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Relazation of Hamilton-Jacobi equations

Hitosur Isuir & PAoLA LORETI

Abstract

We study the relaxation of Hamilton-Jacobi equations. The relaxation
in our terminology is the following phenomenon: the pointwise supremum
over a certain collection of subsolutions, in the almost everywhere sense, of
a Hamilton-Jacobi equation yields a viscosity solution of the “convexified”
Hamilton-Jacobi equation. This phenomenon has recently been observed in
[13] in eikonal equations. We show in this paper that this relaxation is a
common phenomenon for a wide range of Hamilton-Jacobi equations.

1. Introduction

In this paper we study the Hamilton-Jacobi equation
H(z,u(z),Du(z)) =0 in £, (1.1)

where §2 is an open subset of R", H is a given real-valued function on
2 x R x R", and u is a real-valued unknown function on {2, and we are
interested in an observation concerning (1.1) in [13] and its generalization,
which we call the relaxation of Hamilton-Jacobi equations.
This observation in [13] is stated as follows. Let H € C'(R") be a function
satisfying
{H(p) >0 for pe R"\ {0}, (1.2)

H(Mp) = AH(p) for (A\,p) € [0,00) x R™.

Let H denote the convex envelope of the function H. Consider the eikonal
equation

~

H(Du(x))=1 in 2 (1.3)
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together with the Dirichlet boundary condition
u(r) =0 for z € 012, (1.4)

where (2 is assumed to be bounded. Let u € C(£2) be a (unique) viscosity
solution of (1.3) and (1.4). Then we have:

u(z) = sup{v(z) | v € Lip(2), H(Dv(y)) <1 ae.y€ 2, v=0 on 92}
(1.5)
for all x € {2, where for any subset W of R", Lip(W) denotes the space of
bounded and Lipschitz continuous functions on W.
It should be remarked that (1.5) is equivalent to the following formula

u(z) = sup{v(z) | v € Lip(§2), v <wu in £,
H(Dv(y)) <1 ae. 2} forze 12 (1.6)

Indeed, it is clear that (1.5) implies that (1.6) holds. On the other hand,
since H < H and H is convex, if v € Lip(2), H(Dv(y)) < 1 a.e. y € 12,
and v = 0 on 92, then v is a viscosity subsolution of (1.3) and (1.4). By
comparison, we see (e.g., [12]) that v < w in 2, and hence that (1.6) implies
(1.5).

It is well-known that if we replace, in the formula given by the right
hand side of (1.5), the condition

H(Dv(y)) <1 aeyef?

by the condition that v is a viscosity subsolution of

~

H(Dv(y))=1 in {2
(respectively, H(Dv(y)) =1 in £2),

then the resulting formula gives a (unique) viscosity solution w of (1.3) and
(1.4) (respectively, a (unique) viscosity solution of H(Du(z)) = 1 in {2
together with the boundary condition (1.4)).

We note here (see also the example presented just after the proof of
Theorem 2.2 in [13]) that in general formula (1.6) does not give a subsolution
of

H(Du(z)) =1 ae. x €2 (1.7)

To see this, we consider the case when n = 2, H(p, q) = (|p|*/? +|q|*/?)?,
and 2 = {(z,y) € R? | || + |y| < 1}. It is immediate to see that H(p,q) =
[p| + |q|. It is not difficult to check that the function

1 — || —y|
2
is a viscosity solution of (1.3) in {2 and satisfies (1.4). For any (z,y) € {2, if

x > 0 and y > 0 for instance, then we have

1 1

Du(e,y) = (3. ~3)

u(x,y) =
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and, in particular,
H(Du(z,y)) = 2.

Similarly we have
H(Du(z,y)) =2

if z # 0 and y # 0. Hence we see that H(Du(z,y)) = 2 a.e. for (z,y) € 2
and hence that u is not a subsolution of (1.7).

What we call the relazation of Hamilton-Jacobi equations is the phe-
nomenon that a viscosity solution of the eikonal equation with convexified
Hamiltonian appears in the process of taking the pointwise supremum over
a certain collection of subsolutions, in the almost everywhere sense, of the
original eikonal equation, or a phenomenon similar to this for (1.1).

Since the viscosity solution u € C(2) of (1.3)—(1.4) is Lipschitz continu-
ous and H is convex, u has the properties: (i) u € Lip(£2); (ii) H(Du(z)) < 1
a.e. ¢ € £2; and (iii) v = 0 on 0f2. Therefore the right hand side of (1.5),
with H replaced by H , is attained by u(z). Thus another way to state the
relaxation of the eikonal equation, H(Du) = 1, is the following identity:

max{v(x) | v € Lip({2), H(Dv(y)) <1 ae.y€ 2, v=0 on 00}
=sup{v(z) | v € Lip(R2), H(Dv(y)) <1 ae.y€ 2, v=0 on 902} (1.8)

That is, through the process of taking the pointwise supremum of all subso-
lutions of the eikonal equation H(Du) = 1 in the almost everywhere sense
with the Dirichlet condition u = 0, one obtains the pointwise maximum
of all subsolutions of the convexified eikonal equation H(Du) = 1 in the
almost everywhere sense with the same Dirichlet condition. However, this
view point is narrower than the previous one when more general situations
are considered. In such a general situation, the supremum which corresponds
to the left hand side of (1.8) may not give a Lipschitz continuous function on
2 and hence the maximum may not be attained, but it may still give a con-
tinuous viscosity solution on £2 of the associated Hamilton-Jacobi equation
with convex Hamiltonian.

As is already noted, our purpose here is to show that the relaxation
takes place in a wide class of Hamilton-Jacobi equations.

Some historical remarks here concerning the well-posedness for Hamilton-
Jacobi equations are the developments of the theory of viscosity solutions
of Hamilton-Jacobi equations ([8, 16, 6, 7]) and of general existence theories
for solutions in the almost everywhere sense of Hamilton-Jacobi equations
([9, 17]). Also, an important remark may be the connection of the relax-
ation of eikonal equations to L> optimization problems ([13, 3, 15, 11, 2, 4,
5]). Furthermore, it should be noted that relaxations in standard noncon-
vex variational problems has been studied for a long time ([10]). It is worth
mentioning that in [18] a connection between a nonconvex eikonal equation
and its convexified Hamilton-Jacobi equation is discussed in a different view
point.
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In Section 2 we formulate our results on the relaxation of Hamilton-
Jacobi equations on bounded domains. A result in the case of the Cauchy
problem for Hamilton-Jacobi equations is stated and proved in section 7 as
a typical example of results for unbounded domains. We prepare some basic
lemmas used in our proofs in section 3. Sections 4 and 5 are devoted to the
proof of our main results. The formulation in section 2 is slightly abstract
for sake of wider applicability, and the results in sections 2 are applied to
some examples of Hamilton-Jacobi equations. Appendix collects a lemma
on Lipschitz domains and an example of Hamilton-Jacobi equation relevant
to our assumptions.

2. Main results

In this section we formulate our relaxation theorems.

We assume throughout this section that the set {2 is bounded.

In order to state our results, it is appropriate to use the set theoretic
notation rather than the standard PDE notation.

First of all we explain how to transfer from the PDE notation to the set
theoretic notation. For subsolutions of the Hamilton-Jacobi equation

H(z,u(z),Du(z)) =0 in £2, (2.1)
where H is assumed to be continuous, the set
Z(x,r)={peR" | H(z,r,p) <0}, (2.2)

where (z,7) € 2 x R, is crucial, and the fact that u is a (classical) subso-
lution of (2.1) can be stated as

Du(x) € Z(z,u(x)) for all z € (2.
Note as well that u € C(§2) is a viscosity subsolution of (2.1) if and only if
DYu(z) C Z(z,u(x)) for x € 2.

The formulation of our first theorem is motivated by standard uniqueness
theorems (see, e.g. [8, 6]) in viscosity solution theory.
Assume that H € C(£2 x R x R™) satisfies the following two conditions.

For each M > 0 there is a constant A\j; > 0 such that for
each (z,p) € 2x B(0, M) the function : r — H(z,r,p)—Apr (2.3)
is non-decreasing on [—M, M].
For each M > 0 there is a modulus wp; for which
|H(z,r,p) — H(y,r,q)| < wam(le—yl(lp| +1) +[p—q]) (2.4)

for all 7,y € 2, p,q € R™, r € [-M, M].
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It follows from (2.3) that for any (z,p) € 2 x R™, the function : r
H(x,r,p) is non-decreasing on R, which shows that for all z € R™ and
r,s € R,

Z(x,r) C Z(x,s) if r>s. (2.5)

Observe from (2.4) that for each M > 0, the collection of functions :
p+— H(z,r,p), with (z,7) € 2 x [-M, M], is equi-continuous on R".

Let M,R > 0. For any z,y € 2, r,s € [-M —1,M + 1], ¢, > 0,
p € B(0,R), and ¢q € B(p,¢), if |xt —y| <~ and r > s, then we have

H(y,s,q) < H(z,r,p) + wp((R+ 1)y +¢&) — Aprp1(r — s). (2.6)

Set
on(t) = Ayfpwa(t)  forallt >0,

and choose e)s > 0 so that oar(ear) < 1. Then, from (2.6), for all M, R > 0,
g,y > 0 satisfying (R+ 1)y+¢e < e, z,y € £2, (r,p) € [-M, M] x B(0, R),
and g € B(p,¢), if |z — y| < 7y, then we have

H(y,r —om((R+1)y+e¢),p+q) < H(z,7,p),

which yields that for any M, R > 0, &, > 0 satisfying (R + 1)y +¢ < e,
x,y € £2, and r € [-M, M|, if |z — y| <, then have

Z(z,7) N B(0,R) 4+ B(0,e) C Z(y,7 — opr (R4 1)y +¢)). (2.7)

Now, we formulate our first theorem on relaxation.

