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Let © be an open bounded subset of R™ and f a continuous function on € satisfying f(z) >
0 for all z € Q. We consider the maximization problem for the integral f Q f(z)u(z)dz over
all Lipschitz continuous functions u subject to the Dirichlet boundary condition v = 0 on
00 and to the gradient constraint of the form H(Dwu(z)) < 1, and prove that the supremum
is “achieved” by the viscosity solution of ﬁ(Du(z)) =1in Q and u = 0 on 91, where
H denotes the convex envelope of H. This result is applied to an asymptotic problem,
as p — oo, for quasi-minimizers of the integral fQ[(l/p)H(Du(m))p — f(z)u(z)]dz. An
asymptotic problem as k — oo for inf fQ [k dist (Du(z), K)— f (z)u(z)]dz is also considered,
where the infimum is taken all over u € W(}’l(ﬂ) and the set K is given by {¢ | H(¢) < 1}.

1. Introduction
In this paper we investigate the maximization problem of the functional

/ f(z)u(z)dz (1.1)
Q
in the space W, *(Q) N C(Q) under gradient constraint

H(Du(z)) <1 almost everywhere in €, (1.2)

where  is a given bounded open set in R™, f is a continuous function on Q satisfying
f(x) > 0 for all z € Q, and H is a continuous function on R™ such that H(\¢) = AH(€)
for all (A, &) € [0,00) x R™ and H(£) > 0 for all £ # 0.

One of our results (Theorem 2.2 below) asserts that, if H denotes the convex envelope
of H, then the supremum of (1.1) in the above maximization problem is “achieved” by
the unique viscosity solution of

~

H(Du(z))=1 in{ and u(z) =0 for z € 00 (1.3)



Roughly speaking, this says that, in the process of maximization (1.1)—(1.2), the in-
equality H <1 is replaced by the inequality H < 1. We may classify this phenomenon
as one of relaxations in optimization. This phenomenon is precisely stated in Theorem
2.2 that the viscosity solution of (1.3) is the pointwise supremum of solutions of (1.2) in
the almost everywhere sense. This observation is quite well-known for a long time in the
case when H is convex and therefore (1.2) is equivalent to the inequality H (Du(x)) <1
in the viscosity sense, but it establishes a new connection in our generality between so-
lutions in the viscosity sense and in the almost everywhere sense. We refer the reader to
[7] and to [9] for general overviews, respectively, on viscosity solutions and on solutions
in the almost everywhere sense. We refer to [18] for observations related to relaxation
in eikonal equations.

Our motivation to studying the maximization problem (1.1)—(1.2) is in its application
to an asymptotic problem for the minimizers in W, (€2) N C(Q) of the functionals

[ EHDu@)? ~ f@u(a)is (1.4)
QP

as p — o0o. The minimization problems for functionals (1.4) appear in the study of
torsional creep in elasticity. The case when H({) is the Euclidean norm of &, i.e.,
H (&) = |€|, has been studied by several authors (see, for instance, [2, 16] and references
therein). Recently Ishibashi-Koike [12] have studied the case when H is the general
l,-norm (1 < p < 00).

Theorem 3.1 below says that if u, is a minimizer for (1.4) and w is the viscosity
solution of (1.3), then wu,(z) — wu(z) uniformly in  as p — oc. The maximization
problem (1.1)—(1.2) formally corresponds to solving (1.4) in the case p = oo and, in
this spirit, we may regard (1.1)-(1.2) as an L°°-optimization problem. See [1] for an
overview on the subjects of L°-optimization. See also [5] for related subjects.

We also study an asymptotic problem similar to (1.4), but with slightly different
characters. That is, the asymptotic problem for

inf{ / [k dist (Du(z), K) — f(z)u(z)]dz | u e Wy (Q)} (1.5)

Q
as k — oo, where K := {£ € R" | H({) < 1}. One of basic difference between (1.4) and
(1.5) is in the growth order of the integrands in Dwu variable: (1.4) has a superlinear

growth while (1.5) has the linear growth. The maximization problem (1.1)-(1.2) is
equivalent to the problem

inf{ /Q 0k (Du(e)) — f(z)u(a)]de | u € WEH(Q)),
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where dx denotes the indicator function of K, i.e., dx(§) =0if £ € K and 6k (&) = oo
otherwise, and a natural way of approximating the indicator function is given by a
sequence of Lipschitz continuous functions

kdist (¢, K), k=1,2,..

