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Abstract

We investigate the long-time behavior of viscosity solutions of Hamilton-
Jacobi equations in Rn with convex and coercive Hamiltonians and give three
general criteria for the convergence of solutions to asymptotic solutions as time
goes to infinity. We apply the criteria to obtain more specific sufficient conditions
for the convergence to asymptotic solutions and then examine them with exam-
ples. We take the dynamical approach to these investigations which is based on
tools from weak KAM theory such as extremal curves, Aubry sets and represen-
tation formulas for solutions.

1 Introduction.

We are concerned with the Cauchy problem for the Hamilton-Jacobi equation





ut + H(x,Du) = 0 in Rn × (0, +∞),

u( · , 0) = u0 on Rn,
(1.1)

and study the long-time behavior of the solution of (1.1).

We assume the following (A1)–(A5) throughout this paper.
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(A1) H ∈ C(Rn × Rn),

(A2) inf{H(x, p) | x ∈ B(0, r), |p| ≥ R} −→ +∞ as R → +∞ for every r > 0,

(A3) H(x, p) is convex with respect to p for every x ∈ Rn,

(A4) for each φ ∈ S−H , there exist C > 0 and ψ ∈ S−H−C such that

lim
|x|→∞

(φ− ψ)(x) = ∞,

(A5) u0 ∈ C(Rn).

Here and henceforth, we denote by SH (resp., S−H , S+
H) the set of all continuous viscosity

solutions (resp., subsolutions, supersolutions) of H(x, Du(x)) = 0 in Rn. Similarly,

given a domain Ω, we denote by SH(Ω) (resp., S−H(Ω), S+
H(Ω)) the set of all continuous

viscosity solutions (resp., subsolutions, supersolutions) of H(x, Du(x)) = 0 in Ω. See,

for instance, [2, 20] for overviews on Hamilton-Jacobi equations and viscosity solutions

theory.

Note that hypotheses (A1)–(A5) are not enough to assure the unique solvability

of (1.1) in the sense of viscosity solution. To start our discussion with this generality,

we define the (unique) solution of (1.1) as follows. For any ψ ∈ C(Rn) and t ≥ 0, we

define the function Ttψ on Rn by

Ttψ(x) = inf
{∫ 0

−t

L(η(s), η̇(s)) ds + ψ(η(−t))
∣∣∣ η ∈ C([−t, 0]; x)

}
, (1.2)

and refer to the function u(x, t) := Ttu0(x) as the solution of (1.1). Here L is the

Lagrangian of H defined by L(x, ξ) = supp∈Rn(ξ · p − H(x, p)) for (x, ξ) ∈ R2n and

C([a, b]; x), with a < b, denotes the space of all absolutely continuous functions (called

curves) η : [a, b] → Rn (i.e. η ∈ AC([a, b])) such that η(b) = x. Also, C((−∞, a]; x)

denotes the space of all functions η ∈ C((−∞, a]) such that η ∈ C([c, a]; x) for all

c < a.

We remark here that Ttψ(x) is well-defined with the following interpretation and

Ttψ(x) ∈ [−∞, ∞) for all (x, t) ∈ Rn × [0, ∞). To see this, we fix ψ ∈ C(Rn). Note

that L(x, ξ) is lower semicontinuous on R2n, due to the assumption that H ∈ C(R2n),

and hence that the function s 7→ L(η(s), η̇(s)) is Lebesgue measurable on (−∞, 0)

for any η ∈ AC((−∞, 0]). Noting that H(x, 0) = − infξ∈Rn L(x, ξ) for all x ∈ Rn, we

observe that, for each t > 0, r > 0 and η ∈ AC([−t, 0]) satisfying η([−t, 0]) ⊂ B(0, r),

we have L(η(s), η̇(s)) ≥ −maxx∈B(0, r) H(x, 0). Therefore, for η ∈ AC([−t, 0]), it is

natural to set ∫ 0

−t

L(η(s), η̇(s)) ds = ∞

if s 7→ L(η(s), η̇(s)) is not integrable on (−t, 0). With this interpretation, Ttψ(x) is

well-defined for all (x, t) ∈ Rn × [0, ∞). Next, thanks to (A1)–(A3), we may choose a
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constant ε > 0 for each r > 0 (see Lemma 2.3 below or [18, Proposition 2.1]) such that

sup(x,ξ)∈B(0, r)×B(0, ε) L(x, ξ) < ∞. Then we see that for all (x, t) ∈ Rn × [0, ∞),

Ttψ(x) ≤
∫ 0

−t

L(x, 0) ds + ψ(x) = L(x, 0)t + ψ(x) < ∞.

Now, let us consider an example where Ttu0(x) = −∞ for some (x, t). Let n = 1,

H(p) = (1/2)p2 and u0(x) = −x2. Then the Lagrangian L of H is given by L(ξ) =

(1/2)ξ2. Consider the curve η ∈ C((−∞, 0]; 0) given by η(s) = cs, with c > 0, and

observe that for any t > 0,

Ttu0(0) ≤
∫ 0

−t

L(η̇(s)) ds + u0(η(−t)) =
c2t

2
− (ct)2 =

c2t

2
(1− 2t),

which implies that Ttu0(0) = −∞ if t > 1/2. We recall here (see [18, Theorems

A.1, A.2]) that if the function u(x, t) := Ttu0(x) is continuous on an open set U ⊂
Rn × (0, ∞), then u is a viscosity solution of ut + H(x,Du) = 0 in U .

The objective of this paper is to investigate the long-time behavior of the solution

of (1.1). More precisely, we are concerned with the convergence of the form

u(x, t) + at− φ(x) −→ 0 in C(Rn) as t →∞ (1.3)

for some a ∈ R and φ ∈ C(Rn), where C(Rn) is equipped with the topology of locally

uniform convergence. Note that if u satisfies (1.1) in the viscosity sense, then the

function φ(x)− at, which we call an asymptotic solution of (1.1), enjoys the following

stationary Hamilton-Jacobi equation in the viscosity sense:

H(x,Dφ) = a in Rn. (1.4)

Thus a natural question related to (1.3) is the additive eigenvalue problem for H which

seeks for a pair (a, φ) ∈ R × C(Rn) such that φ is a solution of (1.4), i.e., φ ∈ SH−a.

The additive eigenvalue problem appears in ergodic control, in which it is called the

ergodic control problem, and in homogenization, in which it is called the cell problem.

A standard approach to (1.3) is first to solve the additive eigenvalue problem for H

and then to try to prove the convergence (1.3) for each fixed solution of the additive

eigenvalue problem for H. However, to simplify our presentation in this paper, we will

deal only with the latter step in the above approach and investigate if (1.3) holds for a

fixed a ∈ R. We assume moreover that a = 0. Indeed, convergence (1.3) with general

a is equivalent to (1.3) with a = 0 once H and u are replaced by H−a and u(x, t)+at,

respectively. We will show in Theorem 2.9 below that

lim inf
t→∞

u(x, t) = u∞(x) for all x ∈ Rn,
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under the additional assumption:

(A6) −∞ < u−0 (x) ≤ u∞(x) < ∞ for all x ∈ Rn,

where

u−0 (x) := sup{φ(x) |φ ∈ S−H , φ ≤ u0 in Rn},
u∞(x) := inf{ψ(x) |ψ ∈ SH , ψ ≥ u−0 in Rn}.

This condition is equivalent to saying that

{φ ∈ S−H | φ ≤ u0 in Rn} 6= ∅ and {φ ∈ SH | φ ≥ u−0 in Rn} 6= ∅.

Thus our purpose in this paper is to show the following convergence:

u(·, t) −→ u∞ in C(Rn) as t →∞. (1.5)

Asymptotic problems of this type has been studied intensively in the last decade.

As one of the most typical cases, it was proved that if H satisfies (A1)–(A3) and H(x, p)

is Zn-periodic with respect to x and is strictly convex with respect to p, then for each

Zn-periodic initial function u0 ∈ BUC(Rn) there exists a solution (a, φ) ∈ R × C(Rn)

of the additive eigenvalue problem for H such that (1.3) is valid and the constant a

is determined independently of u0. We refer to the literatures [4, 6, 7, 10, 11, 21,

22, 23] and references therein for more details. Remark that [4] deal with non-convex

Hamiltonians whereas most of others are concerned only with convex ones.

It has also been of interest in recent years on the long-time behavior of viscosity

solutions to (1.1) that are not necessarily spatially periodic. As far as non-periodic

solutions are concerned, the above (A1)-(A6) are insufficient to obtain the convergence

(1.3) even if we admit strict convexity for H in any sense (see [5, 16]). The papers

[3, 14, 16, 18] deal with some situations in which the solution of (1.1) has indeed the

desired convergence of the form (1.3) for a suitable (a, φ).

Motivated by these earlier results, given a point z ∈ Rn, we introduce three general

criteria, each of which, together mostly with (A1)–(A6) above, guarantees the pointwise

convergence of the solution u of (1.1):

u(z, t) −→ u∞(z) as t −→∞. (1.6)

We then apply these criteria to obtain general convergence results of the form (1.5)

and apply them to several examples. Our results cover most of existing results, and,

on the other hand, involve a few observations which seem to be new.

One of our new observations is concerned with strict convexity for H. As pointed

out in several literatures (see e.g. [4]), it is necessary in some situations to require a

sort of strict convexity for H, as a genuine nonlinearity for H, so that the solution
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of (1.1) converges to an asymptotic solution as t → ∞. In the present paper, we use

condition (A7)+ or (A7)− which guarantees, respectively, strict convexity of H(x, p)

in p at the zero level-set of H “upward” or “downward” (see Section 4 for the precise

requirements). We point out here that some of our convergence results involving (A7)−
are not covered by the previous results. Another important feature in this paper is in

the observations of a “switch-back” motion of nearly optimal curves for the variational

formula (1.2) for Ttu0 in some situations. In one-dimensional case we have already

encountered such a switch-back motion (see [17]), and here we investigate with greater

generality the cases where such switch-back motions appear.

We use the dynamical approach in our investigations here which is based on tools

from weak KAM theory (see e.g. [10, 13, 8, 9]) such as extremal curves, Aubry sets

and representations formulas for solutions. Indeed, we formulate our general criteria

for the convergence to asymptotic solutions in terms of extremal curves, which seems

inevitable to attain further generality.

This paper is organized as follows. In the next section, we give some preliminaries

on tools in our dynamical approach such as dynamic programming principle, extremal

curves, Aubry sets, etc. In Section 3, we formulate and prove representation formulas

for solutions u ∈ SH , which are very close those obtained in [19]. In Section 4, we

give three general criteria, called (C1), (C2), (C3), for the pointwise convergence (1.6).

Sections 4, 5 and 6 are devoted to establishing some results based on (C1), (C2) and

(C3), respectively, and furthermore to applying them to (mostly simple) examples.

Before closing the introduction, we give a few of our notation. We use δB to denote

the indicator function of the set B, that is, δB(x) = 0 if x ∈ B and = ∞ otherwise. For

a metric space X, UC(X) (resp., BUC(X)) denotes the space of uniformly continuous

(resp., bounded uniformly continuous) functions on X. For a, b ∈ R we write a ∧
b = min{a, b}. For real-valued functions f, g, f ∧ g denotes the function given by

f ∧ g(x) = min{f(x), g(x)}.

2 Preliminaries.

We assume always in this section that (A1)–(A5) hold and will later assume also that

(A6) holds. We usually write u(x, t) for Ttu0(x) for simplicity of notation. We set

u−0 (x) := sup{φ(x) |φ ∈ S−H , φ ≤ u0 in Rn},
u∞(x) := inf{ψ(x) |ψ ∈ SH , ψ ≥ u−0 in Rn},

where we use the standard convention: inf ∅ = ∞ and sup ∅ = −∞.

Theorem 2.1. Assume that u−0 (x) = −∞ for some x ∈ Rn. Then

lim inf
t→∞

u(x, t) = −∞ for all x ∈ Rn
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According to this theorem, in order to get convergence (1.3) for a = 0, we have to

assume that u−0 (x) > −∞ for all x ∈ Rn.

We need the following two lemmas to prove the theorem above.

Lemma 2.2. For any x ∈ Rn and t, s > 0 we have

u(x, t + s) = inf

{∫ 0

−s

L(η(r), η̇(r)) dr + u(η(−s), t)
∣∣∣ η ∈ C([−s, 0]; x)

}

The above identity is referred to as the dynamic programming principle in the

theory of optimal control and as the semi-group property in terms of PDE. Here we

have to be careful that the expression under the infimum symbol may have value∞−∞,

and we regard ∞−∞ as ∞. An explanation on this interpretation is that only those

η ∈ C([−s, 0]; x) which have finite integral

∫ 0

−s

L(η(r), η̇(r)) dr

are considered to be “admissible”. The proof of the lemma above is standard and we

omit giving it here.

Lemma 2.3. For each R > 0 there are constants CR > 0 and δR > 0 such that

L(x, ξ) ≤ CR for all (x, ξ) ∈ B(0, R)×B(0, δR).

For a proof of this lemma we refer to [18, Proposition 2.1].

Proof of Theorem 2.1. We argue by contradiction. Thus we suppose that u−0 (x) ≡ −∞
and that there exists an x0 ∈ Rn such that lim inft→∞ u(x0, t) > −∞. By translation,

we may assume that x0 = 0.