For each (z,7) € 2 x R let Z(z,r) be a closed subset of R", which may
be an empty set.

The theorem concerns also the closed convex hull of the sets Z(xz,r).
Thus we set

K(x,r) = coZ(x,r) for (x,7) € 2 x R". (2.8)
For R > 0 and (z,7) € 2 x R we define
Zr(x,r) = Z(x,r) N B(0,R), Kg(z,r)=K(z,7) N B(0,R).
Motivated by the above observation, we assume:
for any r,s € R and z € 2, if r > s,
{ 29)

Z(z,r) C Z(z, ),

for each M > 0 there are a modulus op; and a constant
eym > 0 such that for any R > 0, ¢,7 > 0, z,y € {2, and
re[-MM],if (R+1)y+e <epn and |z —y| <, then (2.10)

have

Zr(z,r)+ B(0,e) C Z(y,r —om((R+ 1)y +¢)).
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Moreover, we assume (2.11) and (2.12) below.

For each M > 0 there are a modulus o) and a constant

enm > 0 such that for any R > 0, ¢,7 > 0, z,y € §2, and
re[-M,M],if (R+1)y+e <ep and |z —y| <+, then (2.11)
have

Kgr(x,r)+ B(0,e) C K(y,r —om((R+ 1)y +¢€)).

Unlike condition (2.10), this condition does not follow from (2.3) and
(2.4), with the collection of K(x,r) = co{p € R" | H(z,r,p) < 0}. See for
this Example 8.2 in the appendix.

For any € > 0 and R > 0 there is a constant p > 0 such that
for all (z,r) € R" x [-R, R], (2.12)

Kpr(z,1) C coZ,(x, 1 —¢).

We give examples of collections {Z(x,r)} in Section 6, for which (2.11)
and (2.12) are satisfied.

Next we need a regularity assumption on the boundary of 2.

For v > 0 we set

2 ={z e 2| dist (z,2) < ~},
2, ={z e 2] dist (x, 2°) > v},

where 2¢ = R"\ (2, and we assume that

there is a constant vy € (0,1) and for each v € (0,70) a
ct map 1, : 27 — R" such that ¥, (£27) C £, and for all
x € 27 and for some constant C' > 0 independent of -, (2.13)

(@) — 2| < Cv. Dy (@) — I < O

For instance, this condition is satisfied if {2 has Lipschitz boundary. See
Proposition 8.1 in the appendix.

Theorem 2.1. Let {Z(z,7) | (z,7) € 2 x R} be a collection of closed
subsets of R™. Assume that 2 is bounded and that (2.9)-(2.13) hold. Let
u € C(92) satisfy

DYu(x) € K(z,u(z)) for allx € 0.
Then
u(z)=sup{v(z)|v € Lip(2), v < u on 2, Dv(y) € Z(y,v(y)) a.e. y € 2}

for all x € 12.
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Remark 2.2. A natural way to define the notion of viscosity solution to
the collection Z := {Z(z,7) | (z,7) € 2 x R} is as follows: a function
u € USC(£2) (resp., u € LSC(S?)) is called a viscosity subsolution (resp.,
supersolution) of Z if

Dtu(z) C Z(x,u(z)) forxec N
(resp., D7 u(x) C R™\ int Z(z,u(x)) for xz € ).

A function w € C(£2) is called a viscosity solution of Z if it is both a
viscosity subsolution and a viscosity supersolution of Z. For instance, under
assumption (2.10), using standard arguments, we can prove the comparison
theorem: let u € USC(2) and v € LSC(£2) be a viscosity subsolution and a
viscosity supersolution of Z, respectively. Assume that u < v on 9f2. Then
u <wvon §2.

Next, we give another theorem similar to the above, which is motivated
by the eikonal equation

H(Du(xz))=1 in £,

with Hamiltonian H € C(R") satisfying (1.2).

In what follows, let Z(z,7), with (z,7) € £ x R, be independent of 7,
and thus we may write Z(x), K(z), Zr(z), and Kg(x) for Z(z,r), K(z,r),
Zg(z,r), and Kg(z,r), respectively.

For ¢ > 0 define A(d) by

A@9) = {(z,y) € 2 x 2| |z —y| < 5}
We assume:
there exists a v > 0 such that
(2.14)

B(0,7) C K(x) forall z € £2.

This condition can be replaced by the condition that there are a function
¢ € C'(2,R) and a constant y > 0 such that B(Dy(x),v) C K(x) for all
x € (2. But, for simplicity of presentation, we have chosen (2.14) instead.

There exists a constant §p > 1 and for each 6 € (1,6y) con-
stants dg = dp() > 0 and Ry = Rp(6) > 0 such that for all
R > Ry and (z,y) € A(d), (2.15)

Zp(z) N0 (coZr(x)) C 0Z(y).
We give a few of examples in Section 6, for which (2.14) and (2.15) are

satisfied.
We define L : 2 x R — RU {cc} by

L(x,&) =sup{¢-p|pc Z(x)}.
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Let u € C(£2) be a given function and assume:

for each @ > 1 there is a §; = 61(f) > 0 such that for all
(z,y) € (002)* N A1), (2.16)

u(z) <u(y) +0L(y,z —y).

This condition should be compared with the compatibility condition on
the boundary data for the existence of a viscosity solution for the Dirichlet
problem (see [13]).

Theorem 2.3. Assume that {2 is bounded and that (2.14) and (2.15) hold.
Let uw € C(12) satisfy

Dtu(x) C K(x) for all z € 0.
Assume that (2.16) holds with this u. Then
u(r) = sup{v(z) | v € Lip(2), v <u on 2, Dv(y) € Z(y) a.e. y € 2}
for all x € 12.

Remark 2.4. As explained in the Introduction, in [13] we stated the relax-
ation theorem in terms of the convex envelope H (p) of the given Hamitonian
H(p), where H is assumed to be positive for p # 0 and positively homo-
geneous of degree one. Under some additional assumptions one may state
relaxation theorems in this paper in terms of the quasi-convex envelope of
Hamiltonians. Let us recall the definition of the quasi-convex envelope of
function H € C(R™). We call a function G : R® — R quasi-convez if the
set {p € R" | G(p) < a} is convex for any a € R. Let Q denote the set of
all lower semicontinuous quasi-convex functions on R". Let H : R — R.
We assume that there is a function G € Q such that G < H on R". We
define H : R™ — R by

H(p) = sup{G(p) | G € Q, G < H on R"}.

It follows that the function H € Q and satisfies H < H on R"™. We call H
the quasi-convex envelope of the function H. We have the inclusion

cof{peR"|H(p) <a} C{peR" | H(p) < a}
for all @ € R, but in general we do not have the identity
cofpeR" | H(p) <a}={peR" | Hp) < a} (2.17)

for a € R. For instance, consider the case when n = 2 and the function H
given by

q
H(p,q) = |p|frl for (p,q) € R?,
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where g1 denotes the positive part, max{q,0}, of ¢ € R. It is easy to see
that the quasi-convex envelope H of H is given by H(p,q) =0, and that

co{(p,q) €R*| H(p,q) <0} =R x (—00,0] #R? = {p € R" | H(p) < 0}.

An assumption on H which guarantees that (2.17) holds for all a € R
is the coercivity of H. That is, if we assume that

Jim inf{H(p) | p € R"\ B(0, R)} = oo,

then we have (2.17) for all a € R. With these observations and notations,
for instance, we may state a theorem similar to Theorem 2.3 as follows: Let
H e C(£2 x R™) and set

Z(z)={peR" | H(z,p) <0}, K(x)=coZ(x)
for = € 12. Let H(x,p) be the quasi-convex envelope of the function H (z, p)
with respect to p. Assume as in Theorem 2.3 that (2 is bounded and that

(2.14) and (2.15) is satisfied. Moreover assume that (2.17) holds. Then, if
u € C({2) is a viscosity subsolution of

H(z,Du(z)) =0 in 2

and (2.16) is satisifed, we have

u(z)=sup{v(z)|v € Lip(2), v < won 2, H(y, Dv(y)) < 0 a.e. for y € N2}.

3. Preliminary lemmas

We prepare here for the proof of our main results by establishing a few
basic lemmas.

Lemma 3.1. Let K be a non-empty convex subset of R™ and set
L) =sup{¢-p|lpe K} forall€éeR"
Let U be an open subset of R™ and let v € C(U) satisfy
DYv(z)Cc K forallz € U.

Letz,y € U, and assume that the open line segment lo(z,y) := {tz+(1—t)y |
te(0,1)} CU. Then

u(z) < u(y) + L(x —y).
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Proof. We may assume that x # y and L(z — y) < co. By translation and
rotation, we may assume that

y =0, T = pey,

where p > 0 and e,, denotes the unit vector in R™ with unity as its n-th
entry. We need to show that

w(pen) < u(0) + pLien).
Define the function v € C([0, p]) by
v(r) = u(rey).

We show that
v'(r) < L(en) forr € (0,p) (3.1)

in the viscosity sense.

Let » € C'((0, p)) and assume that v — p attains its strict maximum at
a € (0, p). Choose a compact neighborhood V' C U of ae,, € U. Let a« > 0
and consider the function

D(z) == u(w) — a(a] + -+ 25 _1) — p(an)

on V. Let 2% € V be a maximum point of @. It is standard to see that as
o — 00,
% — ae,,.

