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LIMITS OF SOLUTIONS OF P-LAPLACE EQUATIONS AS P GOES
TO INFINITY AND RELATED VARIATIONAL PROBLEMS *

HITOSHI ISHII∗ AND PAOLA LORETI?

Abstract. We show that the convergence, as p → ∞, of the solution up of the Dirichlet
problem for −∆pu(x) = f(x) in a bounded domain Ω ⊂ Rn with zero-Dirichlet boundary condition
and with continuous f in the following cases: (i) one dimensional case, radial cases, (ii) the case of
no balanced family, and (iii) two cases with vanishing integral. We also give some properties of the
maximizers for the functional

∫
Ω

f(x)v(x) dx in the space of functions v ∈ C(Ω)∩W 1,∞(Ω) satisfying

v|∂Ω = 0 and ‖Dv‖L∞(Ω) ≤ 1.

Key words. p-Laplace equation, asymptotic behavior, variational problem, L∞ variational
problem, eikonal equation, ∞-Laplace equation
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1. Introduction. We study the asymptotic behavior, as p →∞, of the solution
up of the Dirichlet problem

(1.1)

{
−∆pu(x) = f(x) in Ω,

u(x) = 0 for x ∈ ∂Ω.

Here and henceforth ∆p denotes the p-Laplacian, i.e.,

∆pu(x) :=
n∑

i=1

∂

∂xi

(
|Du|p−2

∂u

∂xi

)
,

Ω ⊂ Rn is a bounded open set, the exponent p satisfies p > 1, and f ∈ C(Ω).
The PDE in (1.1) is the Euler-Lagrange equation of the maximization problem

for the functional

(1.2) Ip(u) :=
∫

Ω

(
f(x)u(x)− 1

p
|Du(x)|p

)
dx over W 1,p

0 (Ω).

As is well known, the two problems (1.1) and (1.2) are equivalent. The problem
(1.1) has a unique solution u ∈ W 1,p

0 (Ω) and so does (1.2). For the existence and
uniqueness of a solution of (1.1), we refer to [L]. According to the regularity results
for (1.1), the solution up has Hölder continuous derivatives in Ω. That is, up ∈ C1,γ(Ω)
for some constant γ ∈ (0, 1) which depends on p. Moreover, if the boundary ∂Ω is
smooth, then up ∈ C1,γ(Ω). See [U, D, Lb, T] for these regularity properties.

The asymptotic problem for (1.1) as p → ∞ appears in modelling of a torsional
creep phenomenon for a prismatic elastoplastic rod. This corresponds to the case
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where n = 2 and f is a positive constant (see, for instance, [BDM, K, PP]). In fact,
if f > 0, then the limit of up in C(Ω) exists and is the distance function from the
boundary ∂Ω, i.e., the function d(x) := dist (x, ∂Ω). See [BDM] for this result and
[IK, IL1, IL2, FIN, BK, JLM] for some of related topics.

This convergence result is then generalized to the case of general non-negative
functions f , by using ∞-Laplace equation in the region ω where f vanishes, i.e, solving
the problem

(1.3)

{
−∆∞w(x) = 0 in ω,

w(x) = d(x) on ∂ω,

where

∆∞w(x) :=
n∑

i,j=1

∂w(x)
∂xi

∂w(x)
∂xj

∂2w(x)
∂xi∂xj

and ω := int {x ∈ Ω | f(x) = 0}.

Due to [J] (see also [BB]), the problem (1.3) has a unique viscosity solution w ∈ C(ω)
which is Lipschitz continuous in ω and satisfies ‖Dw‖L∞(ω) ≤ 1. If we assume that
f ≥ 0 in Ω and define U ∈ C(Ω) by

U(x) =

{
d(x) for x ∈ Ω \ ω,

w(x) for x ∈ ω,

where w is the unique viscosity solution of (1.3), then U gives the limit of up in C(Ω) as
p →∞. See Remark 5.2 in [BDM], where the above idea of finding the limit function
appears. See also [CIL] for an introduction to viscosity solutions.

In 1967 G. Aronsson initiated the study of the ∞-Laplace equation in his study
of absolutely minimal Lipschitz extensions (AMLE for short), also called as canonical
Lipschitz extensions, to a domain ω of a function given on ∂ω. The AMLE and ∞-
Laplace equation are subjects which have received intensive research activities recently.
For these recent developments, we refer to [ACJ].

As we will recall in Section 5, the family {up}p>q, with q > n, is precompact
in C(Ω). Therefore, {up}p>1 has a sequence {upj}j∈N convergent in C(Ω), where
pj →∞ as j →∞. However, it is not clear if the whole family {up}p>1 is convergent
in C(Ω) or not, except in the case where f ≥ 0.

In this paper we address ourselves to the question whether the whole family
{up}p>1 is convergent in C(Ω) as p → ∞ or not. We present only partial positive
answers to this question in this paper.

In the cases where n = 1 or when Ω is an open ball and f is a radial function, we
show the convergence of up in C(Ω) and identify the limit function. In these cases,
our proof relies heavily on an explicit formula for up.

In the general situation we do not know any convenient formula for up and in our
approach we make a careful study (especially the structure of its maximizers) of the
variational problem for the functional

(1.4) I∞(u) :=
∫

Ω

f(x)u(x) dx

over the set X := {v ∈ C(Ω)∩W 1,∞(Ω) | v|∂Ω = 0, ‖Dv‖L∞(Ω) ≤ 1}. This variational
problem appears as the limit problem of (1.2). (See Proposition 5.3 below.) This
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problem may be conceived of an L∞ variational problem because of the L∞ bound
on the gradient Du and because it appears as the limit problem for the variational
problem (1.2) as p →∞.

As a generalization of the case where f ≥ 0, we show the convergence of up in
C(Ω) under the condition of no balanced family, i.e., under the assumption that for
any nonempty family C of Lipschitz-connected components of {x ∈ Ω | f(x) 6= 0} that
stay away from ∂Ω and ω :=

⋃{U ∈ C} (union of the sets U , where U ranges over all
U ∈ C), ∫

ω

f(x) dx 6= 0.

Here the standard definition of connected components is not appropriate and we have
used the notion of Lipschitz-connected (L-connected for short) component. See Section
2 for the precise assumption, (2.4), and for the definition of L-connected components.

We also consider the case when

(1.5)
∫

Ω

f(x) dx = 0 and f 6= 0.

This is the case when the above assumption (the assumption of no balanced family)
is not satisfied. Also, this is the case related to the Monge-Kantorovich mass transfer
problem. The Monge-Kantorovich mass transfer problem has received much attention
in the last decade. We refer to [EG, BBD, ACBBV] for the recent developments of the
Monge-Kantorovich mass transfer problem and the role of the asymptotic problem for
(1.1) as p →∞ in the mass transfer problem.

In the Monge-Kantorovich case, i.e., the case where (1.5) holds, we only have two
special results besides those in the cases when n = 1 or when Ω is an open ball and
f is radial. One of them says that if Ω is symmetric with respect to the origin and
f is an odd function, up converges in C(Ω), and the other roughly says that if the
distance between two sets Ω+ := {x ∈ Ω | f(x) > 0} and Ω− := {x ∈ Ω | f(x) < 0}
is greater than or equal to the sum of the supremum and infimum of the distances
between x ∈ Ω+ ∪ Ω− and ∂Ω, then the convergence of up in C(Ω) is valid.

The main results of this paper, concerned with convergence of up, are precisely
stated in Section 2. The proof of convergence in one-dimensional case and radial
case are presented in Sections 3 and 4, respectively. Section 5 is devoted to general
properties of {up}, the set M of maximizers of the variational problem (1.4), the set
A of the limits of up, i.e.,

(1.6) A = {U ∈ C(Ω) | there is a sequence pj →∞ such that upj → U in C(Ω)}.

Section 6 is devoted to further properties of the set M which are useful in our
study of convergence of up. These observations on M comprise main results of this
paper together with our results on the convergence of up.

We prove our convergence results in the case of no balanced family and in the
vanishing integral case (the case of (1.5)), respectively, in Sections 7 and 8.

We explain the notation in this paper. For a, b ∈ R we write a ∨ b = max{a, b},
a∧b = min{a, b}, a+ = a∨0, and a− = a∧0. We use the same notation for functions.
We denote by µ(A) the Lebesgue measure of measurable set A ⊂ Rn. If needed, we
denote by µn(A) in order to specify the dimension of the space where A lives. We
denote by B(x, a) the closed ball of radius a and with x as its center.