We show first that for each R > 0 there exists a constant MR > 0 such that u(x, t) ≥
−MR for all (x, t) ∈ B(0, R)×[0,∞). For this, we fix R > 0 and choose constants τ > 0

and C0 > 0 so that u(0, t) ≥ −C0 for all t ≥ τ . Let CR > 0 and δR > 0 be the constants

from Lemma 2.3 and fix any (x, t) ∈ B(0, R) × [0, ∞). Let η ∈ C1([−tR, 0]), with

tR := τ + R/δR, be the line segment such that η(0) = 0, η(−tR) = x and |η̇(s)| ≤ δR

for all s ∈ (−tR, 0), and observe by the dynamic programming principle that for any

t ≥ 0,

u(0, t + tR) ≤
∫ 0

−tR

L(η(s), η̇(s)) ds + u(x, t) ≤ CRtR + u(x, t).

Hence we get u(x, t) ≥ −MR for all (x, t) ∈ Rn × (0, ∞), where MR := CRtR + C0.

Next we observe by (1.2) with ψ = u0 that u(x, t) ≤ L(x, 0)t + u0(x) for all (x, t) ∈
Rn× [0,∞). Since L(x, 0) = −minp∈Rn H(x, p) is a continuous function of x because of

(A1)–(A2), we see that u is locally bounded on Rn× [0,∞) and hence by [18, Theorem

A.1] for instance that u∗ is a viscosity subsolution of ut +H(x, Du) = 0 in Rn× (0, ∞),
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where u∗ is the upper semicontinuous envelope of u. Set w(x) = inft>0 u∗(x, t) for

x ∈ R, and observe that w is an upper semicontinuous viscosity solution of H(x,Dw) =

0 in Rn. Also, since u∗(x, t) ≤ L(x, 0)t + u0(x) for all (x, t) ∈ Rn × (0, ∞), we

have w(x) ≤ u0(x) for all x ∈ Rn. Since H is coercive, it is a standard observation

that w ∈ C(Rn). Now we see that u−0 (x) ≥ w(x) > −∞ for all x ∈ R, which is a

contradiction.

Theorem 2.4. Suppose that u−0 (x) > −∞ for x ∈ Rn and that u∞(x) ≡ ∞. Then

lim
t→∞

u(x, t) ≡ ∞.

As a consequence of this theorem, in order to have convergence (1.3) for a = 0, we

need to assume that u∞(x) < ∞ for all x ∈ Rn.

Proof. By assumption, we have u−0 (x) > −∞ and u∞(x) = ∞ for all x ∈ Rn. We

suppose that lim inft→∞ u(x0, t) < ∞ for some x0 ∈ Rn, and will obtain a contradiction.

We define the function u− on Rn × [0,∞) by u−(x, t) = Ttu
−
0 (x). Since u−0 ≤ u0

in Rn, we have u−(x, t) ≤ u(x, t) for all (x, t) ∈ Rn × [0,∞). Recall (see e.g. [18,

Proposition 2.5]) that for any ψ ∈ S−H ,

ψ(η(0))− ψ(η(−t)) ≤
∫ 0

−t

L(η(s), η̇(s)) ds for all η ∈ AC([−t, 0]). (2.1)

In particular, since u−0 ∈ S−H , we get

u−0 (x) ≤ Ttu
−
0 (x) = u−(x, t) for all (x, t) ∈ Rn × [0,∞).

This together with the dynamic programming principle yields

u−(x, t + s) ≥ inf
{∫ 0

−t

L(η(r), η̇(r)) dr + u−0 (η(−t))
∣∣ η ∈ C([−t, 0]; x)

}
= u−(x, t)

for all x ∈ Rn and t, s ∈ [0,∞). Thus we see that the function u−(x, t) is non-decreasing

in t for any x ∈ Rn.

We may assume without any loss of generality that x0 = 0. We choose a constant

C1 > 0 so that lim inft→∞ u(0, t) ≤ C1. By the monotonicity of u−(0, t), we have

u−(0, t) ≤ C1 for all t ≥ 0.

Fix any R > 0 and x ∈ B(0, R). Let CR > 0 and δR > 0 be the constants from Lemma

2.3. Set tR = R/δR. Let η ∈ C([−tR, 0]; x) be the line segment joining x to the origin.

Noting that |η̇(s)| ≤ δR for all s ∈ [−tR, 0], by the dynamic programming principle we

get for all t ∈ [0, ∞),

u−(x, t + tR) ≤
∫ 0

−tR

L(η(s), η̇(s)) ds + u−(0, t) ≤ CRtR + u−(0, t) ≤ CRtR + C1.
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Moreover, since u(x, t) ≤ L(x, 0)t + u0(x) for all t ≥ 0, by setting

KR := max
y∈B(0,R)

(|L(y, 0)|tR + |u0(y)|) + CRtR + C1,

we obtain u−(x, t) ≤ KR for all (x, t) ∈ B(0, R)× [0,∞).

We show next that u− is locally Lipschitz continuous on Rn × [0, ∞). Indeed,

fixing R > 0, x, y ∈ B(0, R) with x 6= y and t ≥ 0, we observe as above by using the

monotonicity of u−(x, t) in t, the dynamic programming principle and Lemma 2.3 that

for any τ > 0, if |x− y| ≤ δRτ , then

u−(y, t) ≤ u−(y, t + τ) ≤ u−(x, t) + CRτ.

Thus we obtain

|u−(y, t)− u−(x, t)| ≤ CRδ−1
R |x− y| for all x, y ∈ B(0, R) and t ≥ 0.

Similarly, we get for x ∈ B(0, R) and t, s ∈ [0, ∞),

u−(x, t) ≤ u−(x, t + s) ≤ u−(x, t) + CRs,

and hence |u−(x, t) − u−(x, s)| ≤ CR|t − s| for all x ∈ B(0, R) and t, s ∈ [0, ∞).

Thus, the function u− is Lipschitz continuous on B(0, R) × [0, ∞). Now, setting

w(x) := limt→∞ u−(x, t) for x ∈ Rn, we see that w is locally Lipschitz continuous

in Rn and w ∈ SH . The monotonicity of the function u−(x, t) in t guarantees that

u−0 ≤ w in Rn. Therefore we see that u∞(x) ≤ w(x) < ∞ for all x ∈ Rn, which is a

contradiction.

In view of Theorems 2.1 and 2.4, we henceforth assume, in addition to (A1)–(A5),

that (A6) holds. Of course, we now have u−0 ∈ S−H and u∞ ∈ SH .

Theorem 2.5. Let φ ∈ SH and z ∈ Rn. Then there exists a curve γ ∈ C((−∞, 0]; z)

such that for all t > 0,

∫ 0

−t

L(γ(s), γ̇(s)) ds = φ(z)− φ(γ(−t)). (2.2)

We do not give here the proof of the lemma above. Instead, we give two lemmas

which may be useful for the proof. Indeed, with the next two lemmas at hand, one can

follow, for instance, the proof of [18, Theorem 1.6].

Recall that a curve γ ∈ C((−∞, 0]; z) is said to be extremal for φ at z if it satisfies

(2.2) for all t > 0. We denote by Ez(φ) the set of all extremal curves for φ at z. Also,

we often use the notation: E(φ) :=
⋃

x∈Rn Ex(φ) and E :=
⋃

φ∈SH
E(φ).
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Lemma 2.6. Let φ ∈ SH . Then, for all (x, t) ∈ Rn × [0, ∞),

φ(x) = inf
{∫ 0

−t

L(η(s), η̇(s)) ds + φ(η(−t))
∣∣∣ η ∈ C([−t, 0]; x)

}
.

Proof. We write v(x, t) for the right hand side of the above equality. We need to show

that v(x, t) = φ(x) for all (x, t) ∈ Rn × (0, ∞).

As before, since φ ∈ S−H , we have

φ(x)− φ(η(−t)) ≤
∫ 0

−t

L(η(s), η̇(s)) ds for all (x, t) ∈ Rn, η ∈ C([−t, 0]; x),

and consequently

φ(x) ≤ v(x, t) for all (x, t) ∈ Rn × [0, ∞). (2.3)

We recall that

v(x, t) ≤ φ(x) + L(x, 0)t for all (x, t) ∈ Rn × [0, ∞),

which shows together with (2.3) that v is bounded locally on Rn× [0,∞). Now, we note

(see for instance [18]) that v is a viscosity solution of vt +H(x, Dv) = 0 in Rn× (0,∞)

in the sense that the upper envelope v∗ (resp., lower envelope v∗) of v is a viscosity

subsolution (resp., supersolution) of vt + H(x,Dv) = 0 in Rn × (0, ∞). By the above

estimates on v we see that v is continuous for t = 0.

It reamins to show that v(x, t) ≤ φ(x) for all (x, t) ∈ Rn× [0,∞). Since φ+1 and v∗

are subsolutions of ut +H(x,Du) = 0 in Rn×(0,∞), we see by the convexity of H that

the function v∗(x, t)∧ (φ(x) + 1) is a subsolution of ut + H(x,Du) = 0 in Rn× (0,∞).

Hence, by replacing v∗ by the function v∗(x, t)∧ (φ(x)+1) if necessary, we may assume

that v∗(x, t) ≤ φ(x) + 1 for all (x, t) ∈ Rn × [0,∞). By (A4) there is a pair of a C > 0

and a function ψ ∈ S−H−C such that lim|x|→∞(φ − ψ)(x) = ∞. Fix any ε ∈ (0, 1)

and define the function w on Rn × [0, ∞) by w(x, t) := (1− ε)v∗(x, t) + ε(ψ(x)−Ct).

Observe by the convexity of H that w is a viscosity subsolution of wt + H(x,Dw) = 0

in Rn × (0, ∞). Here, by adding a constant to ψ we may assume that ψ ≤ φ on Rn,

and note that w(x, 0) ≤ φ(x) for all x ∈ Rn and

w(x, t)− φ(x) ≤ ε(ψ(x)− φ(x)− 1− Ct) + 1 for all (x, t) ∈ Rn × [0, ∞),

and therefore that there is a constant R > 0 such that w(x, t) ≤ φ(x) for all (x, t) ∈
(Rn \B(0, R))× [0,∞). We apply a standard comparison result for viscosity sub- and

supersolutions of ut + H(x,Du) = 0 in Int B(0, R + 1) × [0, ∞), to obtain w ≤ φ in

B(0, R + 1)× [0,∞), which assures that w ≤ φ in Rn× [0, ∞). Sending ε → 0, we get

v∗(x, t) ≤ φ(x) for all (x, t) ∈ Rn × [0,∞), from which we conclude that v(x, t) = φ(x)

for all (x, t) ∈ Rn × [0, ∞).
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Remark 2.1. As above, if ψ ∈ S−H , then we have by (2.1)

ψ(x) ≤ inf
{∫ 0

−t

L(η(s), η̇(s)) ds + ψ(η(−t))
∣∣∣ η ∈ C([−t, 0]; x)

}
for x ∈ Rn. (2.4)

Moreover, if φ ∈ SH and γ ∈ Ez(φ) for some z ∈ Rn, then the function t 7→ (φ −
ψ)(γ(−t)) is non-increasing on [0, ∞). Indeed, by (2.4), we have

ψ(γ(b))− ψ(γ(a)) ≤
∫ b

a

L(γ(s), γ̇(s)) ds for any a < b ≤ 0.

Then, by the extremality of γ, we deduce that

∫ b

a

L(γ(s), γ̇(s)) ds = φ(γ(b))− φ(γ(a)) for any a < b ≤ 0.

From these, we get (φ− ψ)(γ(a)) ≤ (φ− ψ)(γ(b)) for any a < b ≤ 0.

The following observation is similar to [18, Lemma 6.5].

Lemma 2.7. Let φ ∈ SH . Then for each R > 0 there is an M > 0 such that, for any

y ∈ B(0, R), if η ∈ C([0, 1]; y) satisfies

∫ 1

0

L(η(s), η̇(s)) ds < φ(y)− φ(η(0)) + 1, (2.5)

then η(t) ∈ B(0, M) for all t ∈ [0, 1].

Proof. Fix R > 0, and let y ∈ B(0, R) and η ∈ C([0, 1]; y) satisfy (2.5). Let C > 0

and ψ ∈ S−H−C be those from assumption (A4) corresponding to φ ∈ SH . Then, for all

t ∈ [0, 1), we have (see e.g. [18, Proposition 2.5])

φ(η(t))− φ(η(0)) ≤
∫ t

0

L(η(s), η̇(s)) ds

ψ(y)− ψ(η(t)) ≤
∫ 1

t

L(η(s), η̇(s)) ds + C.

Adding the these two and (2.5), we obtain

(φ− ψ)(η(t)) < (φ− ψ)(y) + 1 + C,

which assures that η(t) ∈ B(0, M) for all t ∈ [0, 1] and for some M > 0 depending

only on R > 0, φ, ψ and C.

Assumption (A4) is only needed in our arguments to guarantee the existence of

extremal curves as observed in the theorem above.
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Example 2.2. Indeed, hypotheses (A1)–(A3) are not enough to guarantee existence of

extremal curves. To see this, let n = 1 and consider the Hamiltonian H(x, p) := (x2 +

1)(|p− 1| − 1). Observe that its Lagrangian L is given by L(x, ξ) = δ[−(x2+1), x2+1](ξ) +

ξ + x2 + 1. Note that H(x, 0) = 0 for any x ∈ R and φ(x) ≡ 0 is a solution of

H(x,Dφ(x)) = 0 in R. Fix any z ∈ R and suppose that there is an extremal curve

γ ∈ Ez(φ). By the extremality of γ, we have

0 = φ(z)− φ(γ(−t)) =

∫ 0

−t

L(γ(s), γ̇(s)) ds for all t > 0.

