Nonlinear oblique derivative problems
for singular degenerate parabolic equations
on a general domain

Hitoshi Ishii* Moto-Hiko Sato*
Department of Mathematics Common Subject Division
School of Education and Muroran Institute of Technology
Waseda University Muroran 050-8585 Japan
Tokyo 169-8050 Japan motohiko@mmm.muroran-it.ac.jp

ishii@edu.waseda.ac.jp

Abstract

We establish comparison and existence theorems of viscosity solutions of the
initial-boundary value problem for some singular degenerate parabolic partial
differential equations with nonlinear oblique derivative boundary conditions.
The theorems cover the capillary problem for the mean curvature flow equation
and apply to more general Neumann type boundary problems for parabolic
equations in the level set approach to motion of hypersurfaces with velocity
depending on the normal direction and curvature.

1 Introduction

In this paper we are concerned with the following boundary value problem
(1.1) uy + F(t,z,u, Du, D*u) = 0 in@=(0,T) x Q,
(1.2) B(z,Du) =0 in S=(0,T) x 01,

where 2 is a bounded domain in R" and T > 0. Here u; = 0u/dt, and Du and D?u
denote, respectively, the gradient and Hessian of u. We assume throughout this paper that

1 is a bounded domain in R"™ with C' boundary.

*Supported in part by Grant-in-Aid for Scientific Research (No0.12440044, No. 09440067) of JSPS.

1



We deal with equations (1.1) in a class of singular degenerate parabolic equations
which includes the mean curvature flow equation.

The boundary condition (1.2) is a type of the fully nonlinear oblique derivative bound-
ary condition, which will be made precise later on. A typical example we have in mind is
the capillary boundary condition

U
O a(a)|Dul,
where a(z) is a smooth function on € with values in (0,1). This boundary condition
appears, in fact, as the interpretation of the standard capillary condition in the level set
approach to motion of hypersurfaces by curvatures. See, for instance, [S2, ESY]. See also
[OS].

In the case when F' is continuous in its variables, there are already a lot of comparison
and existence results for viscosity solutions of second order degenerate parabolic PDE
with boundary condition (1.2). We refer for this to [B1, I] and references therein.

In the case of singular PDE like the mean curvature flow equation, Giga and the sec-
ond author [GS] have established comparison and existence results for viscosity solutions
under the Neumann condition. When (2 is a half space the second author has established
comparison and existence theorems under the capillary condition in [S2].

Our aim in this paper is to establish comparison and existence theorems concerning
viscosity solutions of (1.1)-(1.2). Our results in this paper extends the results obtained
in [GS, S2] to general C' bounded domains ) and fully nonlinear oblique boundary
conditions. A variant of these results has been already announced and utilized in studying
the stability of motion of hypersurface driven by curvature in the work [ESY] by Ei, Sato,
and Yanagida, where this paper is referred as “Capillary problem for singular degenerate
parabolic equations”. ( We hope this change of title does not cause any confusion. )

After we had almost completed this work we noticed the work by Barles [B2] which
treated (1.1)-(1.2). (We would like to thank Mariko Arisawa who brought [B2] to our
attention.) Compared with our results here, his results [B2] cover more general F' and B,
but less general domains. This difference is similar to that between [B1] and [I].

This paper is organized as follows. In Section 2 we state and prove our comparison
result. In Section 3 we establish our existence result. In Section 4 we explain how to build
test functions which are needed in the proof of the comparison and existence theorems. In
Section 5 we discuss about a few examples including the Capillary problem for the mean
curvature flow equation.

2 A comparison theorem

We start by listing our assumptions on F' and B. Henceforth, for p,q € R™\ {0} we write
p =% and p(p, q) = [(]p| A lg])*|p — ¢|] A 1. Here and henceforth we use the notation:

a Ab = min{a,b} and a V b = max{a, b}.



(F1) FeC(0,T)x QxR x (R*\ {0}) x &),

where S™ denotes the space of n X n real matrices equipped with the usual ordering.

(F2) There exists a constant v € R such that for each (¢t,z,p, X) € [0,7] x Q x (R™\
{0}) x 8™ the function u — F(t,z,u,p, X) — yu is non-decreasing on R.

(F3) For each R > 0 there exists a continuous function wg : [0,00) — [0, c0) satisfying
wr(0) = 0 such that if X, Y € 8™ and p1, po € [0, 00) satisfy

X 0 I —-I I 0
(0 Y)S/“(—I I >+u2<0 I)’

F(t,.T,U,p,X) - F(tayauaqa _Y)
> —wr(pm |z —y* + p(p,@)?) + p2 + [p — ¢ + |2 — y[(Ip| V |g] + 1)).

for all t € [0,T], 7,y € Q, u € R, with |u| < R, and p,q € R™\ {0}.

then

(Bl)  BeCR"xRY)NCY (R x (R*\ {0})).

(B2) For each xz € R™ the function p — B(z,p) is positively homogeneous of degree one
in p, i.e., B(z,A\p) = AB(z,p) for all A > 0 and p € R\ {0}.

