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Relaxation of Hamilton-Jacobi equations

Hitoshi Ishii & Paola Loreti

Abstract

We study the relaxation of Hamilton-Jacobi equations. The relaxation
in our terminology is the following phenomenon: the pointwise supremum
over a certain collection of subsolutions, in the almost everywhere sense, of
a Hamilton-Jacobi equation yields a viscosity solution of the “convexified”
Hamilton-Jacobi equation. This phenomenon has recently been observed in
[13] in eikonal equations. We show in this paper that this relaxation is a
common phenomenon for a wide range of Hamilton-Jacobi equations.

1. Introduction

In this paper we study the Hamilton-Jacobi equation

H(x, u(x), Du(x)) = 0 in Ω, (1.1)

where Ω is an open subset of Rn, H is a given real-valued function on
Ω × R × Rn, and u is a real-valued unknown function on Ω, and we are
interested in an observation concerning (1.1) in [13] and its generalization,
which we call the relaxation of Hamilton-Jacobi equations.

This observation in [13] is stated as follows. LetH ∈ C(Rn) be a function
satisfying {

H(p) > 0 for p ∈ Rn \ {0},

H(λp) = λH(p) for (λ, p) ∈ [0,∞) ×Rn.
(1.2)

Let Ĥ denote the convex envelope of the function H . Consider the eikonal
equation

Ĥ(Du(x)) = 1 in Ω (1.3)
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together with the Dirichlet boundary condition

u(x) = 0 for x ∈ ∂Ω, (1.4)

where Ω is assumed to be bounded. Let u ∈ C(Ω) be a (unique) viscosity
solution of (1.3) and (1.4). Then we have:

u(x) = sup{v(x) | v ∈ Lip(Ω), H(Dv(y)) ≤ 1 a.e. y ∈ Ω, v = 0 on ∂Ω}
(1.5)

for all x ∈ Ω, where for any subset W of Rn, Lip(W ) denotes the space of
bounded and Lipschitz continuous functions on W .

It should be remarked that (1.5) is equivalent to the following formula

u(x) = sup{v(x) | v ∈ Lip(Ω), v ≤ u in Ω,

H(Dv(y)) ≤ 1 a.e. Ω} for x ∈ Ω. (1.6)

Indeed, it is clear that (1.5) implies that (1.6) holds. On the other hand,

since Ĥ ≤ H and Ĥ is convex, if v ∈ Lip(Ω), H(Dv(y)) ≤ 1 a.e. y ∈ Ω,
and v = 0 on ∂Ω, then v is a viscosity subsolution of (1.3) and (1.4). By
comparison, we see (e.g., [12]) that v ≤ u in Ω, and hence that (1.6) implies
(1.5).

It is well-known that if we replace, in the formula given by the right
hand side of (1.5), the condition

H(Dv(y)) ≤ 1 a.e. y ∈ Ω

by the condition that v is a viscosity subsolution of

Ĥ(Dv(y)) = 1 in Ω(
respectively, H(Dv(y)) = 1 in Ω

)
,

then the resulting formula gives a (unique) viscosity solution u of (1.3) and
(1.4) (respectively, a (unique) viscosity solution of H(Du(x)) = 1 in Ω
together with the boundary condition (1.4)).

We note here (see also the example presented just after the proof of
Theorem 2.2 in [13]) that in general formula (1.6) does not give a subsolution
of

H(Du(x)) = 1 a.e. x ∈ Ω. (1.7)

To see this, we consider the case when n = 2, H(p, q) = (|p|1/2 + |q|1/2)2,

and Ω = {(x, y) ∈ R2 | |x| + |y| < 1}. It is immediate to see that Ĥ(p, q) =
|p| + |q|. It is not difficult to check that the function

u(x, y) =
1 − |x| − |y|

2

is a viscosity solution of (1.3) in Ω and satisfies (1.4). For any (x, y) ∈ Ω, if
x > 0 and y > 0 for instance, then we have

Du(x, y) = (−
1

2
,−

1

2
),
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and, in particular,

H(Du(x, y)) = 2.

Similarly we have

H(Du(x, y)) = 2

if x 6= 0 and y 6= 0. Hence we see that H(Du(x, y)) = 2 a.e. for (x, y) ∈ Ω
and hence that u is not a subsolution of (1.7).

What we call the relaxation of Hamilton-Jacobi equations is the phe-
nomenon that a viscosity solution of the eikonal equation with convexified
Hamiltonian appears in the process of taking the pointwise supremum over
a certain collection of subsolutions, in the almost everywhere sense, of the
original eikonal equation, or a phenomenon similar to this for (1.1).

Since the viscosity solution u ∈ C(Ω) of (1.3)–(1.4) is Lipschitz continu-

ous and Ĥ is convex, u has the properties: (i) u ∈ Lip(Ω); (ii) Ĥ(Du(x)) ≤ 1
a.e. x ∈ Ω; and (iii) u = 0 on ∂Ω. Therefore the right hand side of (1.5),

with H replaced by Ĥ , is attained by u(x). Thus another way to state the
relaxation of the eikonal equation, H(Du) = 1, is the following identity:

max{v(x) | v ∈ Lip(Ω), Ĥ(Dv(y)) ≤ 1 a.e. y ∈ Ω, v = 0 on ∂Ω}

= sup{v(x) | v ∈ Lip(Ω), H(Dv(y)) ≤ 1 a.e. y ∈ Ω, v = 0 on ∂Ω}. (1.8)

That is, through the process of taking the pointwise supremum of all subso-
lutions of the eikonal equation H(Du) = 1 in the almost everywhere sense
with the Dirichlet condition u = 0, one obtains the pointwise maximum
of all subsolutions of the convexified eikonal equation Ĥ(Du) = 1 in the
almost everywhere sense with the same Dirichlet condition. However, this
view point is narrower than the previous one when more general situations
are considered. In such a general situation, the supremum which corresponds
to the left hand side of (1.8) may not give a Lipschitz continuous function on
Ω and hence the maximum may not be attained, but it may still give a con-
tinuous viscosity solution on Ω of the associated Hamilton-Jacobi equation
with convex Hamiltonian.

As is already noted, our purpose here is to show that the relaxation
takes place in a wide class of Hamilton-Jacobi equations.

Some historical remarks here concerning the well-posedness for Hamilton-
Jacobi equations are the developments of the theory of viscosity solutions
of Hamilton-Jacobi equations ([8, 16, 6, 7]) and of general existence theories
for solutions in the almost everywhere sense of Hamilton-Jacobi equations
([9, 17]). Also, an important remark may be the connection of the relax-
ation of eikonal equations to L∞ optimization problems ([13, 3, 15, 11, 2, 4,
5]). Furthermore, it should be noted that relaxations in standard noncon-
vex variational problems has been studied for a long time ([10]). It is worth
mentioning that in [18] a connection between a nonconvex eikonal equation
and its convexified Hamilton-Jacobi equation is discussed in a different view
point.
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In Section 2 we formulate our results on the relaxation of Hamilton-
Jacobi equations on bounded domains. A result in the case of the Cauchy
problem for Hamilton-Jacobi equations is stated and proved in section 7 as
a typical example of results for unbounded domains. We prepare some basic
lemmas used in our proofs in section 3. Sections 4 and 5 are devoted to the
proof of our main results. The formulation in section 2 is slightly abstract
for sake of wider applicability, and the results in sections 2 are applied to
some examples of Hamilton-Jacobi equations. Appendix collects a lemma
on Lipschitz domains and an example of Hamilton-Jacobi equation relevant
to our assumptions.

2. Main results

In this section we formulate our relaxation theorems.
We assume throughout this section that the set Ω is bounded.
In order to state our results, it is appropriate to use the set theoretic

notation rather than the standard PDE notation.
First of all we explain how to transfer from the PDE notation to the set

theoretic notation. For subsolutions of the Hamilton-Jacobi equation

H(x, u(x), Du(x)) = 0 in Ω, (2.1)

where H is assumed to be continuous, the set

Z(x, r) = {p ∈ Rn | H(x, r, p) ≤ 0}, (2.2)

where (x, r) ∈ Ω × R, is crucial, and the fact that u is a (classical) subso-
lution of (2.1) can be stated as

Du(x) ∈ Z(x, u(x)) for all x ∈ Ω.

Note as well that u ∈ C(Ω) is a viscosity subsolution of (2.1) if and only if

D+u(x) ⊂ Z(x, u(x)) for x ∈ Ω.

The formulation of our first theorem is motivated by standard uniqueness
theorems (see, e.g. [8, 6]) in viscosity solution theory.

Assume that H ∈ C(Ω×R×Rn) satisfies the following two conditions.

{
For each M > 0 there is a constant λM > 0 such that for
each (x, p) ∈ Ω×B(0,M) the function : r 7→ H(x, r, p)−λM r
is non-decreasing on [−M,M ].

(2.3)





For each M > 0 there is a modulus ωM for which

|H(x, r, p) −H(y, r, q)| ≤ ωM (|x − y|(|p| + 1) + |p− q|)

for all x, y ∈ Ω, p, q ∈ Rn, r ∈ [−M,M ].

(2.4)
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It follows from (2.3) that for any (x, p) ∈ Ω × Rn, the function : r 7→
H(x, r, p) is non-decreasing on R, which shows that for all x ∈ Rn and
r, s ∈ R,

Z(x, r) ⊂ Z(x, s) if r ≥ s. (2.5)

Observe from (2.4) that for each M > 0, the collection of functions :
p 7→ H(x, r, p), with (x, r) ∈ Ω × [−M,M ], is equi-continuous on Rn.

Let M,R > 0. For any x, y ∈ Ω, r, s ∈ [−M − 1,M + 1], ε, γ > 0,
p ∈ B(0, R), and q ∈ B(p, ε), if |x− y| ≤ γ and r ≥ s, then we have

H(y, s, q) ≤ H(x, r, p) + ωM ((R + 1)γ + ε) − λM+1(r − s). (2.6)

Set

σM (t) = λ−1
M+1ωM (t) for all t ≥ 0,

and choose εM > 0 so that σM (εM ) ≤ 1. Then, from (2.6), for all M,R > 0,
ε, γ > 0 satisfying (R+1)γ+ ε ≤ εM , x, y ∈ Ω, (r, p) ∈ [−M,M ]×B(0, R),
and q ∈ B(p, ε), if |x− y| ≤ γ, then we have

H(y, r − σM ((R+ 1)γ + ε), p+ q) ≤ H(x, r, p),

which yields that for any M,R > 0, ε, γ > 0 satisfying (R + 1)γ + ε ≤ εM ,
x, y ∈ Ω, and r ∈ [−M,M ], if |x− y| ≤ γ, then have

Z(x, r) ∩ B(0, R) +B(0, ε) ⊂ Z(y, r − σM ((R+ 1)γ + ε)). (2.7)

Now, we formulate our first theorem on relaxation.
For each (x, r) ∈ Ω×R let Z(x, r) be a closed subset of Rn, which may

be an empty set.
The theorem concerns also the closed convex hull of the sets Z(x, r).

Thus we set

K(x, r) = coZ(x, r) for (x, r) ∈ Ω ×Rn. (2.8)

For R > 0 and (x, r) ∈ Ω ×R we define

ZR(x, r) = Z(x, r) ∩ B(0, R), KR(x, r) = K(x, r) ∩ B(0, R).

Motivated by the above observation, we assume:

{
for any r, s ∈ R and x ∈ Ω, if r ≥ s,

Z(x, r) ⊂ Z(x, s),
(2.9)





for each M > 0 there are a modulus σM and a constant
εM > 0 such that for any R > 0, ε, γ > 0, x, y ∈ Ω, and
r ∈ [−M,M ], if (R + 1)γ + ε ≤ εM and |x − y| ≤ γ, then
have

ZR(x, r) +B(0, ε) ⊂ Z(y, r − σM ((R+ 1)γ + ε)).