Finally, we remark that most of the results in this paper are already announced
in [IL4].
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2. Main results on the convergence. In this section we state our results
concerning the limit, as p →∞, of the solution up of the Dirichlet problem

(2.1)

{
−∆pu(x) = f(x) in Ω,

u(x) = 0 for x ∈ ∂Ω.

Here, as before, Ω ⊂ Rn is a bounded, open subset of Rn and f ∈ C(Ω).
To begin with, let us recall that the problem (2.1) has a unique solution up ∈

W 1,p
0 (Ω) for any p ∈ (1,∞). See, e.g., [L].

Let X = {v ∈ C(Ω) ∩ W 1,∞(Ω) | v|∂Ω = 0, ‖Dv‖L∞(Ω) ≤ 1}. We will recall
that the family {up}p>r is bounded in W 1,q(Ω) for any q > 1 and r > 1, which
guarantees that for any sequence pj →∞, there is a subsequence {pjk}k∈N such that
upjk converges to a function U ∈ X uniformly in Ω as k →∞.

We are interested in the question whether the following claim (C) is true or not:
(C) The solution up converges uniformly to a function U ∈ X as p →∞.

We are not yet able to determine if the claim (C) is always true or not, and in
what follows we present a couple of sufficient conditions for (C) to hold as our main
results in this paper.

The first of all we treat the case when n = 1. In this case we can show not only
that (C) holds but also identify the limit as the next theorem states.

Let n = 1 and Ω = (0, a), where a > 0 is a constant. We define the function
F ∈ C1([0, a]) by

F (x) =
∫ x

0

f(t) dt.

We define

h(r) = µ({x ∈ Ω | F (x) < r}), β∗ = sup{r ∈ R | h(r) ≤ a

2
},

O− = {x ∈ Ω | F (x) < β∗}, O+ = {x ∈ Ω | F (x) > β∗}, O0 = {x ∈ Ω | F (x) = β∗},

k =





0 if µ(O0) = 0,

µ(O+)− µ(O−)
µ(O0)

if µ(O0) > 0.

Then we introduce the function U ∈ C([0, a]) by

(2.2) U(x) =
∫ x

0

(1O−(t)− 1O+(t) + k1O0(t)) dt.

Here and henceforth 1A denotes the characteristic function of the set A. We will see
in the next section (Lemma 3.5) that |k| ≤ 1, which assures that U ∈ X.

Theorem 2.1. If n = 1 and Ω = (0, a), then (C) holds and moreover the limit
function U is given by (2.2).

As above in the radial case we can show that (C) is valid and give an explicit
formula for the limit function.

Let a > 0 be a constant and we assume that Ω = intB(0, a) and f(x) = g(|x|)
for some g ∈ C([0, a]).

We define O± ⊂ Rn by

O+ = {t ∈ (0, a) |
∫

B(0,t)

f(x) dx > 0}, O− = {t ∈ (0, a) |
∫

B(0,t)

f(x) dx < 0},
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and U ∈ X by

(2.3) U(x) =
∫ a

|x|
(1O+(t)− 1O−(t)) dt.

Theorem 2.2. If Ω = intB(0, a) and f(x) = g(|x|) is a radial function, then
(C) holds and the limit function U is given by (2.3).

The next condition under which (C) holds is a generalization of the well-known
observation due to [BDM] and [J] (see Remark 5.2 of [BDM] and the uniqueness result
of [J]) that if f ≥ 0 in Ω, then (C) holds.

In order to make a precise statement, we need to introduce the notation.
We write

Ω+ = {x ∈ Ω | f(x) > 0}, Ω− = {x ∈ Ω | f(x) < 0}, and Ω∗ = Ω+ ∪ Ω−.

Note that spt f = Ω∗, where spt f denotes the support of the function f . Let O∗
denote the sets of all connected components of Ω∗.

We modify the notion of “connectedness” for a better formulation as follows. Let
A,B ⊂ Rn. Define ρ(A,B) ∈ [0,∞] by setting

ρ(A, B) = inf{d(A,U1) + d(U1, U2) + · · ·+ d(Um, B) | U1, ..., Um ∈ O∗},

where d(U, V ) = inf{|x − y| | x ∈ U, y ∈ V }. Notice that ρ(A,B) = ∞ if and only if
either A = ∅ or B = ∅. Since, as is easily checked,

ρ(A,B) = ρ(B, A) ≥ 0, ρ(A,B) ≤ ρ(A, C) + ρ(C,B)

for any A,B, C ⊂ Rn, if we write A ∼ B for A,B ⊂ RN when ρ(A,B) = 0, then this
relation ∼ defines an equivalence relation in O∗.

Using the above equivalence relation, we classify O∗ as

O∗ =
⋃
{Oλ | λ ∈ Λ},

where
(i) for each λ ∈ Λ, Oλ 6= ∅,
(ii) for each λ ∈ Λ, if U ∈ Oλ, then Oλ = {V ∈ O∗ | V ∼ U},

and
(iii) if λ1, λ2 ∈ Λ and λ1 6= λ2, then Oλ1 ∩ Oλ2 = ∅.

We set
Gλ =

⋃
{U | U ∈ Oλ} for λ ∈ Λ.

and define
Λ0 = {λ ∈ Λ | ρ(Gλ, ∂Ω) = 0}.

We note that {Gλ | λ ∈ Λ} classifies the set Ω∗. Each Gλ, with λ ∈ Λ, is called an
L-connected component of Ω∗.

As the proof of Lemma 7.1 below shows, if w is a Lipschitz continuous function
on Ω and Dw(x) = 0 a.e. x ∈ Ω∗, then w is constant on each Gλ, with λ ∈ Λ.
Conversely, one can show the following: let U, V be connected components of Ω∗
having the property that if w is Lipschitz continuous on Ω and Dw(x) = 0 a.e.
x ∈ Ω∗, then w is constant on U ∪ V . Then U ∼ V , i.e., U, V are subsets of an
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L-connected component Gλ. In light of these observations, we have chosen the term
“Lipschitz-connected”.

Our assumption on (f, Ω) is:
(2.4) For any nonempty Γ ⊂ Λ \ Λ0 and ω :=

⋃{Gλ | λ ∈ Γ},
∫

ω

f(x) dx 6= 0.

We call this condition that of no balanced family (of L-connected components).
Fig. 1 below gives pictorially an example of function f which satisfies condition

(2.4). Here
∫ α2

α1
f(x) dx =

∫ α3

α2
f(x) dx = − ∫ α5

α4
f(x) dx is assumed. In this example,

Ω+ = (α1, α2)∪ (α2, α3), Ω− = (α4, α5), and the L-connected components are Ω+ and
Ω−. The integral of f over ω = Ω+, Ω−, or Ω+ ∪ Ω− does not vanish. On the other
hand, the connected components of Ω∗ are (α1, α2), (α2, α3), and (α4, α5), and the
integral of f over ω = (α1, α2)∪ (α4, α5) vanishes. For this f , the condition similar to
(2.4) but with the usual notion of connectedness in place of that of L-connectedness
does not hold.

graph of f

0 α1 α2 α3 α4 α5 a

Fig. 1.

Next, we examine the function f given pictorially by Fig. 2, where
∫ α2

α1
f(x) dx = 0

is assumed. For this function f , Ω∗ = (α1, β) ∪ (β, α2) is the only L-connected
component of Ω∗, and condition (2.4) does not hold. This function f will appear in
Example 3.2 in Section 3.

graph of f
α1

0 β α2 a

Fig. 2.

Theorem 2.3. Under the assumption (2.4), (C) holds.
Regarding the cases when (2.4) is violated, we restrict ourselves to the case where

(2.5)
∫

Ω

f(x) dx = 0 and f 6= 0,

and
(2.6) Ω+ and Ω− are connected.
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We give two sufficient conditions for (C) to hold. One is a symmetry requirement
on (f, Ω). That is, we assume that
(2.7) Ω is symmetric with respect to the origin, i.e., −Ω = Ω,

and
(2.8) f is an odd function, i.e., f(−x) = −f(x) for all x ∈ Ω.

The asymptotic problem, as p → ∞, for (1.1) has applications to the Monge-
Kantorovich mass transfer problem. In the mass transfer problem, the condition of
vanishing integral, (2.5), is a natural compatibility condition, which means conserva-
tion of the total mass in the process of mass transfer.

The second one is the condition that

(2.9) min{ inf
x∈Ω+

sup
y∈Ω−

[d(x) + d(y)− |x− y|], inf
y∈Ω−

sup
x∈Ω+

[d(x) + d(y)− |x− y|]} ≤ 0.

holds. Here and henceforth d(x) denotes the distance between x and ∂Ω, i.e., d(x) =
dist (x, ∂Ω). A sufficient condition for (2.9) to hold is that

dist (Ω+,Ω−) ≥ inf
Ω∗

d + sup
Ω∗

d.