(B3) There exists a positive constant 6 such that (v(z), D,B(z,p)) > 6 for all z € 0Q
and p € R™\ {0}. Here v(z) denotes the unit outer normal vector of Q at z € 0f.

We may and do assume that the function wg from (F3) is non-decreasing on [0, o).

Theorem 2.1. Suppose that (F1)—-(F3) and (B1)—(B3) hold. Let u € USC([0,T) x )
and v € LSC([0,T) x Q) be, respectively, viscosity sub- and supersolutions of (1.1)—(1.2).
Ifu(0,z) < v(0,z) for x € Q, then u < v on (0,T) x Q.

Remark 2.2. Assumptions (F1) and (F3) imply that
(2.1) —o0 < Fiy(t,z,u,0,0) = F*(t, z,u,0,0) < 00

holds for all (¢,z,u) € [0,7] x @ x R and the degenerate ellipticity of F. Here F*
and F, denote the upper and lower semi-continuous envelopes, which are defined on
[0,T] x 2 x R x R™ x 8", of F, respectively. Indeed, for any X,Y € 8" and £ > 0 we
have

(XE,&) — (Yn,m)=(X(E—n),&—n +2(X(E—n),n) + (X -Y)n,n)
<|IX € = 0> + 2(1X]|€ = nlln| + | X = Y||In|?

1 n
< (10 + Zllal) € =l + (1 = Y|+ X[ for &7 € R,
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that is,

(5 )<=l ) rax—vizamn( 7).

Hence, from (F3) we get

1
Plty0,0.Y) < F(t2,u,p, %) + wr(I1X] (14 2) (o0 + 12— o)

HIX =Y+ el X1+ b=l + b = pl(pl v1a + 1)

for allt € [0,T], z,y € Q, u € R, with |u| < R, p,qg € (R"\ {0}), and R > 0. From this
it is easily seen that (2.1) holds.

In what follows we use the notation: for any p,q € R",

p(p,a)  if pg#0,
1 if either p=0 or ¢ =0.

p(pq) = {

Note that the function p* is upper semi-continuous on R" x R™.
Remark 2.3. The last inequality in (F3) can be stated as
(2.2) F.(t,z,u,p,X)— F*(t,y,u,q,-Y)
> —wr(m(jz = y1* + p"(0,9)%) + p2 + Ip — g + |z = yl|(|p| V |¢ + 1))
for all t € [0,7], 7,y € Q, u € R, with |u] < R, and p,q € R™. Notice that this is valid
forp=0orqg=0.

We need the next lemma for the proof of Theorem 2.1. We refer the reader to [I,Lemma
3.4] for a proof of the lemma.

Lemma 2.4 Assume that (B1) and (B3) hold. For any € € (0,1) there exists a function
Y € C(Q) satisfying the properties: Di(x) # 0 for all x € 09, 1(x) > 0 for all x € Q,
(v(z), Dy(z)) > (1 — €)|Dy(z)| for all z € 0N, and (D,B(z,p), Dy(z)) > 1 for all
(z,p) € 02 x (R™\ {0}).

Proof of Theorem 2.1. We may assume by replacing 7 > 0 by a smaller number
if necessary that u and —v is bounded above on [0,7) x Q. For any constant A >
max, o u(0,2)V(—v(0,x)), if we choose a constant B > 0 large enough, then the functions

f(t,r)=—A—Bt and g(t,x)=A+ Bt

are, respectively, (viscosity) sub- and supersolutions of (1.1)—(1.2). For such functions f
and g, we set

u(t,z) = u(t,z) V f(t, x) and o(t,x) = v(t,z) A g(t, x),



and observe that % and ¢ are, respectively, sub- and supersolutions of (1.1)—(1.2) and that
@(0,z) < 9(0,2) for z € Q. If we can show that @ < @ on [0,7) x Q for any such f and
g, then we see that u < v on [0,7) x . This observation reduces the proof to the case
where v and v are bounded.

Also, the standard technique reduces the proof to the case when v = 0 in (F2). Indeed,
if v < 0, then the functions 4(t,z) = e"u(t,z) and o(t,z) = e"v(t,z) are, respectively,
sub- and supersolutions of (1.1)—(1.2) with F (¢, z, r, p, X) replaced by the function

et (—yr + F(t,z,e Mr,e "'p e " X)).

Thus we may assume that u and v are bounded on [0,7) x Q and that the function
r+— F(t,z,r,p, X) is non-decreasing in R for each (¢, z,p, X) € [0, T]xQ2x (R™\{0}) xS™.

In view of Lemma 2.4, we may choose a function ¢ € C*(Q) so that 4(z) > 0 for all
z € Q and (D,B(z,p), Dy¥(z)) > 1 for all (z,p) € 02 x (R™\ {0}). o

By virtue of Theorem 4.4 in Section 4, there are a function w € C*'(Q x Q) and a
positive constant C' such that for all (z,y) € Q x €,
(23) |z —y[* <w(z,y) < Clz -yl

| Dow(z,y)| V [Dyw(, y)| < Cle -y,

(2.4)  B(z,D,w(z,y)) >0 if © €09,

p*(Dzw(z,y), —Dyw(z,y)) < Clz —yl,

and for a. e. (z,y) € O x Q,

2 of I —1I +(1 0
@6) Duy<cle-y(, ) +e-u(y 7))
We argue by contradiction. So we suppose that
(2.7) mo = sup{u(t,z) —v(t,x) : (t,z) € [0,T) x Q} > 0.