(2.10)
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Moreover, we assume (2.11) and (2.12) below.





For each M > 0 there are a modulus σM and a constant
εM > 0 such that for any R > 0, ε, γ > 0, x, y ∈ Ω, and
r ∈ [−M,M ], if (R + 1)γ + ε ≤ εM and |x − y| ≤ γ, then
have

KR(x, r) +B(0, ε) ⊂ K(y, r − σM ((R+ 1)γ + ε)).

(2.11)

Unlike condition (2.10), this condition does not follow from (2.3) and
(2.4), with the collection of K(x, r) = co {p ∈ Rn | H(x, r, p) ≤ 0}. See for
this Example 8.2 in the appendix.





For any ε > 0 and R > 0 there is a constant ρ > 0 such that
for all (x, r) ∈ Rn × [−R,R],

KR(x, r) ⊂ coZρ(x, r − ε).

(2.12)

We give examples of collections {Z(x, r)} in Section 6, for which (2.11)
and (2.12) are satisfied.

Next we need a regularity assumption on the boundary of Ω.

For γ > 0 we set

Ωγ = {x ∈ Ω | dist (x,Ω) < γ},

Ωγ = {x ∈ Ω | dist (x,Ωc) > γ},

where Ωc = Rn \Ω, and we assume that





there is a constant γ0 ∈ (0, 1) and for each γ ∈ (0, γ0) a
C1 map ψγ : Ωγ → Rn such that ψγ(Ωγ) ⊂ Ωγ and for all
x ∈ Ωγ and for some constant C > 0 independent of γ,

|ψγ(x) − x| ≤ Cγ, ‖Dψγ(x) − I‖ ≤ Cγ.

(2.13)

For instance, this condition is satisfied if Ω has Lipschitz boundary. See
Proposition 8.1 in the appendix.

Theorem 2.1. Let {Z(x, r) | (x, r) ∈ Ω × R} be a collection of closed
subsets of Rn. Assume that Ω is bounded and that (2.9)–(2.13) hold. Let
u ∈ C(Ω) satisfy

D+u(x) ⊂ K(x, u(x)) for all x ∈ Ω.

Then

u(x)=sup{v(x) |v ∈ Lip(Ω), v ≤ u on Ω, Dv(y) ∈ Z(y, v(y)) a.e. y ∈ Ω}

for all x ∈ Ω.
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Remark 2.2. A natural way to define the notion of viscosity solution to
the collection Z := {Z(x, r) | (x, r) ∈ Ω × R} is as follows: a function
u ∈ USC(Ω) (resp., u ∈ LSC(Ω)) is called a viscosity subsolution (resp.,
supersolution) of Z if

D+u(x) ⊂ Z(x, u(x)) for x ∈ Ω

(resp., D−u(x) ⊂ Rn \ intZ(x, u(x)) for x ∈ Ω).

A function u ∈ C(Ω) is called a viscosity solution of Z if it is both a
viscosity subsolution and a viscosity supersolution of Z . For instance, under
assumption (2.10), using standard arguments, we can prove the comparison
theorem: let u ∈ USC(Ω) and v ∈ LSC(Ω) be a viscosity subsolution and a
viscosity supersolution of Z , respectively. Assume that u ≤ v on ∂Ω. Then
u ≤ v on Ω.

Next, we give another theorem similar to the above, which is motivated
by the eikonal equation

H(Du(x)) = 1 in Ω,

with Hamiltonian H ∈ C(Rn) satisfying (1.2).
In what follows, let Z(x, r), with (x, r) ∈ Ω × R, be independent of r,

and thus we may write Z(x), K(x), ZR(x), and KR(x) for Z(x, r), K(x, r),
ZR(x, r), and KR(x, r), respectively.

For δ > 0 define ∆(δ) by

∆(δ) = {(x, y) ∈ Ω ×Ω | |x− y| ≤ δ}.

We assume:

{
there exists a γ > 0 such that

B(0, γ) ⊂ K(x) for all x ∈ Ω.
(2.14)

This condition can be replaced by the condition that there are a function
ψ ∈ C1(Ω,R) and a constant γ > 0 such that B(Dψ(x), γ) ⊂ K(x) for all
x ∈ Ω. But, for simplicity of presentation, we have chosen (2.14) instead.





There exists a constant θ0 > 1 and for each θ ∈ (1, θ0) con-
stants δ0 ≡ δ0(θ) > 0 and R0 ≡ R0(θ) > 0 such that for all
R ≥ R0 and (x, y) ∈ ∆(δ0),

ZR(x) ∩ ∂ ( coZR(x)) ⊂ θZ(y).

(2.15)

We give a few of examples in Section 6, for which (2.14) and (2.15) are
satisfied.

We define L : Ω ×Rn → R ∪ {∞} by

L(x, ξ) = sup{ξ · p | p ∈ Z(x)}.
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Let u ∈ C(Ω) be a given function and assume:





for each θ > 1 there is a δ1 ≡ δ1(θ) > 0 such that for all
(x, y) ∈ (∂Ω)2 ∩∆(δ1),

u(x) ≤ u(y) + θL(y, x− y).

(2.16)

This condition should be compared with the compatibility condition on
the boundary data for the existence of a viscosity solution for the Dirichlet
problem (see [13]).

Theorem 2.3. Assume that Ω is bounded and that (2.14) and (2.15) hold.
Let u ∈ C(Ω) satisfy

D+u(x) ⊂ K(x) for all x ∈ Ω.

Assume that (2.16) holds with this u. Then

u(x) = sup{v(x) | v ∈ Lip(Ω), v ≤ u on Ω, Dv(y) ∈ Z(y) a.e. y ∈ Ω}

for all x ∈ Ω.

Remark 2.4. As explained in the Introduction, in [13] we stated the relax-
ation theorem in terms of the convex envelope Ĥ(p) of the given Hamitonian
H(p), where H is assumed to be positive for p 6= 0 and positively homo-
geneous of degree one. Under some additional assumptions one may state
relaxation theorems in this paper in terms of the quasi-convex envelope of
Hamiltonians. Let us recall the definition of the quasi-convex envelope of
function H ∈ C(Rn). We call a function G : Rn → R quasi-convex if the
set {p ∈ Rn | G(p) ≤ a} is convex for any a ∈ R. Let Q denote the set of
all lower semicontinuous quasi-convex functions on Rn. Let H : Rn → R.
We assume that there is a function G ∈ Q such that G ≤ H on Rn. We
define H̃ : Rn → R by

H̃(p) = sup{G(p) | G ∈ Q, G ≤ H on Rn}.

It follows that the function H̃ ∈ Q and satisfies H̃ ≤ H on Rn. We call H̃
the quasi-convex envelope of the function H . We have the inclusion

co {p ∈ Rn | H(p) ≤ a} ⊂ {p ∈ Rn | H̃(p) ≤ a}

for all a ∈ R, but in general we do not have the identity

co {p ∈ Rn | H(p) ≤ a} = {p ∈ Rn | H̃(p) ≤ a} (2.17)

for a ∈ R. For instance, consider the case when n = 2 and the function H
given by

H(p, q) =
q+

|p| + 1
for (p, q) ∈ R2,
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where q+ denotes the positive part, max{q, 0}, of q ∈ R. It is easy to see

that the quasi-convex envelope H̃ of H is given by H̃(p, q) ≡ 0, and that

co {(p, q) ∈ R2 | H(p, q) ≤ 0} = R× (−∞, 0] 6= R2 = {p ∈ Rn | H̃(p) ≤ 0}.

An assumption on H which guarantees that (2.17) holds for all a ∈ R

is the coercivity of H . That is, if we assume that

lim
R→∞

inf{H(p) | p ∈ Rn \B(0, R)} = ∞,

then we have (2.17) for all a ∈ R. With these observations and notations,
for instance, we may state a theorem similar to Theorem 2.3 as follows: Let
H ∈ C(Ω ×Rn) and set

Z(x) = {p ∈ Rn | H(x, p) ≤ 0}, K(x) = coZ(x)

for x ∈ Ω. Let H̃(x, p) be the quasi-convex envelope of the function H(x, p)
with respect to p. Assume as in Theorem 2.3 that Ω is bounded and that
(2.14) and (2.15) is satisfied. Moreover assume that (2.17) holds. Then, if
u ∈ C(Ω) is a viscosity subsolution of

H̃(x,Du(x)) = 0 in Ω

and (2.16) is satisifed, we have

u(x)=sup{v(x) |v ∈ Lip(Ω), v ≤ u on Ω, H(y,Dv(y)) ≤ 0 a.e. for y ∈ Ω}.

3. Preliminary lemmas

We prepare here for the proof of our main results by establishing a few
basic lemmas.

Lemma 3.1. Let K be a non-empty convex subset of Rn and set

L(ξ) = sup{ξ · p | p ∈ K} for all ξ ∈ Rn.

Let U be an open subset of Rn and let v ∈ C(U ) satisfy

D+v(x) ⊂ K for all x ∈ U.

Let x, y ∈ U , and assume that the open line segment l0(x, y) := {tx+(1−t)y |
t ∈ (0, 1)} ⊂ U . Then

u(x) ≤ u(y) + L(x− y).
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Proof. We may assume that x 6= y and L(x− y) <∞. By translation and
rotation, we may assume that

y = 0, x = ρen,

where ρ > 0 and en denotes the unit vector in Rn with unity as its n-th
entry. We need to show that

u(ρen) ≤ u(0) + ρL(en).

Define the function v ∈ C([0, ρ]) by

v(r) = u(ren).

We show that

v′(r) ≤ L(en) for r ∈ (0, ρ) (3.1)

in the viscosity sense.
Let ϕ ∈ C1((0, ρ)) and assume that v−ϕ attains its strict maximum at

a ∈ (0, ρ). Choose a compact neighborhood V ⊂ U of aen ∈ U . Let α > 0
and consider the function

Φ(x) := u(x) − α(x2
1 + · · · + x2

n−1) − ϕ(xn)

on V . Let xα ∈ V be a maximum point of Φ. It is standard to see that as
α→ ∞,

xα → aen.

We are going to take the limit as α → ∞, and therefore we may assume
that xα ∈ intV for all α under considerations. Hence, we have

pα := (2αxα
1 , ..., 2αx

α
n−1, ϕ

′(xα
n)) ∈ D+u(xα) ⊂ K.

Thus, by the definition of L(en), we have

L(en) ≥ pα · en = ϕ′(xα
n),

and therefore, sending α → ∞, we get

ϕ′(a) ≤ L(en),

which proves that (3.1) holds in the viscosity sense.
It is a standard fact that (3.1) yields

v(ρen) ≤ v(0) + ρL(en) = v(0) + L(ρen),

that is,

u(x) ≤ u(y) + L(x− y),

which completes the proof. ut
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Lemma 3.2. Let N ∈ N and f1, ..., fN ∈ Lip(Ω). Set

f(x) = max{f1(x), ..., fN (x)} for x ∈ Ω.

Then f ∈ Lip(Ω) and f is almost everywhere differentiable. Moreover for
almost every x ∈ Ω,

Df(x) ∈ {Df1(x), ..., DfN (x)}.

Proof. It is easy to check that f ∈ Lip(Ω). It is a well-known fact
(Rademacher’s theorem) that any Lipschitz continuous function (and hence,
f) is almost everywhere differentiable.

