(z,u,p,X) is non-decreasing in R for each (x,p, X) €
R™ x R™ x &™.

(2.5) For each R > 0 there is a modulus wg : [0,00) — [0, 00) such that for (u,p, X) €
[-R,R] x R" x 8™ and z,y € R",

G(z,u,p, X) — Gy, u,p, X) < wgr(jz —y|(1+ [p| + | X]]))-

(2.6) For each R > 0 there is a constant Cr > 0 such that for all z,p € R™ and
u € [-R, R],
|G (2, u,p,0)| < Cr(1 + |p]).

(2.7) For each R > 0 there is a constant Lr > 0 such that for all (z,u) € R" x[-R, R|
and p,q € B(0, R),

‘G(:Ea u,p, 0) - G(.’IT, u,q, 0)| < LR‘p - q|

In the above assumptions, because of the convexity of the domain R" for z,y, we
may assume that wgr grows at most linearly. This observation is useful in our proof of
Lemma 2.3.

Lemma 2.2. Assume that (2.3) and (2.6) hold and that A\ = 0. Then for each R > 0
there exist constants o = a(n,0,0,Cr) € (0,1) and C = C(n,0,0,Cgr) > 0, where
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Cr is the constant from (2.6), such that if u € C(R"™) is a solution of (2.1) and if
|ull Lo mn)y < R, then

lu(z) —u(y)| < Clez—y|*  if |[z—y/ <1

We do not give here the proof of this lemma since the result is somehow standard
and instead we refer to [CC, CCKS, KT, T] and just give the following remark: for
(z,u,p,X) € R" X [-R, R] x R™ x 8™ we have

G(z,u,p, X) =G(z,u,p, X4+ — X_) < G(z,u,p,—X_) —0tr X,
<G(x,u,p,0) —0tr Xy +Otr X_ < Cr(1+ |p|) + PT(X),

where Xy = 2 (X + (X?)'?), X_ = X + X, and PH(X) := —0tr X4 + Otr X_.
Therefore the solution u of Lemma 2.2 satisfies

PH(D?*u(z)) + Cr(1+ |Du(z)]) >0 in R™
Similarly, we see that u satisfies
P~ (D*u(z)) — Cgr(1 + |[Du(z)]) <0 in R",

where P~ (X) := -Otr X, +0tr X_.

It may be worth noting here that if the function G(z,u,p, X) is independent of u,
then the constants Cr of (2.6) and therefore C of Lemma 2.2 can be chosen indepen-
dently of R.

Lemma 2.3. Assume that (2.2)-(2.5) hold. Let u € USC(R"™) and v € LSC(R™) be
bounded sub- and supersolutions of (2.1), respectively, and let R > 0 be a constant such
that

max{||u||Loo(Rn), ||’U||Loo(Rn)} < R.

Then there is a constant C = C(n,0,0,wr, R) > 0, where wr is the modulus from
(2.5), such that

(2.8) u(z) —v(y) <sup(u—v); +Clz —y| for all x,y € R".
Rn

An assertion close to the above can be found in [IL] (see [IL, (3.19)]). We have chosen
a condition (2.5) which is much stronger than needed and indeed more restrictive than
[IL, (3.2)]. This choice is made for simplicity of the presentation.
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Outline of proof. By a careful review of the proof of [IL, (3.19)], we find a constant
C7 > 0 depending only on n, 0, ©, R, wg for which we have

u(z) —v(y) < ér(la)lc)(u —v)y +Cilz —y| forallz,y € B(z,1) and z € R".

This immediately yields (2.8), with an appropriate C' > 0. QED
A form of the strong maximum principle for (2.1) can be stated as follows:

Lemma 2.4. Assume that A\ = 0 and the function G(x,u,p, X) is independent of u
and that (2.3) and (2.7) hold. If u,v € C(R™) be bounded solutions of (2.1), then
u(z) =v(x) + C for all z € R™ and for some constant C' € R.

A proof of Lemma 2.4 can be found in Section 4.

Lemma 2.5. Assume that A > 0 and that (2.2)-(2.5) hold. If v € USC(R™) and
w € LSC(R™) are bounded sub- and supersolutions of (2.1), respectively, then v < w in
R".

A proof of this lemma can be found in Section 4. See [IL, Theorem III.1] and also
[T, CCKS] for similar results under “structure condition”.

Proof of Theorem 2.1. Fix 8 > 0, and we consider the problem
(CP)s BvP (y) + F(y, DvP(y), D>’ (y)) =0 inR™

If we set M = maxecrn |F(€,0,0)], then the constants M/ and —M/ are respec-
tively a supersolution and a subsolution of (CP)g. In order to build a solution of (CP)g,
we use Perron’s method. Indeed, setting

vP(y) = sup{w(y) | w a subsolution of (CP)g, —M/B < w(z) < M/B Vz € R"},

for y € R™, we see that the function v” is a solution of (CP)g in the sense that
(v#)*, the upper semicontinuous envelope of v#, is a subsolution and (v#),, the lower
semicontinuous envelope of v#, is a supersolution of (CP) 8-

Applying Lemma, 2.5, we see that (v?)* < (v#), in R", i.e., v# € C(R"), and that
vP is a unique solution of (CP)g.

It is obvious from the uniqueness of bounded solutions of (CP)g, a consequence of
Lemma 2.5, that v# is periodic with period Z", i.e., v® € C(R"/Z").