See Fig. 3 below.

a

Ω

b
Ω+ Ω−

c

Fig. 3. A case where b ≥ a + c.

Theorem 2.4. Under the assumptions (2.5) and (2.6), if either (2.7) and (2.8)
or (2.9) are satisfied, then (C) holds.

3. One dimensional case. In this section we prove Theorem 2.1.
Let Ω = (0, a), where a > 0 is a constant, and f ∈ C([0, a]). Fix p > 1 and we

consider the (p + 1)-Laplace equation with the inhomogeneous term f

(3.1)
d
dx

(|u′(x)|p−1u′(x)) = −f(x) in Ω,

together with the Dirichlet condition

(3.2) u(0) = u(a) = 0.

Here u′ denotes the derivative of u. The unique solution in W 1,p+1
0 (Ω) of (3.1) (i.e.,

the solution of (3.1)-(3.2)) is denoted by up+1 as in the previous sections.
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We seek for an explicit formula for up+1. For this, noting that u := up+1 ∈
C1([0, a]) and integrating both sides of (3.1), we get

|u′(x)|p−1u′(x) = |u′(0)|p−1u′(0)− F (x) for x ∈ Ω,

where F (x) :=
∫ x

0
f(t) dt.

Let ψp be the inverse function of r 7→ |r|p−1r. That is, ψp(s) = |s| 1p−1s for s ∈ R.
Note that as p →∞,

ψp(r) →
{

1 for r > 0,

−1 for r < 0.

Observe moreover that for any ε ∈ (0, 1), the above convergence is uniform for |r| ∈
[ε, ε−1].

Writing β = |u′(0)|p−1u′(0) and integrating the equality u′(x) = ψp(β − F (x)),
we get

(3.3) u(x) =
∫ x

0

ψp(β − F (t)) dt for x ∈ Ω.

Conversely, if we can choose β ∈ R so that
∫ a

0

ψp(β − F (t)) dt = 0,

then the function u defined by (3.3) is in C1([0, a]) and the unique solution of (3.1)-
(3.2).

We show directly that there is a unique constant βp ∈ R such that

(3.4)
∫ a

0

ψp(βp − F (t)) dt = 0,

although this can be deduced from the general existence and uniqueness result for
solutions of (1.1).

Set
Gp(r) =

∫ a

0

ψp(r − F (t)) dt

for r ∈ R. Since the function ψp(r) is strictly increasing, the function Gp is strictly
increasing on R. In view of the monotone convergence theorem, we see that the
function Gp is continuous on R. If f = 0, then it is clear that βp = 0 gives the unique
solution of (3.4).

We may thus assume in what follows that f 6= 0. We set

(3.5) F− = min
[0,a]

F, F+ = max
[0,a]

F, δ(F ) = F+ − F−.

Note that F− ≤ 0 ≤ F+ and δ(F ) > 0. Since F− − F (x) ≤ 0 for all x ∈ Ω and
δ(F ) > 0, we have Gp(F−) < 0. Similarly, we have Gp(F+) > 0. Thus we see that
there is a unique constant βp ∈ (F−, F+) such that Gp(βp) = 0, and we find an explicit
formula

(3.6) up+1(x) =
∫ x

0

ψp(βp − F (t)) dt for x ∈ Ω.
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Next, we study the asymptotic behavior of the function up+1 given by (3.6) as
p →∞. Recall that

h(r) = µ({x ∈ Ω | F (x) < r}), β∗ = sup{r ∈ R | h(r) ≤ a

2
},

O− = {x ∈ Ω | F (x) < β∗}, O+ = {x ∈ Ω | F (x) > β∗}, O0 = {x ∈ Ω | F (x) = β∗}.

We define open sets O(r) ⊂ R for r ∈ R by

O(r) = {x ∈ Ω | F (x) < r}.

We have: (i) for r ≤ s, O(r) ⊂ O(s), (ii) O(F−) = ∅, (iii) O(r) = (0, a) for all r > F+,
and (iv) ⋃

t<r

O(t) = O(r),
⋂
t>r

O(t) = {x ∈ Ω | F (x) ≤ r}.

Consequently, we have: (i) h is non-decreasing in R, (ii) h(r) = µ(∅) = 0 for r ∈
(−∞, F−], (iii) h(r) = µ(Ω) = a for r ∈ (F+,∞), and (iv)

lim
t↗r

h(t) = h(r) ≤ µ({x ∈ Ω | F (x) ≤ r}) = lim
t↘r

h(t).

Now, the property (iv) for h and the definition of β∗ implies that

h(β∗) ≤ a

2
≤ h(β∗ + 0) := lim

t↘β∗
h(t).

A key step in the proof of Theorem 2.1 is in the following lemma.
Lemma 3.1. We have

lim
p→∞

βp = β∗.

We prepare with three lemmas for the proof of Lemma 3.1.
Lemma 3.2. Let r ∈ (F−, F+). Then, if s > r (resp., s < r), then h(s) > h(r)

(resp., h(s) < h(r)).
Proof. We consider the case when s > r. We may assume that s ∈ (F−, F+). By

the intermediate value theorem, we have

F (y) =
s + r

2

for some y ∈ Ω. By the continuity of F , we can choose δ > 0 so that

F (x) ∈ (r, s) for all x ∈ ω := (y − δ, y + δ) ∩ Ω.

It is clear that ω ⊂ O(s), µ(ω) > 0, and ω ∩O(r) = ∅. Hence we have

h(s) = µ(O(s)) = µ(O(r)) + µ(O(s) \O(r)) ≥ µ(O(r)) + µ(ω) > µ(O(r)) = h(r).

The proof for the case when s < r is similar and will be omitted.
Lemma 3.3. Let β ∈ [F−, F+]. We have

|ψp(β − F (x))| ≤ ψp(max{δ(F ), 1}) ≤ ψ1(max{δ(F ), 1}) for x ∈ Ω.
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Proof. For x ∈ Ω we have

−δ(F ) = F− − F+ ≤ β − F (x) ≤ F+ − F− = δ(F ),

and hence, |ψp(β − F (x))| ≤ ψp(max{δ(F ), 1}) ≤ ψ1(max{δ(F ), 1}).
Lemma 3.4. Let {αj} ⊂ [F−, F+] be a sequence converging to some r ∈ R,

{pj} ⊂ (1,∞) a sequence such that pj →∞ as j →∞, and φ ∈ L1(Ω). Set

O−(r) = {x ∈ Ω | F (x) < r} and O+(r) = {x ∈ Ω | F (x) > r}.

Then ∫

O−(r)

ψpj (αj − F (x))φ(x) dx →
∫

O−(r)

φ(x) dx,

∫

O+(r)

ψpj (αj − F (x))φ(x) dx → −
∫

O+(r)

φ(x) dx.

Proof. Fix x ∈ O−(r). Since r − F (x) > δ for some constant δ > 0, there is a
J ∈ N such that for all j ≥ J ,

δ < αj − F (x) ≤ δ(F ),

which implies that
lim

j→∞
ψpj (αj − F (x)) = 1.

Now, in view of Lemma 3.3 and the Lebesgue convergence theorem, we conclude that

lim
j→∞

∫

O−(r)

ψpj (αj − F (x))φ(x) dx =
∫

O−(r)

φ(x) dx.

In the same way we see that

lim
j→∞

∫

O+(r)

ψpj (αj − F (x))φ(x) dx = −
∫

O+(r)

φ(x) dx.

Proof of Lemma 3.1. First of all we show that lim infp→∞ βp ≥ β∗. For this, we
argue by contradiction and thus suppose that r := lim infp→∞ βp < β∗. There is a
sequence {pj} ⊂ (1,∞) such that limj→∞ pj = ∞ and limj→∞ βpj = r. By Lemma
3.2, we see that h(r + 0) < h(β∗) ≤ a/2. Therefore, setting A = {x ∈ Ω | F (x) ≤ r}
and B = {x ∈ Ω | F (x) > r}, we have

h(r + 0) = µ(A) <
a

2
, µ(B) = a− µ(A) >

a

2
.

Since |ψp(βp − F (x))| ≤ ψp(max{δ(F ), 1}) for x ∈ Ω by Lemma 3.3, we have

lim sup
j→∞

∣∣∣∣
∫

A

ψpj (βpj − F (x)) dx

∣∣∣∣

≤ lim sup
j→∞

∫

A

ψpj (max{δ(F ), 1}) dx =
∫

A

dx = µ(A) <
a

2
.