Rademacher’s theorem implies that almost everywhere, all of f1, ..., fN

and f are differentiable. Now let y ∈ Ω be a point where all of f1, ..., fN

and f are differentiable. By the definition of f , f(y) = fi(y) for some
i ∈ {1, ..., N}. Then f − fi attains a local minimum at y, which yields

Df(y) = Dfi(y) ∈ {Df1(y), ..., DfN(y)},

completing the proof of the lemma. ut

Lemma 3.3. Let Z be a non-empty closed subset of Rn. Define L : Rn →
R ∪ {∞} by

L(ξ) = sup{ξ · p | p ∈ Z}.

Let ξ̄ ∈ Rn be a point where L is differentiable. Then

DL(ξ̄) ∈ Z ∩ ∂( coZ)

This result is a key observation in [13, the proof of Theorem 2.2].

Proof. Let L be differentiable at ξ̄ ∈ Rn and let p̄ = DL(ξ̄). For each
n ∈ N select a pn ∈ Z so that

pn · ξ̄ +
1

n
> L(ξ̄).

For each ε > 0 there is a δ > 0 such that for all h ∈ B(0, δ),

L(ξ̄ + h) ≤ L(ξ̄) + p̄ · h+ ε|h|.

Combining these two inequalities, we get

pn · (ξ̄ + h) < pn · ξ̄ +
1

n
+ p̄ · h+ ε|h| for h ∈ B(0, δ),

and hence,

0 < (p̄− pn) · h+ ε|h| +
1

n
for h ∈ B(0, δ).

Hence, inserting h = δ(pn − p̄)/|pn − p̄| if pn 6= p̄, we get

δ|pn − p̄| ≤ εδ +
1

n
,
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which implies that pn → p̄ as n→ ∞ and that p̄ ∈ Z.
Thus we conclude that the function : p 7→ ξ̄ ·p attains its maximum over

Z at the unique point p̄. Moreover we easily see that p̄ ∈ ∂Z.
Next, we note that

L(ξ) = sup{ξ · p | p ∈ coZ} for ξ ∈ Rn.

Now the observation above shows that p̄ ∈ ∂( coZ). Thus we see that
DL(ξ̄) ∈ Z ∩ ∂( coZ). ut

4. Proof of Theorem 2.1

We begin with the proof of a localized version, Theorem 4.1 below, of
Theorem 2.1.

Let γ > 0 and let {Z(x, r) | (x, r) ∈ Ωγ × R} be a collection of closed
subsets of Rn, and we introduce the condition that





for each R > 0 there are a modulus σR and a constant εR > 0
such that for any ε ∈ (0, εR), x, y ∈ Ωγ , and r ∈ [−R,R], if
|x− y| ≤ ε, then

ZR(x, r) +B(0, ε) ⊂ Z(y, r − σR(ε)).

(4.1)

Theorem 4.1. Assume that Ω is bounded and that (2.9) and (2.12), with
Ωγ in place of Ω, and (4.1) hold. Let u ∈ C(Ωγ) satisfy

D+u(x) ⊂ K(x, u(x)) for all x ∈ Ωγ .

Assume in addition that u is Lipschitz continuous on Ωγ . Then

u(x)=sup{v(x) |v ∈ Lip(Ω), v ≤ u on Ω, Dv(y) ∈ Z(y, v(y)) a.e. y ∈ Ω}

for all x ∈ Ω.

Throughout this section we use the notation: for any R > 0 and ε > 0
LR,ε denotes the function: Ωγ ×R×Rn → R ∪ {−∞} defined by

LR,ε(x, r, ξ) = sup{ξ · p | p ∈ ZR(x, r) +B(0, ε)},

where sup ∅ = −∞.

Proof. We choose a constant M > 0 so that

|u(x)| ≤M, |u(x) − u(y)| ≤M |x− y| for all x, y ∈ Ωγ . (4.2)

Fix ε ∈ (0, 1 ∧ γ). Note that B(y, ε) ⊂ Ωγ for all y ∈ Ω. Fix α > 0 so that

(M + 1)α ≤
ε

4
.
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In view of (2.12) we may choose R ≥ M + 1 so that for all (x, r) ∈ Ωγ ×
[−M − 1,M + 1],

KM (x, r) ⊂ coZR(x, r − α).

Let εR and σR be the positive constant and the function from (4.1), respec-
tively, and fix β ∈ (0, α ∧ εR) so that

σR(β) ≤
ε

4
, (2R+ 1)β ≤ ε.

Observe by virtue of (4.1) that for all x, y ∈ Ωγ and r ∈ R, if |x−y| ≤ β
and |r| ≤M + 1, then

ZR(x, r) +B(0, β) ⊂ Z(y, r − σR(β)). (4.3)

Noting that u(x) ≥ u(y)−Mβ for all y ∈ Ω and x ∈ B(y, β), we deduce
by using (2.9) and (4.3) that for all y ∈ Ω and x ∈ B(y, β),

D+u(x) ⊂ KM (x, u(x)) ⊂ coZR(x, u(x) − α)

⊂ coZR(x, u(y) −Mβ − α)

⊂ coZR(y, u(y) − (M + 1)α− σR(β)). (4.4)

Here we used the observation that M ≥ u(y)−Mβ−α ≥ −M−α(M+1) >
−M − 1

4 . We write
δ = (M + 1)α+ σR(β),

and note that 0 < δ ≤ ε
2 <

1
2 .

From (4.3) it follows that for all x ∈ Ω and z ∈ B(x, β),

ZR(z, u(z)− δ) +B(0, β) ⊂ Z(x, u(x) − 2δ). (4.5)

By virtue of Lemma 3.1, we see from (4.4) that for all y ∈ Ω,

u(x) ≤ u(y) + LR,0(y, u(y) − δ) for all x ∈ B(y, β). (4.6)

Let µ ∈ (0, ε) be a constant to be fixed later on, and choose a finite
subset Yµ of Ω such that

Ω ⊂
⋃

y∈Yµ

B(y, µ).

Define fµ : Ω → R by

fµ(x) = min{u(y) + LR,β(y, u(y) − δ, x− y) | y ∈ Yµ, |y − x| ≤ β}.

For each x ∈ Ω, there is a y ∈ Yµ ∩B(x, µ) such that

fµ(x) = u(y) + LR,β(y, u(y) − δ, x− y)

≤ u(x) + LR,0(y, u(y) − δ, 0) +Mµ+ (R + 1)µ

≤ u(x) + (2R+ 1)µ. (4.7)
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For any x ∈ Ω, using (4.6), we get

min{u(y) + LR,β(y, u(y) − δ, x− y) | y ∈ Ω,
β

2
≤ |y − x| ≤ β}

≥ min{u(x) + β|x − y| | y ∈ Ω,
β

2
≤ |y − x| ≤ β}

= u(x) +
β2

2
. (4.8)

We fix µ > 0 so that (2R + 1)µ < β2

2 . By virtue of (4.7) and (4.8), for

all x ∈ Ω we have

fµ(x) = min
{
u(y) + LR,β(y, u(y) − δ, x− y)

∣∣ y ∈ Yµ ∩B
(
x,
β

2

)}
. (4.9)

Let a ∈ Ω and x ∈ Ω ∩B
(
a, β

4

)
. Since

B
(
x,
β

2

)
⊂ B

(
a,

3β

4

)
⊂ B(x, β),

from (4.9) we have

fµ(x) = min
{
u(z) + LR,β(z, u(z)− δ, x− z)

∣∣∣ z ∈ Yµ ∩ B
(
a,

3β

4

)}
.

Therefore, we have for any x, y ∈ B
(
a, β

4

)
∩Ω,

|fµ(x) − fµ(y)| ≤ (R + 1)|x− y|, (4.10)

which implies that fµ ∈ Lip(Ω) since Ω is bounded. Also, using (4.5), in
view of Lemmas 3.2 and 3.3 we have

Dfµ(x) ∈
⋃{

DξLR,0(z, u(z) − δ, x− z)
∣∣∣ z ∈ Yµ ∩B

(
a,

3β

4

)}
+B(0, β)

⊂
⋃

{ZR(z, u(z)− δ) | z ∈ B(x, β)} +B(0, β)

⊂ Z(x, u(x) − 2δ) a.e. x ∈ B
(
a,
β

4

)
∩Ω.

Thus we have

Dfµ(x) ∈ Z(x, u(x) − 2δ) ⊂ Z(x, u(x) − ε) a.e. x ∈ Ω.

Let x, y ∈ Ω satisfy |x− y| ≤ β. Then we have

u(y) +LR,β(y, u(y)− δ, x− y) ≥ u(x)−Mβ− (R+ 1)β ≥ u(x)− (2R+ 1)β.

Hence, we have

fµ(x) ≥ u(x) − (2R+ 1)β for all x ∈ Ω.
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This together with (4.7) and our choice of β yields

|fµ(x) − u(x)| ≤ (2R+ 1)β ≤ ε for all x ∈ Ω.

We now define g ∈ Lip(Ω) by

g(x) = fµ(x) − 2ε.

Then, we have
g(x) ≤ u(x) − ε for all x ∈ Ω,

and hence,

Dg(x) ∈ Z(x, u(x) − 2δ) ⊂ Z(x, g(x)) a.e. x ∈ Ω.

Finally, noting that

u(x) − 3ε ≤ g(x) ≤ u(x) − ε for all x ∈ Ω,

we conclude the proof. ut

Proof of Theorem 2.1. Let γ0 ∈ (0, 1) be the constant from (2.13).
Let 0 < γ < γ0. We consider the sup-convolution of u. That is, we define
uγ : Rn → R by

uγ(x) = sup
{
u(y) −

1

2γ2
|x− y|2

∣∣∣ y ∈ Ω
}
.

It is well-known that there is a modulus ν such that for all x ∈ Ωγν(γ),

D+uγ(x) ⊂
⋃

{D+u(y) | y ∈ B(x, γν(γ))}, (4.11)

D+uγ(x) ⊂ B
(
0,
ν(γ)

γ

)
, (4.12)

uγ(x) ∈ [u(x), u(x) + ν(γ)]. (4.13)

We may assume that ν(t) < 1 for all t ∈ (0, γ0).
Let ψγ be the function from condition (2.13). Define the function U γ :

Ωγ → R by Uγ = uγ ◦ ψγ .
Noting that D+Uγ(x) = Dψγ(x)∗D+uγ ◦ ψγ(x), where for any matrix

A, A∗ denotes the transposed matrix of A, and using (2.13), we see from
(4.11)–(4.13) that for all x ∈ Ωγ ,

D+Uγ(x) ⊂
⋃

{D+u(y) | y ∈ B(ψγ(x), γν(γ))} +B(0, Cν(γ)), (4.14)

D+Uγ(x) ⊂ B
(
0, (1 + Cγ)

ν(γ)

γ

)
, (4.15)

Uγ(x) ∈ [u ◦ ψγ(x), u ◦ ψγ(x) + ν(γ)]. (4.16)

We set

R = (1 + Cγ)
ν(γ)

γ
and M = max

Ω
|u|.



16 Hitoshi Ishii & Paola Loreti

By (4.14) and (4.15) we get for all x ∈ Ωγ ,

D+Uγ(x) ⊂
⋃

{KR(y, u(y)) | y ∈ B(ψγ(x), γν(γ))} +B(0, Cν(γ)).

Hence, noting that for all x ∈ Ωγ and y ∈ B(ψγ(x), γν(γ)),

u(y) ≥ u(ψγ(x)) −m(γν(γ)) ≥ Uγ(x) − ν(γ) −m(γν(γ)),

where m denotes the modulus of continuity of u and defining the modulus
µ1 by setting µ1(t) = ν(t) +m(tν(t)) for t ≥ 0, we get for all x ∈ Ωγ ,

D+Uγ(x) ⊂
⋃

{KR(y, Uγ(x)−µ1(γ)) | y ∈ B(ψγ(x), γν(γ))}+B(0, Cν(γ)).