We are going to take the limit as a — oo, and therefore we may assume
that z® € int V for all a under considerations. Hence, we have

p* == (20§, ..., 20221, ¢ (22)) € DTu(x*) C K.
Thus, by the definition of L(e,), we have
Llen) 2 p™ - en = ¢/ (27),
and therefore, sending a — oo, we get
¢'(a) < L(en),

which proves that (3.1) holds in the viscosity sense.
It is a standard fact that (3.1) yields

v(pen) < v(0) + pLen) = v(0) + L(pen),

that is,
u(z) < uly) + Lz —y),

which completes the proof. 0O
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Lemma 3.2. Let N € N and f1, ..., fny € Lip(£2). Set

f(x) = max{f1(z),.... fn(x)} forxz e .

Then f € Lip(£2) and f is almost everywhere differentiable. Moreover for
almost every x € (2,

Df(x) e {Dfi(z),..., Dfn(x)}.

Proof. It is easy to check that f € Lip(£2). It is a well-known fact
(Rademacher’s theorem) that any Lipschitz continuous function (and hence,
f) is almost everywhere differentiable.

Rademacher’s theorem implies that almost everywhere, all of f1,..., fx
and f are differentiable. Now let y € {2 be a point where all of f1,..., fx
and f are differentiable. By the definition of f, f(y) = fi(y) for some
i€{1,..,N}. Then f — f; attains a local minimum at y, which yields

Df(y) = Dfi(y) € {Dfi(y), .. Dfn(y)},
completing the proof of the lemma. 0O

Lemma 3.3. Let Z be a non-empty closed subset of R™. Define L : R™ —
R U {c0} by

L(§) =sup{¢-p|p€ Z}.
Let £ € R™ be a point where L is differentiable. Then

DL(E) € ZNd(w 2)

This result is a key observation in [13, the proof of Theorem 2.2].

Proof. Let L be differentiable at £ € R™ and let p = DL(£). For each
n € N select a p, € Z so that

1 _
P&+ — > L(Q).
n
For each € > 0 there is a 6 > 0 such that for all h € B(0,9),
LE+h) <L) +p-h+elhl.
Combining these two inequalities, we get
- -1
Pn-(E+ D) <pp-&+ E+1§-h+5|h\ for h € B(0,0),
and hence,
1
0<(p—pn) h+elh|l+ - for h € B(0,9).
Hence, inserting h = §(pn, — p)/|pn — P| if pn # P, we get

1
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which implies that p,, — p as n — oo and that p € Z.

Thus we conclude that the function : p — £ - p attains its maximum over
Z at the unique point p. Moreover we easily see that p € 0Z7.

Next, we note that

L) =sup{-p|pe€coZ} forfeR"™

Now the observation above shows that p € d(coZ). Thus we see that

DL() e ZNnd(coZ). O

4. Proof of Theorem 2.1

We begin with the proof of a localized version, Theorem 4.1 below, of
Theorem 2.1.

Let v > 0 and let {Z(x,7) | (x,7) € 27 x R} be a collection of closed
subsets of R™, and we introduce the condition that

for each R > 0 there are a modulus O’]ﬁnd a constant eg > 0

such that for any ¢ € (0,eR), x,y € 27, and r € [-R, R, if

|z —y| < e, then (4.1)
Zg(z,r)+ B(0,e) C Z(y,r — or(e)).

Theorem 4.1. Assume that (2 is bounded and that (2.9) and (2.12), with
27 in place of £2, and (4.1) hold. Let u € C(27) satisfy

DYu(x) C K(z,u(z)) for allz € Q7.
Assume in addition that w is Lipschitz continuous on £27. Then
u(z)=sup{v(z)|v € Lip(2), v <u on 2, Dv(y) € Z(y,v(y)) a.e. y € 2}
for all x € 12.

Throughout this section we use the notation: for any R > 0 and € > 0
Lg.. denotes the function: 27 x R x R" — R U {—occ} defined by

Lie(z,7,€) = sup{€ - p | p € Zn(e,r) + B(0,2)},
where sup () = —oo.
Proof. We choose a constant M > 0 so that

|u(z)| < M, lu(z) —u(y)| < M|z —y| forall z,y € 027. (4.2)
Fix € € (0,1 A 7). Note that B(y,e) C 27 for all y € 2. Fix a > 0 so that

(M+1)a<

| ™
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In view of (2.12) we may choose R > M + 1 so that for all (x,7) € 27 x
[-M —1,M +1],

Ky (z,7) C coZr(z,r — ).
Let eg and o be the positive constant and the function from (4.1), respec-
tively, and fix 8 € (0,a A eg) so that

or(B) < -, 2R+ 1)p<e.

= m

Observe by virtue of (4.1) that for all 2,y € 27 and r € R, if [z —y| < 3
and |r| < M + 1, then

Zr(x,r)+ B(0,8) C Z(y,r — or(B)). (4.3)

Noting that u(z) > u(y) — Mg for all y € 2 and z € B(y, 3), we deduce
by using (2.9) and (4.3) that for all y € 2 and x € B(y, §),

DYu(z) € Ky(z,u(x)) C co Zr(z,u(z) — a)
C coZr(z,uly) — MB — a)
C coZr(y,uly) — (M + 1)a — or(B)). (4.4)

Here we used the observation that M > u(y)—MpB—a > —-M—a(M+1) >
—M — i. We write
§=(M+1)a+or(f),

and note that 0 < § < % < %
From (4.3) it follows that for all x € 2 and z € B(z, ),

Zr(z,u(z) —6) + B(0,08) C Z(z,u(x) — 20). (4.5)
By virtue of Lemma 3.1, we see from (4.4) that for all y € £2,
uw(x) <wu(y) + Lro(y,u(y) —6) for all z € By, 3). (4.6)

Let p € (_07 ) be a constant to be fixed later on, and choose a finite
subset Y, of {2 such that

2c U By, p).

YeY,
Define f,: 2 — R by
fu(@) = min{u(y) + Lr sy, u(y) — 6,2 —y) |y € Yy, ly — x| < B}.
For each z € (2, there is a y € Y, N B(z, 1) such that

fu(z) = u(y) + Lrs(y,uy) — 6,z —y)
u(z) + Lpo(y, u(y) —9,0) + Mp+ (R+ 1)u
u(z) + 2R+ 1)p. (4.7)
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For any z € (2, using (4.6), we get
B

> minfu(e) + B —yl |y € 2, 5 <ly—al <)
62
=u(z) + ER (4.8)

We fix p > 0 so that 2R+ 1)p < %2 By virtue of (4.7) and (4.8), for
all z € 2 we have

() = minfuy) + Lus(yuy) ~.0—y) | yev,nB(22)} (19)

LetaeﬁandxeﬁﬁB(a,%). Since
B(m, g) CB(a, %) C B(z,f),

from (4.9) we have

@) = minfue) + Lrg(zu(z) 00— 2) | zevunB(a2)}.

Therefore, we have for any x,y € B (a, g) N9,

[fu(@) = fuy)] < (R + 1)z -yl (4.10)

which implies that f, € Lip(£2) since 2 is bounded. Also, using (4.5), in
view of Lemmas 3.2 and 3.3 we have

Df.(x) € U{DgLR)Q(Z,U(Z) -4,z —2) ’ zeY, ﬂB(a,%)} + B(0,P)

< HZr(z,u(2) - 0) | = € B(x, )} + B(0, )
5

C Z(z,u(x) —20) ae x€ B(a, Z) N {2

Thus we have
Dfu(x) € Z(z,u(x) — 20) C Z(z,u(x) —e) a.e. z €
Let x,y € 2 satisfy |z — y| < 8. Then we have
w(y)+ Lrp(y, uly) =6,z —y) > u(z) - MB— (R+1)8 = u(x) — (2R+1)8.
Hence, we have

fu(®) >u(x) — (2R+1)3 forallz € Q2.
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This together with (4.7) and our choice of 3 yields
|fu(z) —u(@) < (2R+1)3<e forallz € (2.

We now define g € Lip({2) by

9() = fulz) — 2.

Then, we have -
g(x) <u(x) —e forall z € (2,

and hence,
Dyg(z) € Z(z,u(x) —20) C Z(x,g9(x)) ae. x €l
Finally, noting that
u(z) — 3¢ < g(z) <u(w) —e forallz € 2,
we conclude the proof. O

Proof of Theorem 2.1. Let 79 € (0,1) be the constant from (2.13).
Let 0 < v < 7. We consider the sup-convolution of u. That is, we define
u” : R — R by

u’(z) = Sup{U(y) - #Ix —y/? ‘ ye ﬁ}-

It is well-known that there is a modulus v such that for all x € §2,,(,),

DY (z) C | DT uly) |y € Bz, (7))}, (4.11)
o (2 v(v)

DHu(z) C B(o, - ) (4.12)

u(z) € [u(z), u(x) + v(y)]. (4.13)

We may assume that v(t) < 1 for all ¢ € (0, o).

Let 1, be the function from condition (2.13). Define the function U7 :
27 — R by U =uYo,.