These considerations lead us to study the asymptotic problem for (1.5) as k — oc.

There has been much attention on problems (1.4) where f vanishes in a region of €2.
We refer the reader to [15, 2, 4, 6] and references therein for this topics.

This paper is organized as follows. Sections 2 and 3 are devoted to the optimiza-
tion problem (1.1)-(1.2) and to the asymptotic problem mentioned above for quasi-
minimizers for (1.4), respectively. In Section 4 we breifly explain another approach to
the asymptotic problem above, which relies on relaxation for (1.4) in W1?(2), but not
on relaxation for (1.1)—(1.2). In Section 5 we study the asymptotic problem for (1.5) as
k — oo. Appendix provides a proof of a standard fact on eikonal equations.

Finally, we have restricted our considerations on the zero Dirichlet data. However,
all our results in this paper are valid for general Dirichlet data g € C(0f2) provided that
there exists a function ¢ € W1 (Q)NC(Q) such that H(Dy(z)) < 1 almost everywhere
in Q and ¢(z) = g(z) for z € 0.

2. Relaxation in eikonal equations with non-convex Hamiltonian
Let H : R™ — R be a continuous function which is positively homogeneous of degree
one and satisfies H({) > 0 for all £ # 0. Here we do not assume that H is convex, and

H denotes the convex envelope of H, i.e.,

HE¢) =sup{la-E+b|aceR"bER, a-£+b< H() VE€R™)
=sup{a-§{|a€R", a-{ < H(E) VEeR"}

Let Q be a bounded open subset of R™. Set X = W,"*°(Q) N C(Q). We consider

the maximization problem
Joo 1= sup{/ f(@u(z)dr | ue X, HDu(z)) <1 ae z€ Q} (2.1)
Q

The following lemma collects standard facts on which our arguments will rely.

LEmMMA 2.1. (a) The problem

~

H(Du(z))=1 1inQ, (2.2)
u(z) =0 for x € 00 (2.3)



has a unique viscosity solution u € C(Q2). (b) Any solution v € C(Q) of (2.2) is locally
Lipschitz continuous and satisfies

~

H(Dv(z)) =1 a.e. x € L. (2.4)

(c) If u,v € C(Q2) are viscosity sub- and supersolutions of (2.2), respectively, and u < v
on 0R), then u < v in Q. (d) The (unique) viscosity solution u € C(Q) of (2.2)-(2.3)
can be represented as

u(z) = inf{L(x — y) | y € 00}, (2.5)

where L(z) :=sup{z-p | H(p) < 1} = sup{z-p | H(p) < 1}.

Proof. We refer for a proof of (a) and (c) to [17, 13] and do not give it here. Assertion
(b) is now a well-known fact (see [8]). A proof of assertion (d), which is a well-known
fact, can be found in the appendix (Lemma A). [

We remark that (a), (c) of Lemma 2.1 are valid with H in place of H.

Here let us recall the following well-known fact that, since H is convex in R"”, any
locally Lipschitz function satisfying (2.4) is a viscosity subsolution of (2.2), which can
be checked by mollifying the given locally Lipschitz function, observing with help of the
Jensen inequality that the resulting function is a classical subsolution of (2.4) with a
small error, and using the stability of viscosity solutions. This is the converse to a half
(subsolution part) of assertion (b) above.

The main result in this section is:

THEOREM 2.2. Let d € C(2) be the (unique) viscosity solution of (2.2)—-(2.3). Then
d(z) = sup{u(z) |u € X, HDu(y)) <1 a.e. y€Q} forallzeQ, (2.6)
and

o= [ f@d(o) s

By the previous lemma, we know that the function d above is given by d(z) =
infycon L(xz —y), where L(z) = sup{z - £ | H(¢) <1}y =sup{z-& | H) < 1}.

Formula (2.6) is the principal assertion of this paper, which can be phrased as follows:
the pointwise supremum of solutions of

H(Du(z)) <1 ae. inQ, ulgo=0
is exactly the viscosity solution of
HDu(z)) =1 in Q, wulog =0.
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The following is an immediate consequence of the above theorem.

COROLLARY 2.3. Let d € C(2) be the viscosity solution of (2.2)-(2.3). Then problem
(2.1) has a mazimizer if and only if H(Dd(z)) <1 a.e. z € Q. Moreover, if (2.1) has

a maximizer, then the mazimizer is unique and given by d.