For o > 0, ¢ > 0, 0 > 0 we define

U(t,2,y) = 5y + awle,y) +6(6(2) + (),

(I)(ta xz, y) = U(t, IE) - U(ta y) - \I;(ta z, y)
for (¢,z,y) € [0,T) x Q x Q. From (2.7) we infer that for sufficiently small £ > 0 and
d > 0, the function ® attains a maximum greater that mg/2. Fix such ¢ and €, and choose

a maximum point (%, %, 7)) of ®. Note that ® and (Z,Z,7) depend on a, €, 4.
It is now well-known (see, e.g., [CIL]) that

(2.8) ll\r[%ah_)rgo (]51{% d(t,2,9) = my,



(2.9) ali_)n&sup{aw(f;,gj) :0<d<1, 0<e<1}=0.

We will pass to the limit as § N\, 0, &« — oo in this order. Thus, in view of (2.8), we
may assume that ¢ > 0 and that u(#,2) > v(Z,9).

Note that
(2.10) B(z,p) >0 if £ € 092,
(2.11) B(9,4) <0 if z € 092.

To check (2.10), let us assume that z € 9Q. If D,w(&,9) = 0, then we have for some

£ e R"\ {0}, )
B(&,p) = B(&,0) + §(D,B(&,€), Du(#)) > 6.

Consider the case where D,w(Z,9y) # 0. Suppose for the moment that aD,w(z,q) +
sDy(z) = 0 for some s > 0. Let r > 0 be the smallest among such s. Then we have for
some 7) € R™\ {0},

B(z,aD,w(%,9) + rDy(2)) = B(, aDyw(2,§)) + r{D,B(%,1), DY(2)) > r.
This is a contradiction, which shows that aD,w(z,§) + sDy (&) = 0 for all s > 0. More-
over, the above computation shows that B(Z,p) > 6. Thus (2.10) is valid. Similarly we
can show that (2.11) holds, the details of which we leave to the reader.

We apply the maximum principle for semi-continuous functions (see [CIL]), to find
matrices X,Y € 8" such that

X 0 . o I =T . a4 I 0
(0 Y)§3C’a|x—y\ (—I I)+Cl(a\x—y|+5)(0 I)’

where C is the constant from (2.6) and C; = C V sup,cq ||D*¥(z)]], and such that

where
a=u(tz), 9=0v7),
p=aDyw(t, @) +6Dy(&),  §=—aDyw(t§)—Dy().
Using (2.2) and writing w = wg, where R = supyy v, g(|ul + [v]), we get
€ A A €
0 Z ﬁ_i_F*( ,CL',U,p,X) - F (t’yaan5 _Y) 2 ﬁ _w(T1+T2+T3)’
where
_ ~ A2 0] A, ~ 2 * (A A2
r1=3Ca|z — g|*(|z — 9]* + p*(p, §)°),
ry=Ci(ald —§|* + ),
rs=[p—ql+ [z —9|([p[ v g + 1).
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Sending 0 \, 0 along a sequence, we may assume that t — £, & — Z, § — 7, p — P,
g — q,and r; = s; for 1 =1,2,3. We then get

19
(2.12) 0> m—w(51+32+53)a

p = aDw(z,y), q = —aDyw(z,7y),
51 < 3Ca(l1+0)|z —g|* < 3C(1 + C)aw(, ),
s9 < Chaw(Z, ),
ss<[p—q|+I[z—y|(|p] Vgl +1)
<+Cali — g + |2 — gl(Calz — g +1)
<2Caw(z,y) + |z — ¥l

Sending o — oo in (2.12), we get a contradiction, which proves that supy, 7y, g(u—v) <
0. O
3 An existence theorem

We next show the existence of a viscosity solution of the initial-boundary value problem

(3.1) ug + F(t,z,u, Du, D*u) =0 in Q,
(3.2) B(z,Du) =0 on S,
(3.3) u(0,z) = g(x) for z € Q,

where g € C'(f) is a given function.
The main result in this section is the following.

Theorem 3.1. Assume that (F1)-(F3) and (B1)-(B3) hold. Then for each g € C(Q)
there is a (unique) viscosity solution u € C([0,T) x Q) of (3.1)-(3.2) satisfying (3.3).

The uniqueness assertion above is an immediate consequence of Theorem 2.1.

Proof.  'We use the Perron method (see [CIL]) to show the existence of a continuous
viscosity solution.

Thus the first step is to build sub- and supersolutions of (3.1)-(3.2) satisfying (3.3).

If we introduce the new unknown 4u(t,z) = e"u(t,z), where v € R is the constant
form (F2), then the problem (3.1)-(3.3) is reduced to the case when v = 0. Hence, we
may assume that v = 0.