Observe next by Lemma 3.4 that

lim
j→∞

∫

B

ψpj (βpj − F (x)) dx = −µ(B) < −a

2
.
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Since
0 =

∫

A

ψpj (βpj − F (x)) dx +
∫

B

ψpj (βpj − F (x)) dx,

we find that 0 < a
2 − a

2 = 0, which is a contradiction. This shows that lim infp→∞ βp ≥
β∗.

An argument similar to the above shows that lim supp→∞ βp ≤ β∗, and we con-
clude that limp→∞ βp = β∗.

Recall that k = 0 if µ(O0) = 0 and otherwise,

k =
µ(O+)− µ(O−)

µ(O0)
.

Lemma 3.5. We have |k| ≤ 1.
Proof. Since

µ(O−) = h(β∗) ≤ a

2
≤ h(β∗ + 0) = µ(O−) + µ(O0),

we have

0 ≥ 2µ(O−)− a = µ(O−)− µ(O+)− µ(O0),
0 ≤ 2µ(O−) + 2µ(O0)− a = µ(O−) + µ(O0)− µ(O+).

Hence, if k 6= 0, then

−1 ≤ k =
µ(O+)− µ(O−)

µ(O0)
≤ 1.

Proof of Theorem 2.1. We show first that the family {up}p>2 is uniformly bounded
and equi-continuous on Ω.

To see this, fix x ∈ Ω and p > 1. By Lemma 3.3, we have

|up+1(x)| ≤
∫ x

0

ψ1(max{δ(F ), 1}) dx ≤ aψ1(max{δ(F ), 1})

and |u′p+1(x)| ≤ ψ1(max{δ(F ), 1}). These show that the family {up}p>2 is uniformly
bounded and equi-continuous on Ω.

Next we show that

(3.7) lim
p→∞

ψp(βp − β∗) = k if µ(O0) > 0.

In fact, we have

0 =
∫ a

0

ψp(βp − F (x)) dx =
∫

O−
ψp(βp − F (x)) dx

+ψp(βp − β∗)µ(O0) +
∫

O+

ψp(βp − F (x)) dx,

and then Lemma 3.4 yields

0 = µ(O−)− µ(O+) + lim
p→∞

ψp(βp − β∗)µ(O0),
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which shows (3.7).
Since {up}p>2 is precompact in C([0, a]), we only need to show that for each fixed

x ∈ Ω,

up+1(x) → U(x) :=
∫ x

0

(1O−(t)− 1O+(t) + k1O0(t)) dt as p →∞.

Fix x ∈ Ω and note that

up+1(x) =
∫

(0,x)∩O−
ψp(βp − F (t)) dt +

∫

(0,x)∩O+

ψp(βp − F (t)) dt

+ ψp(βp − β∗)
∫

(0,x)∩O0

dt.

Sending p →∞ and using Lemma 3.4, we get

lim
p→∞

up(x) =
∫

(0,x)∩Ω−
dt−

∫

(0,x)∩Ω+

dt + k

∫

(0,x)∩Ω0

dt = U(x).

Next we examine the limit function U in a few cases.
Example 3.1. We consider the case when f(x) > 0 for all x ∈ Ω. Then

the function F is strictly increasing in Ω. Therefore we have O− = (0, a/2) and
O+ = (a/2, a), and hence

U(x) =
∫ x

0

(
1O−(t)− 1O+(t)

)
dt =

{
x for 0 ≤ x ≤ a/2,

a− x for a/2 ≤ x ≤ a.

This is the distance function from ∂Ω = {0, a} and, as is well-known, it is the unique
viscosity solution of |U ′(x)| = 1 in Ω and U(0) = U(a) = 0.

graph of U

0 a/2 a

Fig. 4. A case where f > 0.

Example 3.2. Let 0 < α1 < α2 < a satisfy α2 − α1 <
a

2
. Let F satisfy F (x) = 0

for x ∈ [0, α1] ∪ [α2, a] and F (x) < 0 for x ∈ (α1, α2).

graph of F

0 α1 α2 a

Fig. 5.
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Then we have β∗ = 0, O− = (α1, α2), O+ = ∅, and O0 = (0, α1)∪(α2, a). Furthermore,
we have k = −(α2 − α1)/(a− (α2 − α1)), and

U(x) =
∫ x

0

(
1O−(t) + k1O0(t)

)
dt =





kx for 0 ≤ x ≤ α1,

kα1 + x− α1 for α1 ≤ x ≤ α2,

k(x− a) for α2 ≤ x ≤ a.

graph of U

α1

0 α2 a

Fig. 6. A case where |k| < 1.

Example 3.3. Let 0 < α−1 < α−2 < α+
1 < α+

2 < a satisfy α−2 −α−1 = α+
2 −α+

1 <
a

2
.

Let F satisfy: F (x) = 0 for x ∈ [0, α−1 ]∪ [α−2 , α+
1 ]∪ [α+

2 , a], F (x) < 0 for x ∈ (α−1 , α−2 ),
and F (x) > 0 for x ∈ (α+

1 , α+
2 ).

graph of F

0 α−1 α−2 α+
1 α+

2 a

Fig. 7.

Then we have β∗ = 0 and k = (α+
2 −α+

1 −(α−2 −α−1 ))/(a−(α+
2 −α+

1 )−(α−2 −α−1 )) = 0,
and the limit function U is given by

U(x) =





0 for x ∈ [0, α−1 ] ∪ [α+
2 , a],

x− α+
1 for x ∈ (α−1 , α−2 ),

α−2 − α−1 for x ∈ [α−2 , α+
1 ],

−x + α+
2 for x ∈ (α+

1 , α+
2 ).

graph of U

0 α−1 α−2 α+
1 α+

2 a

Fig. 8. A case where k = 0.
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4. Radial case. In this section we give a proof of Theorem 2.2, which is rather
close to that of Theorem 2.1 presented in the previous section.

Let a > 0 and g ∈ C([0, a]), and define f ∈ C(B(0, a)) by f(x) = g(|x|). Set
Ω = intB(0, a).

We consider the Dirichlet problem for up+1 as in the previous section:

(4.1)

{
−∆p+1u(x) = f(x) in Ω,

u(x) = 0 on ∂Ω.

By the uniqueness of the solution of (4.1), we see that the function up+1 is a radial
function, i.e., up+1(x) = vp(|x|) for some vp ∈ C([0, a]). By the regularity results for
(4.1), we know that up+1 ∈ C1,γ(Ω) for some γ ∈ (0, 1). In particular, we have

vp ∈ C1([0, a]), v′p(0) = 0.

The PDE (4.1) is now reduced to the following ODE for vp

(4.2) (rn−1|v′(r)|p−1v′(r))′ = −rn−1g(r) in (0, a),

and the boundary condition for vp is: v′(0) = v(a) = 0. Integrating twice yields

v(r) = α−
∫ r

0

ψp

(
t1−n

∫ t

0

sn−1g(s) ds
)

dt for all r ∈ [0, a]

and for some α ∈ R, where ψp ∈ C(R) is the function given by ψp(s) = |s| 1p−1s as in
the previous section. Here the constant α for v = vp should be determined by

α =
∫ a

0

ψp

(
t1−n

∫ t

0

sn−1g(s) ds
)

dt.

Setting

αp =
∫ a

0

ψp

(
t1−n

∫ t

0

sn−1g(s) ds
)

dt,

we have

vp(r) = αp −
∫ r

0

ψp

(
t1−n

∫ t

0

sn−1g(s) ds
)

dt for r ∈ [0, r].

At this point one can check directly and easily that vp ∈ C1([0 a]) and it satisfies
(4.2) and the boundary condition v′p(0) = vp(a) = 0.

Completion of proof of Theorem 2.2. It is easy to see that as p →∞,

αp → α∗ :=
∫ a

0

(
1O+(r)− 1O−(r)

)
dr,

and
vp(r) → V (r) := α∗ +

∫ r

0

(
1O−(t)− 1O+(t)

)
dt for each r ∈ [0, a],

where

O+ = {t ∈ (0, a) |
∫ t

0

sn−1g(s) ds > 0} = {t ∈ (0, a) |
∫

B(0,t)

f(x) dx > 0},

O− = {t ∈ (0, a) |
∫ t

0

sn−1g(s) ds < 0} = {t ∈ (0, a) |
∫

B(0,t)

f(x) dx < 0}.
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As in the previous section, it is easy to show that the collection of functions
vp(|x|), with p > 1, is precompact in C(Ω). Thus the above pointwise convergence is
enough for us to conclude that up(x) converges to U(x) := V (|x|) uniformly for x ∈ Ω
as p →∞.