Proof of Theorem 2.2. We write U(z) for the right hand side of (2.6).
First we observe that if u € X satisfies

H(Du(z)) <1 ae z€Q, (2.7)

then

A~

H(Du(z)) <1 ae z€Q,

since H < H, and hence u is a viscosity subsolution of (2.2).
Let d be the unique viscosity solution of (2.2)-(2.3). Then, what we have seen just
above and (c) of Lemma 2.1 yield that if u € X satisfies (2.7), then

d(z) > u(z) for xz € Q,
and therefore

d(z) >U(x) forze and /Qf(:c)d(a:) dx > joo- (2.8)

We want to prove the opposite inequalities of these. We know from (d) of Lemma
2.1 that
d(z) = inf{L(z — y) | y € 02},

where L(z) = sup{z-£ | £ € R", H(¢) < 1}
The first step is to prove that at every point z € R"™ of differentiability of L,

H(DL(z)) = 1. (2.9)

Set
K={¢c€R"|H() <1} and S=cokK,

where co K denotes the convex hull of the set K, and note that
S={¢eR"|H(E) <1}
Of course, we have
L(z)=max{ -z | € St =max{{-z|{ € K}.
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Note that L is the convex conjugate function (Legendre transform) of the indicator
function
0 if¢eS
9s(8) = {+oo if ¢ ¢ S.
Observe as well that L is convex and positively homogeneous of degree one and satisfies
L(x) > 0 for x # 0 and that the function L is Lipschitz continuous in R™.
In order to show (2.9), we use a standard fact from convex analysis that if L is
differentiable at £ € R™, then the maximization problem

L(z)=sup{{-z | £ € S} (2.10)

has a unique maximizer. A way to see this is as follows. Let y € R™ and ¢ € D" L(y),
and choose a C! function ¢ such that L — ¢ has a maximum at y, so that Dy(y) = q.
Next choose r € S so that L(y) = r - y. Then, using that the function z — z - r — p(x)
on R™ attains a maximum at y, we observe that Dy(y) = r and hence r = ¢. This
shows that g is the unique maximizer of £ — & -y over S.

By the same reasoning, we have that if L is differentiable at x € R", then the
maximization problem

L(z)=sup{{-z|{e€ K} (2.11)

has a unique maximizer.

Let x € R™ be a point of differentiability of L, and let £ € § and n € K be the
unique maximizers, respectively, of (2.10) and of (2.11). Since K C S and £ is the unique
maximizer of (2.10), we see that £ = n € K. Since £ € K is the unique maximizer of
problem (2.11), we see that £ € 0K, i.e., H({) = 1, which proves (2.9).

The next step is to introduce a sequence of functions which approximates the function
d in a nice way. Choose a sequence {z;}jen C 02 which is dense in 02, and set

dp(x) = IJIISIIICIL(HT — Zj).
In view of Dini’s lemma, it is obvious that
dig(z) = d(z) uniformly on Q@ as k& — oco.
We show that for all £ € N,

H(Ddy(z)) =1 ae. z €. (2.12)

Let Z C 2 be the set of point z €  at which the function L is not differentiable and
Z C ), for k € N, the set of points at which dy, is not differentiable. Since L and dj are
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Lipschitz continuous and therefore almost everywhere differentiable in €2, the Lebesgue
measure of each of these sets Z and Z is zero. Set

Zy=J Gz +2)u | %Z.

JEN keN

Then the set Zj is also a set of measure zero, and we have
H(DL(x — z;)) =1 forx e Q\ Zp and j € N.

Fix y € Q\ Zy and k£ € N. The function dj is differentiable at y, and there is a
J < k such that L(y — z;) = dg(y). Since di(z) < L(z — z;) for all z € Q, we see that
q := Ddi(y) € D™ L(y — #;). Furthermore, since z — L(z — z;) is differentiable at y,
we see that ¢ = DL(y — z;) and therefore H(gq) = 1, and conclude the proof of (2.12).
Now, we set

uk(z) = (dk(x) - I%%Xdk)+ for z € Q

and for all £k € N. Then observe that u; € X for all £ € N, that for all £ € N,
H(Dug(z)) <1 a.e. z €,

and that
u(r) — d(x) uniformly on Q as k — oo.