Consequently, we get γ̇(s) + γ(s)2 + 1 = 0 for a.e. s < 0 since L(x, ξ) ≥ 0 for all

(x, ξ) ∈ R2. Integrating this ODE, we get

arctan z − arctan γ(−t) + t = 0 for all t > 0.

That is, we must have

γ(−t) = tan(arctan z + t) for all t > 0.

This function γ, however, is not continuous on (−∞, 0], which is a contradiction. Thus

we conclude that there is no extremal curve for φ.

A class of Hamiltonians H which satisfy (A1)–(A4) is given as follows. Let H0 ∈
C(R2n) and f ∈ C(Rn). Assume that H0 ∈ BUC(Rn × B(0, R)) for all R > 0 and

limR→∞ inf{H0(x, p) | x ∈ Rn, |p| ≥ R} = ∞. Then it is easily checked that the

function H(x, p) := H0(x, p)− f(x) satisfies (A1)–(A4).

Proposition 2.8. The function u is continuous on Rn × [0, ∞) and satisfies (1.1) in

the viscosity sense.

Proof. As before, we have u(x, t) ≤ L(x, 0)t + u0(x) and u(x, t) ≥ u−0 (x) for all

(x, t) ∈ Rn × [0,∞). Hence the function u is locally bounded in Rn × [0,∞). It

is known (see e.g. [18, Theorems A.1 and A.2]) that u∗ (resp., u∗) is a viscosity

subsolution (resp., supersolution) of ut + H(x,Du) = 0 in Rn × (0,∞).

It remains to show that u is continuous in Rn×[0,∞), that is, u∗ ≤ u∗ in Rn×[0,∞).

We show first that limt→+0 u(x, t) = u0(x) uniformly on compact subsets of Rn. By

assumption (A4), we may choose C > 0 and ψ ∈ S−H−C so that lim|x|→∞(u−0 − ψ)(x) =

∞. Let R > 0 and ε ∈ (0, 1). Fix any (x, t) ∈ B(0, R) × (0, 1]. We choose a

γ ∈ C([−t, 0]; x) so that

u(x, t) + ε >

∫ 0

−t

L(γ(s), γ̇(s)) ds + u0(γ(−t)), (2.6)

and note that

ψ(x)− ψ(γ(−t)) ≤
∫ 0

−t

[L(γ(s), γ̇(s)) + C] ds. (2.7)
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Combining these two inequalities, we get

u(x, t) + ε > ψ(x) + (u0 − ψ)(γ(−t))− Ct,

and hence

(u−0 − ψ)(γ(−t)) ≤ (u0 − ψ)(x) + L(x, 0)t + Ct + ε.

From this we find a constant MR ≥ R, independent of (x, t) ∈ B(0, R) × (0, 1], such

that |γ(−t)| ≤ MR.

We choose a constant KR > 0, depending on R and ε, so that |u0(x) − u0(y)| ≤
ε + KR|x − y| for all x, y ∈ B(0, MR). Now we recall (see e.g. [18, Proof of Lemma

6.4]) that there is a constant C1 ≡ C1(R, ε) > 0 such that L(y, ξ) ≥ (KR + 1)|ξ| − C1

for all (x, ξ) ∈ B(0,MR)× Rn. Using this, we get

∫ 0

−t

((KR + 1)|γ̇(s)| − C1) ds ≤
∫ 0

−t

L(γ(s), γ̇(s)) ds

< ε + L(x, 0)t + u0(x)− u0(γ(−t)) ≤ 2ε + L(x, 0)t + KR|x− γ(−t)|

≤ 2ε + L(x, 0)t + KR

∫ 0

−t

|γ̇(s)| ds,

and therefore

|x− γ(−t)| ≤
∫ 0

−t

|γ̇(s)| ds < 2ε + (C1 + max
B(0,R)

|L(·, 0)|)t. (2.8)

Let ωR be the modulus of continuity of u0 − ψ on B(0,MR). We observe by (2.6)

and (2.7) that

u(x, t) > −ε + ψ(x) + (u0 − ψ)(γ(−t))− Ct ≥ −ε + u0(x)− ωR(|x− γ(−t)|)− Ct.

From this and (2.8) we see that there is a modulus νR such that u(x, t) ≥ u0(x)−νR(t)

for all (x, t) ∈ B(0, R)× [0, 1].

Now, as in the proof of Lemma 2.6, we may apply a comparison result for viscosity

sub- and supersolutions, to obtain (u−0 + A) ∧ u∗ ≤ u∗ in Rn × [0,∞) for all A > 0,

which shows that u∗ ≤ u∗ in Rn × [0,∞).

Theorem 2.9. The following two equalities hold: for all (x, t) ∈ Rn × [0,∞),

(Ttu
−
0 )(x) = inf

s≥t
u(x, s) and u∞(x) = lim inf

s→∞
u(x, s).

We can easily adapt the proof of [16, Lemma 4.1] to prove the above theorem.

As noted in the introduction, because of Theorem 2.9, our problem is now reduced

to proving the locally uniform convergence (1.5), that is,

Ttu0 → u∞ in C(Rn) as t →∞.
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Proposition 2.10. The pointwise convergence

u(x, t) → u∞(x) as t →∞ (2.9)

for every x ∈ Rn is equivalent to the locally uniform convergence (1.5).

Proof. We need only to show that the pointwise convergence (2.9) yields the locally

uniform convergecne (1.5). Since u−0 ∈ S−H , the function t → Ttu
−
0 (x) is non-decreasing

in [0, ∞) and Ttu
−
0 (x) → u∞(x) as t →∞ for all x ∈ Rn. Therefore, by Dini’s lemma,

we see that Ttu
−
0 → u∞ in C(Rn) as t →∞. By comparison, we get Ttu

−
0 (x) ≤ u(x, t)

for all (x, t) ∈ Rn × [0, ∞). These show that max{0, u∞(x) − u(x, t)} → 0 locally

uniformly in x ∈ Rn as t →∞.

Next we assume that (2.9) holds for every x ∈ Rn. Fix any R > 0 and let CR > 0

and δR > 0 be the constants from Lemma 2.3. Observe by the dynamic programming

principle that for any x, y ∈ B(0, R) and h > 0, if |y − x| ≤ δRh, then

u(y, t + h) ≤ CRh + u(x, t).

From this and (2.9), we get

lim sup
t→∞

u(y, t) ≤ u∞(x) + CRh

for all x, y ∈ B(0, R), h > 0 such that |y − x| ≤ δRh. Hence, by the continuity of

u∞ and a standard compactness arguemnt, we see that max{0, u(x, t) − u∞(x)} → 0

uniformly for x ∈ B(0, R) as t →∞. We thus conclude that u(·, t) → u∞ in C(Rn) as

t →∞.

It is well-known (e.g. [7, 14, 18, 17]) under a little more restrictive hypotheses that

u−0 can be represented as

u−0 (x) = inf{u0(y) + dH(x, y) | y ∈ Rn} for x ∈ Rn, (2.10)

where dH is defined by

dH(x, y) := sup{φ(x)− φ(y) |φ ∈ S−H}.

Indeed, the formula (2.10) is still valid in our setting. To see this, we observe that

v(x) := inf{u0(y) + dH(x, y) | y ∈ Rn} ≤ u0(x) + dH(x, x) = u0(x) for all x ∈ Rn.

Also, since dH(·, y) is the maximum subsolution of H(x,Du) = 0 in Rn among those

vanishing at y, we have

u−0 (x)− u0(y) ≤ u−0 (x)− u−0 (y) ≤ dH(x, y) for all x, y ∈ Rn,
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from which we get u−0 (x) ≤ v(x) for all x ∈ Rn. We thus conclude that u−0 = v.

Note (see e.g. [18, Proposition 8.2]) that dH can be written as

dH(x, y) = inf
{ ∫ 0

−t

L(η(s), η̇(s)) ds
∣∣ t > 0, η ∈ C([−t, 0]; x), η(−t) = y

}
. (2.11)

Now, we introduce the Aubry set AH (see e.g. [13]) as the subset of Rn defined by

AH = {y ∈ Rn | dH(·, y) ∈ SH}.
A remark here is that dH(·, y) ∈ SH(Rn \ {y}) for all y ∈ Rn, i.e, dH(·, y) is a vis-

cosity solution of H(x, Du) = 0 in Rn \ {y}. Recall (see e.g. [18, 13]) that another

characterization for y ∈ Rn to be in AH is given by the condition

inf
{∫ 0

−t

L(η(s), η̇(s)) ds
∣∣ t ≥ 1, η ∈ AC([−t, 0]), η(0) = η(−t) = y

}
= 0. (2.12)

In particular, if L(y, 0) ≤ 0 for some y, then y ∈ AH . Such a point y is called an

equilibrium. Note here that L(x, 0) ≥ 0 for all x ∈ Rn since (A6) is in effect and

accordingly minp∈Rn H(x, p) ≤ 0 for all x ∈ Rn. Thus we have: y is an equilibrium if

and only if L(y, 0) = 0.

Theorem 2.11. (a) Let γ ∈ E(u∞). Then limt→∞(u∞ − u−0 )(γ(−t)) = 0. (b) Let

φ ∈ SH and γ ∈ E(φ). Then every ω-limit point of the orbit γ(−t), t ≥ 0, is a point of

AH , that is, if {tj} ⊂ (0,∞) is an increasing sequence such that limj→∞ tj = ∞ and

limj→∞ γ(−tj) = y for some y ∈ Rn, then y ∈ AH .

Proof. To see that (a) is valid, we set γ(0) = z and observe that

Ttu
−
0 (z) ≤

∫ 0

−t

L(γ(s), γ̇(s)) ds + u−0 (γ(−t)) = u∞(z)− u∞(γ(−t)) + u−0 (γ(−t)).

Since limt→∞ Ttu
−
0 (z) = u∞(z) by Theorem 2.9, from the above inequality, we get

lim supt→∞(u∞−u−0 )(γ(−t)) ≤ 0. But we have u∞ ≥ u−0 in Rn and hence limt→∞(u∞−
u−0 )(γ(−t)) = 0.

We next show that (b) is valid. Let y ∈ Rn be a limit point of a sequence {γ(−tj)},
where {tj} ⊂ (0, ∞) is an increasing sequence such that tj → ∞ and γ(−tj) → y

as j → ∞. Let δ > 0 and C > 0 be, respectively, the constants δR and CR from

Lemma 2.3 for R = |y| + 1. Fix ε > 0 and choose j, k ∈ N so that tj + 1 < tk

and |γ(−tj) − y| + |γ(−tk) − y| < min{εδ/C, 1} and |φ(γ(−tj)) − φ(γ(−tk))| < ε.

Setting yi = γ(−ti) and τi = |y − yi|/δ for i = j, k, ξj = δ(yj − y)/|yj − y| if yj 6= y,

ξk = δ(y − yk)/|y − yk| if yk 6= y, and r = tk − tj, we define the curve η by

η(s) =





y − sξj for s ∈ [−τj, 0],

γ(s + τj − tj) for s ∈ [−(τj + r), −τj],

yk − (s + τj + r)ξk for s ∈ [−(τj + r + τk), −(τj + r)].
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We observe that η(0) = η(−(τj + r + τk)) = y, τj + r + τk > 1 and

∫ 0

−(τj+r+τk)

L(η(s), η̇(s)) ds

=

∫ 0

−τj

L(y − sξj, ξj) ds +

∫ −tj

−tk

L(γ(s), γ̇(s)) ds +

∫ 0

−τk

L(yk − sξk, ξk) ds

≤ C(τj + τk) + φ(yj)− φ(yk) < 2ε,

and conclude that y ∈ AH .

We recall the following proposition.

Lemma 2.12. Let U ⊂ Rn be an open set. Then, AH ∩ U = ∅ if and only if there

exist function f ∈ C(Rn) and ψ ∈ S−H+f such that f ≥ 0 in Rn and f > 0 in U .

Instead of giving a proof of the lemma above, let us recall [18, Lemmas 8.4, 8.5]

which states that the same equivalence as above holds for any compact subsets U of

Rn. From this, we see immediately that the “if” part is valid. The proof of the “only

if” part is as follows. We choose a sequence {Kj} of compact subsets of U so that⋃
j KJ = U . Fix a ψ0 ∈ S−H and then select a sequence {ψj} ⊂ S−H in view of the

proof of [18, Lemma 8.4] so that H(x,Dψj) ≤ −δj in a neighborhood of Kj in the

viscosity sense for any j ∈ N, where δj > 0 is a constant, and ψ0 ≤ ψj ≤ ψ0 + 1 in

Rn for all j ∈ N. We next observe that ψ :=
∑

j∈N ψj/2
j converges in C(Rn) and

that ψ is a subsolution of H(x,Dψ) ≤ −f(x) in Rn in the viscosity sense for some

function f ∈ C(Rn) satisfying f ≥ 0 in Rn and f > 0 in U . See also Fathi-Siconolfi

[12, Proposition 6.1].