Furthermore, noting that for all x ∈ Ωγ and y ∈ B(ψγ(x), γν(γ)),

|x− y| ≤ |x− ψγ(x)| + |ψγ(x) − y| ≤ Cγ + γν(γ),

defining the modulus µ2 by

µ2(t) = µ1(t) + σM+1

(
[(1 + Ct)(ν(t)/t) + 1][Ct+ tν(t)] + Cν(t)

)
,

where σM is the modulus from (2.11), and using (2.11), we get for all x ∈ Ωγ ,

D+Uγ(x) ⊂ KR+1(x, U
γ(x) − µ2(γ)).

Here and henceforth we assume that γ0 is small enough so that µ2(γ0) <
1 ∧ εM and Cν(γ0) < 1 ∧ εM , where εM is the constant from (2.11).

Now, using (2.12), we find a constant ρ > 0 depending on R, M , and
µ2(γ) such that for all x ∈ Ωγ ,

D+Uγ(x) ⊂ coZρ(x, U
γ(x) − 2µ2(γ))

Next, define V γ : Ωγ → R by

V γ(x) = Uγ(x) − 2µ2(γ).

Observe from (4.16) that for all x ∈ Ω,

u(x) −m(Cγ) − 2µ2(γ) ≤ V γ(x) ≤ u(x) + ν(γ) +m(Cγ) + 2µ2(γ).

We may assume by replacing µ2 if necessary that 2µ2(t) ≥ ν(t)+m(Ct) for
t ≥ 0, so that V γ(x) ≤ u(x) for all x ∈ Ω.

Noting that V γ is Lipschitz continuous on Ωγ/2 and applying Theorem
4.1, with V γ and Ωγ/2 in place of u and Ωγ , respectively, we conclude that
for all x ∈ Ω,

V γ(x) = sup{v(x) | v ∈ Lip(Ω), v ≤ V γ on Ω,

Dv(y) ∈ Z(y, v(y)) a.e. y ∈ Ω}.

Finally, noting that u(x) = sup{V γ(x) | γ ∈ (0, γ0)} for all x ∈ Ω, we
finish the proof. ut
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5. Proof of Theorem 2.3

First of all we remark that under assumption (2.14), we have

L(x, ξ) ≥ γ|ξ| for all (x, ξ) ∈ Ω ×Rn.

For R > 0 we define the function LR : Ω ×Rn → R by

LR(x, ξ) = sup{ξ · p | p ∈ ZR(x)}.

In order to prove Theorem 2.3, we need the following two lemmas.

Lemma 5.1. Let θ0, k0, and δ0 be from (2.15). Let θ ∈ (1, θ0), (x, y) ∈
∆(δ0(θ)), and k ∈ N. If k ≥ k0, then

coZk(x) ⊂ θ coZk(y), (5.1)

coZ(x) ⊂ θ coZ(y). (5.2)

Proof. Let θ, x, y, and k be as above. From (2.15) we have

Zk(x) ∩ ∂( coZk(x)) ⊂ θZk(y).

Since
co

(
Zk(x) ∩ ∂( coZk(x))

)
= coZk(x),

we get
coZk(x) ⊂ θ coZk(y),

and therefore,
coZ(x) ⊂ θ coZ(y). ut

Lemma 5.2. Let θ1 = θ20, where θ0 is from (2.15). Let u be the function
from Theorem 2.3. For each θ ∈ (1, θ1) there is a δ2 ≡ δ2(θ) > 0 such that
for all (x, y) ∈ ∆(δ2),

u(x) ≤ u(y) + θL(y, x− y).

Proof. Fix θ ∈ (1, θ1), and set σ = θ1/2. Note that σ ∈ (1, θ0). By (2.16),
we have for (x, y) ∈ (∂Ω)2 ∩∆(δ1(σ)),

u(x) ≤ u(y) + σL(y, x− y). (5.3)

By (5.2), we have for (x, y) ∈ ∆(δ0(σ)),

K(x) ⊂ σK(y). (5.4)

By Lemma 3.1 and (5.4), we see that for (x, y) ∈ ∆(δ0(σ)), if l0(x, y) ∈ Ω,
then

u(x) ≤ u(y) + σL(y, x− y). (5.5)

Set δ2 = min{δ0(σ), δ1(σ)}. Fix (x, y) ∈ ∆(δ2). If l0(x, y) ⊂ Ω, then we
have from (5.5)

u(x) ≤ u(y) + σL(y, x− y). (5.6)
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Otherwise we have

l0(x, y) ∩ ∂Ω 6= ∅.

In this case choose 0 ≤ t0 ≤ t1 ≤ 1 so that

(1 − t)x+ ty ∈ Ω for all t ∈ (0, t0) ∪ (t1, 1),

(1 − t0)x+ t0y, (1 − t1)x + t1y ∈ ∂Ω.

Set x̄ = (1 − t0)x + t0y and ȳ = (1 − t1)x + t1y. Note that x̄, ȳ ∈ ∂Ω and
l0(x, x̄) ∪ l0(ȳ, y) ⊂ Ω. Note as well that since

x− x̄ = t0(x− y), x̄− ȳ = (t1 − t0)(x− y), ȳ − y = (1 − t1)(x − y),

we have 



L(y, x− x̄) = t0L(y, x− y),

L(y, x̄− ȳ) = (t1 − t0)L(y, x− y),

L(y, ȳ − y) = (1 − t1)L(y, x− y),

(5.7)

and

|x− x̄| = t0|x− y|, |x̄− ȳ| = (t1 − t0)|x− y|, |ȳ − y| = (1 − t1)|x− y|

From (5.5), we have

u(x) ≤ u(x̄) + σL(x̄, x− x̄),

u(ȳ) ≤ u(y) + σL(y, ȳ − y).

From (5.3), we have

u(x̄) ≤ u(ȳ) + σL(ȳ, x̄− ȳ).

Using (5.4), we get

u(x) ≤ u(x̄) + σ2L(y, x− x̄),

u(ȳ) ≤ u(y) + σ2L(y, ȳ − y),

u(x̄) ≤ u(ȳ) + σ2L(y, x̄− ȳ).

Furthermore, using (5.7), we get

u(x) ≤ u(x̄) + θt0L(y, x− y),

u(ȳ) ≤ u(y) + θ(1 − t1)L(y, x− y),

u(x̄) ≤ u(ȳ) + θ(t1 − t0)L(y, x− y).

Hence,

u(x) ≤ u(y) + θL(y, x− y).

This together with (5.6) completes the proof. ut
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Proof of Theorem 2.3. By adding a constant we may assume that u ≥ 0
on Ω.

We claim that there is a k1 ∈ N such that if k ≥ k1, then Lk ∈ C(Ω ×
Rn).

To see this fix any θ2 ∈ (1, θ0) and set k1 ≡ k0(θ2), where θ0 and k0 are
from (2.15). Let k ∈ N satisfy k ≥ k1. Fix θ ∈ (1, θ0) and let δ = δ0(θ2),
where δ0 is from (2.15).

Using (5.1), we compute that for (x, y) ∈ ∆(δ) and ξ ∈ Rn,

Lk(x, ξ) = θmax{ξ · q | q ∈ θ−1Zk(x)}

= θmax{ξ · q | q ∈ θ−1 coZk(x)}

≤ θmax{ξ · q | q ∈ coZk(y)} = θLk(y, ξ)

= Lk(y, ξ) + (θ − 1)Lk(y, ξ) ≤ Lk(y, ξ) + (θ − 1)k|ξ|,

which yields by symmetry

|Lk(x, ξ) − Lk(y, ξ)| ≤ (θ − 1)k|ξ|.

Noting that

|Lk(x, ξ) − Lk(x, η)| ≤ max{|(ξ − η) · p| | p ∈ Zk(x)} ≤ k|ξ − η|

for all x ∈ Ω and ξ, η ∈ Rn, we conclude that Lk is continuous on Ω ×Rn.
Henceforth fix θ > 1 and δ > 0 so that θ < θ2

0 and δ ≤ min{δ0(θ), δ2(θ)},
where θ0 and δ0 are from (2.15) and δ2 is from Lemma 5.2, respectively.

For k ∈ N, with k ≥ k0, define fk, gk : Ω → R by

fk(x) = min{u(y) + θ2Lk(y, x− y) | y ∈ Ω, |y − x| ≤ δ},

gk(x) = min{u(y) + θ2Lk(y, x− y) | y ∈ Ω,
δ

2
≤ |y − x| ≤ δ}.

Fix ε > 0. We show that there is an α ∈ N such that

gα(x) ≥ u(x) +
θ(θ − 1)γδ

4
for all x ∈ Ω, (5.8)

fα(x) ≥ u(x) − ε for all x ∈ Ω. (5.9)

We henceforth write
ν = θ(θ − 1)γδ.

Note by Lemma 5.2 that for all (x, y) ∈ ∆(δ),

u(x) − u(y) ≤ θL(y, x− y).

Also we have

γ|x− y| ≤ L(y, x− y) for all x, y ∈ Ω.

We claim that there is an α ∈ N such that for (x, y) ∈ ∆(δ),

max{θ−1(u(x) − u(y)), γ|x− y|} ≤ min{
ε

θ
,
ν

4θ2
} + Lα(y, x− y). (5.10)
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To see this, set

h(x, y) = max{θ−1(u(x) − u(y)), γ|x− y|} for (x, y) ∈ ∆(δ).

We know that

h(x, y) ≤ L(y, x− y) for all (x, y) ∈ ∆(δ),

and it is clear that as k → ∞,

Lk(x, ξ) ↗ L(x, ξ) for all (x, ξ) ∈ Ω ×Rn.

Hence, as k → ∞,

(h(x, y) − Lk(y, x− y))+ ↘ 0 (x, y) ∈ ∆(δ).

Note that if k ≥ k1, then Lk ∈ C(Ω × Rn). Thus, thanks to Dini’s
lemma, we see that as k → ∞,

(h(x, y) − Lk(y, x− y))+ ↘ 0 uniformly for (x, y) ∈ ∆(δ),

which proves that there is an α ∈ N such that (5.10) holds.
Fix such an α ∈ N. We show that (5.8) and (5.9) hold with this choice

of α.
Compute that for (x, y) ∈ ∆(δ), if |x− y| ≥ δ

2 , then

u(x) +
ν

2
≤ u(x) + θ(θ − 1)γ|x− y|

≤ u(x) + θ(θ − 1)
( ν

4θ2
+ Lα(y, x− y)

)

≤ u(y) +
ν

4θ
+ θLα(y, x− y) + θ(θ − 1)

( ν

4θ2
+ Lα(y, x− y)

)

= u(y) +
ν

4
+ θ2Lα(y, x− y),

that is,

u(x) +
ν

4
≤ u(y) + θ2Lα(y, x− y).

Consequently, we have

gα(x) ≥ u(x) + ν/4 for x ∈ Ω,

which shows that (4.8) holds. Also, by (5.10) we have

u(x) − u(y) ≤ ε+ θLα(y, x− y) ≤ ε+ θ2Lα(y, x− y)

for all (x, y) ∈ ∆(δ), and hence,

u(x) − ε ≤ fα(x) for all x ∈ Ω,

which shows that (5.9) holds.



Relaxation of Hamilton-Jacobi equations 21

For each β ∈ (0, δ) choose a finite subset Yβ of Ω such that

Ω ⊂
⋃

y∈Yβ

B(y, β).