Since |[v?(y)| < M/B by comparison, {#v?(0) | 8 > 0} is bounded in R. We can
choose a sequence 0 < 3; — 0 as j — oo such that ﬂjfvﬂf (0) = —p, as j — oo, for some
p € [—M, M]. Now, by virtue of Lemma 2.2, we see that there exist constants « € (0, 1)
and C' > 0 such that

|vﬂ(m) —vB(y)\ <Clr—y|* forallz,y € R", B>0.
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Hence, the family of functions v; : y — vPi (y) — ming~ v%/, with j € N, is uniformly
bounded and equi-continuous on R™. In view of the periodicity of v;, we may hence
assume that v;(y) — v(y) uniformly on R", as j — oo, for some function v € C(R"/Z"),
and also that as 7 — oo,

185077 (y) + p| < CBjlyl* + 807 (0) + p| — 0.
Now, sending j — oo, we see that v is a solution of
F(y, Du(y), D*v(y)) = in R™,

Thus, (i, v) has all the properties required for the proof of (a).

Next, we turn to the proof of (b). Let (u,v), (v,w) € R x C(R"/Z"™) be two
solutions of cell problem (CP). In order to show that x4 = v, we suppose that p < v. We
may assume by adding a constant to v that v > w in R™. Then, for sufficiently small
B > 0, we observe that v and w are, respectively, a subsolution and a supersolution of
(CP)g, with ﬁ’(y,p, X) replaced by ﬁ(y,p, X)-— “TJ“’ By Lemma, 2.5, we see that v < w
in R™. This contradiction shows that yu = v.

Now, we apply the strong maximum principle (Lemma 2.4) to v, w and conclude
that v(y) = w(y) + C for some constant C € R.

Finally, part (c) is an immediate consequence of Lemma 2.3. QED

By Theorem 2.1 problem (CP) has a solution (u,v) € R x C(R™/Z™) and the
constant y is uniquely determined . In view of the dependence of y on Z,4,p and X,

we write

u= F (&, a,p, X).
We call the function F on R™ x R x R™ x S™ the homogenized or effective function of
F.
Let us observe that under the assumptions of Theorem 2.1 the value p = F(%, 4, p, X )

is characterized by the condition that if v > p then there is a subsolution w € C(R"/Z")
of

(2.9) F(y,Dw(y), D*w(y)) =v inR"

and if v < p then there is no subsolution w € BUC(R™) of (2.9). Indeed, by the choice
of u, there is a solution v € C(R"™/Z") of (2.9) with v replaced by u and for v > u, v is
a subsolution of (2.9). On the other hand, if there were a subsolution w € C(R"/Z")
of (2.9) with v < pu, then we would have

ptv

ew(z) + F(z, Dw(z), D*w(z)) < in R,

ptv in R”

ev(z) + F(z, Dv(z), D*v(z)) >



for sufficiently small € > 0. Here and henceforth, these inequalities are understood in
the viscosity sense in this context. Then by comparison, we get w < v in R", which
implies that w < v 4+ C' in R" for any constant C' € R. This contradiction verifies our
characterization of F (&, i, p, X ).

The above observation, of course, can be stated as

(2.10) F(&,4,p,X) = min{v € R | (2.9) has a subsolution w € C(R"/Z")}.
Similarly, under the assumptions of Theorem 2.1 we have
(2.11) F(&,4,p, X) = max{r € R | (2.9) has a supersolution w € C(R"/Z")}.

The effective function F' inherits properties (A1), (A3), (A5), (A6), and (A7). That is,

we have:

Proposition 2.6. Assume that (A1), (A2), (A5), and (A6) hold. Then : (a) For all
(z,u,p,X) € R" x R x R"™ x 8",

min F(z,y,u,p, X) < F’(x,u,p,X) < max F(z,y,u,p, X).
yeR™ yeR™

(b) If (A4) holds, then for each R > 0,
F € BUC(R" x [-R, R] x B(0,R) x B"*™(0, R)).
(¢) For (z,u,p) € R" x RX R"™ and X,Y € 8™, if Y > 0, then
F(z,u,p,X)—0trY < F(z,u,p, X +Y) < F(z,u,p, X) — 0trY.

(d) If (A3) holds then the function: u v+ F(x,u,p, X) — Au is non-decreasing in R for
any (z,p, X) € R® x R" x 8™. (e) For each R > 0 there is a modulus wgr such that
forz,y € R™ and (u,p,X) € [-R,R] x R™ x 8",

|F(z,u,p, X) = F(y,u,p, X)| < wr(lz — y|(1 + p| + [ X])))-
(f) For each R > 0 there is a constant Cr > 0 such that for x,p € R™ and u € [—R, R|,
|F(z,u,p,0)| < Cr(1+|p))-
(9) If (A7) holds, then

lim inf{F(z,u,p,0) | (z,u,p) € R" x [-R,R] x R", |p| >r} =00 for R> 0.

r—00



The next lemma is useful in the following arguments, which is adapted from [J2,
CKSS].

Lemma 2.7. Assume that (2.2)-(2.5) hold. Let u € C(R"™) be a bounded solution of
(2.1), with A = 0. Then : (a) wu is Lipschitz continuous in R™. (b) Let R > 0 be a
constant such that || Dul|peo(gny < R and Mg > 0 a constant such that

G(w,u,p,0)| < Mg for (z,u,p) € R" x [~R, B] x B(0, R).

Then for each ¢ > 0 there are functions v € C(R™) N W2 (R"™) and a constant
C =C(e,n,wr,0,0, R, Mg) > 0, where wg is the modulus from (2.5), such that

(2.12) lu—vF|peomny <& 05 [lpe@ny < [l mn),
(2.13) 1DV || oo (mny < [ Dull Lo (m7) [0* lw2.0e mn) < C,

and

(2.14) G(z,v"(z), Dv*t(z), D*vT(z)) > —¢ in R",

(2.15) G(z,v™(z), Dv(z),D*v " (z)) <e in R™

A proof of this lemma can be found in Section 4.