Here we have used the fact that Dug(xz) = Ddg(x) or Dug(xz) = 0 a.e. z € Q for all
k € N, an observation due to Stampacchia [11, Theorem 7.8]. Now, it is immediate to
see that

d(z) <U(z) forzeQ and / f(z)d(z)dz < joo.

This together with (2.8) completes the proof. [

The following example shows that in general there is no maximizer for problem (2.1).
Consider the case when n = 2. Define the function H : R?> — R by the two
conditions that

K={(eR? | H(E) <1} ={6eR? | |G|+ & <1}n{eR? | & < (1 - &)%)
H(\E) = AH(¢) forall A >0, ¢ € R

Then the convex envelope H is just the function H(£) = [&1] + €5, and the convex hull
of K is given by S = {£ € R? | |£1] + |&2| < 1}. The function L(z) = sup{z-£| & € S}
associated with H is given explicitly by L(z) = max{|z1|, |x2|}.
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Now let Q be the set {z € R? | z; + 23 > 0, 22+ 2% < 1} and d : @ — R the
function given by

d(z) = ylerngL(x —y).

In a small neighborhood of the origin relative to €2, we have

_ T1t 22

() = 252,

and so,
Dd(z) = (3,3) ¢ K.
Thus, in this example, we have
H(Dd(z))>1 inaset C Q of positive measure,

and, in view of Corollary 2.3, there is no maximizer of (2.1).

3. An asymptotic problem for variational problems
As in the previous section we assume throughout this section that €2 is a bounded open
subset of R™ and f € C(Q) satisfies f(z) > 0 for all z € Q and that H € C(R") is
positively homogeneous function of degree one and satisfies H(&) > 0 for all £ # 0.

In this section we consider the minimization problem, for p > 1, of the functional

I,(u) = /Q [%H(Du@))ﬂ ~ f(@)u(@))dz (3.1)

over all functions u in the space X, := Wy (Q) N C(Q), where W,*(Q) denotes the
standard Sobolev space (see e.g. [11]), and study the asymptotic behavior of quasi-
minimizer u, of I, as p — oo.
For p > 1 we define
ip = Inf{l,(u) | u e X,}. (3.2)

Fix a net {€p}pe(1,00) C (0,00) such that e, — 0 as p — oo and such that sup,,; €, <
0. Select u, € W, P(Q) so that

Iy(up) < ip +€p.
THEOREM 3.1. (a) For anyq>1,

up(z) = d(z) := yierngL(x —y)  weakly in Wy(Q)

as p — oo, where L is the function on R™ defined by
L(z) :=sup{z-£ | £ € R", H(¢) <1},
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p—>00

(b) lim i, = —/Qf(:c)d(:c) dx.

We remark that, since the injection of W, %(Q) into C() is compact for any ¢ > n
by the Rellich theorem (see e.g. [11]), the above theorem yields the convergence of {u,}

to d in C(Q).
PROPOSITION 3.2. For any g > 1 the net {up}p>q is bounded in W, %(Q).
Proof. Let p > 1. Since i, < I,(0) = 0, we have

/Q%H(Du;a(:c))pdx < /Qf(:c)up(x)dmirsp < C(/Q H(Du,(z))dz + 1)

SC(LHUMM@VM)imh%+C

1 1 1 11 (1—%)71
< Hw%@mm+1——(mmm Q +C,
2p Jo P
where C denotes a positive constant independent of p. Here we have used the Poincaré
inequality
lullr@) < CillH(Du)llpye) — Yu e Wy (9),

where C'y > 0 is a constant depending only on n, €2, and H. Hence we have

—1 _1_ P
H(Dup(x))pd.’lj S C + 2pi1 Cr-1 ‘Q"
2p Jo

and therefore,

3 =

|H(Dup)||Lr () < (2,’0 (C+ 2P_i10ﬁ|§2|)) : (3.3)

Now let ¢ > 1 and p > q. Using the Holder inequality, we compute that
1 1 1 1 ya 1
| H (Dup) g0y < 19237 F | H(Dup) 100y < €17 (20 (Cl0I +277C7T))7.

This shows that {u,}psq is bounded in Wy4(Q). [

Let {p;}jen be a sequence of p; > 1 such that p; — oo as j — oo and such that for
any q > 1,
Up; = Uso  Weakly in Wy(Q)

> 1 WO1 P(Q). Notice that, according to Proposition 3.2, one
can extract such a subsequence from any sequence of numbers p > 1 which goes to oc.

for some function uy, €

PROPOSITION 3.3. The function us, satisfies

~

H(Duy(z)) <1 a.e. T € (),
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where H denotes the conver envelope of H as before.
We divide the proof of this proposition into two lemmas.