Noting that DTU7(z) = Dt (x)* D u” o ¢, (x), where for any matrix
A, A* denotes the transposed matrix of A, and using (2.13), we see from
(4.11)—(4.13) that for all x € £27,

DU (x) € (D uly) |y € By (2),7v(1))} + B(0,Cr(v)), (4.14)

DU (z) C B(o, (1 +0y)@), (4.15)
U (@) € o i (@),u 0 vy (2) + v(7)] (4.16)
We set
R=(1+Ch) v(v) and M = max|ul.
7}

v
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By (4.14) and (4.15) we get for all z € 27,
DU (@) C | J{KR(y, uy)) | y € B (x), (7))} + B(0, Cr(y)).
Hence, noting that for all z € 27 and y € B(¢(z), yv (7)),

u(y) > u(y(z)) —m(yv(y)) = U (x) — v(y) — m(yv (),

where m denotes the modulus of continuity of u and defining the modulus
p1 by setting p1(t) = v(t) + m(tv(t)) for t > 0, we get for all x € 27,

DU (x) € | KRy, U7 (@)= (7)) | y € Bt (), 70()}+B(0, Cr(7)).
Furthermore, noting that for all x € 27 and y € By, (x),vv (7)),
|z =yl < [o =1y (2)] + [¢y(z) =yl < Cy +w(7),
defining the modulus py by
s(8) = () + oars ([0 + CEWR) /1) + 1][Ct + ()] + Cu(d),
where o is the modulus from (2.11), and using (2.11), we get for all z € £27,
DU (z) C Kpya(z, U (2) — pa(7))-

Here and henceforth we assume that g is small enough so that pa(vy) <
1 Aepr and Cu(yo) < 1 Aenr, where ey is the constant from (2.11).

Now, using (2.12), we find a constant p > 0 depending on R, M, and
t2(y) such that for all z € 27,

DYUY(z) C c0 Zy(x, UV (z) — 2ua(y))
Next, define V7 : 27 — R by
Vi(z) = U (x) = 2p2(7).
Observe from (4.16) that for all z € £2,
u(@) —m(Cy) = 2u2(y) < V7 (2) < u() +v(y) +m(C7) + 2p2(7).

We may assume by replacing s if necessary that 2us(t) > v(t) +m(Ct) for
t >0, so that V7 (z) < u(x) for all x € 2.

Noting that V7 is Lipschitz continuous on £27/2 and applying Theorem
4.1, with V7 and £27/2 in place of u and £27, respectively, we conclude that
for all z € £2,

V7 (x) = sup{v(z) | v € Lip(2), v < V" on £,
Dou(y) € Z(y,v(y)) a.e.y € 2}.

Finally, noting that u(z) = sup{V"(z) | v € (0,70)} for all z € 2, we
finish the proof. 0O
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5. Proof of Theorem 2.3

First of all we remark that under assumption (2.14), we have
L(z,€) > ~[¢|  for all (x,&) € 2 x R™.
For R > 0 we define the function Ly : 2 x R® — R by

Lr(x,§) =sup{¢-p|p € Zr(2)}-
In order to prove Theorem 2.3, we need the following two lemmas.

Lemma 5.1. Let 0y, ko, and &g be from (2.15). Let 6 € (1,6p), (x,y) €
A(0p(0)), and k € N. If k > ko, then

EZ}C(%) C HEZk(y), (51)
coZ(xz) C 8coZ(y).
Proof. Let 0, x, y, and k be as above. From (2.15) we have
Zi(x) N I(co Zi(x)) C 0Zk(y).

Since
co (Zk(x) N 8(5Zk(a:))) = co Zk(z),

we get
EZ}C(CC) C HEZk(yL

and therefore,
coZ(x) C BcoZ(y). O

Lemma 5.2. Let 61 = 02, where 0 is from (2.15). Let u be the function
from Theorem 2.3. For each 0 € (1,01) there is a 93 = 62(0) > 0 such that
for all (z,y) € A(d2),

u(z) < uly) + 0Ly, —y).
Proof. Fix 6 € (1,6;), and set o = §'/2. Note that o € (1,6). By (2.16),
we have for (z,y) € (0£2)2 N A(61(0)),

u(z) <uy) + oLy, —y). (5-3)
By (5.2), we have for (z,y) € A(do(0)),

K(x) C oK (y). (5.4)

By Lemma 3.1 and (5.4), we see that for (z,y) € A(do(0)), if lo(x,y) € 2,
then
u(z) <uly) + oLy, z —y). (5.5)
Set d2 = min{do(0),d1(0)}. Fix (z,y) € A(d2). If lp(z,y) C £2, then we
have from (5.5)
u(z) <uly) + oLy, z —y). (5.6)
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Otherwise we have
lo(z,y) NON #0.

In this case choose 0 < tg < t1 <1 so that

(I—-t)x+tye 2 forallte (0,t)U(t,1),
(1 —to)x +toy, (1 —t1)x+ t1y € 0L2.

Set £ = (1 —tg)x + toy and § = (1 — 1)z + t1y. Note that z,g € 92 and
lo(z,Z) Ulg(y,y) C £2. Note as well that since

r—r=to(z—y), T-y=t—t)(z—y) y-—y=010-t)(z-y)),

we have
Ly, x — ) = toL(y, z — y),
L(y,z —y) = (t1 — to)L(y, z — y), (5.7)
Ly,y—y) = (1 —t1)L(y,z — y),

and

lv —Z| =tolx —yl, |z—ygl=t—to)|lz—yl, [F—yl=1—t1)]z—y]

From (5.5), we have

From (5.3), we have

Using (5.4), we get

u(z) < u(z) + oLy, z — T),
u(y) < uly) +o’L{y, 5 —y),
u(@) < u(y) + oLy, —y)

<u(z) + 0toL(y, = — y),
u(y) < uly) +0(1 —t1)L(y,z —y),
< u(y) +0(t, — to)L(y, z — y).
Hence,
u(z) < uly) +0L(y, = —y).
This together with (5.6) completes the proof. O
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Proof of Theorem 2.3. By adding a constant we may assume that v > 0
on (2.

We claim that there is a k; € N such that if k > ki, then L, € C(£2 x
R™).

To see this fix any 02 € (1,60y) and set k1 = ko(02), where 0y and ko are
from (2.15). Let k € N satisfy k > k1. Fix 6 € (1,6p) and let 6 = do(62),
where §p is from (2.15).

Using (5.1), we compute that for (z,y) € A(J) and £ € R™,

Li(x,8) = Omax{¢ - q | g € 0" Zx(2)}
=0max{¢-q|q€ b coZy(x)}
< Omax{€-q|q€ coZy(y)} = OLk(y, )
= Ly(y,&) + (0 — 1)Li(y, &) < Li(y, &) + (6 — DklE],

which yields by symmetry
| Li(2,€) — Li(y, §)| < (6 — 1)k[E].
Noting that
|Li(2,€) — Li(z,n)| < max{|(§ —n) -pl | p € Zx(x)} < kl¢ —n

for all z € £2 and &, € R™, we conclude that Ly, is continuous on £2 x R™.
Henceforth fix § > 1 and § > 0 so that § < 62 and § < min{do(6), 52(0)},

where 6y and ¢ are from (2.15) and dy is from Lemma 5.2, respectively.
For k € N, with k > kg, define fy,gr : 2 — R by

fi(@) = min{u(y) + °Li(y,x —y) |y € 2, |y — x| < 6},
, )
gr(z) = min{u(y) + 0°Li(y,x —y) | y € 22, 3 <ly—al<d}

Fix € > 0. We show that there is an o« € N such that

1 _
go() > u(T) + LA:)WS for all x € 12, (5.8)
fa(z) > u(z) —e forallz € 2. (5.9)
We henceforth write
v=20(0—1)v0.

Note by Lemma 5.2 that for all (z,y) € A(4),
u(x) —u(y) < OL(y,x —y).
Also we have
ylr—y| < L(y,x—y) forall x,y € (2.

We claim that there is an o € N such that for (x,y) € A(J),
e v

5 @} + La(y,z —y). (5.10)

max {0~ (u(z) — u(y)), |z — y|} < min{
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To see this, set
h(z,y) = max{07" (u(z) — u(y)),7lz —yl}  for (z,y) € A(9).

We know that
h(z,y) < L(y,x —y) forall (z,y) € A(9),

and it is clear that as k£ — oo,
Li(z,€) / L(x,&) for all (x,€) € 2 x R™.

Hence, as k — oo,
(h(z,y) = Li(y,z —y))+ 0 (z,y) € A(9).

Note that if k& > kq, then L, € C(£2 x R™). Thus, thanks to Dini’s
lemma, we see that as k — oo,

(h(z,y) = Li(y,z —y))+ \ 0 uniformly for (z,y) € A(9),

which proves that there is an o € N such that (5.10) holds.

Fix such an o € N. We show that (5.8) and (5.9) hold with this choice
of a.

Compute that for (z,y) € A(J), if |z — y| > &, then

u(@) + 3 < ul@) +0(0 = 1)lz—y
v
< u(z)+6(0— 1)(@ + La(y,z —y))
v v
< u(y) + 0 + 0L, (y,z —y)+6(0 — 1)(@ + La(y,z —y))
= u(y) + 5 +0*La(y.z — ).
that is,

u() + 7 < uly) + 6 La(y,x —y).
Consequently, we have
Jo(x) > u(x) +v/4  for x € 0,
which shows that (4.8) holds. Also, by (5.10) we have
u(z) —u(y) <e+0La(y,x —y) <e+0°La(y,z —y)
for all (z,y) € A(S), and hence,
u(x) —e < folx) forall xz € (2,

which shows that (5.9) holds.
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For each 3 € (0,d) choose a finite subset Yj of 2 such that

2c | BB

YyEY3
For 3> 0 define f,5: 2 — R by
fap(x) = min{u(y) + 0°Li(y,x — y) | y € Y3, |y — x| < 6}

Since u is uniformly continuous on {2, there is a 3 € (0,d) such that for

all (z,y) € A(f),
|u(z) — u(y)| + 6%af < e.