3 Representation formula.

We assume throughout this section that (A1)-(A4) are satisfied and that S−H 6= ∅,
and we establish a representation formula for v ∈ SH . We do not assume here that

(A6) holds, but remark that (A6) implies that S−H 6= ∅. Our formula is similar to

representation formulas for v ∈ SH(Ω) obtained in [19, Theorems 5.1 and 5.3] for

general domain Ω ⊂ Rn, which extend the classical representation formula [13, Theorem

6.7] for v ∈ SH(Ω), in the case where Ω is an n dimensional torus, of the form

v(x) = inf{dH(x, y) + v(y) | y ∈ AH},

where dH and AH are defined in the same way as in the previous section.

Fix any v ∈ SH . Let γ ∈ E(v). Note that
∫ −t

−r

L(γ(s), γ̇(s)) ds = v(γ(−t))− v(γ(−r)) ≤
∫ −t

−r

L(η(s), η̇(s)) ds
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for 0 ≤ t < r and any η ∈ AC([−r, −t]) satisfying η(s) = γ(s) at s = −t,−r. Hence

we have

v(γ(−t))− v(γ(−r)) = inf

∫ −t

−r

L(η(s), η̇(s)) ds,

where the infimum is taken over all η ∈ AC([−r, −t]), with η(s) = γ(s) at s = −t,−r.

This together with (2.11) assures that

v(γ(−t)) = v(γ(−r)) + dH(γ(−t), γ(−r)) for 0 ≤ t ≤ r. (3.1)

Lemma 3.1. Let v ∈ SH and γ ∈ E(v). There is a function φ ∈ SH such that as

t →∞,

v(γ(−t)) + dH(·, γ(−t)) −→ φ in C(Rn).

Moreover φ has the properties: (a) φ = v on γ((−∞, 0]) and (b) φ ≥ v in Rn.

The above lemma is similar to [19, Lemma 5.2].

Proof. Set ψt(x) = v(γ(−t)) + dH(x, γ(−t)) for (x, t) ∈ Rn × [0, ∞). We have v(x) ≤
v(γ(−t)) + dH(x, γ(−t)) for any (x, t) ∈ Rn × [0, ∞) and hence v ≤ ψt in Rn for any

t ≥ 0. Next let 0 ≤ s ≤ t. By (3.1) we see that v(γ(−s)) = ψt(γ(−s)). That is, we

have ψt = v on the set γ([−t, 0]). Since ψt ∈ S−H , we get for x ∈ Rn,

ψt(x)− ψt(γ(−s)) ≤ dH(x, γ(−s)),

and hence

ψt(x) ≤ ψt(γ(−s)) + dH(x, γ(−s)) = v(γ(−s)) + dH(x, γ(−s)) = ψs(x).

Now, noting that {ψt}t≥0 is locally equi-Lipschitz continuous and locally uniformly

bounded in Rn, we conclude by the monotonicity of the sequence {ψt} that ψt converges

to a function φ in C(Rn) as t → ∞. It is clear that v = φ on γ((−∞, 0]) and v ≤ φ

on Rn. To check that φ ∈ SH , we consider first the case where supt≥0 |γ(−t)| = ∞.

We choose a sequence {tj} ⊂ (0,∞) so that |γ(−tj)| → ∞ (and hence tj → ∞) as

j →∞. Since ψt ∈ SH(Rn \ {γ(−t)}), we see by the stability of the viscosity property

that φ ∈ SH . Next assume that supt≥0 |γ(−t)| < ∞. We may choose a sequence

{tj} ⊂ (0, ∞) diverging to infinity such that γ(−tj) → y as j → ∞ for some y ∈ Rn,

and we have

v(γ(−tj)) + dH(·, γ(−tj)) −→ v(y) + dH(·, y) in C(Rn) as j →∞,

which shows that φ = v(y)+ dH(·, y). Now, since y ∈ AH due to Theorem 2.11 (b), we

conclude that φ ∈ SH .
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Similarly to [19], we write g(v, γ) for the function φ ∈ SH given by the lemma

above. That is,

g(v, γ)(x) = lim
t→∞

[v(γ(−t)) + dH(x, γ(−t))] for x ∈ Rn.

We remark in view of Theorem 2.11 (b) that, in the above definition, we have either

limt→∞ |γ(−t)| = ∞ or g(v, γ) = v(y) + dH(·, y) for some y ∈ AH .

Theorem 3.2. Let v ∈ SH . Then

v(x) = inf{g(v, γ)(x) | γ ∈ E(v)} for all x ∈ Rn. (3.2)

Proof. We write w(x) for the right hand side of the above identity. Let z ∈ Rn. In

view of Theorem 2.5, there exists a γ ∈ Ez(v), and, by the definition of g(v, γ), we have

v = g(v, γ) on γ((−∞, 0]). In particular, v(z) = g(v, γ)(z) ≥ w(z). Hence, w ≤ v in

Rn. On the other hand, since v ≤ g(v, γ) in Rn for any γ ∈ E(v) by Lemma 3.1, we

have v ≤ w in Rn. Thus we see that v = w in Rn.

Note that the function φ := g(v, γ), with v ∈ SH and γ ∈ E(v), has the property

that φ(yj) + dH(·, yj) → φ in C(Rn) as j →∞ for some sequence {yj} ⊂ Rn satisfying

either limj→∞ |yj| = ∞ or limj→∞ yj = y for some y0 ∈ AH . (Take yj = γ(−tj) with

an appropriate sequence tj → ∞.) We denote the set of the functions φ ∈ SH having

this property by ∆∗, which is similar to the union of ∆∗
0 and AH in [19].

The above formula (3.2) is more precise than that in [19, Theomre 5.4] due to,

roughly speaking, the fact that the choice of the “ideal boundary”

{g(v, γ) | γ ∈ E(v)} \ {v(y) + dH(·, y) | y ∈ AH}

of Rn \ AH here depends on v.

We define the functions g±(v, γ) on Rn for v ∈ C(Rn) and γ ∈ E by

g+(v, γ)(x) = lim sup
t→∞

[v(γ(−t)) + dH(x, γ(−t))],

g−(v, γ)(x) = lim inf
t→∞

[v(γ(−t)) + dH(x, γ(−t))].

We write g(v, γ) for g+(v, γ) if g+(v, γ) = g−(v, γ) ∈ C(Rn). Of course, we have

−∞ ≤ g−(v, γ)(x) ≤ g+(v, γ)(x) ≤ ∞ for all x ∈ Rn. We denote by BH the set of

all those φ ∈ SH for which there corresponds a sequence {(yj, cj)} ⊂ Rn+1 such that

cj + dH(·, yj) → φ in C(Rn) as j →∞.

Proposition 3.3. Let (v, γ) ∈ C(Rn)×E . (a) If g+(v, γ)(x0) ∈ R (resp., g−(v, γ)(x0) ∈
R) for some x0 ∈ Rn, then g+(v, γ) ∈ BH (resp., g−(v, γ) ∈ BH). (b) If v ∈ S−H , then

v ≤ g−(v, γ) in Rn.
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Proof. We begin with assertion (a). Assume that g+(v, γ)(x0) ∈ R for some x0 ∈ Rn.

Choose a φ ∈ SH so that γ ∈ E(φ). We know that for some ψ ∈ SH ,

φ(γ(−t)) + dH(·, γ(−t)) → ψ in C(Rn) as t →∞.

Hence, we get

g+(v, γ)(x0)− ψ(x0) = lim sup
t→∞

[v(γ(−t))− φ(γ(−t))]

= g+(v, γ)(x)− ψ(x) for all x ∈ Rn.

That is, we have g+(v, γ)(x) = ψ(x)+g+(v, γ)(x0)−ψ(x0) for all x ∈ Rn and therefore

g+(v, γ) ∈ BH . An argument parallel to the above shows that if g−(v, γ)(x0) ∈ R for

some x0 ∈ Rn, then g−(v, γ) ∈ BH .

Next we turn to assertion (b). Assume that v ∈ S−H . Recalling that v(x) −
v(γ(−t)) ≤ dH(x, γ(−t)) for all x ∈ Rn, t > 0, we see that v(x) ≤ g−(v, γ)(x) for

all x ∈ Rn. The proof is complete.

The following proposition is an obvious consequence of Proposition 3.3 and Theo-

rem 3.2.

Corollary 3.4. (a) If φ ∈ S−H , then

φ(x) ≤ inf{g−(φ, γ)(x) | γ ∈ E} for all x ∈ Rn.

(b) If φ ∈ SH , then

φ(x) = inf{g−(φ, γ)(x) | γ ∈ E} = inf{g+(φ, γ)(x) | γ ∈ E} for all x ∈ Rn.

4 General criteria for pointwise convergence.

Throughout this section we assume that H and u0 satisfy (A1)-(A6), and we will later

assume additionally either (A7)+ or (A7)−.

As Proposition 2.10 states, in order to show the locally uniform convergence (1.5),

we need only to show the pointwise convergence of Ttu0(x) of u∞(x) as t →∞ for every

x ∈ Rn. Let z ∈ Rn. In this section we seek for criteria for the pointwise convergence

u(z, t) := (Ttu0)(z) → u∞(z) as t →∞. (4.1)

We fix any γ ∈ Ez(u∞), and we introduce the first criterion

(C1) lim
t→∞

(u0 − u∞)(γ(−t)) = 0.

Note that u−0 ≤ u0 in Rn and limt→∞(u∞−u−0 )(γ(−t)) = 0 by Theorem 2.11 (a). Hence

condition (C1) is equivalent to the condition

lim
t→∞

(u0 − u−0 )(γ(−t)) = 0.

18



Theorem 4.1. Under condition (C1), the convergence (4.1) holds.

Proof. By the variational formula (1.2) with ψ = u0 and the definition of extremal

curves, we see that

u(z, t) ≤
∫ 0

−t

L(γ(s), γ̇(s)) ds + u0(γ(−t))

= u∞(z)− u∞(γ(−t)) + u0(γ(−t)) for all t > 0.

From this together with (C1) and Theorem 2.9, we get

lim sup
t→∞

u(z, t) ≤ u∞(z) + lim
t→∞

(u0 − u∞)(γ(−t)) = u∞(z) = lim inf
t→∞

u(z, t),

which implies (4.1).

Next we introduce our second criterion.

(C2) For each ε > 0 there exists a τ > 0 such that for any t > 0 and for some

η ∈ AC([−t, 0]),

η(−t) = η(0) = γ(−τ) and

∫ 0

−t

L(η(s), η̇(s)) ds < ε.

Theorem 4.2. Under condition (C2), the convergence (4.1) holds.

Proof. Fix any ε > 0 and let τ > 0 be the constant from assumption (C2). Set

y = γ(−τ) and choose a σ > 0 in view of Theorem 2.9 so that u(y, σ) < u∞(y) + ε.

Fix any t > 0. By (C2), we may choose an η ∈ AC([−t, 0]) such that η(−t) = η(0) = y

and ∫ 0

−t

L(η(s), η̇(s)) ds < ε.

Now, using the dynamic programming principle (Lemma 2.2), we compute that

u(z, τ + σ + t) ≤
∫ 0

−τ

L(γ(s), γ̇(s)) ds + u(γ(−τ), t + σ)

≤ u∞(z)− u∞(y) +

∫ 0

−t

L(η(s), η̇(s)) ds + u(η(−t), σ)

< u∞(z)− u∞(y) + ε + u(y, σ)

< u∞(z)− u∞(y) + u∞(y) + 2ε = u∞(z) + 2ε.

Consequently we obtain

lim sup
t→∞

u(z, t) ≤ u∞(z) = lim inf
t→∞

u(z, t),

which concludes the proof.
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Our third criterion is the following.

(C3) For any ε > 0, there exists a τ > 0 and for each t ≥ τ , a σ(t) ∈ [0, τ ] such that

u∞(γ(−t)) + ε > u(γ(−t), σ(t)).

Note that the above inequality is equivalent to the condition that there is an η ∈
C([−σ(t), 0]; γ(−t)) such that

u∞(γ(−t)) + ε >

∫ 0

−σ(t)

L(η(s), η̇(s)) ds + u0(η(−σ(t))).

In our next theorem, condition (C3) is used together with one of the conditions

(A7)± on H, which are certain strict convexity requirements on H. We set Q :=

{(x, p) ∈ R2n |H(x, p) = 0} and

S := {(x, ξ) ∈ R2n | (x, p) ∈ Q, ξ ∈ D−
2 H(x, p) for some p ∈ Rn},

where D−
2 H(x, p) stands for the subdifferential of H with respect to the p-variable.

(A7)+ (resp., (A7)−) There exists a modulus ω satisfying ω(r) > 0 for r > 0 such

that for all (x, p) ∈ Q, ξ ∈ D−
2 H(x, p) and q ∈ Rn,

H(x, p + q) ≥ ξ · q + ω((ξ · q)+) (resp., ≥ ξ · q + ω((ξ · q)−)),

where r± := max{±r, 0} for r ∈ R.

Roughly speaking, (A7)+ (resp., (A7)−) means that H(x, · ) is strictly convex “up-

ward” (resp., “downward”) at the zero-level set of H uniformly in x ∈ Rn. We remark

here that condition (A7)+ has already been used in [4, 16] to replace the strict convex-

ity of H(x, ·) in order to get the convergence (4.1) and also that condition (A7)− has

been discussed in [17] when n = 1.