For β > 0 define fαβ : Ω → R by

fαβ(x) = min{u(y) + θ2Lk(y, x− y) | y ∈ Yβ , |y − x| ≤ δ}.

Since u is uniformly continuous on Ω, there is a β ∈ (0, δ) such that for
all (x, y) ∈ ∆(β),

|u(x) − u(y)| + θ2αβ ≤ ε.

Henceforth we fix such a β ∈ (0, δ). Observe that for each x ∈ Ω there is a
y ∈ Yβ ∩B(x, δ) and that for all x ∈ Ω and y ∈ Yβ ∩ B(x, δ),

fαβ(x) ≤ u(y) + θ2Lα(y, x− y)

≤ u(x) + u(y) − u(x) + θ2α|x− y| ≤ u(x) + ε. (5.11)

Since fα(x) ≤ fαβ(x) for all x ∈ Ω, it follows immediately from (5.9) and
(5.11) that

|u(x) − fαβ(x)| ≤ ε for all x ∈ Ω. (5.12)

We assume that ε < ν/4 and show that

fαβ ∈ Lip(Ω). (5.13)

Note by (5.8) and (5.11) that

gα(x) ≥ u(x) + ν/4 > fαβ(x) for all x ∈ Ω.

Hence, we have for all x ∈ Ω,

fαβ(x) = min{u(y) + θ2Lα(y, x− y) | y ∈ Yβ , |x− y| ≤ δ}

< min{u(y) + θ2Lα(y, x− y) | y ∈ Ω,
δ

2
≤ |y − x| ≤ δ},

and therefore,

fαβ(x) = min{u(y) + θ2Lα(y, x− y) | y ∈ Yβ , |x− y| ≤
δ

2
}.

Accordingly, we have for all (x, z) ∈ ∆(δ/4),

fαβ(x) = min{u(y) + θ2Lα(y, x− y) | y ∈ Yβ , |y − z| ≤ 3δ/4}, (5.14)

since B(x, δ/2) ⊂ B(z, 3δ/4) ⊂ B(x, δ), and moreover,

fαβ(x) − fαβ(z) = min{u(y) + θ2Lα(y, x− y) | y ∈ Yβ , |y − z| ≤ 3δ/4}

−min{u(y) + θ2Lα(y, z − y) | y ∈ Yβ , |y − z| ≤ 3δ/4}

≤ max{θ2(Lα(y, x− y) − Lα(y, z − y)) | y ∈ Yβ , |y − z| ≤ 3δ/4}

≤ θ2α|x− z|,
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which shows that fαβ is Lipschitz continuous on Ω.

Next we want to show that

Dfαβ(x) ∈ θ3Zα(x) a.e. x ∈ Ω.

Using (5.14), the finiteness of the set Yβ , and (2.15), in view of Lemmas
3.2 and 3.3 we get

Dfαβ(x) ∈ θ2{DξLα(y, x− y) | y ∈ Yβ , |y − x| ≤ δ}

⊂
⋃ {

θ2 [Zα(y) ∩ ∂ ( coZα(y))] | y ∈ Yβ ∩B(x, δ)
}

⊂ θ3Zα(x) a.e. x ∈ Ω.

Finally we set

g(x) = θ−3(fαβ(x) − ε) for all x ∈ Ω.

Then

g(x) ≤ θ−3u(x) ≤ u(x) for all x ∈ Ω.

On the other hand, we have

g(x) ≥ θ−3(f(x) + ε) − 2εθ−3

≥ u(x) − 2εθ−3 for all x ∈ Ω.

Thus, we see that for each ε > 0 there is a function v ∈ Lip(Ω) such that

v(x) ≤ u(x) for all x ∈ Ω,
v(x) + ε > u(x) for all x ∈ Ω,
Dv(x) ∈ Z(x) a.e. x ∈ Ω.

As an easy consequence, we get

u(x) = sup{v(x) | v ∈ Lip(Ω), v ≤ u on Ω, Dv(y) ∈ Z(y) a.e. y ∈ Ω}

for all x ∈ Ω, which concludes the proof. ut

6. Examples

We examine a few cases of Hamilton-Jacobi equations

H(x, u(x), Du(x)) = 0 in Ω,

for which either of Theorems 2.1 or 2.3 is applied.
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6.1. Examples in view of Theorem 2.1

First we consider the case when H ∈ C(Ω ×R×Rn) satisfies:





for any r ∈ R,

lim
R→∞

inf{H(x, r, p) | x ∈ Rn, p ∈ Rn \B(0, R)} = ∞.
(6.1)

As in section 2 we define

Z(x, r) = {p ∈ Rn | H(x, r, p) ≤ 0} for (x, r) ∈ Ω ×R.

Propostion 6.1. Assume that (2.3) and (6.1) hold and that Ω is bounded.
Then the collection {Z(x, r) | (x, r) ∈ Ω ×R} satisfies (2.9)–(2.12).

Proof. As noted in section 2, since for each (x, p) ∈ Ω ×Rn the function :
r 7→ H(x, r, p) is non-decreasing on R, we deduce that (2.9) is satisfied.

Next we show that H satisfies condition (2.10). To this end we prove the
following assertion (6.2) which is stronger than (2.10).





for each M > 0 there are a modulus σM and a constant
εM > 0 such that for any ε ∈ (0, εM ], (x, y) ∈ ∆(ε), and
r ∈ [−M,M ],

Z(x, r) +B(0, ε) ⊂ Z(y, r − σM (ε)).

(6.2)

Fix M > 0 and, in view of (6.1), choose ρ > 0 so that

H(x,−M − 1, p) > 0 for all (x, p) ∈ Ω × (Rn \B(0, ρ)).

Then, in view of the monotonicity of H(x, r, p) in r, we have

H(x, r, p) > 0 for all (x, r, p) ∈ Ω × [−M − 1,∞) × (Rn \B(0, ρ)).

Moreover, for (x, r) ∈ Ω × [−M − 1,∞), we have

Z(x, r) = Zρ(x, r).

Now, since H is uniformly continuous on Ω× [−M −1,M ]×B(0, ρ+1),
there is a modulus ω such that for all x, y ∈ Ω, r ∈ [−M − 1,M ], and
p, q ∈ B(0, ρ+ 1),

|H(x, r, p) −H(y, r, q)| ≤ ω(|x− y| + |p− q|). (6.3)

Define the modulus σM by σM (t) = λ−1
M+1ω(2t), and choose a constant

εM ∈ (0, 1] so that σM (εM ) ≤ 1.
Let ε ∈ (0, εM ], (x, r) ∈ Ω × [−M,M ], y ∈ Ω ∩B(x, ε), p ∈ Z(x, r), and

q ∈ B(0, ε). Using (2.3) and (6.3), we compute that

H(y, r − σM (ε), p+ q) ≤ −λM+1σM (ε) +H(y, r, p+ q)

≤ −ω(2ε) +H(x, r, p) + ω(|x− y| + |q|)

≤ −ω(2ε) + ω(2ε) = 0,
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and conclude that p+ q ∈ Z(y, r − σM (ε)), which shows that (6.2) holds.
Let σM be the moduli and εM > 0 be the constants from (6.2). From

(6.2), we see that for any M > 0, ε ∈ (0, εM ], (x, y) ∈ ∆(ε), and r ∈
[−M,M ], we have

K(x, r) +B(0, ε) = co [Z(x, r) +B(0, ε)]

⊂ coZ(y, r − σM (ε)) = K(y, r − σM (ε)).

This shows that (2.11) is satisfied with our Z(x, r).
Let M > 0, and ρ > 0 be a constant fixed as above. For (x, r) ∈ Ω ×

[−M,M ], since

Z(x, r) ⊂ B(0, ρ),

we have

K(x, r) = coZ(x, r) = coZρ(x, r),

which shows together with (2.9) that (2.12) holds. ut

Next we consider the case when H ∈ C(Ω × R × Rn) satisfies the
condition:





for each M > 0 there is a modulus ωM such that for any
x, y ∈ Ω, r ∈ [−M,M ], and p, q ∈ Rn,

|H(x, r, p) −H(y, r, q)| ≤ ωM (|x− y| + |p− q|).

(6.4)

Observe that if G ∈ C(R × Rn), f ∈ C(Ω), and for each M > 0 the
function G is uniformly continuous on [−M,M ] ×Rn, then the function

H(x, r, p) = G(r, p) − f(x)

satisfies (6.4).

Propostion 6.2. Assume that H ∈ C(Ω × R × Rn) satisfies (2.3) and
(6.4) and that Ω is bounded. Then the collection {Z(x, r) | (x, r) ∈ Ω×Rn}
satisfies (2.9)–(2.12).

Proof. Arguments parallel to the proof of Proposition 6.1 guarantee that
(2.9), (2.10), and (6.2) hold with our current Z(x, r). Therefore, (2.9)–(2.11)
hold.

We intend to show that (2.12) holds. Fix ε > 0 and R > 0. We are going
to prove that there is a constant ρ > 0 such that for all (x, r) ∈ Rn×[−R,R],

KR(x, r) ⊂ coZρ(x, r − 4ε).

Here we may assume that 4ε < 1.
By virtue of (6.2), we can choose a constant δ ∈ (0, 1) so that for all

(x, y) ∈ ∆(δ) and r ∈ [−R− 1, R+ 1],

Z(x, r) +B(0, δ) ⊂ Z(y, r − ε).
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By a compactness argument, we can choose a finite sequence X :=
{x1, ..., xN} ⊂ Ω such that for each x ∈ Ω there is an xi ∈ X such that for
any r ∈ [−R− 1, R],

Z(x, r) ⊂ Z(xi, r − ε), Z(xi, r) +B(0, δ) ⊂ Z(x, r − ε). (6.5)

We select a finite sequence T := {t1, ..., tM} ⊂ [−R − 1, R + 1] so that
−R − 1 = t1 ≤ t2 ≤ · · · ≤ tM = R and ti+1 − ti ≤ ε for all i = 1, 2, ...,M .
We may assume by relabeling (for instance, by counting some of elements
multiply) either X or T that M = N .

Fix (x, t) ∈ Ω × [−R,R]. Choose xi ∈ X and tj ∈ T so that (6.5) holds
for all r ∈ [−R− 1, R+ 1] and t ≥ tj ≥ t− 2ε. Observe that

KR(x, t) ⊂ KR(xi, t− ε) ⊂ KR(xi, tj − ε). (6.6)

Fix (i, j) ∈ {1, ..., N}2. Since KR(xi, tj) is compact, we can select a finite
sequence {p1, ..., pL} ⊂ KR(xi, tj − ε) so that

KR(xi, tj − ε) ⊂
L⋃

k=1

B(pk, δ/2). (6.7)

For each k ∈ {1, ..., L} we choose finite sequences {pk1, ..., pkm} ⊂ Z(xi, tj −
ε) and {λk1, ..., λkm} ⊂ [0, 1] so that

∣∣∣pk −
m∑

α=1

λkαpkα

∣∣∣ ≤ δ

2
,

m∑

α=1

λkα = 1.

Set ρk = max{|pk1|, ..., |pkm|}. Then we have

m∑

α=1

λkαpkα ∈ coZρk
(xi, tj − ε),

and hence,
pk ∈ coZρk

(xi, tj − ε) +B(0, δ/2).

Recalling that the ρi depend on i, j, we set ρij = max{ρ1, ..., ρL}. Then,
using (6.7) and (6.5), we get

KR(xi, tj − ε) ⊂ coZρij
(xi, tj − ε) +B(0, δ) ⊂ coZρij+1(x, tj − 2ε).