Proof of Proposition 2.6. Let (z,u,p,X) € R" xR xR" x 8™ and v € C(R"/Z")
be a solution of

F(z,y,u,p+ Dv(y), X + D*v(y)) = F(z,u,p, X) forye R"™

Let yT,y~ € R™ be points where v attains its maximum and minimum, respectively.
We have
F(z,y"u,p, X) < F(z,u,p, X) < F(z,y~,u,p, X),

from which follows assertion (a).
Next, let (z,u,p, X) € R" Xx R X R™ x 8™ and let Y € 8" satisfy Y > 0. There is a
solution v € C(R"™/Z") of

F(z,y,u,p+ Dv(y), X + Y + D*v(y)) = F(z,u,p, X +Y) for y € R".
Using (A1), we see that v is a subsolution of
F(z,y,u,p+ Dv(y), X + D*v(y)) = F(z,u,p, X +Y) +0trY fory € R",
and a supersolution of
F(z,y,u,p+ Dv(y), X + D*v(y)) = F(z,u,p, X+ Y) +0trY fory € R".
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Accordingly, by (2.10) and (2.11), we deduce that
Flz,u,p, X +Y)+0trY < F(z,u,p, X) < F(z,u,p, X + Y) + O 1Y,

which completes the proof of (c).
Fix R > 0 and € > 0. Fix (z,u,p, X) € R"™ x [-R, R] x B(0,R) x B™*(0, R), and
choose a solution v € C(R"/Z") of

F(a,€&,p+ Do(€), X + D*0(€)) = Flx,u,p, X) for & € R™.

Using (c), (a), and (A6), we see that if we set G(§,¢,Y) = F(z,&,p+¢, X +Y) —

F(z,u,p, X), then

|G(&,4,0)| <|F(z,&u,p+q,0)| + |F(z,u,p,0)] + 2n0|| X]||
<2Cg(1+ |p| + |q|) + 2nOR < (2Cg(1 + R) + 2nOR) (1 + |q|)-

By Lemmas 2.2 and 2.3 we find a constant C; > 0 depending only on n, 6, ©, R
such that ||Dv|[pe@m») < C1. Next by Lemma 2.7 we see that there are a function
w € BUC(R™) and a constant Cy > 0 depending only on €,n,0, 0, R such that w is a
subsolution of

F(z,&,p+ Dv(€),X + D*v(¢)) = F(z,u,p, X)+¢ for £ € R,

and such that
lwl|zeerry < [0llLoo@ny,  [1Dwl[poomny < |Dw]|poo(mny,  [[D*w]|oemn) < Co.

Let (y,t,q,Y) € R™ x [-R, R] x B(0, R) x B™*"(0, R). By assumption (A4), there
is a constant § € (0,1) depending only on R, C;, Cj such that if |z —y|+|u —t| + [p—
q|+ | X = Y| <d and (r, Z) € B(0,Cy) x B**"™(0,C3), then

|\F(z,{u,p+r, X +7)— F(y,&t,qg+rY +7Z)| <e.
Accordingly, we have
F(y,&,t,q+ Dw(€),Y + D*w(¢)) < F(z,u,p,X)+2¢ for £ € R™

In view of (2.10) this shows that

F(y,t,q,Y) < F(z,u,p, X) + 2.
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By symmetry, we have
F(z,u,p, X) < F(y,t,¢,Y) + 2¢,

and hence, |F(z,u,p, X) — F(y,t,q,Y)| < 2¢. This proves the required uniform conti-
nuity of . The boundedness of F' on R™® x R™ x [~R, R] x B(0, R) x B"*"(0, R) for
each R > 0 follows immediately from (a).

Now, we turn to (d) and assume that (A3) holds. Let (x,u,p, X) € R®"xRxR"™xS8"
and 7 > 0. Let v € C(R™/Z™) be the solution of

F(z,y,u+rp+Du(y), X + D*v(y)) = F(z,u+r,p,X) foryeR".
Using (A3), we infer that v is a subsolution of
F(z,y,u,p+ Dv(y), X + D*u(y)) + Ar < F(z,u+r,p,X) fory € R",

and moreover that F(z,u,p, X) < F(z,u+r,p, X) — Ar, which was to be shown.
Next we prove (e). Fix R > 0 and let wg be the modulus from (A5). Let (u,p, X) €
[—R,R] x R™ x 8" and z,y € R™, and let v € C(R™/Z™) be a solution of

F(z,€,u,p+ Du(€), X + D*u(¢)) = F(z,u,p,X) for £ € R".

Fix € € (0,1). Since v € W1*(R") by (d) of Theorem 2.1, by virtue of Lemma 2.6
there are a function w € C(R™/Z™) N W2 (R") and a constant C' = C(g) > 0 such
that

o= wle@n <& IDwlle@e) < IDellsemey  [1D?wllpmmny < C,
and w satisfies
F(z,&u,p+ Dw(€),X + D*w(¢)) < F(z,u,p, X)+¢ for £ € R™.

(Regarding the periodicity of w, consult the proof of Lemma 2.6.) In view of Lemmas
2.2 and 2.3, there is a constant C; > 0 which depends only on n, 6, ©, Cg, wg, where
CR is the constant from (A6), such that || Dv||zegrn) < Ch.

Hence, by (A5), we see that w satisfies

F(y,& up+ Dw(€), X + D*w(¢))
< F(z,u,p, X)+e+wr(lz—y|1+CL+C+p| +]X])) for e R,

which guarantees that
F(y,u,p, X) < F(2,u,p, X) + € + wr(|z — y[(1+ C1 + C + [p| + || X]]))-
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By symmetry, we conclude that
1F(y,u,p, X) — F(z,u,p, X)| < e + wr(|z —y|(1 + C1 + C + [p| + | X])).
Define the function op : [0, 00) — [0,00) by
or(r) = inf{e + wr((1+C1+C(e))r) | e € (0,1)},

which is upper semicontinuous and non-negative in [0, c0) and satisfies og(0) = 0. We
have
1F(y,u,p, X) = F(z,u,p, X)| < or(|lz — y[(1+ [p| + [X1]))-

Furthermore we may assume that op € C([0,00)); otherwise we may replace og by a
continuous function in [0, 00). We finish the proof of (e).