Theorem 4.3. Assume that (C3) and either (A7)+ or (A7)− are satisfied. Then (4.1)

holds.

Lemma 4.4. Assume that H satisfies (A7)+ (resp., (A7)−). Then, there exist a con-

stant δ1 > 0 and a modulus ω1 such that for any ε ∈ [0, δ1] (resp., ε ∈ [−δ1, 0]) and

(x, ξ) ∈ S,

L(x, (1 + ε)ξ) ≤ (1 + ε)L(x, ξ) + |ε|ω1(|ε|). (4.2)

The estimate of this type was proved first by [7] when H(x, · ) is strictly convex.

Proof. The proof of (4.2) under (A7)+ is exactly the same as that of [16, Lemma

3.2]. Moreover, by a careful review of its proof, one sees that (4.2) is also valid under

(A7)−.
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Proof of Theorem 4.3. We need only to prove that lim supt→∞ u(z, t) ≤ u∞(z). Fix

any ε > 0 and choose a τ > 0 and a σ(t) ∈ [0, τ ] for each t > τ as in (C3).

We first consider the case when (A7)+ holds. Let δ1 and ω1 be those from Lemma

4.4. Fix t > τ , and set θ = σ(t) and δ = θ/(t − θ). Note that (1 + δ)(t − θ) = t

and limt→∞ δ = 0. We assume that t is sufficiently large, so that δ ∈ [0, δ1]. Define

η ∈ C((−∞, 0]; z) by η(s) = γ((1 + δ)s) and observe that η(−t + θ) = γ(−t) and by

Lemma 4.4 that for a.e. s ≤ 0,

L(η(s), η̇(s)) ≤ (1 + δ)L(γ((1 + δ)s), γ̇((1 + δ)s)) + δω1(δ).

Hence we get

∫ 0

−t+θ

L(η(s), η̇(s)) ds ≤
∫ 0

−t

L(γ(s), γ̇(s)) ds + (t− θ)δω1(δ),

and furthermore

u(z, t) ≤
∫ 0

−t+θ

L(η(s), η̇(s)) ds + u(η(−t + θ), θ)

≤
∫ 0

−t

L(γ(s), γ̇(s)) ds + θω1(δ) + u(γ(−t), σ(t))

< u∞(z)− u∞(γ(−t)) + u∞(γ(−t)) + ε + θω1(δ) = u∞(z) + ε + θω1(δ).

From this we get lim supt→∞ u(z, t) ≤ u∞(z) + ε.

We next consider the case when (A7)− holds. As before, let δ1 and ω1 be those

from Lemma 4.4. Let t > 2τ , and set θ = σ(t − τ) and δ = (τ − θ)/(t − θ), so that

(1 − δ)(t − θ) = t − τ and limt→∞ δ = 0. Assume that t is sufficiently large, so that

δ ∈ [0, δ1]. Define the curve η ∈ C((−∞, 0]; z) by η(s) = γ((1− δ)s) and observe that

η(−t + θ) = γ(−t + τ). As above, using Lemma 4.4, we get

∫ 0

−t+θ

L(η(s), η̇(s)) ds ≤
∫ 0

−t+τ

L(γ(s), γ̇(s)) ds + (t− θ)δω1(δ).

We then compute that

u(z, t) ≤
∫ 0

−t+θ

L(η(s), η̇(s)) ds + u(η(−t + θ), θ)

≤
∫ 0

−t+τ

L(γ(s), γ̇(s)) ds + u(γ(−t + τ), σ(t− τ))

< u∞(z)− u∞(γ(−t + τ)) + (τ − θ)ω1(δ) + u∞(γ(−t + τ)) + ε

= u∞(z) + ε + (τ − θ)ω1(δ),

and obtain lim supt→∞ u(z, t) ≤ u∞(z) + ε. Now, since ε > 0 is arbitrary, we see that

limt→∞ u(z, t) ≤ u∞(z).
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5 Results based on (C1) and examples.

The following result is an easy consequence of Theorem 4.1.

Theorem 5.1. Assume that (A1)–(A6) hold. Let ψ0 ∈ S−H and assume that u0 ≥ ψ0

in Rn and

lim
|x|→∞

(u0 − ψ0)(x) = 0.

Moreover assume that AH = ∅. Then the convergence (1.5) holds.

Proof. By the assumption on ψ0, we see that ψ0 ≤ u−0 ≤ u0 in Rn and moreover

lim|x|→∞(u0−u−0 )(x) = 0. SinceAH = ∅, by Theorem 2.11 (b), we have limt→∞ |γ(−t)| =
∞ for all γ ∈ E . It is now clear that (C1) is valid for all γ ∈ E(u∞). Hence, we see

from Theorem 4.1 that convergence (1.5) holds.

A variation of the above theorem is the following.

Theorem 5.2. Assume that (A1)–(A6) hold. Assume that u0 ≥ ψ0 in Rn for some

ψ0 ∈ S−H . Assume moreover that for any φ ∈ SH such that φ ≥ ψ0 in Rn,

lim
t→∞

(u0 − ψ0)(γ(−t)) = 0 for all γ ∈ E(φ).

Then the convergence (1.5) holds.

Proof. As above, we have ψ0 ≤ u−0 ≤ u0 and ψ0 ≤ u∞ in Rn. Hence, by assumption,

we get limt→∞(u0 − u−0 )(γ(−t)) = 0 for all γ ∈ E(u∞). That is, (C1) is valid for all

γ ∈ E(u∞). Thus, the convergence (1.5) holds.

We next generalize [3, Theorem 4.2], a result due to Barles-Roquejoffre, in light of

(C1).

Theorem 5.3. Assume that (A1)–(A5) hold. Assume in addition that there exist

functions φ ∈ SH and ψ ∈ S−H+δ, with δ > 0, such that infRn(u0 − φ ∧ ψ) > −∞ and

lim
r→∞

sup{|(u0 − φ)(x)| | (ψ − φ)(x) > r} = 0. (5.1)

Then the convergence (1.5) holds, and moreover, u∞ = φ on Rn.

The same convergence assertion as above has been established in [3, Theorem 4.2]

under the assumption that

lim
|x|→∞

(u0 − φ)(x) = 0, (5.2)

which is a stronger requirement than (5.1).
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Proof. We intend to apply Theorem 5.2 to prove the above assertion. We choose a

constant C > 0 so that u0 ≥ φ ∧ ψ − C in Rn. Fix any ε > 0. By assumption (5.1),

we may choose an R ≡ R(ε) > 0 so that for any x ∈ Rn, if (φ − ψ)(x) ≤ −R, then

|φ(x) − u0(x)| ≤ ε. Define the function w ≡ wε by setting w = φ ∧ (ψ − R − C) − ε.

Note that w ∈ S−H . Fix any x ∈ Rn, and observe that if φ(x) ≤ ψ(x)−R, then

w(x) ≤ φ ∧ (ψ −R)(x)− ε = φ(x)− ε ≤ u0(x).

Next, if φ(x) > ψ(x)−R, then we have

w(x) = ψ(x)−R− C − ε = φ ∧ (ψ −R)(x)− C − ε ≤ φ ∧ ψ(x)− C − ε < u0(x).

Hence, w ≤ u0 in Rn. We define the function ψ0 ∈ S−H by ψ0(x) = supε>0 wε(x). Note

that wε ≤ ψ0 ≤ u0 in Rn for any ε > 0 and also by construction that ψ0 ≤ φ in Rn.

Consequently, we have ψ0 ≤ u−0 ≤ u0 in Rn and, in particular, u−0 (x) > −∞ for all

x ∈ Rn.

We temporarily denote by V the set of all functions v ∈ SH satisfying v ≥ φ∧ψ−C

in Rn. We show that limt→∞(u0 − ψ0)(γ(−t)) = 0 for any v ∈ V and γ ∈ E(v). For

this let v ∈ V . Fix any γ ∈ Ez(v), with z ∈ Rn. We show that

lim
t→∞

(φ− ψ)(γ(−t)) = −∞. (5.3)

Indeed, for any t > 0 we get

ψ(z)− ψ(γ(−t)) ≤
∫ 0

−t

(L(γ(s), γ̇(s))− δ) ds,

= dH(z, γ(−t))− δt = v(z)− v(γ(−t))− δt,

and hence

v(γ(−t))− ψ(γ(−t)) ≤ v(z)− ψ(z)− δt.

Now, using the inequality v ≥ φ ∧ ψ − C, we get

φ ∧ ψ(γ(−t))− ψ(γ(−t)) ≤ v(z)− ψ(z)− δt + C,

from which we deduce that (5.3) holds.

Fix any ε > 0. In view of (5.3), we choose a τ > 0 so that (φ−ψ)(γ(−t)) ≤ −Rε−C

for all t ≥ τ . Noting that wε ≤ ψ0 ≤ u−0 ≤ u0 in Rn and that for any x ∈ Rn, if

φ(x) ≤ ψ(x)−Rε, then |u0(x)− φ(x)| ≤ ε, we observe that for any t ≥ τ ,

u0(γ(−t)) ≥ u−0 (γ(−t)) ≥ ψ0(γ(−t)) ≥ φ ∧ (ψ −Rε − C)(γ(−t))− ε

= φ(γ(−t))− ε ≥ u0(γ(−t))− 2ε.
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From this, we conclude that

lim
t→∞

(u0 − ψ0)(γ(−t)) = lim
t→∞

(u−0 − ψ0)(γ(−t)) = 0 for all γ ∈ E(v), v ∈ V. (5.4)

To check that (A6) is satisfied, we first observe from (5.1) and (5.3) that

lim
t→∞

(φ− u0)(γ(−t)) = 0 for all γ ∈ E(v), v ∈ V. (5.5)

This together with (5.4) shows that g(φ, γ) = g(u0, γ) = g(u−0 , γ) for all γ ∈ E(φ). We

then observe by Corollary 3.4 and Theorem 3.2 that for any x ∈ Rn,

u−0 (x) ≤ inf{g−(u−0 , γ)(x) | γ ∈ E} ≤ inf{g(u−0 , γ)(x) | γ ∈ E(φ)}
= inf{g(φ, γ)(x) | γ ∈ E(φ)} = φ(x).

We now have ψ0 ≤ u−0 ≤ u∞ ≤ φ in Rn, and we see that (A6) holds. We may now

invoke Theorem 5.2, to conclude that the convergence (1.5) holds.

It remains to show that u∞ = φ. We know already that u∞ ≤ φ in Rn. Since

φ ∧ ψ ∈ S−H and φ ∧ ψ − C ≤ u0 in Rn, we have u∞ ≥ u−0 ≥ φ ∧ ψ − C in Rn. Hence,

u∞ ∈ V . By (5.4) and (5.5), since u−0 ≤ u∞ ≤ φ in Rn, we get g(u∞, γ) = g(φ, γ) for

all γ ∈ E(u∞). Hence we have

φ(x) = inf{g(φ, γ)(x) | γ ∈ E} ≤ inf{g(φ, γ)(x) | γ ∈ E(u∞)}
= inf{g(u∞, γ)(x) | γ ∈ E(u∞)} = u∞(x) for all x ∈ Rn,

completing the proof.

We examine the following simple example with Theorem 5.3 and compare it with

a result in [3].

Example 5.1. We consider the Hamiltonian H given by H(p) = |p| − 1. Note that

the corresponding Lagrangian is L(ξ) = δB(0,1)(ξ)+1. It is easy to check that H enjoys

(A1)-(A4). We now fix any p0 ∈ ∂B(0, 1), and set φ(x) := p0 · x and ψ(x) := 0 for

x ∈ Rn. Note that φ ∈ SH and ψ ∈ S−H+1. Assume that the initial function u0 ∈ C(Rn)

satisfies

lim
r→∞

sup{|(u0 − φ)(x)| | x ∈ Rn, p0 · x < −r} = 0

as well as the condition that infRn(u0 − φ ∧ ψ) > −∞ in Rn. Then, by applying

Theorem 5.3, we conclude that u(·, t) → φ in C(Rn) as t → ∞. In this example, the

condition (5.2) does not hold, and in this sense, Theorem 5.3 refines [3, Theorem 4.2].

On the other hand, by replacing the previous φ by the function φ(x) := −|x|, we still

have φ ∈ SH . In order to apply Theorem 5.3 to the present situation, we have to

assume that u0 ∈ C(Rn) satisfies

lim
r→∞

sup{|(u0 − φ)(x)| | φ(x) < −r} = 0.

But, this assumption is equivalent to the condition (5.2) which is exactly the condition

required in [3, Theorem 4.2].
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6 Results based on (C2) and examples.

We start by formulating a result based on (C2), which is motivated by the main result

in [14].

Theorem 6.1. Assume that (A1)–(A5) hold and that there are two functions φ0, φ1 ∈
S−H such that

lim
|x|→∞

(φ0 − φ1)(x) = ∞ and inf
Rn

(u0 − φ0) > −∞. (6.1)

Assume moreover that

AH 6= ∅ and L(x, 0) = 0 for all x ∈ AH . (6.2)

Then the convergence (1.5) holds.

Note that the second condition of (6.2) says that AH consists only of equilibria.