Furthermore, setting ρ = max{ρij | i, j = 1, ..., N} + 1 and using (6.6), we
have

KR(x, t) ⊂ coZρ(x, tj − 2ε) ⊂ coZρ(x, t− 4ε),

which completes the proof. ut
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6.2. Examples in view of Theorem 2.3

Let H ∈ C(Rn) and consider the Hamilton-Jacobi equation

H(Du(x)) = 0 in Ω.

As usual we define

Z = {p ∈ Rn | H(p) ≤ 0}.

Assume that

int coZ 6= ∅. (6.8)

We fix a point p̄ ∈ Rn and a constant γ > 0 so that B(p̄, γ) ⊂ coZ.
We now assume that





there are a constant λ0 ∈ (0, 1) and an integer k0 ∈ N such
that for each integer k ≥ k0 and each point p ∈ Z ∩∂[ coZ ∩
B(p̄, k)] the function : t 7→ H(tp+(1− t)p̄) is non-decreasing
on (λ0, 1].

(6.9)

We define

Z̄ = Z − p̄,

K̄ = K − p̄ (= co Z̄),

L̄(ξ) = L(ξ) − p̄ · ξ

for x ∈ Ω and ξ ∈ Rn.

Propostion 6.3. Assume that (6.8) and (6.9) hold. Then (2.14) and (2.15)
hold with Z̄ and K̄ in place of Z(x) and K(x), respectively.

Proof. It is obvious that (2.14) holds with Z(x) = Z̄.
Now let k0 ∈ N and λ0 ∈ (0, 1) be from (6.9). For any integer k ≥ k0 ∈

N, any point p ∈ Z̄ ∩ ∂[ co Z̄ ∩ B(0, k)], and any t ∈ (λ0, 1], we have

p̄+ p ∈ Z ∩ ∂[Z ∩ B(p̄, k)],

and we know from (6.9) that the function: t 7→ H(tp+ p̄) is non-decreasing
on (λ0, 1] and therefore,

tp+ p̄ ∈ Z.

That is, for any k ≥ k0, p ∈ Z̄ ∩ ∂[ co Z̄ ∩ B(0, k)], and t ∈ (λ0, 1], we have
p ∈ t−1Z̄, which shows that (2.15) holds with Z(x) = Z̄. ut

Let u ∈ C(Ω) satisfy

D+u(x) ⊂ K for all x ∈ Ω.

Set

ū(x) = u(x) − p̄ · x for all x ∈ Ω.
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Then we have

D+ū(x) = D+u(x) − p̄ ⊂ K̄ for all x ∈ Ω.

On the other hand, if θ > 1, δ > 0, (x, y) ∈ ∆(δ), and

u(x) − u(y) ≤ θL(y, x− y),

then we have

ū(x) − ū(y) ≤ θL̄(y, x− y) + (θ − 1)p̄ · (x− y)

≤ θL̄(y, x− y) + (θ − 1)|p̄||x− y|

≤
(
θ + γ−1(θ − 1)|p̄|

)
L̄(y, x− y).

These observations together with Proposition 6.3 and Theorem 2.3 yield
the following proposition.

Propostion 6.4. Assume that Ω is bounded and that (6.8) and (6.9) hold.
Let u ∈ C(Ω) satisfy

D+u(x) ⊂ K for all x ∈ Ω.

Assume also that (2.16) holds with L(x) = L. Then

u(x) = sup{v(x) | v ∈ Lip(Ω), v ≤ u on Ω, Dv(y) ∈ Z a.e. y ∈ Ω}

for all x ∈ Ω.

Now let H ∈ C(Ω ×Rn) and consider the Hamilton-Jacobi equation

H(x,Du(x)) = 0 in Ω.

Define

Z(x) = {p ∈ Rn | H(x, p) ≤ 0}, K(x) = coZ(x) for x ∈ Ω.

Assume that Ω is bounded and that

{
there is a function ψ ∈ C1(Ω) such that

H(x,Dψ(x)) < 0 for all x ∈ Ω.
(6.10)

lim
R→∞

inf{H(x, p) | (x, p) ∈ Ω × (Rn \B(0, R))} > 0. (6.11)

From these assumptions, we see that there are constants 0 < γ < R <∞
such that

B(Dψ(x), γ) ⊂ Z(x) ⊂ B(Dψ(x), R) for all x ∈ Ω. (6.12)

We now assume that
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



there is a constant θ0 > 1 and for each θ ∈ (1, θ0) a constant
η ≡ η(θ) > 0 such that for all points x ∈ Ω and p ∈ Z(x) ∩
∂K(x),

H(x, θ−1p+ (1 − θ−1)Dψ(x)) ≤ −η.

(6.13)

We set

Z̄(x) = Z(x) −Dψ(x), K̄(x) = K(x) −Dψ(x)

for x ∈ Ω.

Propostion 6.5. Assume that Ω is bounded and that (6.10), (6.11), and
(6.13) hold. Then (2.14) and (2.15) hold with Z̄(x) and K̄(x) in place of
Z(x) and K(x), respectively.

Proof. We have already seen in (6.12) that (2.14) holds with K̄(x) in place
of K(x).

To see (2.15), with Z̄(x) in place of Z(x), fix any θ ∈ (1, θ0), and choose
a δ > 0 so that for all (x, y) ∈ ∆(δ), p ∈ B(0, R),

|H(x,Dψ(x) + p) −H(y,Dψ(y) + p)| ≤ η(θ),

where R and η(θ) are constants from (6.12) and (6.13), respectively. Fix
any points x ∈ Ω and p ∈ Z̄(x) ∩ ∂K̄(x), and observe that

Dψ(x) + p ∈ Z(x) ∩ ∂K(x),

and hence, according to (6.13), H(x, θ−1p + Dψ(x)) ≤ −η(θ). Now, let
y ∈ Ω satisfy |x− y| ≤ δ. Then we have

H(y,Dψ(y) + θ−1p) ≤ H(x,Dψ(x) + θ−1p) + η(θ) ≤ 0,

and therefore,
θ−1p+Dψ(y) ∈ Z(y).

That is, for any (x, y) ∈ ∆(δ), p ∈ Z̄(x) ∩ ∂[ co Z̄(x)], and θ ∈ (1, θ0), we
have p ∈ θZ̄(y), which shows that (2.15) holds with Z(x) replaced by Z̄(x).
ut

Now, the following proposition is an easy consequence of Theorem 2.3
and Proposition 6.5, as so was Proposition 6.4 from Theorem 2.3 and Propo-
sition 6.3.

Propostion 6.6. Assume that Ω is bounded and that (6.10), (6.11), and
(6.13) hold. Let u ∈ C(Ω) satisfy

D+u(x) ⊂ K(x) for all x ∈ Ω.

Assume that (2.16) holds. Then

u(x) = sup{v(x) | v ∈ Lip(Ω), v ≤ u on Ω, Dv(y) ∈ Z(y) a.e. y ∈ Ω}

for all x ∈ Ω.
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7. Cauchy problem

In this section, as a typical case of unbounded domains we discuss the
Cauchy problem

ut(x, t) +H(x,Dxu(x, t)) = 0 for (x, t) ∈ Rn × (0, T ) (7.1)

with initial condition

u(x, 0) = g(x) for x ∈ Rn, (7.2)

where T ∈ (0,∞) is a given constant, g is a given continuous function on
Rn, and Dxu denotes the spatial gradient, (∂u/∂x1, ..., ∂u/∂xn), of u.

We use in this section the notation: for δ > 0,

∆(δ) = {(x, y) ∈ R2n | |x− y| ≤ δ}.

We assume that

H ∈ C(R2n), (7.3)

lim
R→∞

inf
{H(x, p)

|p|
| (x, p) ∈ Rn × (Rn \B(0, R))

}
= ∞, (7.4)

and

H ∈ BUC(Rn ×B(0, R)) for all R > 0. (7.5)

We remark that conditions (7.4) and (7.5) imply that there are convex
functions H1, H2 ∈ C(Rn) such that

H1(p) ≤ H(x, p) ≤ H2(p) for all (x, p) ∈ R2n, (7.6)

lim
|p|→∞

Hi(p)

|p|
= ∞ for i = 1, 2. (7.7)

We introduce the sets Z(x, r), K(x, r) ⊂ Rn+1, with (x, r) ∈ Rn × R,
by

Z(x, r) = {(p, q) ∈ Rn×R | q+H(x, p) ≤ r} and K(x, r) = coZ(x, r).

Note that this notation differs from that of previous sections.
A natural inclusion associated with (7.1), i.e. the relaxed problem, is

D+u(x, t) ⊂ K(x, 0) for (x, t) ∈ Rn × (0, T ), (7.8)

where the superdifferential D+u of u is taken with respect to (x, t).

Let Ĥ denote the function on R2n such that for each x ∈ Rn the function
Ĥ(x, ·) is the convex envelope of the function H(x, ·). That is,

Ĥ(x, p) = sup{a · p+ b | (a, b) ∈ Rn ×R, a · q + b ≤ H(q) for all q ∈ Rn}.
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Observe that

H1(p) ≤ Ĥ(x, p) ≤ H2(p) for (x, p) ∈ R2n, (7.9)

and that
Ĥ ∈ BUC(Rn ×B(0, R)) for all R > 0. (7.10)

Noting that for all (x, r) ∈ Rn+1,

K(x, r) = {(p, q) ∈ Rn+1 | q + Ĥ(x, p) ≤ r},

we see that inclusion (7.8) for u ∈ C(Rn × (0, T )) is equivalent to saying
that u is a viscosity subsolution of

ut(x, t) + Ĥ(x,Dxu(x, t)) = 0 for (x, t) ∈ Rn × (0, T ). (7.11)

The main result in this section is the following:

Theorem 7.1. Assume that (7.3)–(7.5) hold. Let u ∈ BUC(Rn × (0, T )).
Assume that u is a viscosity subsolution of (7.11). Then, for all (x, t) ∈
Rn × (0, T ),

u(x, t) = sup{v(x, t) | v ∈ Lip(Rn × (0, T )), v ≤ u in Rn × (0, T ),

vs(y, s) +H(y,Dyv(y, s)) ≤ 0 a.e. Rn × (0, T )}. (7.12)

Recalling (see, for instance, [1]) that the Cauchy problem (7.11) and (7.2)
has a unique viscosity solution in BUC(Rn×[0, T )) provided g ∈ BUC(Rn),
we state:

Corollary 7.2. Assume that g ∈ BUC(Rn) and that (7.3)–(7.5) hold. Let
u ∈ BUC(Rn × [0, T )) be the viscosity solution of (7.11) satisfying (7.2).
Then for all (x, t) ∈ Rn × (0, T ),

u(x, t) = sup{v(x, t) | v ∈ Lip(Rn × [0, T )), v(·, 0) ≤ g on Rn,

vs(y, s) +H(y,Dyv(y, s)) ≤ 0 a.e. Rn × (0, T )}. (7.13)

Proof. We write w(x, t) for the right hand side of (7.13). Theorem 7.1
yields that u ≤ w on Rn × (0, T ). Let v ∈ Lip(Rn × [0, T )) be a function
which satisfies

vt(x, t) +H(x,Dxv(x, t)) ≤ 0 a.e. Rn × (0, T )

and v(·, 0) ≤ g on Rn. Then, since Ĥ ≤ H , it is clear that

vt(x, t) + Ĥ(x,Dxv(x, t)) ≤ 0 a.e. Rn × (0, T ).