Remark. Contrary to the general one dimensional case, the limit function V has
the property that V ′(r) ∈ {−1, 0, 1} for all r ∈ [0, a].

Remark. We also have a convergence result in the case when Ω is an annulus
and f is radial. Indeed, let 0 < r1 < r2, Ω = {x ∈ Rn | r1 < |x| < r2}, and
f(x) = g(|x|) for some g ∈ C([r1, r2]). Let up be the solution of (1.1). We define
G(r) =

∫ r

r1
tn−1g(t) dt for r ∈ [r1, r2], h(r) = µ1({t ∈ (r1, r2) | G(t) < r}) for

r ∈ R, β∗ = sup{t ∈ (r1, r2) | h(r) ≤ r2−r1
2 }, O+ = {r ∈ (r1, r2) | G(r) > β∗},

O− = {r ∈ (r1, r2) | G(r) < β∗}, O0 = {r ∈ (r1, r2) | G(r) = β∗}, k = 0 if
µ1(O0) = 0, k = µ1(O+)−µ1(O−)

µ1(O0)
otherwise, and

U(x) =
∫ |x|

r1

(
1O−(t)− 1O+(t) + k1O0(t)

)
dt for x ∈ Ω.

Then we have
up → U in C(Ω) as p →∞.

We do not give here the proof of this result since it is a simple combination of the
proofs of Theorems 2.1 and 2.2.

5. General observations. Here we study a few of general properties of the
solution up of (1.1), the set A of the limits of up defined by (1.6), and the set M of
the maximizers of the variational problem (1.4), i.e.,

M = {v ∈ X | I∞(v) = sup
u∈X

I∞(u)}.

We start by observing that the following estimate

(5.1) ‖Dup‖Lp(Ω) ≤ C

holds, where the constant C can be chosen independently of p for p > 2. Indeed, using
the test function u = up in the weak formulation of (1.1), we get

∫

Ω

|Du|p dx =
∫

Ω

fu dx,

and hence by the Poincaré inequality for functions in W 1,1
0 (Ω),

∫

Ω

|Du|p dx ≤ ‖f‖L∞(Ω)‖u‖L1(Ω) ≤ C1‖f‖L∞(Ω)‖Du‖L1(Ω)

≤C1‖f‖L∞(Ω)µ(Ω)
∫

Ω

|Du| dx

µ(Ω)
≤ C1‖f‖L∞(Ω)µ(Ω)

(∫

Ω

|Du|p dx

µ(Ω)

) 1
p

≤C1‖f‖L∞(Ω)µ(Ω)1−
1
p ‖Du‖Lp(Ω),

where C1 is a positive constant independent of p. Hence, we obtain

‖Du‖Lp(Ω) ≤
(
C1‖f‖L∞(Ω)

) 1
p−1 µ(Ω)

1
p ,



16 HITOSHI ISHII AND PAOLA LORETI

which shows (5.1).
From the above estimate (5.1), we have the following well-known observations

(see [BDM] for instance).
Proposition 5.1. (i) For any q > n, the collection {up}p≥q is precompact in

C(Ω). In particular, for any sequence 1 < pk → ∞ there is a subsequence pkj such
that upkj

(x) → U(x) uniformly on Ω for some U ∈ C(Ω).
(ii) Let U ∈ C(Ω) be as above. Then U ∈ W 1,∞(Ω) and |DU(x)| ≤ 1 a.e. x ∈ Ω.
Proof. We show first (i). For p ≥ q, we have

(5.2) ‖Dup‖Lq(Ω) ≤ µ(Ω)
1
q− 1

p ‖Dup‖Lp(Ω)

For q > n, by the Sobolev embedding theorem (see, e.g., [GT]), we have

‖up‖C0,γ(Ω) ≤ Cq‖Du‖Lq(Ω)

for some constants γ ∈ (0, 1) and Cq > 0. These together with (5.1) imply that for
any q > n, the collection {up}p≥q is precompact.

Next, we prove (ii). The estimates (5.1) and (5.2) and the weak compactness of
the balls in W 1,q

0 (Ω), with 1 < q < ∞, guarantee that U ∈ W 1,q
0 (Ω) for any q ∈ (1,∞).

This weak compactness, (5.1), and (5.2) yield

‖DU‖Lq(Ω) ≤ µ(Ω)
1
q for any q > 1,

which implies that |DU(x)| ≤ 1 a.e. in Ω.
Recalling the definition (1.6) of the set A, from Proposition 5.1 we immediately

have:
Proposition 5.2. (i) A 6= ∅ and A ⊂ X. (ii) up → U in C(Ω) as p →∞ if and

only if A = {U}.
Next, we consider the functional I∞(u) for u ∈ X defined by (1.4) and study the

set M of maximizers of this functional.
The following Proposition states a basic relation between A and M.
Proposition 5.3. (i) A ⊂M. (ii) As p →∞, Ip(up) → supu∈X I∞(u).
Proof. Let U ∈ A and pj → ∞ be such that upj → U in C(Ω) as j → ∞. As

p = pj →∞, we have

Ip(up) = I∞(up)− 1
p

∫

Ω

|Dup|p dx ≤ I∞(up) → I∞(U).

Fix any V ∈ X and observe that as p →∞,

Ip(up) ≥ Ip(V ) = I∞(V )− 1
p

∫

Ω

|DV (x)|p dx → I∞(V ).

Hence we get

I∞(U) ≥ lim sup
j→∞

Ipj (upj ) ≥ lim inf
p→∞

Ip(up) ≥ I∞(V ).

Since U ∈ X by Proposition 5.2, we thus conclude that

I∞(U) = sup
u∈X

I∞(u), lim
j→∞

Ipj (upj ) = sup
u∈X

I∞(u),
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and A ⊂M. Using (i) of Proposition 5.1, we deduce that

Ip(up) → sup
u∈X

I∞(u) as p →∞.

Proposition 5.4. If u ∈ A, then u satisfies

−∆∞u(x) ≤ 0 in Ω \ Ω+ and −∆∞u(x) ≥ 0 in Ω \ Ω−

in the viscosity sense.
Proof. We prove only the first inequality as the proof of the other inequality is

similar. We set W = Ω \ Ω+. Let ϕ ∈ C2(W ) and x̂ ∈ W . We assume that u − ϕ
attains a strict maximum at x̂ and will show that −∆∞ϕ(x̂) ≤ 0. For this, we argue
by contradiction and hence we assume that −∆∞ϕ(x̂) > 0. Here we may assume that
u(x̂) = ϕ(x̂).

Since u ∈ A, there is a sequence 1 < pj → ∞ such that upj → u in C(Ω) as
j →∞. Fix an r > 0 so that B(x̂, r) ⊂ W and ∆∞ϕ(x) < 0 for all x ∈ B(x̂, r). Since

∆pϕ(x) = |Dϕ(x)|p−4(|Dϕ(x)|2∆ϕ(x) + (p− 2)∆∞ϕ(x)) for x ∈ B(x̂, r),

and
min

B(x̂, r)
|Dϕ| > 0 and max

B(x̂, r)
∆∞ϕ < 0,

we see that if p is large enough, then ∆pϕ(x) < 0 for all x ∈ B(x̂, r).
Set ω = intB(x̂, r). Choose an ε > 0 so that (u − ϕ)|∂ω < −3ε. If we choose

j ∈ N large enough, then we have (upj − ϕ)|∂ω < −2ε and (upj − ϕ)(x̂) > −ε. Fix
such a j and set v = upj + ε and q = pj for notational simplicity. We may assume as
well that ∆qϕ(x) < 0 for all x ∈ ω.

Since f ≤ 0 in ω and (v − ϕ)+ ∈ W 1,q
0 (ω), we have

∫

ω

|Dv|q−2Dv ·D(v − ϕ)+ dx =
∫

ω

f(v − ϕ)+ dx ≤ 0,

∫

ω

|Dϕ|q−2Dϕ ·D(v − ϕ)+ dx = −
∫

ω

∆qϕ(v − ϕ)+ dx > 0,

and hence ∫

ω+

(|Dv|q−2Dv − |Dϕ|q−2Dϕ) ·D(v − ϕ) dx < 0,

where ω+ = {x ∈ ω | v(x) > ϕ(x)}. On the other hand, because of the convexity of
the function: ξ 7→ |ξ|q, we know that

∫

ω+

(|Dv|q−2Dv − |Dϕ|q−2Dϕ) ·D(v − ϕ) dx ≥ 0,

which contradicts to the above inequality.
Remark. Let u ∈ A. By an argument similar to the above proof, we can prove

that max{|Du(x)| − 1,−∆∞u(x)} ≤ 0 in Ω in the viscosity sense. However, we have
a stronger conclusion that

(5.3). |Du(x)| ≤ 1 in Ω in the viscosity sense.
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Indeed, if u ∈ A, then u ∈ X and hence |Du(x)| ≤ 1 a.e., which implies (see, for
instance, Proposition 3.4 in [Ln]) that u satisfies (5.3).