Proof. We may assume by adding a constant to φ0 that u0 ≥ φ0 in Rn. We then have

φ0 ≤ u−0 ≤ u0 in Rn. Fix a y ∈ AH and observe that u∞ ≤ u−0 (y) + dH(·, y) in Rn.

Hence, (A6) is valid.

Fix any γ ∈ Ez(u∞), with z ∈ Rn, and note by Remark 2.1 that the function

t 7→ (u∞ − φ1)(γ(−t)) is non-increasing on [0,∞) and hence (u∞ − φ1)(γ(−t)) ≤
(u∞ − φ1)(z) for all t > 0. Since u∞ ≥ φ0 in Rn, this monotonicity and (6.1) together

assure that γ(−t) ∈ B(0, R) for all t ≥ 0 and some R > 0. Theorem 2.11 (b) now

assures that dist(γ(−t),AH) → 0 as t → ∞. Fix any t > 0 and choose a point

y ∈ AH so that |γ(−t) − y| = dist(γ(−t),AH). (Recall that AH is a closed subset

of Rn.) Let δR > 0 and CR > 0 be those constants from Lemma 2.3. Let r > 0,

set ξ := δR(y − γ(−t))/|y − γ(−t)| and ρ := dist(γ(−t),AH), and define the curve

η ∈ AC([−r, 0]) by

η(s) =





γ(−t)− sξ for s ∈ [−ρ/δR, 0],

y for s ∈ [−r + ρ/δR, −ρ/δR],

γ(−t) + (s + r)ξ for s ∈ [−r, −r + ρ/δR]

if δRr > 2ρ and η(s) = γ(−t) if δRr ≤ 2ρ. It is easy to see that

∫ 0

−r

L(η(s), η̇(s)) ds ≤ 2CR

δR

ρ =
2CR

δR

dist(γ(−t),AH).

It is now obvious that (C2) holds for all γ ∈ E(u∞). Thus, applying Theorem 4.2, we

conclude that the convergence (1.5) holds.
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Remark 6.1. (a) Under the hypotheses of Theorem 6.1, we have

u∞(x) = inf{u−0 (y) + dH(x, y) | y ∈ AH} for all x ∈ Rn.

Indeed, in the proof above, we have observed that limt→∞ dist(γ(−t),AH) = 0, and

therefore Theorem 3.2 yields the above representation formula.

(b) We know that for any x ∈ Rn, L(x, 0) = 0 if and only if infp∈Rn H(x, p) = 0.

Therefore, by virtue of Lemma 2.12, we see that the condition (6.2) is stated equiva-

lently that there are functions ψ, f ∈ C(Rn) such that ψ is a subsolution of H(x,Dψ) =

f in Rn, f ≤ 0 in Rn, and for x ∈ Rn, f(x) = 0 if and only if infp∈Rn H(x, p) = 0.

Condition (C2) covers another situation, where nearly optimal curves for (1.2) with

ψ = u0 exhibit a “switch-back” motion for large t. We discuss first a simple example.

Let n = 1 and consider the case where the Hamiltonian H is given by H(x, p) :=

|p| − e−|x| and u0 is given by u0(x) = min{|x| − 2, 0}. It is clear that (A1)–(A5) are

satisfied. It is easy to see that dH(x, y) =
∣∣∣
∫ x

y
e−s ds

∣∣∣ for all x, y ∈ R. By the formula

u−0 (x) = inf{u0(y) + dH(x, y) | y ∈ R},

we see that u−0 (x) = −e−|x| − 1 for x ∈ R. We define the functions d± ∈ SH by

d±(x) = limy→±∞ dH(x, y), and observe that d±(x) = e∓x for x ∈ R and that u∞(x) =

lim|y|→∞ u−0 (y) + (d+ ∧ d−)(x) = e−|x| − 1 for x ∈ R. Note that the Lagrangian L is

given by L(x, ξ) = δ[−1,1](ξ) + e−|x|.

For a given z ∈ R, we define γ ∈ C((−∞, 0]; z) by γ(s) = z − sgn(z) s, where

sgn(z) = 1 for z ≥ 0 and = −1 for z < 0. Then, it is easy to see that γ ∈ Ez(u∞) and

|γ(−t)| −→ ∞ as t →∞. Fix any ε > 0 and choose a τ > 0 so that

2

∫ ∞

|γ(−τ)|
e−s ds < ε.

We define η ∈ AC([−t, 0]) for any fixed t > 0 by

η(s) :=





γ(−τ)− sgn(z) s for − t

2
≤ s ≤ 0,

γ(−τ) + sgn(z) (s + t) for − t ≤ s ≤ − t

2
,

and observe that η(0) = η(−t) = γ(−τ) and

∫ 0

−t

L(η(s), η̇(s)) ds < 2

∫ ∞

|γ(−τ)|
e−s ds < ε,

so that condition (C2) is valid for the given γ. Now, Theorem 4.2 guarantees that the

convergence (1.5) holds.
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We remark that the curve η ∈ AC([−t, 0]) built here has a switch-back motion in

which the point η(−s), with s ∈ [0, t], moves toward ∞ or −∞ with a unit speed up to

the time t/2 and then moves back to the starting point. It is also worth mentioning that

condition (C1) does not hold in this case. Indeed, we have limt→∞(u0− u∞)(γ(−t)) =

1 > 0.

We continue by generalizing the above observation, where “switch-back” motions

appear in nearly optimal curves for (1.2) with ψ = u0. We introduce the following:

(A8) H(x, 0) ≤ 0 for all x ∈ Rn and there exists a λ ≥ 1 such that

H(x,−p) ≤ H(x, λp) for all (x, p) ∈ R2n. (6.3)

Note that condition (6.3) is equivalent to the condition

L(x,−ξ) ≤ L(x, λξ) for all (x, ξ) ∈ R2n. (6.4)

Theorem 6.2. Assume that (A1)-(A6) and (A8) hold and that u0 is bounded below on

Rn. Then, the convergence (1.5) holds.

Assumption (A8) can be relaxed in the above assertion as follows. Let φ0 ∈ S−H .

(A8)′ There exists a λ ≥ 1 such that for every (x, p) ∈ Q, ξ ∈ D−
2 H(x, p), q ∈ Rn

and q′ ∈ ∂cφ0(x),

H(x, q′ − λq) ≥ ξ · (q′ + q − p), (6.5)

where ∂cφ0(x) denotes the Clarke derivative of φ0 at x ∈ Rn.

Assumption (A8) is a particular case of (A8)′ where φ0 = 0. We return to this point

and give a generalization of Theorem 6.2 later in this section.

Proof of Theorem 6.2. Since the function φ0 := 0 is a subsolution of H(x,Du) = 0 in

Rn and u0(x) ≥ −C for all x ∈ Rn and some C > 0, we see that u∞(x) ≥ u−0 (x) ≥ −C

for x ∈ Rn.

Fix any γ ∈ Ez(u∞), z ∈ Rn. In view of Theorem 4.2, we only need to show that

(C2) holds. By assumption, we have minξ∈Rn L(x, ξ) = −H(x, 0) ≥ 0 for all x ∈ Rn.

Observe that

0 ≤
∫ 0

−t

L(γ(s), γ̇(s)) ds = u∞(x)− u∞(γ(−t)) ≤ u∞(x) + C for all t ≥ 0.

Consequently, the function s 7→ L(γ(s), γ̇(s)) is integrable on (−∞, 0). Fix an arbitrary

ε > 0. Then, there exists a τ > 0 such that

∫ −τ

−∞
L(γ(s), γ̇(s)) ds < ε. (6.6)
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Fix any t > 0. Let λ ≥ 1 be the constant from (A8), and set θ = t/(λ + 1), so that

λ−1(θ − t) = −θ. We define the curve η ∈ AC([−t, 0]) by

η(s) :=





γ(s− τ) if s ∈ [−θ, 0],

γ(−λ−1(s + t)− τ) if s ∈ [−t, −θ].

Note that η(−t) = η(0) = γ(−τ). Then, using (6.4) and (6.6), we compute that

∫ 0

−t

L(η(s), η̇(s)) ds =

∫ −τ

−θ−τ

L(γ(s), γ̇(s)) ds + λ

∫ −τ

−θ−τ

L(γ(s),−λ−1γ̇(s)) ds

≤ (1 + λ)

∫ −τ

−θ−τ

L(γ(s), γ̇(s)) ds < (1 + λ)ε,

which assures that (C2) holds.

Next, we give an example of a class of Hamiltonians H which satisfy (A8).

Example 6.2. Let H0 ∈ C(R2n) and f ∈ C(Rn). Define the function H ∈ C(R2n) by

H(x, p) = H0(x, p) − f(x). We assume here that H0 has the convexity property (A3)

and that there exist α ≥ 1, β ≥ 1, γ > 1 and C0 > 0 such that for all (x, p) ∈ R2n,

α−1|p|β ≤ H0(x, p) ≤ α|p|β and 0 ≤ f(x) ≤ C0(1 + |x|)−βγ.

To prove that H satisfies property (A8), let λ ≥ 1 be a constant which will be specified

later and observe that

H0(x,−p) ≤ α|p|β ≤ α2λ−β · α−1|λp|β ≤ α2λ−βH0(x, λp) for all (x, p) ∈ R2n.

By selecting λ = α2/β, we get H(x,−p) ≤ H(x, λp) for all (x, p) ∈ R2n. Note also

that H0(x, 0) = 0 and H(x, 0) = −f(x) ≤ 0 for all (x, p) ∈ R2n. Hence, H satisfies

(A8). Let u0 ∈ C(Rn) be a bounded function. It is clear that (A1), (A2) and (A5) are

satisfied. Also, it is not difficult to check that (A4) is satisfied. We define ψ0 ∈ C(Rn)

by ψ0(x) = −αC0

∫ |x|
0

(1 + r)−γdr, and observe that for x 6= 0,

H(x,Dψ0(x)) ≥ α−1|Dψ0(x)|β − f(x) = C0(1 + |x|)−βγ − f(x) ≥ 0,

which implies that ψ0 ∈ S+
H . Note that ψ0 is a bounded function on Rn and that

0 ∈ S−H . By Perron’s method, we see that there is a bounded solution of H(x,Du) = 0

in Rn and moreover that (A6) is satisfied. We conclude that all the hypotheses of

Theorem 6.2 are fulfilled with these H and u0.

The condition (6.4) and the convexity of L implies that minξ∈Rn L(x, ξ) = L(x, 0).

Hence, under hypotheses (A3) and (A8), we have minξ∈Rn L(x, ξ) = L(x, 0) ≥ 0, and,

in view of (2.12), we see easily that x ∈ Rn is a point in AH if and only if x is an

28



equilibrium point. Thus, in general under the hypotheses, nearly optimal curves η for

the variational formula (1.2), with ψ = u0, may not have a switch-back motion. But

if we suppose in addition to (A8) that H(x, 0) < 0 for all x ∈ Rn. Then, in view

of Lemma 2.12 and Theorem 2.11 (b), we have |γ(−t)| −→ ∞ as t → ∞ for any

γ ∈ E(u∞). Hence, under this additional assumption, the curves η constructed in the

proof of Theorem 6.2 have a switch-back motion.

Remark 6.3. Combining proofs of Theorems 6.1 and 6.2 allows us to replace (6.3) in

Theorem 6.2 by a weaker condition that AH consists only of equilibria and inequality

(6.3) is required only for (x, p) ∈ (Rn \B(0, R))× Rn, with some R > 0. This remark

applies also to Theorem 6.3 below.

We now give a generalization of Theorem 6.2, in which condition (A8) is replaced

by (A8)′.

Theorem 6.3. Assume that (A1)-(A6) hold. Let φ0 ∈ S−H be such that u0 ≥ φ0 in Rn,

and assume that (A8)′ holds with this φ0. Then the convergence (1.5) holds.

We need a lemma for the proof.

Lemma 6.4. Let H satisfy (A1)-(A3), and let φ0 ∈ S−H . Then, (A8)′ holds if and only

if

L(x,−λ−1ξ) + λ−1ξ · q′ ≤ L(x, ξ)− ξ · q′ (6.7)

for all (x, ξ) ∈ S and q′ ∈ ∂cφ0(x).

Proof. We assume (A8)′. Recalling the definition of Q and S, we observe that

ξ · p = H(x, p) + L(x, ξ) = L(x, ξ) for all (x, p) ∈ Q and ξ ∈ D−
2 H(x, p).

Fix any (x, ξ) ∈ S and q′ ∈ ∂cφ0(x). Fix a p ∈ Rn so that ξ ∈ D−
2 H(x, p). Then, in

view of (6.5), we have

L(x, ξ) = ξ · p ≥ ξ · (q′ + q)−H(x, q′ − λq) for all q ∈ Rn.

Hence

L(x, ξ) ≥ sup
q∈Rn

{ξ · (q′ + q)−H(x, q′ − λq)}

= sup
q∈Rn

{(−λ−1ξ) · q −H(x, q)}+ (1 + λ−1) ξ · q′

= L(x,−λ−1ξ) + (1 + λ−1) ξ · q′,

from which follows (6.7).
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We next assume (6.7) and fix any (x, p) ∈ Q, ξ ∈ D−
2 H(x, p), q ∈ Rn and q′ ∈

∂cφ0(x). Then

H(x, q′ − λq)

= sup
ζ∈Rn

{ζ · (q′ − λq)− L(x, ζ)} = sup
ζ∈Rn

{ζ · (−λ−1q′ + q)− L(x,−λ−1ζ)}

≥ ξ · q − [L(x,−λ−1ξ) + λ−1ξ · q′] ≥ ξ · q − [L(x, ξ)− ξ · q′] = ξ · (q′ + q − p).