Finally we prove (f) and (g). Fix R > 0 and (z,u,p) € R™ x [-R, R] x R"™. By (a)
we have

i F 777’0<F77’0< a’F 77770'
nin F(z,y,u,p,0) < F(z,u,p,0) < max F(z,y, u,p,0)

(A6) and (A7), respectively, yield

‘F(.’L’,U,p, O)| < CR(l + |p|)7

and
1i\r‘r(1)inf{F(m,u,p, 0) |(z,p) € R*™, |p| >r}
> li{% inf{F (z,y,u,p,0) | (z,y,p) € R®, |p| > r} = oo.

Thus the proof is complete. QED

Now, fix (Z,u,p, X) € R" x R x R™ x 8™ and consider cell problems of finding a
pair (u,v) € R x C(R™/Z™) such that v is a solution, respectively, of

(CP), F(&,y,4,p,X + D*v(y)) =p fory € R,
and
(CP)12 F(z,y,u,p+ Dv(y), Dzv(y)) =pu foryeR"

These problems are special cases of (CP). (CP);; does not depend on X, and it is
exactly problem (CP) with X = 0. We denote the homogenized function associated
with (CP)12 by Fi, which is a function of (%, ,p). We obviously have

(216) F12("1A7a aaﬁ) = F(.’i’,’ﬁ,,ﬁ, 0)
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Let us define the function F(-;p) on R™ x R™ x R x R™ x 8™ by
F(:U7y’u7p7X;ﬁ) - F(x7y7u7ﬁ7X)7

which is a function independent of p. Then (CP) with F'(-;p) in place of F' is problem
(CP)s. Let F(-;p) and Fio denote the homogenized functions associated with (CP)
having F(-;p) and with (CP),a, respectively. It is clear that for all ¢ € R",

(2.17) Fy(#,1,p, X) = (&1, 4, X; ).
Next, we consider the cell problem
(CP)1 F(&,y,4,p+ Dv(y),0)=p for y € R",

where the unknown is a pair (u,v) € R x C(R"/Z") and (Z,4,p) € R" x R x R™ is an
arbitrary point. This is a first-order PDE for the function v and so does not have the
uniform ellipticity unlike previous cell problems.

Theorem 2.8. Assume that (A2)-(A4) and (A7) hold. Then: (a) There exists a
solution (u,v) € C(R™/Z™) of (CP),. (b) If (u,v), (v,w) € R x C(R"™/Z") are
solutions of cell problem (CP)y, then p = v. (¢) If (u,v) € R x C(R®/Z") is a
solution of (CP)y, then v is Lipschitz continuous in R™.

It is clear that in Theorem 2.8, the requirement of (A2) to F(z,y,u,p, X) is only
needed for X = 0.

We do not give the proof of Theorem 2.8 and instead refer to [E2], where a result
[E2, Lemma 2.1] similar to ours is proved under stronger assumptions. Consult e.g.
[CIL2] for technicalities in the current generality.

In view of Theorem 2.8, we can define the homogenized function F; associated with
cell problem (CP)q, which is a function on R™ x R x R™. That is, F(&,, p) is defined
as the value p for which there is a solution v € C(R™/Z") of (CP);.

Proportion 2.9. Under the hypotheses of Theorem 2.8, we have: (a) For all (x,u,p) €
R" x R x R",

%%F@%%mSEW%mﬁﬁﬁFW%%m

(b) For all R > 0, F; € C(R"x[-R, R]x B(0,R)). (c) If (A3) holds, then the function
u — Fy(x,u,p) — M is non-decreasing in R, where X is the constant from (A3). (d)
For any R > 0, lim,_, o inf{Fy (z,u,p) | (z,u,p) € R® x [-R, R] x R", [p| > r} = o00.

Outline of proof. @ Most of arguments of the proofs of (a), (b), (d), and (g) of
Proposition 2.6 apply to show assertion (a), (b), (c), and (d), respectively, with obvious
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modifications. We do not need (and can not use either) Lemmas 2.2, 2.3, and 2.7 here.
In this respect the following observation is useful. Let R > 0, (z,u,p) € R" x [-R, R] X
B(0,R), and v € C(R™/Z"™) be a solution of

(2.18) F(z,y,u,p+ Duv(y),0) = Fi(z,u,p) forye€ R"
Noting that
|F1(z,u,p)| < Cr = sup{|F(§,y,t,4,0)| | (£,9,t,9) € R* x [-R, R] x B(0, R)},

in view of (A7) we may choose a constant L > 0 so that for all (¢,y,%,q) € R™ x R™ X
[—R, R] x R™, if |q| > L, then

F(,y,t,q,0) > Cg.
Now (2.18) implies that v is a subsolution of
|Dv(y)| < L+ R in R",
which gives the Lipschitz bound ||Dv||pec(rn) < L + R. The bound L can be chosen so

that it depends on z, u, p only through R > 0. QED

3 Convergence results
We show in this section that, as ¢ — 0, the solutions u® of (P). converge to the
solution u of one of the homogenized equations

(3.1) Fy(z,u, Du(z), D*>u(x)) =0 in R",
(3.2) Fy(z,u, Du(z),0) =0 in R™,
(3.3) Fis(z,u, Du(z)) =0 in R",
and

(3.4) Fi(z,u, Du(z)) =0 in R"

We begin with the existence and uniqueness theorem for (P)..

Theorem 3.1. Let € > 0. Assume that (A1) and (A3)-(A5) hold. Then there exists a
unique bounded solution u® of (P)e and u® is Lipschitz continuous in R™.

Outline of proof. The first step is to establish the comparison principle between
bounded upper semicontinuous subsolutions and bounded lower semicontinuous super-
solutions of (P)c. To this end, one may follow the proof of [IL, Theorem III.1] with a
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minor and standard modification which takes care of the non-compactness of the domain
R™. (See also the proof of Lemma 2.5 in Section 4.)