Henceforth we fix such a 8 € (0,0). Observe that for each z € (2 there is a
y € Yg N B(z,d) and that for all z € 2 and y € Y3 N B(x, ),
fap(x) < uly) + 0°Laly, @ — y)
< u(z) +uly) —u(z) + %alz —y| < u(z) +e. (5.11)

Since fo(z) < fap(x) for all € 02, it follows immediately from (5.9) and
(5.11) that

|u(z) — fap(z)| <e forallz € 2. (5.12)
We assume that € < v/4 and show that
fap € Lip(2). (5.13)

Note by (5.8) and (5.11) that
9o(®) > ulz) +v/4 > fop(x) forallz e 0.
Hence, we have for all 2 € (2,
fap(z) = min{u(y) + 0*La(y,x —y) | y € Y5, |z —y| < 6}
< minfu(y) + 0 Laly,e —y) |y € 2, 2 <ly—a| <o),

and therefore,

fap(w) = min{u(y) + 0°La(y,z —y) |y € Vs, o —y| < g}
Accordingly, we have for all (z, z) € A(§/4),
fap(x) = min{u(y) +6°La(y,z —y) |y € Vs, |y —2[ < 30/4},  (5.14)
since B(x,6/2) C B(z,30/4) C B(x,d), and moreover,

fap(®) = fap(z) = min{u(y) + 0°La(y,z —y) |y € Y3, |y — 2| < 35/4}
—min{u(y) + 0°La(y, 2 —y) | y € Y, |y — 2| < 36/4}
< max{6*(La(y,z —y) — La(y, 2 —y)) |y € Y3, |y — 2| < 35/4}

< #*alz — 2|,
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which shows that f,s is Lipschitz continuous on 0.
Next we want to show that

Dfus(z) € 03 Zo(x) ae. x€ 0.

Using (5.14), the finiteness of the set Y3, and (2.15), in view of Lemmas
3.2 and 3.3 we get

Dfap(w) € 0*{D¢La(y,x —y) |y € Vs, ly — | <5}
c J{0? [Zaly) N0 (c0 Za(y)] | y € Y5 N Bz, 6)}
COZy(x) ae x€.

Finally we set
g(z) =03 (fap(z) —e) forallz € Q.

Then
g(x) <07 3u(x) <wu(z) forall ze .

On the other hand, we have

9(@) > 073(f(2) +€) — 207

>
> u(z) — 26072 forallz € 2.

Thus, we see that for each & > 0 there is a function v € Lip(§2) such that

v(z) <wu(z) forallze ﬁ,_
v(xz) +e>u(r) forallze 2,
Du(x) € Z(z) ae. x€

As an easy consequence, we get
u(x) = sup{v(z) | v € Lip(2), v <u on 2, Dv(y) € Z(y) a.e.y € 2}

for all x € £2, which concludes the proof. O

6. Examples

We examine a few cases of Hamilton-Jacobi equations
H(z,u(z),Du(z)) =0 in §2,

for which either of Theorems 2.1 or 2.3 is applied.
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6.1. Examples in view of Theorem 2.1
First we consider the case when H € C(f2 x R x R") satisfies:

for any r € R,

6.1
Rlim inf{H(z,r,p) |z € R", pe R"\ B(0,R)} = . (6.1)

As in section 2 we define

Z(z,r)={peR" | H(x,r,p) <0} for (z,7) € 2 x R.

Propostion 6.1. Assume that (2.3) and (6.1) hold and that §2 is bounded.
Then the collection {Z(z,r) | (x,r) € 2 x R} satisfies (2.9)-(2.12).

Proof. As noted in section 2, since for each (z,p) € 2 x R™ the function :
r — H(x,r, p) is non-decreasing on R, we deduce that (2.9) is satisfied.

Next we show that H satisfies condition (2.10). To this end we prove the
following assertion (6.2) which is stronger than (2.10).

for each M > 0 there are a modulus oj; and a constant
em > 0 such that for any ¢ € (0,en], (z,y) € A(e), and
re[-M,M], (6.2)

Z(z,r)+ B(0,e) C Z(y,r — om(e)).

Fix M > 0 and, in view of (6.1), choose p > 0 so that
H(x,—M —1,p) >0 forall (z,p) € 2 x (R™\ B(0, p)).
Then, in view of the monotonicity of H(x,r,p) in r, we have
H(z,r,p) >0 forall (z,r,p) € 2 x [-M —1,00) x (R"\ B(0, p)).
Moreover, for (z,7) € 2 x [-M — 1,00), we have

Z(x,r) = Z,(x, 7).

there is a modulus w such that for all z,y € 2, r € [-M — 1, M], and
p.q € B(0,p+1),

|H (2,r,p) = H(y, 7 q)] <w(z =yl +|p—dql)- (6.3)

Define the modulus op; by o (t) = A];[1+1w(2t), and choose a constant
em € (0,1] so that opr(enr) < 1.

Let € € (0,en], (z,7) € 2 x [-M, M),y € 2N B(x,¢), p € Z(z,r), and
q € B(0,¢). Using (2.3) and (6.3), we compute that

Now, since H is uniformly continuous on 2 x [-M — 1, M] x B(0, p+1),
[ 1

H(y,r —om(e),p+q) < =Angrom(e) + H(y,r,p+q)
—w(2e) + H(x,7r,p) +w(|z -yl +q])

<
< —w(2e) +w(2e) =0,
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and conclude that p+ g € Z(y,r — oa(€)), which shows that (6.2) holds.

Let opr be the moduli and ) > 0 be the constants from (6.2). From
(6.2), we see that for any M > 0, ¢ € (0,ep], (z,y) € A(e), and r €
[-M, M], we have

K(z,r)+ B(0,¢) = co[Z(z,7) + B(0,¢)]
C coZ(y,r —onm(e)) = K(y,r — on(e)).
This shows that (2.11) is satisfied with our Z(z, ). -
Let M > 0, and p > 0 be a constant fixed as above. For (z,r) € {2 x

[-M, M], since
Z(z,r) < B(0, p),

we have
K(z,r) = coZ(z,r) = co Zy(z,r),

which shows together with (2.9) that (2.12) holds. O

Next we consider the case when H € C(£2 x R x R") satisfies the
condition:

for each M > 0 there is a modulus wys such that for any
x,y € 2, r € [—M,M], and p,q € R", (6.4)

[H (z,r,p) = H(y, 7, q)| <wnm (e —yl+p—dl).

Observe that if G € C(R x R"), f € C(£2), and for each M > 0 the
function G is uniformly continuous on [—M, M| x R™, then the function

H(x,r,p) = G(T,p) - f({L‘)
satisfies (6.4).

Propostion 6.2. Assume that H € C(2 x R x R") satisfies (2.3) and
(6.4) and that §2 is bounded. Then the collection {Z(x,r) | (x,r) € 2 xR"}
satisfies (2.9)-(2.12).

Proof. Arguments parallel to the proof of Proposition 6.1 guarantee that
(2.9), (2.10), and (6.2) hold with our current Z(z,r). Therefore, (2.9)-(2.11)
hold.

We intend to show that (2.12) holds. Fix ¢ > 0 and R > 0. We are going
to prove that there is a constant p > 0 such that for all (z,7) € R"x[—R, R],

Kpr(z,r) C coZy(z,r — 4e).

Here we may assume that 4e < 1.
By virtue of (6.2), we can choose a constant § € (0,1) so that for all
(x,y) € A(§) and r € [-R—1,R+ 1],

Z(x,r) + B(0,8) C Z(y,r —¢).
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By a compactness argument, we can choose a finite sequence X :=
{z1,...,xn} C 2 such that for each x € (2 there is an z; € X such that for
any r € [-R—1,R],

Z(x,r) C Z(xi,7m —€), Z(xi,7) + B(0,0) C Z(x,r —¢). (6.5)

We select a finite sequence T := {t1,...,tp} C [-R — 1, R + 1] so that
—-R—-1 =t <ty < - - <ty = R and t¢+1—t¢ SSfOI‘ all i = 1,2,...,M.
We may assume by relabeling (for instance, by counting some of elements
multiply) either X or 7" that M = N.

Fix (z,t) € 2 x [-R, R]. Choose z; € X and t; € T so that (6.5) holds
forall € [-R—1,R+ 1] and t > t; > ¢t — 2¢. Observe that

KR({E,t) C KR(ﬁi,t — 5) C KR(ﬁi,tj — E). (66)

Fix (i,) € {1,..., N}2. Since Kr(z;,1;) is compact, we can select a finite
sequence {p1,...,pr} C Kgr(z;,t; —€) so that

KR $7,7 pk75/2 (67)

HCh

For each k € {1, ..., L} we choose finite sequences {px1, ..., Pkm } C Z(x;,t; —
) and {1, ...y A } C [0,1] so that

‘pk - Z AkaPka
Z Ao = 1.
a=1

Set pr, = max{|pg1l, .-, [Pkm|}. Then we have

<

N)IOq

m
Z AeaDka € EZpk(xi,tj — 8),

a=1

and hence,
pr € €c0Z,, (xi,t; —e)+ B(0,6/2).

Recalling that the p; depend on i,j, we set p;; = max{pi,...,pr}. Then,
using (6.7) and (6.5), we get

KR(JZi,tj — 6) C EZpij (a:i,tj — 6) + B(O,d) C EZpij+1($,tj — 25).