Definition. Let Y ⊂ X. We call Y essentially single if for any u, v ∈ Y , u = v
on spt f .

Proposition 5.5. Let Y ⊂ X be such that A ⊂ Y . If Y is essentially single,
then A is a singleton. In particular, the whole family {up}p>1 converges in C(Ω).

The following proof has been already explained in Introduction.
Proof. Let u, v ∈ A. By assumption, we have u = v on spt f . By Proposition

5.4, we see that u and v are both viscosity solutions of

−∆∞w(x) = 0 in Ω \ spt f.

By the uniqueness result for this PDE due to [J], we conclude that u = v in Ω \ spt f ,
which guarantees that u = v in Ω.

6. Properties of the set M. In this section we collect some properties of the
set M of the maximizers of the functional I∞.

Proposition 6.1. Let u ∈M. Then

(6.1) u(x) = inf{u(y) + |x− y| | y ∈ Ω− ∪ ∂Ω} for all x ∈ Ω+

and

(6.2) u(x) = sup{u(y)− |x− y| | y ∈ Ω+ ∪ ∂Ω} for all x ∈ Ω−.

A proposition similar to this can be found in [EG] (Lemma 3.1 of [EG]), the proof
of which can be easily adapted to our case, but we give a proof here for completeness.

Proof. We prove only (6.1), since the proof of (6.2) is similar. Let u ∈ X. Then

|u(x)− u(y)| ≤ |x− y| for all x, y ∈ Ω,

from which we have
u(x) ≤ inf{u(y) + |x− y| | y ∈ A}

for all x ∈ Ω and any A ⊂ Ω. In particular, we have

(6.3) u(x) ≤ inf{u(y) + |x− y| | y ∈ Ω− ∪ ∂Ω} for all x ∈ Ω.

Now, let u ∈M. Since M⊂ X, the inequality (6.3) holds with this u. Setting

v(x) = inf{u(y) + |x− y| | y ∈ Ω− ∪ ∂Ω} for x ∈ Ω,

we see immediately from the definition of v that

v(x)− v(y) ≤ |x− y| for all x, y ∈ Ω,

which implies that |Dv(x)| ≤ 1 a.e. in Ω. Also, we have

u(x) ≤ v(x) for all x ∈ Ω, by (6.3),
and

v(x) ≤ u(x) for all x ∈ Ω− ∪ ∂Ω, by the definition of v.
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Combining these we find that u(x) = v(x) for all x ∈ Ω− ∪∂Ω. In particular, v(x) = 0
for all x ∈ ∂Ω. Thus we see that v ∈ X.

Next note that I∞(u) = maxw∈X I∞(w) ≥ I∞(v). On the other hand, since u = v
on Ω− and v ≥ u on Ω+, we get I∞(u) ≤ I∞(v). Hence, we see that I∞(v) = I∞(u).
Now, since ∫

Ω+

f(x)u(x) dx =
∫

Ω+

f(x)v(x) dx

and v ≥ u on Ω+, we conclude that u = v on Ω+, which completes the proof.
Remark. As one can see from the above proof, the set Ω− ∪ ∂Ω in (6.1) can be

replaced by any set A ⊂ Ω satisfying Ω− ∪ ∂Ω ⊂ A. Similarly, the set Ω+ ∪ ∂Ω in
(6.2) can be replaced by any set A ⊂ Ω satisfying Ω+ ∪ ∂Ω ⊂ A.

Proposition 6.2. Let u, v ∈M and k ≥ 0. Then u∧ (v + k), (u− k)∨ v ∈M.
Proof. It is easy to see that u ∧ (v + k), (u− k) ∨ v ∈ X. In particular, we have

max{I∞(u ∧ (v + k)), I∞((u− k) ∨ v)} ≤ I∞(u) = I∞(v).

Noting that u ∧ (v + k) = u− (u − v − k)+ and (u − k) ∨ v = v + (u− v − k)+,
we see that

I∞(u∧(v+k)) = I∞(u)−I∞((u−v−k)+), I∞((u−k)∨v) = I∞(v)+I∞((u−v−k)+),

and hence
0 ≤ I∞(u)− I∞(u ∧ (v + k))

= I∞((u− v − k)+) = I∞((u− k) ∨ v)− I∞(v) ≤ 0.

Consequently, we have

I∞(u ∧ (v + k)) = I∞((u− k) ∨ v) = I∞(u),

Thus we conclude that u ∧ (v + k), (u− k) ∨ v ∈M.
The following proposition establishes the existence of the maximal and minimal

elements of M.
Proposition 6.3. Define V,W : Ω → R by

V (x) = sup{v(x) | v ∈M} and W (x) = inf{v(x) | v ∈M}.

Then V, W ∈M.
Proof. We only prove the identity for V , since the proof of the other one is similar.
First of all, note that V ∈ X. Choose a dense subset {yk}k∈N of Ω. For each

k ∈ N we choose a sequence {vkj}j∈N ⊂ M such that limj→∞ vkj(yk) = V (yk). By
the definition of V , we have v(x) ≤ V (x) for all x ∈ Ω and v ∈M. Therefore, we find
that

V (yl) = sup{vkj(yl) | k, j ∈ N} for l ∈ N.

Define w ∈ X by setting

w(x) = sup{vkj(x) | k, j ∈ N} for x ∈ Ω.

It is immediate to see that V = w on Ω.
We intend to show that V ∈M. Relabeling the countable set {vkj}k,j∈N, we find

a sequence {vm}m∈N ⊂M such that

V (x) = sup{vm(x) | m ∈ N} for all x ∈ Ω.



20 HITOSHI ISHII AND PAOLA LORETI

We define the non-decreasing sequence {wj}j∈N by induction as follows:

w1 = v1, wj+1 = wj ∨ vj+1 for j ∈ N.

By Proposition 6.2, we see that wj ∈M for all j ∈ N. It is clear that

lim
j→∞

wj(x) = V (x) for all x ∈ Ω.

Therefore we see by the monotone convergence theorem that

I∞(V ) = lim
j→∞

I∞(wj) = max
v∈X

I∞(v),

and conclude that V ∈M.
Proposition 6.4. For any u, v ∈M, we have

sup
Ω+

(u− v)+ = sup
Ω−

(u− v)+.

Proof. Set k = supΩ−(u−v)+, and observe that u(y) ≤ v(y)+k for y ∈ Ω−∪∂Ω.
Using Proposition 6.1, we see that for x ∈ Ω+,

u(x) = inf{u(y) + |x− y| | y ∈ Ω− ∪ ∂Ω} ≤ inf{v(y) + |x− y| | y ∈ Ω− ∪ ∂Ω}+ k.

Hence, we have u(x) ≤ v(x) + k for all x ∈ Ω+, and therefore

sup
Ω+

(u− v)+ ≤ sup
Ω−

(u− v)+.

Exchanging the role of Ω+ and Ω− in the above argument, we get

sup
Ω−

(u− v)+ ≤ sup
Ω+

(u− v)+,

and finish the proof.
Proposition 6.5. If u ∈M, then u satisfies in the viscosity sense

(6.4) |Du(x)| = 1 in Ω+ and − |Du(x)| = −1 in Ω−.

This proposition is an easy consequence of Proposition 6.1. For completeness we
give a proof here.

Proof. Fix u ∈ M. Let ϕ ∈ C1(Ω) and x̂ ∈ Ω+. Assume that u − ϕ attains a
maximum at x̂. Then, since |u(x)− u(x̂)| ≤ |x− x̂| for all x ∈ Ω, we have as x → x̂

−|x− x̂| ≤ u(x)− u(x̂) ≤ ϕ(x)− ϕ(x̂) = Dϕ(x̂) · (x− x̂) + o(|x− x̂|).

Substituting x̂− tDϕ(x̂) for x and sending t ↘ 0, we see that |Dϕ(x̂)| ≤ 1.
Now, we assume that u− ϕ attains a minimum at x̂. In view of Proposition 6.1,

we choose a point y ∈ Ω− ∪ ∂Ω so that u(x̂) = u(y) + |x̂ − y| holds. As before, we
have as x → x̂

|x− y| − |x̂− y| ≥ u(x)− u(x̂) ≥ ϕ(x)− ϕ(x̂) ≥ −|Dϕ(x̂)||x− x̂|+ o(|x− x̂|).