LEMMA 3.4. Ifv € (5, LP() satisfies
liminf ||v]|zr() < 1,
pP—00

then |v(z)| <1 a.e. in Q.
Proof. For n € N define

1
Qn:{x€Q||v(m)|21+ﬁ}.
Then we have .
1
p > n E I
lollzre) 2 1907 (1+ )

This together with the assumption of the lemma yields that if [Q,,| > 0 then
...
1+ — <liminf ||v]| pr) < 1,
n p—>00

which is impossible. Thus we conclude that |Q,| = 0 for all n € N and that |v(z)| <1
a.e. in Q. [

LEMMA 3.5. Let {w;}jen be a sequence of functions on Q2 such that w; € LPi(Q)™ for
all j € N, where 1 < p; = 00 as j — 0o. Assume that w; — w weakly in L"(Q)™ as
j — oo for some r > 1 and for some w € L"™(Q)"™. Assume further that

lim sup [|H (wj) || 7i () < 1. (3.4)

J—o0

Then H(w(z)) <1 a.e. in Q.
Proof. First we note that if p; > ¢ > 1, then

1_ 1
[1H (wj)llzagey < Q7 #7 [|H (w5) ]| Lr5 (- (3.5)

(From this we see that for any ¢ > 1 the sequence {w;} is bounded in L?(2)", and so
we may assume that, as j — 0o, w; — w weakly in L9(Q2)" for all ¢ > 1.
For ¢ > 1 and u € L1(Q)™ we write

Bq(u) = || H (W) La(o)-
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Fix ¢ > 1. By a well-known theorem due to Mazur (see e.g. [19, Theorem 2, p. 120]),
for each k € N there is a finite sequence A, )\’,§+1, )\’,§+2, --- €0, 1] such that

Y oM =1,
ik

Z)\?wj —w  strongly in LI(Q)" as k — oo.
2k

By using the convexity of ®,, the inequality H < H, and (3.5), we compute that

Dy(w) = lim Dy (D Moy < liminf " AE®, (w;)
j>k i>k

. . 1L 1
< limsup ®4(w;) < limsup [Q* ?3 [|H (w;)]| 7)) < [2]9.

j—oo j—o

Now Lemma 3.4 guarantees that |H(w(z))| <1 ae. z€Q. O
Proof of Proposition 3.3. From (3.3), we get

limsup ||H (Duy)||zr () < 1.

p—00

Then we conclude by Lemma 3.5 that I?(Duoo (z)) <lae inQ. [
We consider the minimization problem for p = oc:

boo = inf {—/Qf(a:)u(:v)dx lue X, HDu(z)) <1 ae. z€ Q} ,

where X = C(Q) N Wy™(Q).
By Lemma 2.1 and Theorem 2.2, we know that d is the unique viscosity solution of

HDu(z))=1 inQ, (56)
u(z) =0 on 0N
and that
d(xz) = sup{u(z) |u € X, H(Du(y)) <1 a.e. yecQ} (3.7)
and
o = — / F(@)d(z) da. (3.8)
Q
Proof of Theorem 3.1. First of all we show that
limsup i, < ioo. (3.9)

pP—00
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Fix any v > 0 and choose a function v € X so that
H(Du(xz)) <1 a.e. z€Q and too + 7 > —/ f(z)u(x)dx.
Q
Then compute that

ip <10) = [ (CH(Du@)? = f(@)ula) ) do
gl}%—ﬂ@m@yM<%muww+%

Sending p — oo, we see that (3.9) holds.
Next, we fix a sequence {pg}ren C (1,00) such that pr — oo as k — oco. By taking
a subsequence if necessary, we may assume moreover that for any ¢ > 1, as k — oo,

Up, — Uso  Weakly in Wy U(Q)

for some function us € ﬂp>1W01 P(Q).
By Proposition 3.3, we see that

H(Dugw(z)) <1 ae. z €.