Furthermore, setting p = max{p;; | i,j = 1,..., N} + 1 and using (6.6), we
have

Kpr(z,t) C coZ,(x,t; —2¢) C coZy(x,t — 4e),

which completes the proof. 0O
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6.2. Examples in view of Theorem 2.3
Let H € C(R™) and consider the Hamilton-Jacobi equation
H(Du(z)) =0 in {2.
As usual we define
Z={peR"|[H(p) <0}
Assume that
int co Z # 0. (6.8)

We fix a point p € R™ and a constant v > 0 so that B(p,v) C co Z.
We now assume that

there are a constant Ao € (0,1) and an integer ko € N such

that for each integer k > ko and each point p € ZNd[co ZN (6.9)
B(p, k)] the function : ¢t — H (tp+ (1 —t)p) is non-decreasing

on (Ao, 1]

We define

ksl

hsT

(= ®2),
©-p¢

L(

oORN
I
& = N

for z € 2 and £ € R™.

Propostion 6.3. Assume that (6.8) and (6.9) hold. Then (2.14) and (2.15)
hold with Z and K in place of Z(x) and K (z), respectively.

Proof. It is obvious that (2.14) holds with Z(x) = Z.
Now let ko € N and g € (0,1) be from (6.9). For any integer k > ko €
N, any point p € ZNd[coZ N B(0,k)], and any t € (Ao, 1], we have

P+p€ ZNIZNB(p, k),

and we know from (6.9) that the function: ¢ — H(¢{p + p) is non-decreasing
on (Ao, 1] and therefore,

tp+peZ.
That is, for any k > ko, p € Z N d[coZ N B(0,k)], and t € ()\g, 1], we have

(
p € t71Z, which shows that (2.15) holds with Z(z) = Z. O
Let u € C(£2) satisfy
Dtu(x) c K forall xz € £2.

Set
u(r) =u(z) —p-z forall x € 12
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Then we have
Dtiu(x) = DYu(z) —pc K for all z € (2.
On the other hand, if § > 1, 6 > 0, (z,y) € A(4), and
u(x) —uly) < 0L(y,x —y),

then we have

u(z) —u(y) < 0L(y,x —y) + (0 —1)p- (z —y)
< OL(y,x —y) + (6 — 1)|pl|=z — y|
< (0+~710 - D)pl) Ly, x — y).

These observations together with Proposition 6.3 and Theorem 2.3 yield
the following proposition.

Propostion 6.4. Assume that (2 is bounded and that (6.8) and (6.9) hold.
Let uw € C(£2) satisfy

Dtu(x) Cc K for all x € £2.

Assume also that (2.16) holds with L(x) = L. Then

u(z) = sup{v(z) | v € Lip(2), v <u on 2, Dv(y) € Z a.e. y € 2}
for all z € 2.

Now let H € C(£2 x R™) and consider the Hamilton-Jacobi equation

H(z,Du(xz)) =0 in {2.
Define
Z(z)={peR" | H(z,p) <0}, K(z)=coZ(z) forxeN.

Assume that {2 is bounded and that

there is a function ¢ € C'(£2) such that
B (6.10)
H(z,Dy(x)) <0 forall z e (2.
Jim inf{H (z,p) | (z,p) € 2 x (R"\ B(0, R))} > 0. (6.11)

From these assumptions, we see that there are constants 0 < v < R < o0
such that

B(Dy(x),7) C Z(x) C B(Dy(z),R) for all z € 1. (6.12)

‘We now assume that
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there is a constant 8y > 1 and for each 0 € _(1, o) a constant
7 = n(0) > 0 such that for all points « € 2 and p € Z(x) N (6.13)
0K (x),

H(z,07'p+ (1~ 07")Dy(x))

IN

—n.
We set
Z2(x) = Z(x) - Db(a), K(z) = K(z) - D)
for x € 2.

Propostion 6.5. Assume that (2 is bounded and that (6.10), (6.11), and
(6.13) hold. Then (2.14) and (2.15) hold with Z(x) and K(z) in place of
Z(z) and K(x), respectively.

Proof. We have already seen in (6.12) that (2.14) holds with K (x) in place
of K(z). B
To see (2.15), with Z(x) in place of Z(z), fix any 6 € (1, 6)), and choose
a 0 > 0 so that for all (x,y) € A(J), p € B(0,R),
|H (2, Dy (x) + p) — H(y, DY(y) + p)| < n(0),

where R and 7(f) are constants from (6.12) and (6.13), respectively. Fix
any points € 2 and p € Z(z) N 9K (x), and observe that

Dy(z) +p € Z(x) NOK (z),

and hence, according to (6.13), H(x,0 'p + Di(z)) < —n(f). Now, let
y € (2 satisfy |z — y| < 8. Then we have
H(y, Dy(y) +0"p) < H(x, Dip(x) +0~"p) +1(0) <0,
and therefore,
0~'p+ D(y) € Z(y).
That is, for any (z,y) € A(6), p € Z(z) Nd[co Z(x)], and 0 € (1,060), we

have p € 0Z(y), which shows that (2.15) holds with Z(z) replaced by Z(x).
O

Now, the following proposition is an easy consequence of Theorem 2.3
and Proposition 6.5, as so was Proposition 6.4 from Theorem 2.3 and Propo-
sition 6.3.

Propostion 6.6. Assume that §2 is bounded and that (6.10), (6.11), and
(6.13) hold. Let u € C(S2) satisfy

Dtu(x) C K(x) for all z € 0.
Assume that (2.16) holds. Then
u(x) = sup{v(z) | v € Lip(2), v <u on 2, Dv(y) € Z(y) a.e. y € 2}
for all x € (2.
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7. Cauchy problem

In this section, as a typical case of unbounded domains we discuss the
Cauchy problem

ug(z,t) + H(x, Dyu(x,t)) =0 for (x,t) e R" x (0,T) (7.1)
with initial condition
u(z,0) =g(z) forzeR", (7.2)

where T' € (0,00) is a given constant, ¢ is a given continuous function on
R", and D,u denotes the spatial gradient, (Qu/0x1, ..., 0u/0x, ), of u.
We use in this section the notation: for § > 0,

A@) = {(z,y) € R*" | |z —y| < 6}

We assume that

H < C(R™), (7.3)
.. (H(z,p) n n
Jim. mf{ @ p) ERY X R\ B, R))} = 0, (7.4)
and
H € BUC(R" x B(0,R)) forall R > 0. (7.5)

We remark that conditions (7.4) and (7.5) imply that there are convex
functions Hy, Hy € C(R"™) such that

Hy(p) < H(z,p) < Ho(p) for all (z,p) € R*", (7.6)
lim Hilp) =o0 fori=1,2. (7.7)
oo |p|

We introduce the sets Z(z,7), K(z,r) C R""! with (z,7) € R" x R,
by

Z(x,r) ={(p,q) e R"XR | ¢+ H(z,p) <r} and K(z,r)= coZ(x,r).

Note that this notation differs from that of previous sections.
A natural inclusion associated with (7.1), i.e. the relaxed problem, is

DT u(x,t) € K(z,0) for (z,t) € R" x (0,T), (7.8)

where the superdifferential DV u of u is taken with respect to (x,t).
__ Let H denote the function on R?" such that for each z € R™ the function
H(x,-) is the convex envelope of the function H(z,-). That is,

~

H(z,p) =sup{a-p+0b|(a,b) e R" xR, a-q+b< H(q) forallge R"}.
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Observe that
Hi(p) < H(z,p) < Ha(p) for (z,p) € R*", (7.9)

and that R
H ¢ BUC(R" x B(0,R)) for all R > 0. (7.10)

Noting that for all (z,7) € R"*!,
K(w,r) = {(n,q) € R"™" [ g+ H(z,p) <7},

we see that inclusion (7.8) for u € C(R™ x (0,7T)) is equivalent to saying
that u is a viscosity subsolution of

w(z,t) + H(x, Dyu(z,t)) =0 for (z,t) € R" x (0,T). (7.11)
The main result in this section is the following:

Theorem 7.1. Assume that (7.3)-(7.5) hold. Let w € BUC(R"™ x (0,T)).
Assume that u is a viscosity subsolution of (7.11). Then, for all (z,t) €
R™ x (0,7,
u(z,t) = sup{v(z,t) | v € Lip(R" x (0,7)), v <u in R" x (0,7T),
vs(y,s) + H(y, Dyv(y,s)) <0 a.e. R" x (0,7)}. (7.12)
Recalling (see, for instance, [1]) that the Cauchy problem (7.11) and (7.2)

has a unique viscosity solution in BUC(R"™ x [0, T')) provided g € BUC(R"),
we state:

Corollary 7.2. Assume that g € BUC(R™) and that (7.3)-(7.5) hold. Let
u € BUC(R™ x [0,T)) be the viscosity solution of (7.11) satisfying (7.2).
Then for all (z,t) € R™ x (0,T),

u(z,t) = sup{v(z,t) | v € Lip(R" x [0,T)), v(-,0) < g on R",
vs(y, s) + H(y, Dyv(y,s)) <0 a.e. R" x (0,T)}. (7.13)

Proof. We write w(x,t) for the right hand side of (7.13). Theorem 7.1
yields that v < w on R™ x (0,T). Let v € Lip(R™ x [0,T)) be a function
which satisfies

ve(x,t) + H(z, Dyv(z,t)) <0 a.e. R" x(0,T)
and v(-,0) < g on R™. Then, since H< H, it is clear that
vi(z,t) + H(z, Dyv(z, 1)) <0 ae. R™ x (0,T).

Since H (z,-) is convex, as is well-known, v is a viscosity subsolution of
(7.11). By comparison, we have v < u on R™ x (0,7, from which we see
that w < w on R™ x (0,T). Thus we have v = w on R" x (0,7). O

We need the following two lemmas.
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Lemma 7.3. Assume that (7.3)—(7.5) hold. For any R > 0 and & > 0 there
exist constants § > 0 depending only on € and the modulus of continuity of
H on R™ x B(0, R+ 1) such that for any (x,y) € A(),

ZR(Ji,O) + B(O,(S) C ZR+1(y,E), (714)
where Zr(x,r) = Z(z,r) N B(0, L).