Substituting x̂ + t(y − x̂) for x and sending t ↘ 0, we see that |Dϕ(x̂)| ≥ 1.
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Thus we see that u is a viscosity solution of |Du(x)| = 1 in Ω+. A parallel
argument shows that u is a viscosity solution of −|Du(x)| = −1 in Ω−.

Proposition 6.6. M is a convex set as a subset of C(Ω).
Proof. Note that X ⊂ C(Ω) is a convex set. Since I∞ is a linear functional on

C(Ω), we conclude that M is convex.
Proposition 6.7. Let u, v ∈M. Then

Du(x) = Dv(x) a.e. x ∈ Ω∗.

Proof. Let u and v ∈M. Define w ∈ C(Ω) by

w =
1
2
(u + v).

According to Proposition 6.6, we have w ∈ M. By Rademacher’s theorem, we see
that functions u, v, w are almost everywhere differentiable in Ω. Now, Proposition
6.5 yields

|Du(x)| = |Dv(x)| = |Dw(x)| = 1 a.e. x ∈ Ω∗,

and therefore the strict convexity of the Euclidean norm in Rn implies that

Du(x) = Dv(x) = Dw(x) a.e. x ∈ Ω∗.

7. Case of no balanced family. In this section we first prove Theorem 2.3
and then examine a case where the hypothesis (2.4) is satisfied.

We begin with a lemma. Let {Oλ}λ∈Λ be the classification of O∗,

Gλ :=
⋃
{U | U ∈ Oλ} for λ ∈ Λ

as in Section 2. Also, let Λ0 ⊂ Λ be as in Section 2.
Lemma 7.1. If u, v ∈M, then u− v is constant on any Gλ, with λ ∈ Λ.
Proof. Let u, v ∈M. First of all, we observe that for any A, B ⊂ Ω,

inf
(x,y)∈A×B

|(u− v)(x)− (u− v)(y)| ≤ inf
(x,y)∈A×B

(|u(x)− u(y)|+ |v(x)− v(y)|)(7.1)

≤ 2d(A,B).

Fix λ ∈ Λ and U, V ∈ Oλ. By Proposition 6.7, we have

(u− v)(x) =
{

kU for x ∈ U,
kV for x ∈ V

for some constants kU , kV . Fix any ε > 0. Since ρ(U, V ) = 0, there is a finite family
W1, ...,Wm ∈ O∗ such that d(U,W1)+d(W1,W2)+· · ·+d(Wm, V ) < ε. By Proposition
6.7, for each i ∈ {1, ...,m} there is a constant ki such that (u−v)(x) = ki for all x ∈ Ui.

Now, using (7.1), we get

|kU − kV | ≤ |kU − k1|+ |k1 − k2|+ · · ·+ |km − kV |
≤ 2(d(U,W1) + d(W1,W2) + · · ·+ d(Wm, V )) < 2ε.

Since ε > 0 is arbitrary, we conclude that kU = kV . This shows that u− v is constant
on Gλ.
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Lemma 7.2. Let u, v ∈M and λ ∈ Λ0. Then u = v on Gλ.
Proof. In view of Lemma 7.1, let k ∈ R be a constant such that u = v + k on

Gλ. Fix any U ∈ Oλ and ε > 0. There is a finite sequence U1, ..., Um ∈ Ω such
that d(U,U1) + d(U1, U2) + · · ·+ d(Um, ∂Ω) < ε. As in the proof of Lemma 7.1, since
u = v = 0 on ∂Ω, we find that |k| ≤ 2(d(U,U1) + d(U1, U2) + · · ·+ d(Um, ∂Ω)) < 2ε.
This is enough for us to conclude that u = v on Gλ.

Proof of Theorem 2.3. In view of Proposition 5.5, it is enough to show that M is
essentially single.

For this we argue by contradiction. Thus we let u, v ∈M and assume that u 6= v
on spt f . We may assume that u and v are, respectively, the maximal and minimal
elements of M, i.e.,

u(x) ≥ w(x) ≥ v(x) for all x ∈ Ω and w ∈M.

Fix any k > 0 so that k < supΩ∗(u − v). For t ∈ (0, k] we set wt = u ∧ (v + t).
Note that for x ∈ Ω and 0 ≤ t < s ≤ k,

v(x) ≤ wt(x) ≤ ws(x) ≤ wk(x).

Also, since 0 < k < supΩ∗(u− v), we see that wk − v attains the maximum value k at
some point of Ω∗.

By Proposition 6.2, we have wt ∈M for all t ∈ (0, k]. Hence we have I∞(wk) =
I∞(wt) for all t ∈ (0, k), which reads

0 =
∫

Ω

(wk − wt)(x)
k − t

f(x) dx for all t ∈ (0, k).

For 0 ≤ t < k, we set

At = {x ∈ Ω∗ | wt(x) < wk(x)} and B =
⋂

0<t<k

At.

Note that At ⊃ As for 0 < t < s < k.
We claim here that

B = {x ∈ Ω∗ | (wk − v)(x) = k}.
To see this, we write C for the right hand side of the above identity. Let x ∈ B. By
definition, we have wt(x) < wk(x) for all t ∈ (0, k). This implies that wt(x) = v(x)+t
for all t ∈ (0, k), and hence that v(x) + t < u(x) for all t ∈ (0, k). Therefore, we have
v(x) + k ≤ u(x), and moreover, wk(x) = v(x) + k. Thus, we see that B ⊂ C.

Next, let x ∈ C. We then have wk(x) = v(x) + k, which yields that u(x) ≥
v(x) + k > v(x) + t for all t ∈ [0, k). Hence we have wt(x) < wk(x) for all t ∈ (0, k).
That is, we have x ∈ B, which concludes that C ⊂ B and moreover B = C.

Since wk − v takes the value k at some point of Ω∗, we have B 6= ∅.
Now we go back the equality

0 =
∫

Ω

(wk − wt)(x)
k − t

f(x) dx =
∫

At

(wk − wt)(x)
k − t

f(x) dx for t ∈ (0, k).

We are going to apply the Lebesgue convergence theorem. Since At ⊃ As for
0 < t < s < k and

⋂
0<t<k At = B, we see that as t ↗ k,

1At(x) → 1B(x) for all x ∈ Ω.
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Note that |(wk − wt)(x)| ≤ |k − t| for all t ∈ (0, k) and x ∈ At, and hence,

1At(x)
∣∣∣∣
(wk − wt)(x)

k − t
f(x)

∣∣∣∣ ≤ |f(x)| for all t ∈ (0, k) and x ∈ Ω.

For x ∈ B, we have wk(x) = v(x) + k and wt(x) = v(x) + t, and therefore,

(wk − wt)(x)
k − t

= 1.

Therefore, as t ↗ k,

1At(x)
(wk − wt)(x)

k − t
f(x) → 1B(x)f(x).

We apply the Lebesgue convergence theorem along any sequence tk ↗ k, to conclude
that

∫
B

f(x) dx = 0.
Finally, noting by Lemma 7.1 that the function wk − v is constant on any Gλ,

with λ ∈ Λ, and setting

Γ = {λ ∈ Λ | (wk − v)(x) = k on Gλ},

we have
B =

⋃
{Gλ | λ ∈ Γ}.

We see from Lemma 7.2 that Γ ⊂ Λ \ Λ0. Recalling that B 6= ∅, by the assumption
(2.4) we have

∫
B

f(x) dx 6= 0. This is a contradiction.
Let us examine the case where

(7.2) µ({x ∈ Ω | f(x) = 0}) = 0.

We have the following proposition as a corollary of Proposition 6.7.
Theorem 7.3. Under the assumption (7.2), M is a singleton. As a consequence,

the whole family {up}p>1 converges in C(Ω).
Proof. Let u, v ∈ M. By Proposition 6.7, we have Du(x) = Dv(x) a.e. in Ω∗.