Hence (A8)′ is valid.

Proof of Theorem 6.3. Fix any γ ∈ Ez(u∞), with z ∈ Rn. Let q be a measurable

function on (−∞, 0) such that q(s) ∈ ∂cφ0(γ(s)) for a.e. s ∈ (−∞, 0) and

φ0(z)− φ0(γ(−t)) =

∫ 0

−t

q(s) · γ̇(s) ds for all t ≥ 0.

Now, since u∞ ≥ φ0 in Rn, for t > 0 we have
∫ 0

−t

(L(γ(s), γ̇(s))− q(s) · γ̇(s)) ds

= (u∞ − φ0)(z)− (u∞ − φ0)(γ(−t)) ≤ (u∞ − φ0)(z).

Note that q(s) · γ̇(s) ≤ L(γ(s), γ̇(s)) + H(γ(s), q(s)) ≤ L(γ(s), γ̇(s)) for a.e. s ∈
(−∞, 0). From these, we see that the function s 7→ L(γ(s), γ̇(s)) − q(s) · γ̇(s) is

non-negative a.e. and integrable on (−∞, 0).

We now follow the proof of Theorem 6.2. Fix any ε > 0 and choose a τ > 0 so that
∫ −τ

−∞
(L(γ(s), γ̇(s))− q(s) · γ̇(s)) ds < ε. (6.8)

Fix any t > 0. Let λ ≥ 1 be the constant from (A8)′, and set θ = t/(λ + 1). We define

the curve η ∈ AC([−t, 0]) by

η(s) :=





γ(s− τ) if s ∈ [−θ, 0],

γ(−λ−1(s + t)− τ) if s ∈ [−t, −θ].

Then we have η(−t) = η(0) = γ(−τ). Next, noting that (γ(s), γ̇(s)) ∈ S for a.e

s ∈ (−∞, 0) and using (6.7) and (6.8), we compute that
∫ 0

−t

L(η(s), η̇(s)) ds =

∫ −τ

−θ−τ

L(γ(s), γ̇(s)) ds + λ

∫ −τ

−θ−τ

L(γ(s),−λ−1γ̇(s)) ds

=

∫ −τ

−θ−τ

[L(γ(s), γ̇(s))− q(s) · γ̇(s)] ds

+ λ

∫ −τ

−θ−τ

[L(γ(s),−λ−1γ̇(s)) + λ−1q(s) · γ̇(s)] ds

≤ (1 + λ)

∫ −τ

−θ−τ

[L(γ(s), γ̇(s))− q(s) · γ̇(s)] ds < (1 + λ)ε,

and conclude that (C2) holds.
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7 Results based on (C3) and examples.

A variant of Theorem 6.1 is given by the next theorem which can be also regarded as

a version of [18, Theorem 1.3]

Theorem 7.1. Assume that (A1)–(A5) and either (A7)+ or (A7)− hold and that there

are two functions φ0, φ1 ∈ S−H such that

lim
|x|→∞

(φ0 − φ1)(x) = ∞ and inf
Rn

(u0 − φ0) > −∞.

Assume moreover that AH 6= ∅. Then the convergence (1.5) holds.

Proof. As in the proof of Theorem 6.1, we see that (A6) holds. It remains to show that

(C3) holds for any γ ∈ E(u∞). Fix γ ∈ Ez, with z ∈ Rn, and observe as in Theorem

6.1 that there is a constant R > 0 such that γ(s) ∈ B(0, R) for all s ≤ 0. Now we

fix any ε > 0 and choose, in view of Theorem 2.9, a τy > 0 for each y ∈ B(0, R) so

that u∞(y) + ε > u(y, τy). Next, using the compactness of B(0, R) and the continuity

of u∞, u, we deduce that there exists a τ > 0 such that u∞(x) + ε > u(x, τx) for any

x ∈ B(0, R) and some τx ∈ [0, τ ]. That is, (C3) is valid for any γ ∈ E(u∞).

It is easily seen by the compactness argument in the proof above that condition

(C3) holds for any γ ∈ E(u∞) in the case where H(·, p) and u0 are Zn-periodic. The

criterion (C3) applies to the case where H and u0 are upper semi-periodic and obliquely

lower semi-almost periodic, respectively. The convergence result in this case has been

established in [16] (see also [15]). We recall that a function H on R2n is said to

be upper (resp., lower) semi-periodic if for any {yj} ⊂ Rn there exist a subsequence

{y′j} ⊂ {yj}, a sequence {ξj} ⊂ Rn converging to zero and a function G ∈ C(R2n)

such that H(x + y′j, p) → G(x, p) in C(R2n) as j →∞ and H(x + y′j + ξj, p) ≤ G(x, p)

(resp., H(x + y′j + ξj, p) ≥ G(x, p)) for all (x, p, j) ∈ R2n×N. Also, a function f on Rn

is said to be obliquely lower (resp., upper) semi-almost periodic if for any {yj} ⊂ Rn

and any ε > 0 there exist a subsequence {y′j} ⊂ {yj} and a function g ∈ C(Rn)

such that f(x + y′j) → g(x) in C(Rn) as j → ∞ and f(x + y′j) + ε ≥ g(x) (resp.,

f(x + y′j) − ε ≤ g(x)) for all (x, j) ∈ Rn × N. It is easily checked that if H is upper

(or lower) semi-periodic, then it is bounded, uniformly continuous on Rn × B(0, R),

i.e. H ∈ BUC(Rn×B(0, R)), for any R > 0 and that if f is obliquely upper (or lower)

semi-almost periodic, then it is uniformly continuous on Rn, i.e., f ∈ UC(Rn).

For the later references, we introduce two conditions on H:

(A1)′ H ∈ BUC(Rn ×B(0, R)) for all R > 0.

(A2)′ inf{H(x, p) |x ∈ Rn, |p| ≥ R} −→ +∞ as R → +∞.

We state [16, Theorem 2.2] as follows and prove it in a way based on (C3).
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Theorem 7.2. Assume that H and u0 are upper semi-periodic and obliquely lower

semi-almost periodic, respectively, and that (A2)′, (A3), (A6) and either (A7)+ or

(A7)− hold. Then the convergence (1.5) holds.

Proof. Note that (A1) (A2) and (A5) are satisfied. As is well-known (see e.g. [16]),

doe to (A2)′ and the fact that H satisfies (A1)′ and u0 ∈ UC(Rn), the solution u of

(1.1) is uniformly continuous on Rn × [0, ∞). Moreover, because of assumption (A6),

we have real-valued functions u−0 and u∞. To prove the convergence (1.5), it is enough

to show that the function u(·, t) ∧ (u∞ + 1), which is also a solution of (1.1) with u0

replaced by u0 ∧ (u∞ + 1), converges to u∞ in C(Rn) as t → ∞. Therefore, we may

assume by replacing the function u by the function u ∧ (u∞ + 1) if necessary that

u−0 (x) ≤ u(x, t) ≤ u∞(x) + 1 for all (x, t) ∈ Rn × [0, ∞).

We need only to show that (C3) holds for any γ ∈ E(u∞). Fix any γ ∈ E(u∞).

We argue by contradiction, and thus suppose that (C3) does not hold with this γ and

therefore there exists an ε > 0 and for each j ∈ N a tj ≥ j such that

min
0≤s≤j

u(γ(−tj), s) ≥ u∞(γ(−tj)) + ε for all j ∈ N. (7.1)

Set yj = γ(−tj) for j ∈ N. Noting that the function t 7→ (u∞ − u−0 )(γ(−t)) is non-

increasing and non-negative on [0, ∞) and that u−0 (x) ≤ u(x, t) ≤ u∞(x) + 1 for all

(x, t) ∈ Rn × [0, ∞), we observe that

sup{|u∞(γ(s))− u(γ(s), t)| | t ≥ 0, s ≤ 0} < ∞.

Now, we may assume that there are functions G ∈ C(R2n), v ∈ C(Rn × [0,∞)) and a

sequence {ξj} ⊂ Rn converging to zero such that as j →∞,

H(·+ yj + ξj, ·) → G in C(R2n),

u(·+ yj + ξj, ·)− u∞(yj + ξj) → v in C(Rn × [0, ∞)), (7.2)

H(· + yj + ξj, ·) ≤ G in R2n and u(· + yj + ξj, 0) − u∞(yj + ξj) ≥ v(·, 0) − ε/4 in

Rn × [0,∞) for all j ∈ N. Note that v is the solution of (1.1), with H and u0 replaced

by G and v0 := v(·, 0), respectively. Note also that w := u(·+ yj + ξj, ·)− u∞(yj + ξj)

is a supersolution of wt + G(x,Dw) = 0 in Rn × (0, ∞) and that w(·, 0) ≥ v0 − ε/4 in

Rn. Now we obtain by comparison,

u(·+ yj + ξj, ·)− u∞(yj + ξj) ≥ v − ε/4 in Rn × [0, ∞) for all j ∈ N.

In particular, we see that 0 ≥ v∞(0) − ε/4 for all j ∈ N, where v∞(x) :=

lim inft→∞ v(x, t). We choose a τ > 0 so that v(0, τ) − ε/4 < v∞(0). Since u∞ is

(globally) Lipschitz continuous in Rn by (A2)′, we may assume that u∞(yj + ξj) <

u∞(yj)+ε/4 for all j ∈ N. Also we may assume in view of (7.2) that u(yj, τ)−u∞(yj +

ξj) < v(0, τ)+ε/4 for all j ∈ N. Combining these together, we get u(yj, τ) < u∞(yj)+ε,

which contradicts (7.1). The proof is complete.
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The proof above suggests formulating the following theorem.

Theorem 7.3. Let H satisfy (A1)′, (A2)′, (A3), (A6) and either (A7)+ or (A7)−.

Let u0 ∈ UC(Rn), and assume that u0 ≤ u∞ + C in Rn for some C > 0. Then, the

convergence (1.5) is valid provided that for any sequence {yj} ⊂ Rn satisfying

u(·+ yj, ·)− u∞(yj) −→ v in C(Rn × [0, ∞)) (7.3)

for some v ∈ C(Rn× [0,∞)), the inequality v∞(0) ≤ 0 holds, where v∞ is the function

on Rn defined by v∞(x) := lim inft→∞ v(x, t).

We remark that, as the following proof shows, we need to assume the condition

(7.3) only for those sequences {yj} given by yj = γ(−tj), with sequences {tj} ⊂ (0, ∞)

diverging to infinity and γ ∈ E(u∞), in the above theorem.

Proof. Note that condition (A4) is a consequence of (A1)′ and (A2)′. Hence, (A1)-(A6)

are fulfilled. It is enough to show that (C3) is valid for all γ ∈ E(u∞).

Fix any γ ∈ E(u∞), and we suppose that (C3) does not hold with this γ and

therefore there is an ε > 0 and for each j ∈ N a positive number tj ≥ j such that

min
0≤s≤j

u(γ(−tj), s) ≥ u∞(yj) + ε, (7.4)

and will get a contradiction.

We set yj = γ(−tj) for j ∈ N, and observe that u∞(yj) < u0(yj) ≤ u∞(yj) + C

for all j ∈ N. It is a standard observation, due to (A1)′, (A2)′ and the uniform

continuity of u0, that u ∈ UC(Rn × [0, T ]) for all T > 0. By taking a subsequence of

{tj} if necessary, we may assume that the convergnece (7.3) holds. Also, since u−0 is

Lipschitz continuous on Rn, we may assume that u−0 (· + yj) − u∞(yj) → w in C(Rn)

as j → ∞ for some w ∈ S−H . Recalling that limt→∞(u∞ − u−0 )(γ(−t)) = 0 and that

u(x, t) ≥ u−0 (x) for all (x, t) ∈ Rn × [0, ∞), we see that w(0) = 0 and v(x, t) ≥ w(x)

for all (x, t) ∈ Rn× [0, ∞). Hence we get v−0 (x) := inft≥0 v(x, t) ≥ w(x) for all x ∈ Rn.

In particular, v∞(0) ≥ v−0 (0) ≥ w(0) = 0. On the other hand, by assumption, we have

v∞(0) ≤ 0 and therefore v∞(0) = 0. By the definition of v∞(0), we may choose a τ > 0

so that v∞(0) + ε/2 > v(0, τ). Moreover, by definition, we may assume by taking a

subsequence if necessary that v(0, τ) + ε/2 > u(yj, τ)− u∞(yj) for all j ∈ N. Thus we

obtain

u(yj, τ) < v(0, τ) + u∞(yj) +
ε

2
< v∞(0) + u∞(yj) + ε = u∞(yj) + ε,

which contradicts (7.4).

We give here two examples to which we may apply Theorem 7.3.
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Example 7.1. Let n = 1, and let f ∈ BUC(R) be any function such that f ≥ 0 in

R. We set F (x) =
∫ x

0
f(y) dy for x ∈ R and define H ∈ C(R2) and φ ∈ UC(R) by

H(x, p) = p2− f(x)2 and φ(x) := min{F (x),−F (x)} = −|F (x)|. Note that H satisfies

(A1)′, (A2)′, (A3) and (A7)±. Since F, −F ∈ SH , we see in view of convexity (A3)

that φ ∈ SH . Moreover, it is easily seen that dH(x, y) = |F (x)−F (y)| for all x, y ∈ R.