Since H is convex, it follows that u., is a viscosity subsolution of (3.6). By comparison
(see (c) of Lemma 2.1), we have

Uso(7) < d(z) for all z € Q. (3.10)

Now, observe that as k£ — oo,

%E—LﬂmMmm%—Lﬂm%mmz—Lﬂmmmwﬂw

Hence, using (3.9), we obtain

hmmfzpk > / f(@)uoo(z)dz > — / f(z)d(z) dz =i > limsupip,,

k—o0

which implies

&ﬁ%VJm:A#@Wd@M:Ay@M@Mm

The last equality together with (3.10) yields that uy, = d in Q.
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Thus we have shown that if pr € (1,00) and limg_,o, pr = 00, then there exists a
subsequence, which we denote by the same symbol, such that as k — oo,

up, —d weakly in Wy'?(Q) forallg>1 and iy, — ico.
Therefore, using a simple argument by contradiction, we see that as p — oo,
u, —»d weakly in Wy 9(Q) forallg>1 and iy — io,
which completes the proof. [

4. Another apporach to the asymptotic problem
In this section we briefly explain a variant of the previous proof of Theorem 3.1. The
new proof is based on the relaxation in the space W?(Q) for the functionals I, defined
by (3.1) and does not rely on Theorem 2.2 for non-convex H.

We use the same notation and assumptions as in the previous section. We assume
in addition that 2 is Lipschitz (see, e.g., [10, Definition X. 2. 2]).

We define the functionals fp on X, with p > 1, by

p

T (u) = Q[%ﬁ(Du(a:)) _ f(z)u(@)lds foru e X, (4.1)

The relaxation in W?(£2) for the functionals I, is stated as follows:
LEMMA 4.1. iy = inf{fp(u) |u e Xp} forpe (1,00).
We do not give the proof of Lemma 4.1 and instead refer the reader to [11, Propo-

sition X. 3. 6, Theorem X. 3. 3] together with their proofs for the proof and to [11] for

an overview on relaxation in calculus of variations.

Sketch of another proof of Theorem 3.1. Let {¢,},>1 and {u,},~1 be chosen as
in Theorem 3.1.
By Lemma 4.1, since fp(u) < Ip(u) for u € X, by definition, we have

~

Ty(up) < ip+ep = inf{l,(u) |ue X,} +¢, forallp>1.

This shows that the net {u,},~1 satisfies the same relation with fp as that with I,,.

We repeat the same arguments in Section 3, but with Hin place of H, to conclude
the proof. The main difference is that in the new proof we use Theorem 2.2 with Hin
place of H, the proof of which is much easier than the original Theorem 2.2. L[]

5. Another asymptotic problem
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In this section we consider an asymptotic problem similar to that in Sections 3 and 4,
but with slightly different characters. We use the same notation and assumptions as in
the previous section.

The maximization problem (2.1) is equivalent to the minimization problem

inf{ /Q 0k (Du(w)) — f(@)u(@)lds | u e WE' ()},

where K := {£ € R" | H(¢) < 1} and 0x denotes the indicator function of K. One
of natural approximations of the indicator function 0k (§) is given by a sequence of
functions

kdist (¢,K), with k € N.

Thus we are led to the asymptotic problem for
inf{ / [k dist (Du(z), K) — f(z)u(z))ds | u € WILQ)},
Q

as k — oo.
Observe from standard relaxation theory (see [11, Theorem X. 3. 3] together with
its proof) that for all k € N,

inf{/Q[k dist (Du(z), K) — f(z)u(z)]dx | u € Wol’l(Q)}a

= inf{ /Q [k dist (Du(z), co K) — f(z)u(x)]dz | u e WIL(Q)}.

Concerning this asymptotic problem we have the following result.

THEOREM 5.1. As k — oo,
inf{ / [k dist (Du(z), K) — f(z)u(z)]dz | u € Wy ()} = ioo.
Q

Proof. Set
p(&) = dist (&, co K),

/ kp(Du(z)) — f(@)u(z))dz,
I, = inf{Ji(u) | u e WO1 L)},

We need to show that I — i, as k — 00. Since
Iy < Ji(d) = —/ fx)d(z)dr =i for all k € N,
Q

14



we only need to show that

loo := lim Il > t00,
k— o0

for which we argue in a way similar to the proof of Theorem 3.1. Notice here that the
sequence {lx} is non-decreasing.