Proof. Fix ¢ > 0 and R > 0. Let w denote the modulus of continuity of H
on R” x B(0,R+1).

Fix a constant ¢ > 0 so that § +w(20) < min{e, 1}. Fix (§,n) € B(0, ),
(x,y) € R?" so that |[xr — y| < 6§, and (p, q) € Zr(x,0).

Noting that [p +¢| < R+ 1, we compute that

g+n+H(y,p+§& <qg+H(z,p)+n+w(z—yl+[§) <d+w(2) <e,
and hence that

(P+&a+mn) € Zria(y,e),
which finishes the proof. O
Lemma 7.4. Assume that (7.8)—(7.5) hold. For any R > 0 and & > 0 there
exist constants 6 > 0 and p > 0 depending only on R, €, the modulus of
continuity of H on R™ x B(0,R+ 1), and H;, with i = 1,2, where H; are
from (7.6), such that for any (x,y) € A(J),

Kr(z,0) C coZ,(y,¢), (7.15)
where Kr(x,r) = K(z,7) N B(0, R).

Proof. Fix R > 0. We first prove that there is a constant p > 0 depending
only on R and H;, with ¢ = 1,2, such that for all x € R"™,

Kg(z,0) C coZ,(z,0). (7.16)

To see this, we fix z € R™ and (p, q) € Kr(z,0). Choose (a,b) € R"*!
so that

~

aﬁ+b:H(xaﬁ)a
a-p—&—bﬁﬁ(m,p) for all p € R".
Setting
B={peR"|[H(z,p)=a-p+b},

we claim that
D E coB. (7.17)

If this is not the case, from the separation theorem, we see that there is a
(o, B) € R"! such that

a-p+p<0<a-p+p forallpe coB.
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Choosing € > 0 small enough, in view of (7.4), we have
ela-p+08)<H(zx,p)—a-p—>b forallpeR".
Hence we have
fI(fc,p) >(a+ea) - p+b+epf foralpeR™,
and consequently,

H(z,p) > (a+ea) - p+B+ef = H(z,p) + (- p+ ),

which yields a contradiction, a - p 4+ § < 0, proving (7.17).
Next, we wish to show that there is a constant [ > 0 depending only
on R > 0 and H;, with i = 1,2, such that

la| + [b] < g (7.18)
Indeed, if a # 0, then, since
H(z,p+ ﬁ) >a-(p+ ﬁ) +b=Hz,p) +al,

we have

la| < max Hy;— min Hj.
B(0,R+1) B(0,R)

Therefore, noting that

we conclude that (7.18) holds for some constant [ depending only on R > 0
and H;, with : =1, 2.

Now, we show that there is a constant mp > 0 depending only on R > 0
and H;, with i = 1,2, such that

BC B(07mR)
To see this, fix any p € B and observe that
Hy(p) < H(xz,p) =a-p+0,

and
Hy(p)

——= <la| + |b| < 5.
LB <ol + b
In view of (7.7), we find a constant mpg > 0 depending only on R and H;,
with ¢ = 1,2, such that B C B(0,mg).
Now that p € co B, there are points pi,...,pm € B C B(0,mg) and
positive numbers Ay, ..., A, with m € N, such that

]5: i)\lpl and Z)\l =1.
i=1 i



Relaxation of Hamilton-Jacobi equations 33

Note that
(pi, H(z,p;)) € Z(2,0) foralli=1,...m,

and that

H(z,p)=a p+b= ZAi(a'prf—b) = Z)\iH(xapi)'
i=1 i=1

This last equality shows that
i=1
€ co{(p,q) € Z(z,0) | p € B(0,mg), |q| < Mg},

where Mp := maxpg,g)(|H1| + [Hz|). Since § < H(z,p), in view of the
property that for any r > 0, Z(z,0) + (0, —r) = Z(x,—r) C Z(x,0), then
(p,q—r) € Z(x,0), we see that

~

(5.9) = (5, H(z,p)) + (0, — H(x,p))
€ co{(p.q) € Z(z,0) | p € B(0,mg), || <2Mg+ R}.

Here we have used the estimate
g — H(z,p)| < gl + [H(z,p)| < R+ Mkg.

Thus we have shown that (7.16) holds with p = mpg + 2Mpg + R.
Now, we observe that Lemma 7.3, with H in place of H, yields that there

is a constant § > 0 depending only on € and the modulus of continuity of
H on R™ x B(0, R+ 1) such that for all (z,y) € A(9),

Kg(z,0) C Kr+1(y,€),
which obviously implies that
Kp(z,0) C Kr(y,e).
This combined with (7.16) yields that for all (z,y) € A(9),
Kr(z,0) C Kr(y,e) = Kr(y,0)+(0,€) C coZ,(y,0)+(0,¢) = co Z,(y,¢),
completing the proof. O

Proof of Theorem 7.1. We first show that we may assume that u is
defined and bounded Lipschitz continuous on R™ x (—d,T + §) for some
constant § > 0 and that

wg(z,t) + H(z, Dyu(z,t)) <0 in R™ x (—6,T + 6) (7.19)
in the viscosity sense. Indeed, we have

u(z,t) = sup{v(z,t) | v € Lip(R" x (=4,T + §)) for some § > 0,
v is a viscosity solution of (7.19), v < u on R" x (0,7)}. (7.20)
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To see this, we solve the Cauchy problem
wi(z,t) + H(z, Dyw(x,t)) <0 in R" x (T,T +1)
with the initial condition

w(z,T) = tli/n%u(x,t) for x € R™. (7.21)

Due to [1], there is a unique viscosity solution w € BUC(R™ x [T, T+1)) for
which (7.21) holds. We extend the domain of definition of w to R™ x (0, T+1)
by setting

w(z,t) =u(x,t) for (z,t) € R™" x (0,7T).

It is easy to see that w € BUC(R™ x (0,T + 1)), and moreover it is rather
standard to see that w is a viscosity subsolution of

wy(z,t) + H(z, Dyw(z,t)) =0 for (z,t) € R" x (0,T + 1).

Fix any € > 0. Since w € BUC(R™ x (0,T + 1)), there is a constant
9 € (0,1/2) such that

<w(z,t—0)—c¢

u(z,t) — 2e = w(z,t) —2e <w
=u(z,t) forall (z,t) e R" x (0,T). (7.22)

w(z,t)

It is clear that the function z(z,t) := w(x,t— ) — 2¢ is defined and bounded
continuous on R™ x (=4, T 4 ¢) and a viscosity solution of (7.19).

The next step is to take the sup-convolution of z in the t variable. That
is, for v > 0, we consider the function

27(x,t) = sup{z(z,s) — %(t —s)?|s€(=6,T+6)} for (z,t) € R"T

If v > 0 is small enough, then 27 is a viscosity solution of (7.19) in R™ X
(=0/2,T+6/2) and

z2(x,t) < 27(z,t) < z(z,t) +¢  forall (x,t) € R" x (=4,T +9). (7.23)

Also, for each v > 0, the collection of functions z7(z,-), with z € R™, is
equi-Lipschitz continuous on (—§/2,T + 6/2). Since

Hy(Dy2"(,1)) < L, for (z,t) € R" x (—6/2,T +5/2)

in the viscosity sense, where L, > 0 is a uniform Lipschitz bound of the
functions z7(z,-) on (—=6/2,T + §/2), we see that the functions 27(-,t) are
Lipschitz continuous on R™ with a Lipschitz bound independent of ¢ €
(=6/2,T+6/2).

Now, writing U(z,t) for the right hand side of (7.20), using (7.22) and
(7.23), we see that for sufficiently small v > 0 and for all (z,t) € R"x(0,T),
we have

u(z,t) > z(x,t) + € > 27 (x,t),
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and hence,
U(mat) > Z’Y(Qj,t) > Z(I7t) > U(Jf,t) - 38,

proving (7.20).

In what follows we assume that v € Lip(R" x (—§,T'+0)) and it satisfies
(7.19) in the viscosity sense.

We now follow the line of arguments in the proof of Theorem 4.1. It is
worth mentioning that conditions (7.14) and (7.15) in the proof below are
somehow similar to (4.1) and (2.12) in the proof of Theorem 4.1.

Let R > 0 be a Lipschitz bound of the function w. Fix any ¢ > 0.
Thanks to Lemma 7.4, there are constants p > 0 and v > 0 such that for

any (z,y) € A(v),
KR(maO) - COZP(yaS)a

which implies that for all r € R,
Kpr(z,r) C coZ,(y,r+¢).
We reselect v > 0 so that for any (z,y) € A3(p+ 1)7),
Kgr(z,r) C coZ,(y,r+¢). (7.24)

Lemma 7.3 guarantees that we may assume that for all » € R and
(z,y) € AB(p+1)7),

Z,(x,7) + B(0.7) C Zpa(y,r +2). (7.25)

Let p € (0,7) be a constant to be fixed later. Choose a set ¥, C R™ x
(=6,T + 0) so that

#(Y,NB(0,L)) <oo forall L>0,
and

U Bly.sim) D R" x (=6.7 + ).
(y,5)€Y,

We write @ = R™ x (0,7) and Qs = R"™ x (—=4,T + 6). We set
L(&m;y) = sup{&-p+nq | (p.q) € Zy(y,€) + B(0,7)}
for £,y € R™ and n € R and
v(,t;y,s) = u(y,s) + L(x —y,t — 5;9)

for (z,t) € Q5 and (y,s) € Y),.
We set 8 = (p+ 1)y. By Lemma 3.1, we have for all (z,t) € Qs and
(ya S) € Y# N B($7 ta 3ﬂ)a

u(z,t) +y(|z —y2 + (t — 5)*)Y? <o(x, t;y, ), (7.26)

since
Dtu(x,t) € Kg(z,0) C coZ,(y,¢)
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by (7.24).