According to Theorem 4.4 in Section 4 below, there is a function w € C(Q x Q) having
the following properties:



(3.4) B(x,Dyw(z,y)) >0 for x € 0Q,y € Q,
(3.5) B(y,—Dyw(z,y)) <0 fory € 00,z € Q,
(3.6) |z —y|* <w(z,y) < Clz—y|* for all z,y € Q and for some constant C > 0.

Choose a constant Cy > 0 so that |g(x)| < Cy for all z € Q.
As we observed in Remarks 2.2 and 2.3, we have
F*(t’ y’ u’ q’ Y) S F*(t’ '/'U’ u’p’ X)
+wr(2X[|(je = yI” + p*(p,0)*) + 1X = V]| + | X[ + |z — y[(Ip| V |a| + 1))

forallt € [0,T), z,y € Q, u € R, with |u| <R, p,ge R", X,Y € 8", and R > 0.
Fix any p € R"\ {0}. Using the above observation, for each a > 0 we have

F*(tax; _COa OZDQ;'LU(.'L', y)a aD;w(x, y)) 2 F*(tax; _COaﬁa O) - Cl(a) 2 _CQ(a)

for some constants C;(a) > 0, with ¢ = 1,2. Similarly, for any o > 0 and for some
constant C3(a)) > 0, we have

F*(t,z,Co, —aDyw(z,y), —aDiw(z,y)) < Cs(w).

For each 0 < € < 1 we can choose constants a(¢) > 0 and B(¢) > 0 such that for all
z,y € Q,
9(z) — 9(¥)| < & + ale)w(z,y),
Ca(ale)) V Cs(afe)) < B(e).-

We define functions V* on [0,T) x Q parametrized by €,y € Q, respectively, by
VT(t,zie,y) = g(y) + e + ale)w(z, y) + Be)t,

Vot me,y) = g(y) — e — ale)w(y, ) — B(e)t.

It is easily seen that functions V7 (¢, x;¢,y) and V= (¢, z; ¢, y) ) are classical sub- and super-
solutions of (3.1)—(3.2), respectively. Moreover, for allz,y € Q, 0 <t <T,and 0 < e < 1,
we have

V7 (t,ze,y) < g(z) S VT (¢, 356, y),
V_(O,x;s,x) :g(‘T) V+(O,$;E,.’E).
Next we define functions f* on [0,7) x Q by

fHt,z) =inf{V*t(t,z;e,y) : 0<e<1, yeQ}

[ (t,x) =sup{V~(t,z;e,y) : 0<e<1, ye}

Then we easily deduce that f= are continuous on [0,T) x Q and f*(0,z) = g(z) for all
z € Q and that f* and f~ are viscosity sub- and supersolutions of (3.1)—(3.2).
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Now we conclude by the Perron method together with Theorem 2.1 that if we define
the function v on [0,7) x Q by

u(t,z) = sup{v(t,z) : ve S},

where S~ denotes the set of functions v on [0, T) x Q such that v is a viscosity subsolution
of (3.1)-(3.2) and such that f~ <v < f* on [0,7) x Q, then v is a continuous function on
Q% [0,T) and a viscosity solution of (3.1)-(3.2). Noting that u satisfies (3.3), we conclude
the proof. O

4 Construction of a test function

Since 2 is a bounded C! domain, there are a compact neighborhood N of 90 and a vector
field 7 € C(N,R™) such that

oj]=1 on N and 7=v on 0NQ.

We fix such a pair N and 7, and we write v for v.
For any vector field p € C'(IN,R") and constant o > 0 we write

W(n,0) = {(z,€) € N x (R*\{0}) : [(u(=),&)] < ol¢l}-

Lemma 4.1. Assume (B1)-(B3). Then there are positive constants o, C and a function
u € CH (W (v, o)) such that for all (z,&) € W(v,0),

(4.1) €[* < u(,€) < Clef,
(4.2) u(z, \) = Nu(z,§) for all A € [0, 0),
(4.3) B(z, Deu(z,€)) = 0.

Remark 4.2. If we assume (B1)—(B2), then there is a constant M > 0 such that
(44) 1ol |B(e,p)| v ID,B(z,p)| V plID2B(z o) <M a. e (2,6) € N x R™.

As the proof below shows, the constants ¢ and C' can be chosen to depend only on €
from(B3) and M.

Proof.  Our proof parallels that of [I, Lemma 4.3].

We prove this lemma in the case when B € C*(N x R"). The general case can be
treated by a limiting argument based on smooth approximations of B, but the details will
be left to the reader.



Let o > 0 be a constant to be fixed later on. Choose a C? vector field ;1 : N — R™ so
that |u| =1 and |p—v| <o/20on N.
We define the function v on N x R" by

u(z, &) = sup{(p, &) — §Ip — (p, u(x))p(z)|> : p € R*, B(z,p) = 0}.

It is easy to check that u is positively homogeneous of degree two, i.e., u(zA€) = Nu(z, £)
for all (z,£,)) € N x R" x [0, 00).