Fix a non-increasing sequence {ey}ren of positive numbers such that e — 0 as
k — oo. Choose a sequence {ug}ren of functions in W, (Q) so that

Iy +er > Jx(ug) for k € N.
In view of Poincaré’s inequality, there is a constant C' > 0 such that
||uk||L1(Q) < C”DUk”Ll(Q) for kK € N. (51)

We may assume that C' is large enough so that co K is contained in the ball with radius
C centered at the origin. Then

p(§) 2 [§|-C  for { € R,

Observe that
bt e > () 2 k| p(Dun(o)d = Clll=(oy)l Dl e
>k / p(Dur(@))dz — | fll e o / (C + p(Dux(x)))dz.
Q Q

which yields that
/ p(Dug(x))dz = O(k‘_l) as k — oo.
Q

We now claim that there is a sequence {vgx}ren C Wy ' (Q) converging to v in
W11(Q) such that Ji(vg) <l + €, for all k € N.
To see this, define functions g, by € L*(Q2)™ for k € N by

_ | Dug(z) if p(Dug(z)) <1
gk (@) = {0 otherwise,

br () = Duy () — gk (x)-

Note that |gx(z)] < C + 1 for x € @ and k € N and that Duy = gi + b for £ € N.
Note as well that if £ € R™ and p(&) > 1 then [{| < C + p(§) < (C + 1)p(§) and hence

ol < (C +1) /Q p(b(@))dz < (C +1) /Q p(Dug(2))dz = O(k~Y)  as k — 0o,
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In view of Sobolev’s embedding theorem and (5.1), we see that the sequence {uy}
is bounded in L™/~ (Q). Noting that the sequence {gx} is bounded in L*(Q)",
we see that, along a common subsequence, the sequences {ur} and {gx} converge to
some functions u € L™ ™=1(Q) and g € L®(Q)", respectively, in L™ (»=1(Q) and in
L™ (=1(Q)". Invoking a theorem due to Mazur, for each j € N we may choose a finite
sequence \, )\§+1a -+- € [0,1] such that

J
Y M =1,

i>3
Z A-Zul —u StI'OIlgly in Ln/(n—l) (Q) as j 5 00,
i>3
Z)\fgi — g strongly in L"/(n—l)(Q)n as j — oo.
i>j
Set,
Uk = Z)‘f“% e W' (Q) for ke N.
i>k
Since

Doy, = Z)\fgi + Z)\fbi — g strongly in L'(Q)" as k — oo,
i>k i>k

we see that vy, — u in WH1(Q) as k — oo. Using the convexity of the functionals Jg,
we observe that for k£ € N,

Jk(vk) < Z)\ka(uz) < Z)\fJZ(’U,Z) < Z)\f(lz + é‘i) <ls + €.
i>k i>k i>k

proving our claim.

Fix such a sequence {vg}. By the same reason as for ug, we have

lim | p(Dug(z))dz =0,
Q

k—oo0
which implies
/ p(Du(z))dx =0
Q

and furthermore

~

Du(z) € coK or, equivalently, H(Du(z)) <1 a.e. z€Q.

Thus we may assume that u € W, *°(Q) N C(Q), and then we have d(x) > u(z) for all
T € Q.
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Since

loo + €1 > Ji(vg) > —/ f(@)vg(x)dx for all k € N,
Q

we get in the limit as £ — oo,
e > = [ f@u@ds> - [ f@)de)ds = in,
Q Q

which completes the proof. [

Appendix.

Let H : R™ — R be a convex function satisfying the conditions:
(a) H is positively homogeneous of degree one,
(b) H(&) >0 for & # 0.
As before we define L : R® — R by

L(z)=sup{z-£{ | € R", H() <1}
Let B C R" be a non-empty closed set and define d : R® — R by
d(x) =inf{L(z —y) | y € B}.
LEMMA A. The function d is a viscosity solution of

H(Dd(z))=1  inR"\B. (A.1)

Proof. We set @ =R"\ B. Let y € Q and ¢ € D~ d(y). We show that H(¢q) = 1. To
this end, choose a point z € B so that d(y) = L(y — 2).

Since d(z) < L(x — z) for all z € Q, we see that ¢ € D~ L(y — z). Since L is a convex
function, by the convex duality we have

y—z€ D k(q),

where K = {£¢ €¢ R | H(¢) < 1} and dx denotes the indicator function of K as before.

Since y — z # 0 and
{0} if g € Int K,

D_(SK(Q):{ 0 ifqd K

we infer that ¢ € 0K, and hence H(q) = 1. To see that d is a viscosity subsolution of
(A.1), we invoke a result due to Barron-Jensen (see, e.g., [3, 14]), and then conclude
that d is also a viscosity subsolution of (A.1). U
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