Note that the functions v(-;y, s) are Lipschitz continuous with p + 1 as
a Lipschitz bound.

Also, we observe that for all (x,t) € Q5 and (y,s) € Y, N B(x,t;309), if
the function v(-;y, s) is differentiable at (z,t), then

DU($7 ta Y, S) € Zp(ya 6) + B(Oa ’Y) - Zp+1(ma 26)3
by (7.25), i.e.,
ve(x, t;y, 8) + H(x, Dyv(z, t;y,8)) < 2e. (7.27)
Consequently, for any (y,s) € Y}, we have
ve(x,t;y,8) + H(x, Dyv(x, t;y,8)) <2 a.e. (x,t) € Qs N B(y, s;306).
We define v : Q — R by
v(z,t) = min{v(z,t;y,s) | (v,s) € Y, N B(x,t;36)}.

By reselecting v > 0 if necessary, we may assume that 30 < §. We fix
u € (0,7) so that (2p+ 1) < min{yg,e}.
Fix any (Z,t) € Q. We show that for all (z,t) € B(z,t;3) NQ,

v(z,t) = min{v(z, t;y,5) | (y,s) € Y, N B(Z,t;20)}, (7.28)

which guarantees that v is Lipschitz continuous on B(Z, t; 3)NQ, with p+1
as a Lipschitz bound, and that

ve(z,t) + H(x, Dyv(z,t)) <2 ae. (x,t) € B(z,1;06) NQ.

These show immediately that v is a Lipschitz continuous function on @ and
satisfies
ve(x,t) + H(x, Dyv(z,t)) <2e  ae. (z,t) € Q.

To see (7.28), fix any (z,t) € B(Z,t;8) N Q and write w(z,t) for the
right hand side of (7.28).

Since B(Z,t;28) C B(x,t;30), we see that v(z,t) < w(z,t).

We note that Y, N B(z,t;8) # 0 and recall that v and L(-;y,s) are
Lipschitz continuous with R and p + 1 as their Lipschitz bounds, which
yields that for any (y,s) € Y, N B(x,t; 3),

v(@,t) <u(y,s) + Lz -y, t —s;y) <@, t) + Ru+ (p+ 1p
<u(z,t)+ (2p+ 1)p. (7.29)

On the other hand, from (7.26) we see that for all (y,s) € Y,,N(B(z,t;306)\
B(z,t;9)),
v(x,t;y,s) > u(z,t) + 5.

Since (2p + 1)u < 03, from what we just observed, we have

v(z,t) = min{v(x,t;y,s) | (y,s) € Y, N B(z,t; 5)}.
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Noting that B(z,r;3) C B(z,t;23), we see that
v(z,t) > minfv(z, t;y,5) | (y,8) € Y, N B(Z,620)} = w(x,t).

Thus we obtain v(z,t) = w(z, t).
From (7.26) and (7.29), we have

u(z,t) <wv(z,t) <u(x,t)+e for (z,t) € Q.
If we set v®(x, t) = v(x,t)—e(2t+1), then the function v has the properties:

u(z,t) —e(2T + 1) < v(z,t) <wu(z,t) forall (x,t) € Q,

v € Lip(Q),
vi (z,t) + H(x, Do (x,t)) <0 ae. (z,t) € Q.

These show that

u(z,t) = sup{v(z,t) | v € Lip(Q), vi(z,t) + H(z, Dyv(z,t)) <0 ae. Q,
v<wuonQ},

which completes the proof. 0O

8. Appendix

Here we prove the following assertion.

Propostion 8.1. Let 2 be a bounded open subset of RN with Lipschitz
boundary. Then condition (2.13) holds.

Proof. Let {2 C R” be an open bounded set with Lipschitz boundary.
It is then immediate to see that for all z € {2, there exist » > 0 and
v € B(0,1) such that
B(x +tv,rt) C 2 for all t € (0,7) and z € 2N B(z,7).
Next, by the compactness of 2, there exist finite sequences {zj}j-v:l C £,
{r;}}; € (0,00), and {v;}7L; C B(0,1) such that
N ,
gc| Bl
c Jng (ZJ7 4 )7

and
B(z+tvj,rjt) C 2 for all t € (0,7;], z € 2NB(zj,7;), and j € {1,...,N}.
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By an argument based on a partition of unity, we see that there exists a
sequence {¢;}7.; C C§°(R") such that

¢j(x) >0 forallz € R" and j € {1,..., N},
spt ¢; C B(zj, %J) for all j € {1,...,N},

N
Z pi(r) =1 for all z € £2.
j=1

Set
N
d=minr; and ¢(z)= quj(a:)vj for x € R™.
j
j=1

We now intend to show that

B(z + to(x), %) c forallz € andte (0, g]

Fixz € Nand 0 <t < %. By relabeling if needed, we may assume that

¢1($)>0,...,¢m($)>07 ¢m+1($)::¢]\](3}):0

for some m € {1,...,N}.
Set

T = x+tz¢j(a})vj,

j<k
for k=1,2,...,m. It follows that

g — 2| <ty () <t <

i<k
We claim that
r, € 12 forall k =1,...,m.

To see this, we first note that x; = z € 2. Next, assume that z, € 2 for
some k < m. Noting that

x € spt ¢ C Bz, %k),

we see that
Tk 5
|$k—2k|S|$—Zk|+|$k—xlég+§§m

and therefore,
B(xk + top (:E)Uk, retdK (:E)) C 02,

which shows that
Thy1 = Tk + tqbk(a:)vk € 1.
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The induction argument now ensures that x; € Q for all k < m.
Next, note that

T+ tp(x) = T + tdm (T)vp,.
Since ,
x € spt ¢ C B(2m, 7m),
we get
[ = 2l < |& = 2] + wm — a2l < 5+ 28 <

Noting that -
Tm € 2N B(Zm;’rm)v

we see that
B(xm + tdm (2) v, rmtdm(x)) C 2.
We may assume

p1(z) <0 < ().

Then, since

N
Z(bj (:E) =1,
j=1

we have 1
> .
Hence,
B(x + to(x) ﬁ) C 12
T N .

Thus we have shown that

— )
B(z + tp(x), %) c forallze 2 andt e (0, 5]

To complete the proof, we let v > 0, set

9n(e) =7+ 2 o(a),

and will show that (2.13) holds with an appropriate vy > 0.
Since
¢ € CP(R™,R),

there is a constant M > 0 such that [[D¢|l < M.
Fix x € £27. There are y € {2 and ¢ € B(0,1) such that x = y + v¢. Let
n € B(0,1). Then we have

x4+ Py (x) +yn =y + Py (y) + 7z,

where
4N

z=(+n+ T(Gﬁ(w) - 9(y))-
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Note that AMN S M N
o] <24 o~y < 24+ L
) )
and observe that if v < %, then |z|] < 242 = 4, and that if v <

. 2
mm{%, és—N}, then

B 4vN 4vN 6 4yN
o+ () =y + ——o(y) + 72 € B(y+ 5 W5 ) c .
That is, if
0< <min{L ﬁ} and ze’
7= MN8N ’
then we have
T+ ¢y (z) + B(0,7) C £2,
which guarantees that
T+ Yy (z) C £2,.
Setting
Cminf 0 Ty
o= MN SN
we conclude that
v, (27) C 2, for all v € (0, 7o),
4vN 4vN
[90(@) = 2 = T 16(@)] < 905 = o,
and
4yN
1Dy (z) — 1| = [Do(z)|| < Cv.

0
for some constant C' > 0, independent of 7, which completes the proof. 0O

The following example gives a Hamiltonian H for which (2.3) and (2.4)
hold, but (2.11) does not hold.

Ezample 8.2. Consider the case where n =2, 2 = (—1,1) x (—1,1), and
H(iC,’f',p) =r+ min{p27xlpl +p2}

We observe that p € Z(x,r) = {p € R? | H(x,r,p) < 0} if and only if
p2 < —ror py < —r —z1p;. Hence

Zi(zq,7) if 1 > 0,
Z(xz,r) =< Rx (—o0,—r] ifz =0,
Z_(z1,7) if 1 <0,

where

Zi(xz1,r) ={p € (00,0l x R | p2 < —r — z1p1} U ((0, 00) X (=00, —7]),
Z_(z1,7) = ((—00,0] x (=00, —r]) U{p € (0,00) x R | p2a < —1 — z1p1 }.
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Also, note that

R? if 21 #£ 0,

K(x,r)EEZ(x,T):{RX(_OO7_T} if z; = 0.

Let R > 0. We have
B(0,R) if x1 # 0,

Kg(z,r) = Z(z,7)NB(0,R) = {{p € B(0,R) | ps < —1} if 1 = 0.

Let € € (0,1), 6 >0, p > 0, and z. = (,0), and observe that
Kgr(z.,0)+ B(0,e) = B(0, R+ ¢),
and moreover that
Kg(z:,0)+ B(0,e) C K(0,—9)

if and only if § > R + ¢. This shows that the collection {K (z,7)} does not
satisfy condition (2.11). On the other hand, the Hamiltonian H satisfies
conditions (2.3) and (2.4).
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