The second step is to use the Perron procedure and to establish the existence of
bounded solution of (P).. By (A3) and (A4) the constants

+ sup |F(z,9,0,0,0)[/A
z,yeR™

are respectively super- and subsolutions of (P).. Thus the function
u®(z) = sup{v(z) | v a subsolution of (P)., —M/A <w(z) < M/X for z € R"},

where M = sup, ,cgn |[F(2,9,0,0,0)], is a solution of (P).. The comparison principle
guarantees that u® is continuous in R™. Lemma 2.3 gives a Lipschitz bound for u°®.
QED

We next state comparison and existence results for (3.1), (3.2), (3.3), and (3.4) in
the following theorems.

Theorem 3.2. Assume that (A1)-(A6). Then: (a)Ifu € USC(R") andv € LSC(R™)
are bounded sub- and supersolutions of (3.1), respectively, then u < v in R™. (b) There
exists a solution u € C(R™) N W1 (R™) of (3.1).

Remark. Due to Theorem 2.1, under the hypotheses of this or the next theorems the
respective homogenized functions Fy, Fy(-,0), and Fy» are well-defined.

Proof. The function F» has all the properties described in (b)-(f) of Proportion 2.6.
The proof of (a) is similar to that of Lemma 2.5, which we leave to the reader. One can

prove (b) as in the same way as the proof of Theorem 3.1. Also, (b) is a consequence
of Theorem 3.6 below. QED

Theorem 3.3. Assume that (A1)—(A7) hold. Then the conclusions of Theorem 3.2
hold both for (3.2) and for (3.3).

Remark. By Theorem 2.8, under the hypotheses of the above theorem the homogenized
functions F} is well-defined.

Proof. The function Fy(-,0) and Fy, have all the properties described in (b), (d)—(g) of
Proportion 2.6. The comparison and existence assertions are a consequence of classical
results (see e.g. [CIL1]). The Lipschitz regularity of the solutions of (3.2) or (3.3) are a
classical result as well (see, e.g., the outline of proof of Proposition 2.9). QED

Theorem 3.4. Assume that (A2)-(A5) and (A7) hold. Then the conclusions of The-
orem 3.2 hold for (3.4).

Proof. The function F; has all the properties described in (b)-(d) of Proposition
2.9. As before, the comparison and existence assertions and the Lipschitz regularity
property are consequences of classical results. QED
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We state our results on convergence of solutions of (P). according to the limit equa-

tions.

Theorem 3.5. Assume that lim.\06(¢) = 1 and that (A1)-(A6) hold. Let u® €
C(R")NWL>(R") be the solution of (P). for each e >0 and u € C(R™) NW1L°(R")
the solution of (3.1). Then u®(x) — u(zx) uniformly on R™ ase — 0.

We remark that, by Theorems 3.1 and 3.2, u® and u of the above theorem exist
uniquely.

The assertion of Theorem 3.5 is close to and a bit stronger than that of [E2, Theorem
3.3]. Indeed, our result holds under slightly weaker assumptions on F.

We use the following lemma in the proof of Theorem 3.5.

Lemma 3.6. Let Q be an open subset of R™, u € USC(Q), and v € C(2) N W= (Q).
Let # € Q and (p, X) € J>F(u —v)(&). Then there is a Y € S™ such that

(Du(2),Y) € T-u(2),
(p+ Du(2), X +Y) € J>Tu(z),

where 721)(3:) denotes the set of those points (¢,Y) € R™ x 8™ for which there is a
sequence ; — x such that v is twice differentiable at z;, i.e., it has the Taylor expansion
at zj up to second order terms, and (Dv(z;), D*v(z;)) = (¢,Y).

See [CIL2] for the definition of 7~ " u, etc. A proof will be given in Section 4.

Proof of Theorem 3.5. We only prove the local uniform convergence of u® to wu.
We just refer the reader to [HI] for an argument how to improve to the global uniform
convergence.

Setting M = sup, ,er~ [F(2,9,0,0,0)[, in view of the construction of u° in the proof
of Theorem 3.1, we see that ||u®||fe@mn) < M/A for all € > 0.

Define functions @ and v on R™ by

u(a) = limsup{u*(y) |y € R, |y —a| <1},

u(z) = lim inf{u®(y) |y € R, [y — | <r},
™\0
and will show that u and u are a subsolution and a supersolution of (3.1), respectively.
Once this is done, we conclude by Theorem 3.2 that w < v < u» in R™ and moreover
that u®(z) — u(z) locally uniformly in R™ as ¢ — 0, which was to be shown.

We show that @ is a subsolution of (3.1) and omit the proof of the assertion that u
is a supersolution of (3.1), since the proofs of these facts are symmetric.

Fix ¢ € C?(R™) and # € R™ so that w — ¢ has a strict maximum at #. Let

v € C(R™/Z"™) be a solution of
F(&,y,a,p, X + D*v(y)) = Fy(&, 4, p, X) for y € R,
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where 4 := u(2), p := Dp(&), and X := D2y(2). (Theorem 2.6 guarantees the existence
of such a v.)

Fix v > 0 and, in view of Lemma 2.7, choose a function w € C(R™/Z")NW 2> (R"™)
so that w is a supersolution of

F(&,y,0,p, X + D*w(y)) = Fy(2,4,p, X)—~ fory € R™.

By the definition of u, there are sequences 0 < €; — 0 and x; — % such that for each
J, the function u®(z) — p(z) — e?w(z/¢), with € = £, has a local maximum at z; and
uf(zj) > ase=¢; = 0.