Since Ĥ(x, ·) is convex, as is well-known, v is a viscosity subsolution of
(7.11). By comparison, we have v ≤ u on Rn × (0, T ), from which we see
that w ≤ u on Rn × (0, T ). Thus we have u = w on Rn × (0, T ). ut

We need the following two lemmas.
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Lemma 7.3. Assume that (7.3)–(7.5) hold. For any R > 0 and ε > 0 there
exist constants δ > 0 depending only on ε and the modulus of continuity of
H on Rn ×B(0, R+ 1) such that for any (x, y) ∈ ∆(δ),

ZR(x, 0) +B(0, δ) ⊂ ZR+1(y, ε), (7.14)

where ZL(x, r) = Z(x, r) ∩ B(0, L).

Proof. Fix ε > 0 and R > 0. Let ω denote the modulus of continuity of H
on Rn ×B(0, R+ 1).

Fix a constant δ > 0 so that δ+ω(2δ) ≤ min{ε, 1}. Fix (ξ, η) ∈ B(0, δ),
(x, y) ∈ R2n so that |x− y| ≤ δ, and (p, q) ∈ ZR(x, 0).

Noting that |p+ ξ| ≤ R+ 1, we compute that

q + η +H(y, p+ ξ) ≤ q +H(x, p) + η + ω(|x− y| + |ξ|) ≤ δ + ω(2δ) ≤ ε,

and hence that
(p+ ξ, q + η) ∈ ZR+1(y, ε),

which finishes the proof. ut

Lemma 7.4. Assume that (7.3)–(7.5) hold. For any R > 0 and ε > 0 there
exist constants δ > 0 and ρ > 0 depending only on R, ε, the modulus of
continuity of Ĥ on Rn × B(0, R + 1), and Hi, with i = 1, 2, where Hi are
from (7.6), such that for any (x, y) ∈ ∆(δ),

KR(x, 0) ⊂ coZρ(y, ε), (7.15)

where KR(x, r) = K(x, r) ∩ B(0, R).

Proof. Fix R > 0. We first prove that there is a constant ρ > 0 depending
only on R and Hi, with i = 1, 2, such that for all x ∈ Rn,

KR(x, 0) ⊂ coZρ(x, 0). (7.16)

To see this, we fix x ∈ Rn and (p̄, q̄) ∈ KR(x, 0). Choose (a, b) ∈ Rn+1

so that

a · p̄+ b = Ĥ(x, p̄),

a · p+ b ≤ Ĥ(x, p) for all p ∈ Rn.

Setting
B = {p ∈ Rn | H(x, p) = a · p+ b},

we claim that
p̄ ∈ coB. (7.17)

If this is not the case, from the separation theorem, we see that there is a
(α, β) ∈ Rn+1 such that

α · p+ β < 0 < α · p̄+ β for all p ∈ coB.
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Choosing ε > 0 small enough, in view of (7.4), we have

ε(α · p+ β) ≤ H(x, p) − a · p− b for all p ∈ Rn.

Hence we have

Ĥ(x, p) ≥ (a+ εα) · p+ b+ εβ for all p ∈ Rn,

and consequently,

Ĥ(x, p̂) ≥ (a+ εα) · p̄+ β + εβ = Ĥ(x, p̂) + ε(α · p̄+ β),

which yields a contradiction, α · p̄+ β ≤ 0, proving (7.17).
Next, we wish to show that there is a constant lR > 0 depending only

on R > 0 and Hi, with i = 1, 2, such that

|a| + |b| ≤ lR. (7.18)

Indeed, if a 6= 0, then, since

Ĥ(x, p̄+
a

|a|
) ≥ a · (p̄+

a

|a|
) + b = Ĥ(x, p̄) + |a|,

we have
|a| ≤ max

B(0,R+1)
H2 − min

B(0,R)
H1.

Therefore, noting that

|b| ≤ |Ĥ(x, p̄)| + |a · p̄|,

we conclude that (7.18) holds for some constant lR depending only on R > 0
and Hi, with i = 1, 2.

Now, we show that there is a constant mR > 0 depending only on R > 0
and Hi, with i = 1, 2, such that

B ⊂ B(0,mR).

To see this, fix any p ∈ B and observe that

H1(p) ≤ H(x, p) = a · p+ b,

and
H1(p)

|p| + 1
≤ |a| + |b| ≤ lR.

In view of (7.7), we find a constant mR > 0 depending only on R and Hi,
with i = 1, 2, such that B ⊂ B(0,mR).

Now that p̄ ∈ coB, there are points p1, ..., pm ∈ B ⊂ B(0,mR) and
positive numbers λ1, ..., λm, with m ∈ N, such that

p̄ =
m∑

i=1

λipi and
m∑

i=1

λi = 1.
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Note that
(pi, H(x, pi)) ∈ Z(x, 0) for all i = 1, ...,m,

and that

Ĥ(x, p̄) = a · p̄+ b =

m∑

i=1

λi(a · pi + b) =

m∑

i=1

λiH(x, pi).

This last equality shows that

(p̄, Ĥ(x, p̄)) =
∑

i=1

λi(pi, H(x, pi))

∈ co {(p, q) ∈ Z(x, 0) | p ∈ B(0,mR), |q| ≤MR},

where MR := maxB(0,R)(|H1| + |H2|). Since q̄ ≤ Ĥ(x, p̄), in view of the
property that for any r > 0, Z(x, 0) + (0,−r) = Z(x,−r) ⊂ Z(x, 0), then
(p, q − r) ∈ Z(x, 0), we see that

(p̄, q̄) = (p̄, Ĥ(x, p̄)) + (0, q̄ − Ĥ(x, p̄))

∈ co {(p, q) ∈ Z(x, 0) | p ∈ B(0,mR), |q| ≤ 2MR +R}.

Here we have used the estimate

|q̄ − Ĥ(x, p̄)| ≤ |q̄| + |Ĥ(x, p̄)| ≤ R+MR.

Thus we have shown that (7.16) holds with ρ = mR + 2MR +R.

Now, we observe that Lemma 7.3, with Ĥ in place ofH , yields that there
is a constant δ > 0 depending only on ε and the modulus of continuity of
H on Rn ×B(0, R+ 1) such that for all (x, y) ∈ ∆(δ),

KR(x, 0) ⊂ KR+1(y, ε),

which obviously implies that

KR(x, 0) ⊂ KR(y, ε).

This combined with (7.16) yields that for all (x, y) ∈ ∆(δ),

KR(x, 0) ⊂ KR(y, ε) = KR(y, 0)+(0, ε) ⊂ coZρ(y, 0)+(0, ε) = coZρ(y, ε),

completing the proof. ut

Proof of Theorem 7.1. We first show that we may assume that u is
defined and bounded Lipschitz continuous on Rn × (−δ, T + δ) for some
constant δ > 0 and that

ut(x, t) + Ĥ(x,Dxu(x, t)) ≤ 0 in Rn × (−δ, T + δ) (7.19)

in the viscosity sense. Indeed, we have

u(x, t) = sup{v(x, t) | v ∈ Lip(Rn × (−δ, T + δ)) for some δ > 0,

v is a viscosity solution of (7.19), v ≤ u on Rn × (0, T )}. (7.20)
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To see this, we solve the Cauchy problem

wt(x, t) + Ĥ(x,Dxw(x, t)) ≤ 0 in Rn × (T, T + 1)

with the initial condition

w(x, T ) = lim
t↗T

u(x, t) for x ∈ Rn. (7.21)

Due to [1], there is a unique viscosity solution w ∈ BUC(Rn× [T, T+1)) for
which (7.21) holds. We extend the domain of definition of w to Rn×(0, T+1)
by setting

w(x, t) = u(x, t) for (x, t) ∈ Rn × (0, T ).

It is easy to see that w ∈ BUC(Rn × (0, T + 1)), and moreover it is rather
standard to see that w is a viscosity subsolution of

wt(x, t) + Ĥ(x,Dxw(x, t)) = 0 for (x, t) ∈ Rn × (0, T + 1).

Fix any ε > 0. Since w ∈ BUC(Rn × (0, T + 1)), there is a constant
δ ∈ (0, 1/2) such that

u(x, t) − 2ε = w(x, t) − 2ε ≤ w(x, t− δ) − ε

≤ w(x, t) = u(x, t) for all (x, t) ∈ Rn × (0, T ). (7.22)

It is clear that the function z(x, t) := w(x, t−δ)−2ε is defined and bounded
continuous on Rn × (−δ, T + δ) and a viscosity solution of (7.19).

The next step is to take the sup-convolution of z in the t variable. That
is, for γ > 0, we consider the function

zγ(x, t) = sup{z(x, s) −
1

2γ
(t− s)2 | s ∈ (−δ, T + δ)} for (x, t) ∈ Rn+1.

If γ > 0 is small enough, then zγ is a viscosity solution of (7.19) in Rn ×
(−δ/2, T + δ/2) and

z(x, t) ≤ zγ(x, t) ≤ z(x, t) + ε for all (x, t) ∈ Rn × (−δ, T + δ). (7.23)

Also, for each γ > 0, the collection of functions zγ(x, ·), with x ∈ Rn, is
equi-Lipschitz continuous on (−δ/2, T + δ/2). Since

H1(Dxz
γ(x, t)) ≤ Lγ for (x, t) ∈ Rn × (−δ/2, T + δ/2)

in the viscosity sense, where Lγ > 0 is a uniform Lipschitz bound of the
functions zγ(x, ·) on (−δ/2, T + δ/2), we see that the functions zγ(·, t) are
Lipschitz continuous on Rn with a Lipschitz bound independent of t ∈
(−δ/2, T + δ/2).

Now, writing U(x, t) for the right hand side of (7.20), using (7.22) and
(7.23), we see that for sufficiently small γ > 0 and for all (x, t) ∈ Rn×(0, T ),
we have

u(x, t) ≥ z(x, t) + ε ≥ zγ(x, t),
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and hence,
U(x, t) ≥ zγ(x, t) ≥ z(x, t) ≥ u(x, t) − 3ε,

proving (7.20).
In what follows we assume that u ∈ Lip(Rn×(−δ, T+δ)) and it satisfies

(7.19) in the viscosity sense.
We now follow the line of arguments in the proof of Theorem 4.1. It is

worth mentioning that conditions (7.14) and (7.15) in the proof below are
somehow similar to (4.1) and (2.12) in the proof of Theorem 4.1.

Let R > 0 be a Lipschitz bound of the function u. Fix any ε > 0.
Thanks to Lemma 7.4, there are constants ρ > 0 and γ > 0 such that for
any (x, y) ∈ ∆(γ),

KR(x, 0) ⊂ coZρ(y, ε),

which implies that for all r ∈ R,

KR(x, r) ⊂ coZρ(y, r + ε).

We reselect γ > 0 so that for any (x, y) ∈ ∆(3(ρ+ 1)γ),

KR(x, r) ⊂ coZρ(y, r + ε). (7.24)

Lemma 7.3 guarantees that we may assume that for all r ∈ R and
(x, y) ∈ ∆(3(ρ+ 1)γ),

Zρ(x, r) +B(0, γ) ⊂ Zρ+1(y, r + ε). (7.25)

Let µ ∈ (0, γ) be a constant to be fixed later. Choose a set Yµ ⊂ Rn ×
(−δ, T + δ) so that

#(Yµ ∩ B(0, L)) <∞ for all L > 0,

and ⋃

(y,s)∈Yµ

B(y, s;µ) ⊃ Rn × (−δ, T + δ).