We fix any z € N and examine the function u(z,€) for z in a neighborhood of z.

There are a neighborhood V' C N of z and a family {e; (), ..., e,(z) }zev of orthonormal
bases of R" such that e, (z) = p(z) for x € V and ¢; € C%(V) for i = 1,..., n.

We set

B(m,p) = B(xaplel(x) T+ +pnen(x))'

Note that
BeC(V xR,
B e CHHV x (R™\ {0})).
Setting
e1()
E(z) = : :
en(x)
we have

DPB(xap) = E(x)DpB(x, szez(x));
i=1
D2B(z,p) = E(x)D2B(z,>_ piei(x)) E(x)",
i=1
where E(x)* denotes the transposed matrix of E(x). According to (4.4), we thus have
pI7!B(2,p)| V [DpB(z,p)| V Pl D;B(x,p)||) < M for all (z,p) € V x (R"\ {0}).
Note as well that the function p — B (x,p) is positively homogeneous of degree one for

each z € V.
We now need to assume that Mo < 6. Since

(4.5) aipné(:r,p) = <,u(x),DpB(x,épiei(x))>
>0 27> g for all (z,p) € V x (R™\ {0}).

by (B3), there is a unique continuous function H on ¥V x R™! such that

(4.6) B(z,p) =0 if and only if p, 4+ H(2,p1, ..., pn_1) = 0.
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It follows from the homogeneity of B and the uniqueness of H that ¢ — H (z,q) is
positively homogeneous of degree one. Also, it is easily seen that there is a constant
A > 0 depending only on 6 and M such that

(4.7) |gI'|H (2, q)|VIDH (z,q)|V|g| | DB(z,q)[| < A for all (z,€) € Vx(R"\{0}).
For (z,&) € V x R", we have

(4.8) u(z, &) = sup{<z giei( z,q), > _ %|q\2 g€ an}

1
- sup{_z les(2),) = tH (2,4){en(2),€) — L]al” = g € R},
For (z,£) € V x R", if £ = ¥ ! y;e;(z) + ten (), then we have
(z,€) € W(u,o) ifand only if |t| < oly| and t # 0.

We set N
W = {(z,y,t) € V x R"™" x (R\{0}) : [t| <olyl},

a(z,y,t) ( Z yiei(x) + ten(x )) for (z,y,t) € V x R"! x R.,

From (4.8) we see that

(4.9) (e, ,t) =sup (. 9) — tH(2,0) ~ JlaP - g R

It is now obvious that for each (z,y,t) € V x R"™! x R, the above optimization problem
has a maximizer ¢ and it satisfies the relation

(4.10) q =y —tDgH(z,q).
Let (z,y,t) € W and ¢ € R satisfy (4.10). As in [, the proof of Lemma 4.3], we
easily see that if 0 < 1/(3A), then

1 2 4
— < Alt] < = — < < —
g —y| < AJt] < 3\y\, 3\y\ <lg| < 3|y|,

1 _
EDZH (.ol <5, I +tDgH(z,9) 7" <2,

and that the solution ¢ of (4.10) is unique. We write p(z,y,t) for the unique solution ¢
of (4.10). - N
Now, as in [I], we see that @ € C*(W), Dyi(z,y,t) = p(z,y,t) in W, and

(z,y,t) + H(z, Dya(z,y,t)) =0 in W.
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Furthermore fixing o = (ﬁ) A (%), we get
. Lo L9
i(z,y,t) 2 Slyl” — tH(z,y) 2 2yl

- 1 1
i(e,y,0) < 5P = tH (@, p(w,,0) < (5 + Altllp(e,v,0)]) [y < 20yl

Hence, noting that

yl? +12 < (1+0%)y>  for (z,y,1) € W,

we get

2 2 <0 < 2 2 ~.
T om (VP + 1) <i(e,.8) 2P+ for (a,.0) €W

These readily imply that v € C?*(W (u, o)),

B(e, Deu(,€)) =0 in W (u,0),
me <wu(z,&) <27 forall (z,8) € W(u,0).

What remains is to observe that W(v,0/2) C W(u, o) and that the function 4(1 +
o?)u(zx, ) satisfies (4.1)—(4.3) with o/2 replacing 0. O

Lemma 4.3. Assume (B1)-(B3). Then there are a positive constant o and a function
v € CHH(Q x R™) such that for all (z,£) € Q x R™,

(4.11) v(@,€) > [¢,

(4.12) v(z, \E) = Nu(z,€)  for all A € [0,00),
(4.13) B(z, Dev(z,€)) >0 ifz € 8Q and (v(z),€) > —ol€],
(4.14) B(z, Dev(z,€)) <0 if z € 8Q and (v(z),£) < o€,

Proof. Again, our proof is similar to that of [I, Lemma 4.2].

We divide our arguments into two steps.

Step 1. Choose 0 > 0 and u € CH' (W (v,0)) as in Lemma 4.1. As before we choose
a vector field p € C(N) so that |u| = 1 and |v — u| < 0/24 on N. Note that, since
lv — p| <o0/2 on N, we have

W(p,0/2) C W(v,0).