By (7.2), we have Du(x) = Dv(x) a.e. in Ω. Hence, u = v in Ω.
We wish here to explain that the convergence result in Theorem 7.3 can be shown

as a consequence of Theorem 2.3.
Proposition 7.4. If (7.2) holds, then Λ = Λ0 and hence (2.4) is satisfied.
Proof. We only need to show that ρ(U, ∂Ω) = 0 for all U ∈ O∗.
To do this, we fix U ∈ O∗ and x ∈ U . Choose a closest point y in ∂Ω to the

point x. Set R = |y − x|. Choose a constant r ∈ (0, R) so that B(x, r) ⊂ U . Let H
be the hyperplane normal to the vector y − x and passing through the point x, i.e.,
H = {ξ ∈ Rn | (ξ − x) · (y− x) = 0}. Let C be the truncated open cone generated by
the point y and the (n− 1)-dimensional sphere H ∩B(x, r). That is, we write

C = {ty + (1− t)ξ | (t, ξ) ∈ (0, 1)× (H ∩B(x, r))}.

Note that C ⊂ intB(x, R) ⊂ Ω.
By the assumption (7.2), we have

µ(C) = µ(C ∩ Ω∗).



24 HITOSHI ISHII AND PAOLA LORETI

Using the Fubini theorem, from this we deduce that for µn−1-almost all ξ ∈ H ∩
B(x, r), we have µ1({t ∈ (0, 1) | ty + (1− t)ξ ∈ Ω∗}) = 1.

Fix a point ξ ∈ H ∩ B(x, r) so that µ1({t ∈ (0, 1) | ty + (1 − t)ξ ∈ Ω∗}) = 1.
Define I ⊂ (0, 1) by setting I = {t ∈ (0, 1) | ty + (1 − t)ξ ∈ Ω∗}. Since I is an open
subset of (0, 1), there is a sequence {Ij}j∈J , with J ⊂ N, of non-empty open intervals
Ij ⊂ (0, 1) such that I =

⋃{Ij | j ∈ J}. We may assume as well that if i, j ∈ J and
i 6= j, then Ii ∩ Ij = ∅. Since µ1(I) = 1, we have

∑
j∈J µ1(Ij) = 1.

Fix any ε > 0. There is a finite subset Jε ⊂ J such that
∑

j∈Jε
µ1(Ij) > 1 − ε.

We may assume that Jε = {1, ..., m}, where m is a positive integer which depends on
ε. For each j ∈ Jε, we choose aj , bj ∈ [0, 1] so that Ij = (aj , bj). We may further
assume that a1 < b1 ≤ a2 < b2 ≤ ... ≤ am < bm. Then we have

∑
j∈Jε

µ1(Ij) =∑
j∈Jε

(bj − aj) > 1− ε.
For each j ∈ Jε, since ty+(1−t)ξ ∈ Ω∗ for t ∈ Ij , and the set {ty+(1−t)ξ | t ∈ Ij}

is connected, we see that there is a Uj ∈ O∗ such that

ty + (1− t)ξ ∈ Uj for t ∈ Ij .

Observe that

d(U,U1) ≤ |ξ − (a1y + (1− a1)ξ)| ≤ a1|y − ξ|,
d(Uj−1, Uj) ≤ |(bj−1y + (1− bj−1)ξ)− (ajy + (1− aj)ξ)|

≤ (aj − bj−1)|y − ξ| for all j ∈ {2, ..., m},
d(Um, ∂Ω) ≤ |y − (bmy + (1− bm)ξ)| ≤ (1− bm)|y − ξ|.

Adding all of these, we get

d(U,U1) + d(U1, U2) + · · ·+ d(Um, ∂Ω) ≤ (a1 + (a2 − b1) + · · ·+ (1− bm))|y − ξ|
= (1−

∑

j∈Jε

(bj − aj))|y − ξ| < ε|y − ξ|.

Thus we see that ρ(U, ∂Ω) = 0 and finish the proof.

8. Cases with vanishing integral. In this section we prove Theorem 2.4.
Proof of Theorem 2.4. Assume that (2.5) and (2.6) are satisfied.
First, we assume that (2.7) and (2.8) are satisfied and show in view of Proposition

5.5 that A is essentially single.
We observe that every u ∈ A is an odd function. This follows from the uniqueness

of solutions of the Dirichlet problem

(8.1)

{
−∆pu(x) = f(x) in Ω,

u(x) = 0 on ∂Ω.

Indeed, if u is a solution of (8.1), then the function −u(−x) is a solution of (8.1) as
well and, by the uniqueness, u(x) = −u(−x) for all x ∈ Ω. This shows that every
function u ∈ A is an odd function.

Now, let u, v ∈ A. Since Ω+ and Ω− are connected and Du(x) = Dv(x) a.e.
x ∈ Ω∗, there is a constant k ∈ R such that u(x) = v(x) + k for all x ∈ Ω+. By
symmetry in u and v, we may assume that k ≥ 0.

Since u and v are odd functions, we have

−u(−x) = −v(−x) + k for all x ∈ Ω+.
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That is, u(x) = v(x)− k for all x ∈ Ω−. Using Proposition 6.4, we thus get

k = max
Ω+

(u− v)+ = max
Ω−

(u− v)+ = 0,

which shows that u(x) = v(x) for all x ∈ Ω∗ and hence A is essentially single.
Next we turn to the case where (2.9) is satisfied. It is enough to show that M is

essentially single. Let u, v ∈M and we will show that u = v on Ω∗.
By Proposition 6.4, we have

(8.2) sup
Ω+

(u− v)+ = sup
Ω−

(u− v)+.

We argue by contradiction, and hence suppose that u(z) 6= v(z) for some z ∈ Ω∗.
We may assume that u(z) > v(z). In view of (8.2), there is a constant k > 0 such that
u(x)− v(x) = k for all x ∈ Ω∗.

From (2.9) we have either

inf
x∈Ω+

sup
y∈Ω−

[d(x) + d(y)− |x− y|] ≤ 0,(8.3)

or
inf

y∈Ω−

sup
x∈Ω+

[d(x) + d(y)− |x− y|] ≤ 0.(8.4)

We consider only the case where (8.3) holds since the other case can be treated simi-
larly.

For each ε > 0 there exists a point xε ∈ Ω+ such that d(xε)+d(y)−|xε−y| ≤ ε
for all y ∈ Ω−. Since u, v ∈ X, we have |u(x)| ∨ |v(x)| ≤ d(x) for all x ∈ Ω. From
these we get

d(xε) ≤ inf{v(y) + |xε − y| | y ∈ Ω−}+ ε,

Since v = 0 on ∂Ω, we have

d(xε) = inf{v(y) + |xε − y| | y ∈ ∂Ω}.

Therefore, using Proposition 6.1, we have

d(xε) ≤ inf{v(y) + |xε − y| | y ∈ Ω− ∪ ∂Ω}+ ε = v(xε) + ε.

Thus we obtain u(xε) ≤ d(xε) ≤ v(xε) + ε, which yields a contradiction by choosing
ε ∈ (0, k). This completes the proof.

Remark. In Theorem 2.4 we may replace the condition (2.6) by the condition
that #(Λ \Λ0) = 2, where Λ and Λ0 are as in the assumption (2.4), and the condition
(2.5) by ∫

ω

f(x) dx = 0,

with ω :=
⋃{Gλ | λ ∈ Λ \ Λ0}.
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[BBD] G. Bouchitté, G. Buttazzo, and L. De Pascale, A p-Laplacian approximation of
some mass optimization problems, J. Optim. Theory Appl., 118 (2003) no. 1, pp.
1–25.

[BDM] T. Bhattacharya, E. DiBenedetto, and J. Manfredi, Limits as p →∞ of ∆pup = f
and related extremal problems, Some topics in nonlinear PDEs (Turin, 1989). Rend.
Sem. Mat. Univ. Politec. Torino 1989, Special Issue, pp. 15–68 (1991).

[BK] M. Belloni and B. Kawohl, The pseudo-p-Laplace eigenvalue problem and viscosity
solutions as p →∞, ESAIM Control Optim. Calc. Var. 10 (2004), no. 1, 28–52 .

[CEG] M. G. Crandall, L. C. Evans, and R. F. Gariepy, Optimal Lipschitz extensions
and the infinity Laplacian, Calc. Var. Partial Differential Equations, 13 (2001), no.
2, pp. 123–139.

[CIL] M. G. Crandall, H. Ishii, and P.-L. Lions, User’s guide to viscosity solutions of second
order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), no.
1, pp. 1–67.

[D] E. DiBenedetto, C1+α local regularity of weak solutions of degenerate elliptic equations,
Nonlinear Anal., 7 (1983), no. 8, pp. 827–850.

[EG] L. C. Evans and W. Gangbo, Differential equations methods for the Monge-
Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137 (1999), no.
653.

[FIN] N. Fukagai, M. Ito, and K. Narukawa, Limit as p → ∞ of p-Laplace eigenvalue
problems and L∞-inequality of the Poincaré type, Differential Integral Equations, 12
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