We write Q = Rn × (0, T ) and Qδ = Rn × (−δ, T + δ). We set

L(ξ, η; y) = sup{ξ · p+ ηq | (p, q) ∈ Zρ(y, ε) +B(0, γ)}

for ξ, y ∈ Rn and η ∈ R and

v(x, t; y, s) = u(y, s) + L(x− y, t− s; y)

for (x, t) ∈ Qδ and (y, s) ∈ Yµ.
We set β = (ρ + 1)γ. By Lemma 3.1, we have for all (x, t) ∈ Qδ and

(y, s) ∈ Yµ ∩ B(x, t; 3β),

u(x, t) + γ(|x− y|2 + (t− s)2)1/2 ≤ v(x, t; y, s), (7.26)

since
D+u(x, t) ⊂ KR(x, 0) ⊂ coZρ(y, ε)
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by (7.24).
Note that the functions v(·; y, s) are Lipschitz continuous with ρ+ 1 as

a Lipschitz bound.
Also, we observe that for all (x, t) ∈ Qδ and (y, s) ∈ Yµ ∩ B(x, t; 3β), if

the function v(·; y, s) is differentiable at (x, t), then

Dv(x, t; y, s) ∈ Zρ(y, ε) +B(0, γ) ⊂ Zρ+1(x, 2ε),

by (7.25), i.e.,

vt(x, t; y, s) +H(x,Dxv(x, t; y, s)) ≤ 2ε. (7.27)

Consequently, for any (y, s) ∈ Yµ, we have

vt(x, t; y, s) +H(x,Dxv(x, t; y, s)) ≤ 2ε a.e. (x, t) ∈ Qδ ∩ B(y, s; 3β).

We define v : Q→ R by

v(x, t) = min{v(x, t; y, s) | (y, s) ∈ Yµ ∩ B(x, t; 3β)}.

By reselecting γ > 0 if necessary, we may assume that 3β ≤ δ. We fix
µ ∈ (0, γ) so that (2ρ+ 1)µ < min{γβ, ε}.

Fix any (x̄, t̄) ∈ Q. We show that for all (x, t) ∈ B(x̄, t̄;β) ∩Q,

v(x, t) = min{v(x, t; y, s) | (y, s) ∈ Yµ ∩ B(x̄, t̄; 2β)}, (7.28)

which guarantees that v is Lipschitz continuous on B(x̄, t̄;β)∩Q, with ρ+1
as a Lipschitz bound, and that

vt(x, t) +H(x,Dxv(x, t)) ≤ 2ε a.e. (x, t) ∈ B(x̄, t̄;β) ∩Q.

These show immediately that v is a Lipschitz continuous function on Q and
satisfies

vt(x, t) +H(x,Dxv(x, t)) ≤ 2ε a.e. (x, t) ∈ Q.

To see (7.28), fix any (x, t) ∈ B(x̄, t̄;β) ∩ Q and write w(x, t) for the
right hand side of (7.28).

Since B(x̄, t̄; 2β) ⊂ B(x, t; 3β), we see that v(x, t) ≤ w(x, t).
We note that Yµ ∩ B(x, t;β) 6= ∅ and recall that u and L(·; y, s) are

Lipschitz continuous with R and ρ + 1 as their Lipschitz bounds, which
yields that for any (y, s) ∈ Yµ ∩ B(x, t;β),

v(x, t) ≤ u(y, s) + L(x− y, t− s; y) ≤ u(x, t) +Rµ+ (ρ+ 1)µ

≤ u(x, t) + (2ρ+ 1)µ. (7.29)

On the other hand, from (7.26) we see that for all (y, s) ∈ Yµ∩ (B(x, t; 3β)\
B(x, t;β)),

v(x, t; y, s) ≥ u(x, t) + γβ.

Since (2ρ+ 1)µ < γβ, from what we just observed, we have

v(x, t) = min{v(x, t; y, s) | (y, s) ∈ Yµ ∩B(x, t;β)}.
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Noting that B(x, r;β) ⊂ B(x̄, t̄; 2β), we see that

v(x, t) ≥ min{v(x, t; y, s) | (y, s) ∈ Yµ ∩ B(x̄, t̄; 2β)} = w(x, t).

Thus we obtain v(x, t) = w(x, t).

From (7.26) and (7.29), we have

u(x, t) ≤ v(x, t) < u(x, t) + ε for (x, t) ∈ Q.

If we set vε(x, t) = v(x, t)−ε(2t+1), then the function vε has the properties:

u(x, t) − ε(2T + 1) ≤ vε(x, t) ≤ u(x, t) for all (x, t) ∈ Q,

vε ∈ Lip(Q),

vε
t (x, t) +H(x,Dxv

ε(x, t)) ≤ 0 a.e. (x, t) ∈ Q.

These show that

u(x, t) = sup{v(x, t) | v ∈ Lip(Q), vt(x, t) +H(x,Dxv(x, t)) ≤ 0 a.e. Q,

v ≤ u on Q},

which completes the proof. ut

8. Appendix

Here we prove the following assertion.

Propostion 8.1. Let Ω be a bounded open subset of RN with Lipschitz
boundary. Then condition (2.13) holds.

Proof. Let Ω ⊂ Rn be an open bounded set with Lipschitz boundary.

It is then immediate to see that for all z ∈ Ω, there exist r > 0 and
v ∈ B(0, 1) such that

B(x + tv, rt) ⊂ Ω for all t ∈ (0, r) and x ∈ Ω ∩ B(z, r).

Next, by the compactness of Ω, there exist finite sequences {zj}N
j=1 ⊂ Ω,

{rj}N
j=1 ⊂ (0,∞), and {vj}N

j=1 ⊂ B(0, 1) such that

Ω ⊂
N⋃

j=1

B(zj ,
rj
4

),

and

B(x+tvj , rjt) ⊂ Ω for all t ∈ (0, rj ], x ∈ Ω∩B(zj , rj), and j ∈ {1, ..., N}.
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By an argument based on a partition of unity, we see that there exists a
sequence {φj}N

j=1 ⊂ C∞
0 (Rn) such that

φj(x) ≥ 0 for all x ∈ Rn and j ∈ {1, ..., N},

sptφj ⊂ B(zj ,
rj
2

) for all j ∈ {1, ..., N},

N∑

j=1

φj(x) = 1 for all x ∈ Ω.

Set

δ = min
j
rj and φ(x) =

N∑

j=1

φj(x)vj for x ∈ Rn.

We now intend to show that

B(x+ tφ(x),
δt

N
) ⊂ Ω for all x ∈ Ω and t ∈ (0,

δ

2
]

Fix x ∈ Ω and 0 < t ≤ δ
2 . By relabeling if needed, we may assume that

φ1(x) > 0, . . . , φm(x) > 0, φm+1(x) = · · · = φN (x) = 0

for some m ∈ {1, . . . , N}.
Set

xk = x+ t
∑

j<k

φj(x)vj ,

for k = 1, 2, . . . ,m. It follows that

|xk − x| ≤ t
∑

j<k

φj(x) ≤ t ≤
δ

2
.

We claim that

xk ∈ Ω for all k = 1, . . . ,m.

To see this, we first note that x1 = x ∈ Ω. Next, assume that xk ∈ Ω for
some k < m. Noting that

x ∈ sptφk ⊂ B(zk,
rk
2

),

we see that

|xk − zk| ≤ |x− zk| + |xk − x| ≤
rk
2

+
δ

2
≤ rk,

and therefore,
B(xk + tφk(x)vk , rktφk(x)) ⊂ Ω,

which shows that
xk+1 = xk + tφk(x)vk ∈ Ω.
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The induction argument now ensures that xk ∈ Ω for all k ≤ m.
Next, note that

x+ tφ(x) = xm + tφm(x)vm.

Since
x ∈ sptφm ⊂ B(zm,

rm
2

),

we get

|xm − zm| ≤ |x− zm| + |xm − x| ≤
δ

2
+
rm
2

≤ rm.

Noting that
xm ∈ Ω ∩ B(zm, rm),

we see that
B(xm + tφm(x)vm, rmtφm(x)) ⊂ Ω.

We may assume
φ1(x) ≤ · · · ≤ φm(x).

Then, since
N∑

j=1

φj(x) = 1,

we have

φm(x) ≥
1

N
.

Hence,

B(x+ tφ(x),
δt

N
) ⊂ Ω.

Thus we have shown that

B(x+ tφ(x),
δt

N
) ⊂ Ω for all x ∈ Ω and t ∈ (0,

δ

2
].

To complete the proof, we let γ > 0, set

ψγ(x) = x+
4γN

δ
φ(x),

and will show that (2.13) holds with an appropriate γ0 > 0.
Since

φ ∈ C∞
0 (Rn,R),

there is a constant M > 0 such that ‖Dφ‖∞ ≤M .
Fix x ∈ Ωγ . There are y ∈ Ω and ζ ∈ B(0, 1) such that x = y + γζ. Let

η ∈ B(0, 1). Then we have

x+ ψγ(x) + γη = y + ψγ(y) + γz,

where

z = ζ + η +
4N

δ
(φ(x) − φ(y)).
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Note that

|z| ≤ 2 +
4MN

δ
|x− y| ≤ 2 +

4γMN

δ
,

and observe that if γ ≤ δ
2MN , then |z| ≤ 2 + 2 = 4, and that if γ ≤

min{ δ
2MN ,

δ2

8N }, then

x+ ψγ(x) + γη = y +
4γN

δ
φ(y) + γz ∈ B

(
y +

4γN

δ
φ(y),

δ

N
·
4γN

δ

)
⊂ Ω.

That is, if

0 < γ ≤ min{
δ

2MN
,
δ2

8N
} and x ∈ Ω

γ
,

then we have
x+ ψγ(x) +B(0, γ) ⊂ Ω,

which guarantees that
x+ ψγ(x) ⊂ Ωγ .

Setting

γ0 = min{
δ

2MN
,
δ2

8N
},

we conclude that

ψγ(Ω
γ
) ⊂ Ωγ for all γ ∈ (0, γ0],

|ψγ(x) − x| =
4γN

δ
|φ(x)| ≤ ‖φ‖∞

4γN

δ
= Cγ,

and

‖Dψγ(x) − I‖ =
4γN

δ
‖Dφ(x)‖ ≤ Cγ.

for some constant C > 0, independent of γ, which completes the proof. ut

The following example gives a Hamiltonian H for which (2.3) and (2.4)
hold, but (2.11) does not hold.

Example 8.2. Consider the case where n = 2, Ω = (−1, 1)× (−1, 1), and

H(x, r, p) = r + min{p2, x1p1 + p2}.

We observe that p ∈ Z(x, r) ≡ {p ∈ R2 | H(x, r, p) ≤ 0} if and only if
p2 ≤ −r or p2 ≤ −r − x1p1. Hence

Z(x, r) =





Z+(x1, r) if x1 > 0,

R× (−∞,−r] if x1 = 0,

Z−(x1, r) if x1 < 0,

where

Z+(x1, r) = {p ∈ (−∞, 0] ×R | p2 ≤ −r − x1p1} ∪ ((0,∞) × (−∞,−r]),

Z−(x1, r) = ((−∞, 0] × (−∞,−r]) ∪ {p ∈ (0,∞) ×R | p2 ≤ −r − x1p1}.
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Also, note that

K(x, r) ≡ coZ(x, r) =

{
R2 if x1 6= 0,

R× (−∞,−r] if x1 = 0.

Let R > 0. We have

KR(x, r) ≡ Z(x, r) ∩B(0, R) =

{
B(0, R) if x1 6= 0,

{p ∈ B(0, R) | p2 ≤ −r} if x1 = 0.

Let ε ∈ (0, 1), δ > 0, ρ > 0, and xε = (ε, 0), and observe that

KR(xε, 0) +B(0, ε) = B(0, R+ ε),

and moreover that

KR(xε, 0) +B(0, ε) ⊂ K(0,−δ)

if and only if δ ≥ R + ε. This shows that the collection {K(x, r)} does not
satisfy condition (2.11). On the other hand, the Hamiltonian H satisfies
conditions (2.3) and (2.4).
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