12



Replacing ¢ > 0 by a smaller number, we may assume that 4Mo < 6, where M is a
positive constant such that (4.4) holds, and that

(DpB(z,p), u(z)) > g for all (z,p) € N x (R"\ {0}).

We choose a C* function f on R such that 0 < f < 1on R, f(r) =1if [r] <1
f(r)y=0if |r| > 2, f'(r) <0 forr >0 and f'(r) > 0 for » < 0. Also we choose a C*
function g on R such that 0 < g < 1on R, g(r) = 01if |r| < 3, g(r) = 1if |r] > 1,
g'(r) >0 for r >0 and ¢'(r) < 0 for r < 0. We may assume that |f'(r)| V |¢'(r)| < 3 for
all r € R.

Setting a = 0 /6, we define functions f,, g, on N x R™ by

'f(vs,u(x») e so

falz, ) =4 al¢|
<§,u(w)>> o
) = | o(E5) wero
0 if £ =0.

\

Note that if (z,£§) € (N x R™) \ W(u,0/2), then [(u(x), )| > §/£| = 3al£| and hence
fa(z,&) = 0. Let b > 0 be a constant to be fixed later on. We set

o(2,€) = fule, E)ulz, €) + gal, g)w.

It is easy to see that
v(z, ) = Nu(z, €) for all (z,£,)\) € N x R" x [0, 00),

ve (N x R").

We are to show that v satisfies (4.13)—(4.14) for some o.
Fix (z,€) € N x (R"\ {0}). If Dev(x,€) = 0, then B(z, Dev(x,£)) = 0. Therefore,
we may assume that Dev(z, £) # 0. We compute that

(b, ) 2(E, pyp

(4.15) Bz, Dev(z,€)) = B(x,uDefo + fuDet + = Dega + ga =7 =)
= faB($,D§U)
2
H(DyB(r, ), uDefu + - Deg 1 g, 2EHY

for some p € (R™\ {0}).
Consider the case when [(&, u(z))| < §|£|. We have g,(2,£) = 0, fo(z,§) = 1 and
Dego(x,€) = Defo(x,€) = 0. Hence, noting that (z,£) € W (v, o), we have

B(z, Dev(x,€)) = B(x, Deu(z,€)) = 0.

13



Next consider the case when (£, u(x)) > 2alé|. Since f,(z,£) = 0, g.(x,&) = 1, and
Dy fo(x,€) = Dega(z, &) = 0, from (4.15) we have

B(s, Deo(,€)) = Ba,0) + (DyB(e ), 2246, ) > 36,1} > 0

The case when (¢, u(z)) < —2alé| can be treated similarly to the previous case, and

in this case we have
B(z, Dev(z,€)) < 0.

Now, we consider the case when $[£| < |(§, u(z))| < 2al]. We want to show that

B(z, Dev(x,&)) > 0 if (€, u(x)) >

B(z, Dev(z,€)) <0 if (€, p(x)) <O.

We only deal with the case when (£, u(x)) > 0, i.e, the case when §|¢| < (&, p(z)) < 2a(].
The other case can be treated in a parallel way and we do not give the details in this case.

Note that

v (&)
Dgfa_f ( ‘6' a|£|3€>a
_ v (&)
Dgga ga <a|§| a\{\?’ 6)

Y) ). Therefore,

)andga—g(

where f! = f' (<§

<DPB(x’ﬁ)7uD§fa> Z _‘U" ‘DPB(‘Taﬁ)|a|§|
_3OMEIge it gl < (6, ule)) < 2le],

“ 1
0 if §a|§| <& u(w)) < aldl.

v

Here and henceforth p and C' are from (4.15) and and (4.1), respectively. Also, we have

<D B(z.p), (0% nga>: (& 1)y, {(DpB(:c,ﬁ),m—MKﬁ’;)'}

b ablé|
(€&, m)%g, (0
> e (5 — 2a,M) >0,
and ) (€10 aleld
(DB, ), 2246, ) > S 5 ZE e,
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Fixing b = 6a?/(6CM), we observe that

M
fa 3C >:0.

B(z, Dev(z,€)) > |€|ga (z_b I

Note that, since |[v — pu| < ¢ on N, for (z,£) € N x R, if

(€. v(@) > =7l (resp., (€, v(x)) <
then we have a a
(€, u(@)) > =2 el (vesp., (& n(e)) < Zlé]):

Thus we conclude that the function v € CHY (N x R") satisfies (4.11)—(4.14), with o
replaced by a, for all (z,£) € N x R™.

Step 2. We choose a function ¢ € C?(R") so that {(z) = 1 in a neighborhood of 9,
the support spt ( is contained in the interior of N, and 0 < ( <1 in R". Set

O(x,€) = C(z)v(z,§) + (1 = ((2)[¢]*  for (z,€) € R" x R™.