Assume for the moment that w € C%(R™), which is not true in general. Then we
have

(3.5) F(zj,zj/e,u(z;), Do(z;) + eDw(z;/e), 6D*p(z;) + D*w(z;/e)) < 0,
(3.6) F(&,z;/e,0,p, X + D>w(x;/e)) > Fo(@,4,p, X) — 1,

and, sending j — oo and using the periodicity of F' and w, we obtain
0> F(&,¢14,p, X + D*w(§)) > Fy(2,1,p, X) —v

for some £ € R™. Because of the arbitrariness of v > 0, we conclude that

— A

In the general case we use Lemma 3.6, to find an X; € 8" for each j such that

(Dw(zj/e), X;) € T w(zj/e),
(Dy(z;) + eDw(zj/e), D*p(z;/c) + X;) € J>Tus(z;).

Then we obtain inequalities (3.5) and (3.6) with X; in place of D*w(z;/¢) and then
proceed exactly as above, to conclude (3.7). The proof is now complete. QED
Theorem 3.7. Assume that lim._,00(¢) = 0 and lim._,o0(¢)/e = oo and that (A1)-
(A7) hold. Let u®, u € C(R™) N WL>®(R"™) be the solutions of (P). and of (3.2),
respectively. Then u®(x) — u(xz) uniformly on R™ ase — 0.

We remark that u® and u in the above theorem exist and are unique by Theorems
3.1 and 3.3.

The proof below is similar to the previous one, and so we give just its outline.

Outline of proof. Again we only prove the local uniform convergence of u® to wu.
We define w and u as in the previous proof with current {u®}e~o. It is enough to
show that @ and u are sub- and supersolutions of (3.2), respectively.
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Again, we only prove that U is a subsolution of (3.2). Fix ¢ € C?(R") and # € R™
so that w — ¢ attains a strict maximum at Z. Let v € C(R™/Z™) be a solution of

F(z,y,u,p, D2v(y)) = F’z(ic, 4,p,0) fory e R",

where 4 := w(z) and p := Dyp(Z). Let v > 0 be an arbitrary number and choose
w € W2 (R") N C(R™/Z"™) so that w is a supersolution of

F(&,y,4,p, D*w(y)) = F>(&,4,p,0) —y fory € R™.

We can find sequences 0 < €; — 0 and z; — £, as j — oo, such that for each ¢ = ¢;
the function u® — ¢ — e26~*w(z/e) attains a maximum at z; and u®(z;) — 4, with
€ =¢€j, as j — oo. Proceeding as in the previous proof, we first get

F(zj,z/e,u(x;), Do(x;) + €6 'pj, 6D*p(z;) + X;) <0,
F(.’i‘,ﬂ?j/é’,ﬁ,ﬁ-ﬁ-é’])j,Xj) 2 FQ(i‘alaaﬁa 0) -

for some (p;, X;) € 72w(a:j/8) and for ¢ = ¢; and all j, and then, passing to the limit
as j — oo,
0> F(iagaﬂaﬁaX) > F2(£7aaﬁa0) -7

for some (¢, X) € R™ x 8. This shows that Fy(%,4,p,0) < 0, which completes the
proof. QED

Theorem 3.8. Assume that (A1)-(A7) hold and that lim._,od(e)/e = 1. Then the
solution u® € C(R™) N WH°(R™) converges to the solution uw € C(R™) N W1 (R™) of
(3.3) uniformly on R™ as e — 0.

Again this theorem is close to [E2, Theorem 4.4]. Our assumptions are slightly
weaker than those of [E2, Theorem 4.4].

The proof below is similar to those for Theorems 3.5 and 3.7.

Outline of proof. We follow the proof of the previous two theorems. To see that the
function @, which is defined as in the previous proof, is a subsolution of (3.3), we fix
p € C?(R") and & € R™ so that w — ¢ attains a strict maximum at £. Then we choose
a function w € C(R™) N W2>°(R") so that

F(&,y,8,p+ Dw(y), D*w(y)) = F15(&,4,p) —y for y € R",

where v > 0 is an arbitrarily fixed number and 4, p are defined as in the same fashion
as before.
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For € > 0 we consider the function u®(x) — ¢(x) — €26~ w(x/e) and its maximum
point x.. We then get

F(ze, e /e, u(xe), Dp(xe) + €6~ 'pe, 6D*p(zc) + Xc) <0,
F(j\:a $€/€7 @,ﬁ +p€7 Xs) Z F12(§:7 ﬁ'aﬁ) -7,

where (pe, Xe) € 7210(335 /€). The rest of the arguments are the same as before. QED

Theorem 3.9. Assume that (A1)-(A5) and (A7) hold and that lim._,¢d(e)/e = 0.
Then the solution u® € C(R™) N WL (R") of (P). converges to the solution u €
C(R") N WL(R") of (3.4) uniformly on R™ as e — 0.

Remark that the existence of u¢ and u in the above theorem is assured by Theorems
3.1 and 3.4.

Outline of proof. We argue as before and then come up to the situation that we have
a function ¢ € C*(R") and a point # € R™ such that u — ¢ attains a strict maximum
at &, where @ is defined as usual.

The next step is to fix a solution v € C(R"™/Z™) N W1>°(R") of

F(&,y,1,p+ Dv(y),0) > Fia(2,4,p) for y € R",

where 4 := u(z), p:= Dp(Z).

Since this equation is not uniformly elliptic, we cannot use Lemmas 2.7 and 3.6 in
this proof. Instead, we utilize inf-convolutions of v to find a function w € C(R™/Z™) N
W1°(R™) which is a supersolution of

F('i.7y7’a7ﬁ+Dw(y)70)ZF12(£.aa7ﬁ)_’7 fOI‘yERn,

where v > 0 is an arbitrarily fixed number, and which is semiconcave in R"™. Choose
a constant L > 0 so that the function w(x) — (L/2)|z|? is concave in R™. Note that if
p € DYw(zx), then (p, LI) € J>Vw(x) and that DYw(x) # () for all z € R™. Note as
well that, since w is almost everywhere differentiable, Dw(z) # 0, where Dw(x) denotes
the set of p € R™ for which there is a sequence y; — x such that w is differentiable at
y; and Dw(y;) — p as j — oo, and that Dw(z) C DT w(z) for all z € R™.