Now, let p0 ∈ BUC(R) be any function satisfying the following property: for any

ε > 0, there exists an l > 0 such that

min
|y|≤l

p0(x + y) < inf
R

p0 + ε for all x ∈ R. (7.5)

Remark that (7.5) is valid for any almost periodic function. But, we do not assume

any kind of periodicities on neither H nor p0.

We set u0 = φ + p0 ∈ UC(R) and let u be the solution of the Cauchy problem (1.1)

with H and u0 defined above. What we prove is the following convergence:

u( · , t) −→ φ + inf
R

(u0 − φ) in C(R) as t →∞. (7.6)

In what follows, we assume that infR(u0 − φ) = infR p0 = 0, which does not lose any

generality. In this case, we have u−0 = u∞ = φ in R. To see this, we may just apply,

for instance, formula (2.10) for u−0 . We observe that Dφ(x) = ±f(x) if ±x < 0 and

D2H(x, p) = 2p for all (x, p) ∈ R2 and therefore that for any γ ∈ E(φ), if ±γ(0) < 0,

then γ̇(s) = ±2f(γ(s)) for all s ≤ 0. It is then easy to see that neither condition (C1)

nor (C2) holds in general.

To show the convergence (7.6), we intend to use Theorem 7.3. Fix any {yj} ⊂ R. By

passing to a subsequence if necessary, we may assume that there are only three cases:

(i) limj→∞ yj = y0 ∈ R for some y0 ∈ R, (ii) limj→∞ yj = ∞, and (iii) limj→∞ yj = −∞.

As in Theorem 7.3, we assume that u(·+yj, ·)−φ(yj) → v in C(Rn× [0,∞)) as j →∞.

In the case when (i) limj→∞ yj = y0 for some y0 ∈ R, we have v = u(· + y0, ·) − φ(y0)

and hence v∞(0) = lim inft→∞ v(0, t) = u∞(y0)− φ(y0) = 0.

Next consider the case when (ii) limj→∞ yj = ∞. We may assume that H(·+yj, ·) →
G in C(R2) and f(·+yj) → e, p0(·+yj) → q0 in C(Rn) as j →∞ for some G ∈ C(R2),

e, q0 ∈ BUC(Rn). Set E(x) =
∫ x

0
e(y) dy. Observe that G(x, p) = p2 − e(x)2, that q0

satisfies property (7.5) with p0 replaced by q0, and that v0(x) := v(x, 0) = −E(x)+q0(x)

for all x ∈ R. Now the function v solves problem (1.1) with G and v0 in place of H

and u0, respectively. As before, we see that v−0 = v∞ = −E in R. We now conclude

that v∞(0) = −E(0) = 0. An argument similar to the above applies to the case when

(iii) limj→∞ yj = −∞, to yield v∞(0) = 0. Theorem 7.3 now guarantees that (7.6) is

valid.

Finally, the condition (7.5) can be relaxed and it is indeed replaced by the following:
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for each ε > 0 there exists an l > 0 such that

lim sup
|x|→∞

min
|y|≤l

p0(x + y) < inf
R

p0 + ε.

The example above leads us to formulate the following proposition.

Theorem 7.4. Let H satisfy (A1)′, (A2)′, (A3) and either (A7)+ or (A7)−. Let

φ0 ∈ S−H and p0 ∈ BUC(Rn). Assume that u0 = φ0 + p0 and that for any ε > 0 and

γ ∈ E(u∞) such that limt→∞ |γ(−t)| = ∞ there exists an l > 0 for which

lim sup
t→∞

min
|s|≤l

p0(γ(−t + s)) < inf
Rn

p0 + ε. (7.7)

Then, the convergence (1.5) is valid.

Proof. We may assume without loss of generality that infRn p0 = 0. Since φ0 ≤ u0 ≤
φ0 + supRn p0 in Rn, we have φ0 ≤ u−0 ≤ u∞ ≤ φ0 + supRn p0 in Rn. In particular, (A6)

holds.

Let γ ∈ E(u∞) and let {tj} ⊂ (0,∞) be an increasing sequence diverging to infinity.

We set yj = γ(−tj) for j ∈ N. We note that

γ̇(s) ∈ D2H(γ(s), b(s)) and H(γ(s), b(s)) = 0 for a.e. s ≤ 0

for some measurable function b on (−∞, 0), and in view of (A1)′ and (A2)′ we see

that γ is (globally) Lipschitz continuous on (−∞, 0]. Now, by replacing {yj} by a

subsequence if necessary, we may assume that as j →∞,

H(·+ yj, ·) → G in C(R2n),

u∞(·+ yj)− u∞(yj) → w, p0(·+ yj) → q0 in C(Rn),

u(·+ yj, ·)− u∞(yj) → v in C(Rn × [0, ∞)),

γ(· − tj)− γ(−tj) → η in H1(−k, k), k ∈ N,

where H1(a, b) indicates the usual topology of the Sobolev space consisting of functions

f on (a, b) such that
∫ b

a
(f(s)2 + ḟ(s)2) ds < ∞.

We consider the case when lim infj→∞ |yj| < ∞. We may assume by selecting

again a subsequence if needed that limj→∞ yj = y0 for some y0 ∈ Rn. Then we have

u(·+ y0, ·)− u∞(y0) = v in Rn × [0, ∞) and hence

v∞(0) := lim inf
t→∞

v(0, t) = lim inf
t→∞

(u(0, t)− u∞(0)) = 0.

Next we consider the case when limt→∞ |yj| = ∞. Fix any a < b and take j to be

large enough so that b− tj ≤ 0. Note by the extremality of γ that

u∞(γ(−tj + b))− u∞(γ(−tj + a)) =

∫ b

a

L(γ(−tj + s), γ̇(−tj + s)) ds. (7.8)
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Fix any δ > 0 and define the function Kδ ∈ C(R2n) by

Kδ(x, ξ) = max
p∈Rn

{ξ · p−G(x, p)− δ|p|2}.

Here we note that G satisfies (A1)′, (A2)′ and (A3). Setting

F (x, ξ) = {p ∈ Rn | Kδ(x, ξ) + G(x, p) + δ|p|2 − ξ · p ≤ 0},
we observe that F (x, ξ) ⊂ Rn is a non-empty, compact, convex subset for any (x, ξ) ∈
R2n and the multi-function F is continuous in R2n. By a selection theorem (see e.g.

[1, Theorem 1.8.1]), there is a function f ∈ C(R2n) such that f(x, ξ) ∈ F (x, ξ) for all

(x, ξ) ∈ R2n. Set g(s) = f(η(s), η̇(s)) for s ∈ R and observe that
∫ b

a

L(γ(−tj + s), γ̇(−tj + s)) ds ≥
∫ b

a

[γ̇(−tj + s) · g(s)−H(γ(−tj + s), g(s))] ds.

Combining this with (7.8) and sending j →∞, we get

w(η(b))− w(η(a)) ≥
∫ b

a

(η̇(s) · g(s)−G(η(s), g(s))) ds

≥
∫ b

a

(Kδ(η(s), η̇(s)) + δ|g(s)|2) ds ≥
∫ b

a

Kδ(η(s), η̇(s)) ds.

By applying the monotone convergence theorem, we get

w(η(b))− w(η(a)) ≥
∫ b

a

K(η(s), η̇(s)) ds,

where K denotes the Lagrangian corresponding to G. From this we infer that

w(η(b))− w(η(a)) = dG(η(b), η(a)) for any a < b.

Hence, η is an extremal curve for w. It is not difficult to deduce from (7.7) that for each

ε > 0 there is an l > 0 such that min|s|≤l q0(η(t + s)) ≤ ε for all t ∈ R. In particular,

we have infs≤0 q0(η(s)) = 0.

We set v0 = v(·, 0) and define the function v−0 ∈ C(Rn) by

v−0 (x) = inf{v0(y) + dG(x, y) | y ∈ Rn}.
Observe that for any x ∈ Rn,

v0(x) = lim
j→∞

(φ0(x + yj) + p0(x + yj)− u∞(yj))

≤ lim
j→∞

(u∞(x + yj)− u∞(yj) + p0(x + yj)) = w(x) + q0(x).

Moreover, noting that η(0) = 0 and infs≤0 q0(η(s)) = 0 and using the extremality of η,

we observe that

v−0 (0) ≤ inf{w(η(s)) + q0(η(s)) + dG(0, η(s)) | s ≤ 0} = w(0) + inf
s≤0

q0(η(s)) = 0.

Theorem 7.3 (with the remark next to it) now guarantees that (1.5) holds.
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The following example indicates another direction to generalize Example 7.1 to

multi-dimensional cases.

Example 7.2. For each i = 1, . . . , n, let fi ∈ BUC(Rn), i = 1, . . . , n, be such that

infRn fi ≥ 0 or supRn fi ≤ 0 . We set

H(x, p) = max
1≤i≤n

{
p2

i − fi(x)pi

}
for x ∈ Rn, p = (p1, . . . , pn) ∈ Rn.

Clearly, H(x, 0) = 0 for all x ∈ Rn and hence φ0 := 0 is a solution of H(x, Du) = 0 in

Rn. Moreover, H satisfies (A1)′, (A2)′, (A3), (A6) and (A7)±. Let u0 ∈ BUC(Rn) be

such that for any ε > 0 and some l > 0,

min
|y|≤l

u0(x + y) < inf
Rn

u0 + ε for all x ∈ Rn. (7.9)

As usual let u be the solution of the Cauchy problem (1.1) with H and u0 defined

above. We claim here that (7.6) holds with φ = 0, that is,

u( · , t) −→ inf
Rn

u0 in C(Rn) as t →∞.

To prove this, we check that the hypotheses of Theorem 7.3 are valid. For this

purpose, we may assume without loss of generality that infRn u0 = 0. Then, u0 ≥ u−0 ≥
0 in Rn. We also observe from the assumption on fi that, for any φ ∈ S−H , φ(x) is

non-increasing or non-decreasing with respect to the k-th component of x for every

1 ≤ k ≤ n. This and (7.9) imply that u−0 = 0. Let {yj} ⊂ Rn be any sequence such

that

u( · + yj, ·) −→ v in C(Rn × [0, ∞)) as j →∞
for some v ∈ BUC(Rn× [0,∞)). Set v0 := v(·, 0) and remark that infRn v0 = 0 and v0

inherits property (7.9). By taking a subsequence of {yj} if necessary, we may assume

that

fi( · + yj) −→ gi in C(Rn) as j →∞ for each i = 1, . . . , n

for some gi ∈ BUC(Rn), i = 1, . . . , n. Then, we have infRn gi ≥ 0 or supRn gi ≤ 0

according to the sign of fi for each i = 1, . . . , n. Now, we set

G(x, p) = max
1≤i≤n

{
p2

i − gi(x)pi

}
for x ∈ Rn, p = (p1, . . . , pn) ∈ Rn.

Then, for any φ ∈ S−G , φ(x) is non-increasing or non-decreasing with respect to the

k-th component of x for every 1 ≤ k ≤ n. This fact together with property (7.9) for v0

ensures that v−0 (x) := sup{ψ(x) | ψ ∈ S−G , ψ ≤ v0 in Rn} = 0 for all x ∈ Rn. Hence,

we have v∞(0) = 0 and conclude that (1.5) holds.
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An important feature of H in Example 7.2 is the following: the polars of KH(x) :=

{p ∈ Rn | H(x, p) ≤ 0}, defined as KH(x)∗ := {ξ ∈ Rn | ξ · p ≤ 0 for all p ∈ KH(x)},
and KG(x)∗ of KG(x) := {p ∈ Rn | G(x, p) ≤ 0}, with x ∈ Rn, contain a convex cone

K0 with non-empty interior and with vertex at the origin. More explicitly, if fj ≥ 0 in

Rn for all j, then KH(x) ∪KG(x) ⊂ [0, ∞)n and (−∞, 0]n ⊂ KH(x)∗ ∩KG(x)∗. That

is, in this case, we can select (−∞, 0]n as K0. In general, if H(x, 0) = 0 for all x ∈ Rn

and K ⊂ Rn is a closed convex cone with vertex at the origin such that K ⊂ KH(x)∗

for all x ∈ Rn, then we have

dH(x, y) = 0 for any x, y ∈ Rn such that x− y ∈ K.

Indeed, since 0 ∈ SH , we have dH(x, y) ≥ 0 for all x, y ∈ Rn. For the function

v := dH(·, y), with y ∈ Rn, we have

v(y + tξ)− v(y) ≤
∫ t

0

q(s) · ξ ds ≤ 0 for any ξ ∈ K, t > 0,

where q ∈ L∞(0, t) is a function satisfying H(y + sξ, q(s)) ≤ 0 for a.e. s ∈ (0, t).

Accordingly, we see that dH(x, y) = 0 if x− y ∈ K. Moroeover, we see from this that

if K has a nonempty interior and u0 has the the property that for each ε > 0 there is

an l > 0 such that

inf
|y|≤l

u0(x + y) < inf
Rn

u0 + ε,

then u∞(x) ≡ infRn u0. Using this observation, we may extend the convergence asser-

tion of Example 7.2 to some extent, but we do not give here the details.
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