It is now obvious that the function ¢ has all the required properties. O

Theorem 4.4. Assume that (B1)-(B3) hold. There are a function w € CH'(Q x Q)
and a positive constant C such that for all (z,y) € Q x §,

(i) |z —y|* <wlz,y) <Clz -yl
|D,w(z,y)|V [Dyw(z,y)| < Clz —yf,

(i)  B(z,D,w(z,y)) >0 if z € 09,
B(y,—Dyw(z,y)) > 0 if y € 09,

and for a. e. (z,y) € QA x Q,
. 9 of I =1 +(1 O
(v) Dy <c{la—yP( 1 ) +l—u(y 7)b
Proof. Let € € (0,1), and, according to Lemma 2.4, we choose a function ¢ € C*°(fQ)
having the properties: Dy (z) # 0 for all z € 012,
(v(z), DY(z)) > (1 —€)|DY(x)| for all z € 09,

and v > 0 on Q. Let (z,p) € 9Q x (R™\ {0}). Setting p = D)(z)/|D(z)|, we observe
that
1= (v(2), r(@)] =1 - (v(z), )" < 2.
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Hence, using (B3), we have

<D;,,B($,p), Dw(iﬁ» = ‘D’lﬁ(iﬁ)‘(DpB(x,p), N’)
= [Dy(2)|((DpB(z, p), (v(2), m)v(z)) + (DpB(z,p), p — {v(2), m)v(z)))
> D ()| (0w (), p) — MV2e) > |Dyp()[(0(1 — ) — MV/2e),

where M is the positive constant from (4.4). Accordingly, we may assume by selecting &
small enough that

(DpB(z,p), DY(z)) > gllw(x)l for (z,p) € 99 x (R"\ {0}).

Let A > 0 be a constant to be chosen later. We may assume by replacing ¢ by a
constant multiple of ¢ that

(4.16) (D,B(z,p), Di(z)) > A for (z,p) € 00 x (R™\ {0}).

Define
w(z,y) = e?@HWg(z, 2 —y) for (z,y) € A x Q,

where ¢ = v* and v is the function from Lemma 4.3.

We intend to show that if A is large enough, then w satisfies conditions (i)—(iv).

It is clear from our choice of v and ¢ that w satisfies (i). It is a standard observation
(see, e.g., [I, the proof of Theorem 4.1]) that (iv) is satisfied.

Let 0 > 0 be the constant from Lemma 4.3. Since € is a bounded C' domain, we can
find d > 0 so that if z € 09, y € Q, and |z — y| < d, then

(v(2),y —z) < oly — =,
Calculating that
Dyw(z,y) = w(z,y) DyY(y) — e’V Deg(z, 2 —y),

we see that

(4.17)  [Dyw(z,y) + Dyw(z,y)| < "D (|Dy(z) + D(y)|g(z,z —y)
+Dug(@, 2 = y)|) < Cilz —y|*

for some constant C; > 0. Fix z € Q and consider the function
£ g(2,8) DY(x) + Drg(w,€) + Deg(w, )

on R™ Observe that the third term Deg(z,€) is homogeneous of degree 3 and the
other two terms are homogeneous of degree 4 in the variable £ and that 4g(z,§) =
(Deg(,€),€) < [Deg(z,€)||€|, by Euler’s identity. These together yield that

|9(2,€) DY (w) + Dag(2, €) + Deg(@,€)| > 4€° = Col¢|* = [€]°(4 = C5[¢])
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for some constant C > 0. Similarly, we have
l9(2,)Dy(y) — Deg(, )| > €°(4 = C5[¢])
for some constant C3 > 0. We may assume that (Cy V C3)d < 3. Then we have
|9(z,6)D(2) + Dug(w,€) + Deg(x, €)] > I€F,

l9(2,€) D (y) — Deg(,€)| > €]
Thus we see that if z,y € Q and 0 < |z — y| < d then

Dyw(z,y) + Dyw(x,y
Danle )+ Dalesdl 1,
| ww(xay)|/\| yw(may)|

and conclude from this and (4.17) that (iii) holds for some constant C. B
We want to show that (ii) holds if we choose A large enough. Let z € 02 and y € (.
It suffices to prove that if A is large enough, then

(4.18) B(z,Diyw(z,y)) >0 and B(z,—Dyw(y,z)) <0,

where D; and D, denote, respectively, the differentiation of any function f(z,y) on R™ x
R"™ with respect to the first variable z € R"™ and the second variable y € R".
If z =y, then D,w(z,y) = Dyw(z,y) = 0 and hence,

B(z, Dyw(z,y)) = B(z, —Dyw(y,z)) = 0.

Henceforth we may assume that = # y.
First we consider the case when |z —y| < d. Since (v(z),z—y) > —olz —y|, by (4.14)
we have
B(z, Deg(z,z —y)) > 0.