Fix sequences 0 < ¢; —+ 0 and R™ > z; — % so that for each j, the function
u® (x) — ¢(z) — ejw(z/e;) has a local maximum at z; and u® (z;) — @ as j — oo. Fix
j and write ¢ = ;. Fix p; € Dw(z;/e) and observe that

(DQO(.I‘]) +pj7 D2Q0(.75J) + 8_1LI) € J2’+UE(.’IIJ').
We then get

F(aj,25/e,u(@;), Dola

i) §(D*¢(x;) + e LI)) <0,
F(ﬂ?,.’L’j/&,U,p-i-pj,O) F -

+ pj,
(&, 4, D) — 7.
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Sending j — oo, we get
0> F(&,y,4,p+p,0) > Fi(2,4,p) —

for some y,p € R™, and conclude that w is a subsolution of (3.4). QED

4 Proof of lemmas
Proof of Lemma 2.5. Let e € (0,1) and « > 0, and set

1o €
O(z,y) = u(y) —v(y) — §|£L' — y\2 — §\$|2 for z,y € R".

This function clearly attains a maximum at a point (Z, ) € R*".

We argue by contradiction and, in order to get a contradiction, we suppose that
M :=supgn(u—v) > 0.

We choose a sequence {z;} C R" so that as j — oo,

(u—v)(z;) = M.

We may assume by replacing {z;} by a subsequence that the sequence of functions
G(z+zj,u,p,X) on R” x Rx R™ x 8" is locally uniformly convergent to some function
G. Define @ and u by

gl

(@) = limsup{u(y + ;) |y € Blaj, 1), § > 1/r},
T
v(@) = lim inf{o(y + ;) [y € B(wj,r), > 1/r}
T
Replacing G, u, and v by G, @, and v, respectively, we may assume that « — v attains
its maximum at the origin.

Then we follow the proof of [IL, Theorem III.1] with minor modifications. The first
step is to observe that there are X, ., Y, . € 8™ such that

Au(Z) + G(z,u(z), (T —y) +ex, Xqe+el) <0,
(@) + G(§,v(7), a(Z = §), —Ya,e) > 0,

I 0 Xoe O I -1
(o 7)< (5 )<= (S ),

Subtracting the second from the first of the above inequalities and sending ¢ — 0, we
get

(4.1) AM + 9] tr (Xa + Ya)| < wr(ra(1+ R + [ Xal)
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for some X,,Y, € 8™ satisfying

I 0 X, 0 I -1
s (D) (B D) ese( L )
where r, := liminf._,¢|Z — §| and for some R > 0. Here we have used the following
observations. By Lemma 2.3, we have

u(z) —v(y) <M+ Cilz—y| forz,yeR"

for some constant C'; > 0, and hence,

_ S a, € . a e
MSU(f)—U(y)—§\$—y\2—§|ﬂf|2SM+C|$—Z/\—§\$—ZU|2—§|$|2-

Therefore,
Similarly we have
and

for some constant Cs > 0. Hence, we have
alz — y| +elz| <2C; + Cs.

From (4.1) and (4.2), we argue as in the proof of [IL, Theorem III.1], to obtain a
contradiction after letting @ — co. QED

Proof of Lemma 2.7. The assertion (a) follows immediately from Lemma 2.3.

To show (b), we use the sup-inf and inf-sup convolutions ([LL]) and the techniques
of their use as adapted in [J2, CKSS]. We only prove the existence of v~ having the
required properties. It is left to to reader to show the existence of v™ fulfilling the
required properties.

Fix any ¢ > 0 and we first observe that the sup-convolution of u® gives a nice
approximation as a subsolution to (2.1). This is basically well-known, but the point is
to check this fact in our current situation. We only deal with the subsolution case, and
it is left to the reader to examine the other case .

Thus let ¢ € C2(R™) and § € R™ be such that u — ¢ attains a maximum at ¢, and
will show that

G(,u"(9), De(§), D*¢(§)) < o(e)
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for some function o : (0,00) — [0, 00] satisfying o(4+0) = 0 which depends only on
n, 0, wg, and R.
Indeed, according to the definition

ut(y) = max (u(z) — oo — ),

zeR™

we find a point Z € R™ such that the function

u(z) — o) — 5le — uP

attains a maximum at (z, ).
Now, by the maximum principle [CIL2, Theorem 3.2], we see that for some X,Y €

S™, we have

(4.3) (jg 3) = g (—II _II>
(4.4) G(:f:, (@), é(i —9), X) <0,
(4.5) —D?p(§) < Y.

Note that (4.3) and (4.5) together yield

(4.6) ()0( _Dgp(A)) <® (_II —II)
Since Dp(§) +e (g — 2) = 0 and u(Z) > u®(9), from (4.4) we get
G(9 +eDep(9), u*(9), Dp(§), X) < 0.
It is known (see [IL, Lemma III.1]) that (4.6) implies
(4.7) IX]] < CLe™?|tr (X = D*())"/? + | tr (X — D?p(§))))

for some constant C; > 0 which depends only on n. Note that, since Dp(g) = (1/¢)(& —
§) € Dtu(z), we have |Do(f)| < [[Du|lpermny < R. Using (4.6), (4.7), and this
observation, we calculate that
0> G(§+eDo(§),u*(9), De(3), D*¢(9) + (X — D*p(j))
> G( +eDo(§), u*(§), De(§), D*0(§)) + 0] tr (X — D*¢(3)|
> G(5,u°(3), Do (9), D*¢(9)) — sup (—0t + wr(eR[1 + R+ Ca(e 731 +1)]))

NS

/—\

sup
t>0
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Setting

o(e) = sup (—Ht +wr(eR(1+ R+ Cl[g_%t% + tD)) ’
>0

we observe that o : (0,00) — [0, 0o] satisfies o(4+0) = 0 and that
G(3,u°(3), Do (), D*0(7)) < o(c).