Using this and writing é = e¥®+¥®)  we calculate that

B(z, Diyw(z,y)) > éB(x, Deg(x,x — y)) + (DpB(z,p), w(z, y) Dy(x) + éDyg(z, x — y))
> Aw(xay) - C’4w(ac,y)

for some p € R™ \ {0} and some constant C; > 0, independent of A, and that

B(z, —Dyw(y, v)) = B(z, —w(y, ) D(z) + éDeg(y, y — z))
<éB(z, Dey(y,y — z)) — (DpB(2, §), w(y, ) Dip(x))
<éB(x,Deg(z,y — z)) + Csw(y,z) — Aw(y, x)
<-(A-GCsu(y,z)

for some ¢ € R™ \ {0} and some constant C5 > 0 independent of A.
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Next consider the case when |z — y| > d. Assuming that Dijw(z,y) # 0, we compute
that

B(z, Dyw(z,y)) > (D,B(z, D), Diw(z,y)) > Aw(z,y) — Csé > é(Ad* — Cp)

for some p € R™\ {0} and some constant Cs > 0 independent of A. Now, assuming that
Dyw(y, z) # 0, we obtain

B(z, —Dyw(y,z)) < é(Ad* — Cr)
for some constant C; > 0 independent of A. We now fix A so that
CyV C5(Cg/d) Vv (C7/d*) < A,

and conclude that (4.18) holds. Thus the function w has all the required properties. O

5 Examples
In this section we discuss typical examples of F' and B to which Theorems 2.1 and 3.1
apply. B

First we treat examples of F'. Let A: Q x (R"\ {0}) = M™*™, where M™*™ denotes
the space of real n x m matrices, be a function which is homogeneous of degree zero, i.e.,
(5-1) A(z, Ap) = A(z,p)  for all (z,p, ) € Q x (R*\ {0}) x (0, 00)
and which satisfies

(52)  JA(@p) - AW DI < Ci(lz—yl+Ip—gl) forallz,yeQandp,ge s,

where C; > 0 is a constant and S™~' denotes the unit sphere {£ € R" : [¢| = 1}. Tt
follows that for all z,y € 2 and p,q € R™\ {0},

”A(CE,p) - A(?/a‘])” §01(|.I — y‘ -+ ‘% _ |an

p -4l
<Ci(lz -yl + < Cille =yl +2p(p, q))-
Let b € C(Q2, R™) satisfy
(5.3) b(x) — b(y)| < Colz —y| forall 7,y € Q.

Furthermore let ¢, f € C(Q, R) be given. Define the function F' € C(Q xR x (R™\ {0}) x
S") by

(5.4) F(z,u,p, X) = —tr[A(z,p)" Az, p) X] + (b(z),p) + c(z)u + f(x).
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As is observed in [CIL], if X, Y € 8" and p, us € [0, 00) satisfy

X 0 I I I 0
(0 Y)SM(_I I)+M2(0 I)’
then

— tr [A(z, p)*A(z,p)X] — tr[A(y,9)" Ay, Q) Y] < Cs|A(z,p) — Ay, 9)|”
<4C;C (| — yI* + p(p, q)?).

It is now easy to see that F' satisfies condition (F3). Also, it is immediate to see that
condition (F2) is satisfied with v < mingec.

If A(z,p) =1—|p| 2(p®p), b=0, and ¢ = f = 0, then it is the case of the mean
curvature flow equation and the above conditions on A, b, ¢, and f are valid.

A standard way of generalization of the above example is to take the max-min of a
family of functions F' having the form (5.1). More precisely, let A and B be two non-
empty index sets, and let A,5 € C(Q x (R™\ {0}), M™™), byp € C(Q,R"), cop € C(Q),
and f,p € C(Q), with (o, 8) € A x B, be given. Assume that these sets of functions are
uniformly bounded, that {c,s} and {f.s} are equi-continuous, that {A,s} satisfies (5.1)
and (5.2) with a uniform constant Cy, and that {b,s} is equi-Lipschitz continuous (i.e.,
satisfies (5.3) with a uniform constant Cy. Define

Fog(z,u,p, X) = —tr[Aap(z, p)* Aup(z, p) X]
+{bas(2),p) + Cap(@)u + fap(@),

and

F(z,u,p, X) =sup inf F,s(z, u,p, X).
acABEB

Then the function F satisfies (F1)-(F3).
Next we deal with the boundary condition. Consider the function B of the form

B(z,p) = (u(z),p) — |C()pl,

where p : R® — R"™ is a Cb! vector field over R® and C : R® — M™" is a C!'!
function satisfying det C'(x) # 0 in a neighborhood of 92. It is clear that (B2) is satisfied.
We can modify the definition of B so that the resulting function B satisfies (B1) and
B(z,) = B(x,) for all z in a neighborhood of 9.

As before let v(z) denote the unit outer normal of Q at = € 992. By calculation, we
have

C(z) C(z)p
C(z)p|
and we see that (B3) is equivalent to the condition

DpB(z,p) = p(x) — if p #0,

(u(z),v(z)) > (£, C(x)v(z)) for all (x,&) € 00 x S™ 1.
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A particular case is when p = v and C(z) = a(z)I for some a € CH'(R"™) such that
0 < a(z) < 1 for x € 09, which corresponds to the Capillary condition. In this case
the boundary regularity of Q should be of class C*! in order that y = v € CH(R") is
satisfied, which is one of requirements of Theorems 2.1 and 3.1. It is interesting to find
that the results in [B2] need the same C?' regularity of the boundary.
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