Thus, as far as o(e) < oo, u® is a subsolution of

(4.8) G(y,u*(§), De(j), D*u(y)) < o(e) in R™.

Note that o depends only on n, 0, wg, and R.

Fix such a function o, which may be assumed to be non-decreasing, and choose r > 0
so that o(r) < oc.

Let € > 0 and § > 0 satisfy ¢ + 6§ < r. As is observed in [CKSS, S], we have

(4.10) (“6+5)5 >u®>wu in R",

(4.11)  (us*?), (y) — 55ly|* is concave in R™,

(412)  (ust?), (y) + 5z y|? is convex in R™,

and moreover,

(4.13) if (ust?) is twice differentiable and (ut?);(§) > u®(j) at a point §j € R™,
then the matrix D? (u*®), (§) has 1/4 as an eigenvalue.

In particular, the function (u€+5) 5 has the W2 regularity.

We write v for (u®T9) s- Let § € R™ be a point such that (usT?) 5 is twice dif-
ferentiable at § and (u6+5)5 (9) > uf(g). Since D*v(§) + 1T > 0, using (4.13), we
get

1 1 1
t(D2 j —I>>———.
’ U(y)+€ -0 €

Furthermore, recalling that ||v]|peern) < 4|z~ @®n) < R, we have

G(§,v(9), Dv(§), D*v(9)) :G(g,v(g)),pv(g), —11 + D*u(9) +
< G(g,v(g),Du(g), ——1) By (D% ) + %I)

N N N n
<G(3,0(5), Dv(9), 0) +©Z - o
neo+0 0

5-
Fix ¢ € (0,7) and choose § = §(¢) € (0,¢) so that Mp + 28+ — & < (. Then it is
easy to check that v = (u®*?); is a subsolution of

<Mp +

G(y,v(y), Dv(y), D*v(y)) < o(e) in R™.
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Note here that the function € — §(¢) depends only on n, 6, ©, and Mp.
Finally, noting the well-known facts that there is a modulus 7y, which depends only
on R and the function d of ¢, such that

1) = ull e ey < 7(6)
and that ||v||zemr) < ||u||poe(mr) and || Dv||poorn) < || Dul|zoe (rn), we finish the proof.
QED

Lemma 4.1. Let Q be an open subset of R™ and f : Q2 — R™ a semiconvex function.
Then

J2Tf(x) C 72f(a:) for z € Q.

This is an observation due to Jensen [J1].

Proof. Fixz € Q and (p,X) € J>T f(x), and choose a function ¢ € C?(Q) so that
(f—o)(y) <0< (f—¢)(x) for y € Q\{z}. As a simple consequence of [CIL2, Theorem
A.2 and Lemma A.3], we find sequences Q2 > z; — = and R" x 8" > (p;, X;) — (0,0)
such that (pj, X;) € J?(f—¢)(z;) for all j. From this, we conclude that (p, X) € 72]”(1:).
QED

Proof of Lemma 2.4. Set w(z) = u(z) — v(z) for z € R™. Choose R > 0 so that
max{||u| Lo (mr), [[V]| Lo ®n); [ Dul| oo mny, | DV oo mn) } < R.

We begin by showing that

(4.14) P~ (D*w) — Lg|Dw| <0 in R",

where P~ is the Pucci extremal operator defined as

P (X)=min{—tr(AX) | AeS", 0] < A< OI}
=-0tr Xy +0trX_ for X € S".

To this aim, we first apply Lemma 2.7 to v and v to find for each ¢ > 0 u.,v. €
W22 (R™) N C(R™) such that

| — tel| oo (rr) < €, |v — vel[peemm) <,
G(z, Du(z), D*u.(z)) <&,
G(z, Dv.(x), D*v.(x)) > e.
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Set we(z) = ue(z) — ve(z) for x € R™. Let x € R™ and (p, X) € J>Tw.(z). By
Lemma 3.6, we find Y € 8™ such that (Dv.(z),Y) € 721)5 (z) and (p+ Dve(x), X +Y) €
J%Fu(z). Now, setting (r, Z) = (p + Dv.(z), X +Y), we have

2e >G(z,r,Z) — G(z,Dv:(x),Y)
>G(z,r,0)—OtrZy +0tr Z_ — G(z,Dve(x),0) +0trY, —OtrY_
>Lglr —q|+P~(Z) =P (Y) 2P~ (Z—Y) — Lg|r — Dve(z)| = P~ (X) - Cp|,

where Pt (X) := =P~ (—X). Therefore,
P~ (D*we(z)) — Lr|Dw.(z)| <2 in R™.

According to the stability property of viscosity solutions, we conclude by sending ¢ — 0
that (4.14) holds.

Using a limiting argument as in the proof of Lemma 2.7, we see that we may assume
that v — v attains a maximum at some point z € R".

The left of the proof is somehow standard, for which we refer to [BD]. QED

The second author learned from Mariko Arisawa that w satisfies (4.14) in the above
proof. He is grateful to her for this.

Proof of Lemma 3.6. We choose a function ¢ € C?(Q) so that v — ¢ attains a
maximum at #. Since v is semiconcave, we can find Y € 8™ such that (Dv(%),Y) €
J>%u(%). Since v is semiconvex, by Lemma 4.1, we have J?>Tv(%) C J v(£). Now,
by the assumption that u — v — ¢ has a maximum at , we see that J>% (v + ¢)(%) C
J%Fu(z). Combining these we get

(p+Du(2), X +Y) € (p, X) + J>Fu(2) C J>Tu(d).

This concludes the proof. QED
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