
Lecture notes on the weak KAM theorem

Hitoshi Ishii*

The following notes are based on the lectures which I delivered at Hokkaido Univer-

sity for the period, July 20 to July 23, 2004. Part of notes has not completed yet. They

may serve as an introduction to the lecture notes [Fa2] due to A. Fathi.

1. Lagrangians and Hamiltonians:
conjugate functions of convex functions

Let L : Tn × Rn → R be given, where Tn denotes the n-dimensional torus. We

assume throughout these notes:

• L ∈ C2(Tn ×Rn).

• v 7→ L(x, v) is locally uniformly convex. More precisely, for each R > 0 there is a

constant εR > 0 such that

Lvv(x, v) ≥ εRI if |v| ≤ R,

where I denotes the unit matrix of order n.

• L has a superlinear growth. That is,

lim
r→∞

inf{L(x, v)/|v| | |v| ≥ r} = ∞.

Here and henceforth we write Lvv(x, v) for the Hessian matrix (Lvivj (x, v)). Simi-

larly we write Lv(x, v) for the gradient (Lvi(x, v)), Lx(x, v) for (Lxi(x, v)), etc.

We define the conjugate function H : Tn ×Rn of L by

H(x, p) = sup
v∈Rn

(p · v − L(x, v)).

Here p · v denotes the Euclidean inner product of p and v, which may be denoted as

well by pv in what follows.

* Supported in part by the Grant-in-Aids for Scientific Research, JSPS, No. 15340051, No. 18204009.
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When we have in mind the variational problem

inf
γ

∫ T

0

L(γ(t), γ̇(t)) dt,

the Euler-Lagrange equation

d
dt

Lv(γ(t), γ̇(t)) = Lx(γ(t), γ̇(t)),

or the Hamiltonian system

Ẋ(t) = Hp(X(t), P (t)), Ṗ (t) = −Hx(X(t), P (t)),

we call L the Lagrangian and H the Hamiltonian.

A typical example of Lagrangians L is given by

L(x, v) =
1
2
|v|2 + V (x),

where V ∈ C(Rn). The Hamiltonian H is then given by

H(x, p) =
1
2
|p|2 − V (x).

Proposition 1.1. H satisfies the following properties:

(a) H ∈ C2(Tn ×Rn).

(b) L(x, v) = max
p∈Rn

(v · p−H(x, p)) for all (x, v) ∈ Tn ×Rn.

(c) For each R > 0 there is a constant δR > 0 such that

Hpp(x, p) ≥ δRI if |p| ≤ R.

(d) lim
r→∞

inf{H(x, p)/|p| | |p| ≥ r} = ∞.

Proof. 1. For fixed (x, p) ∈ Tn ×Rn the function v 7→ p · v − L(x, v) on Rn attains a

maximum since it is continuous and

lim
|v|→∞

(p · v − L(x, v)) = −∞.

Let v = V (x, p) be a maximum point of this function. Such a maximum point is

determined uniquely by (x, v) since v 7→ L(x, v)− p · v is locally uniformly convex.
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2. By the elementary calculus, we find that

(1.1) p = Lv(x, V (x, p)).

Since Lvv(x, v) > 0 and hence det Lvv(x, V (x, p)) 6= 0, by the implicit function theorem

we see that the function V on Tn ×Rn is a C1 map. Since Lv(x, V (x, p)) = p for all

(x, p) ∈ Tn × Rn, for given x ∈ Tn, the map v 7→ Lv(x, v), Rn → Rn is surjective.

On the other hand, because of the local uniform convexity of L, for any x ∈ Tn and

v1, v2 ∈ Rn, we have

(Lv(x, v1)− Lv(x, v2)) · (v1 − v2)

=
∫ 1

0

Lvv(x, sv1 + (1− s)v2) ds(v1 − v2) · (v1 − v2) ≥ εR|v1 − v2|2,

where R := max{|v1|, |v2|}. This shows that for each x ∈ Tn, the map v 7→
Lv(x, v), Rn → Rn is injective. Thus we conclude that for each x ∈ Tn, the map

v 7→ Lv(x, v), Rn → Rn is a bijection.

3. Since

H(x, p) = p · V (x, p)− L(x, V (x, p)) ∀(x, p) ∈ Tn ×Rn,

we see that H ∈ C1(Tn ×Rn). Differentiating this relation, we have

Hx = p · Vx(x, p)− Lx(x, V (x, p))− Lv(x, V (x, p)) · Vx(x, p)

= p · Vx(x, p)− Lx(x, V (x, p))− p · Vx(x, p) = −Lx(x, V (x, p)),

Hp(x, p) = V (x, p)− p · Vp(x, p)− Lv(x, V (x, p)) · Vp(x, p) = V (x, p).

Since the functions

(1.2) Hx(x, p) = −Lx(x, V (x, p)), Hp(x, p) = V (x, p)

are C1 functions on Tn × Rn, we conclude that H ∈ C2(Tn × Rn). Combining the

latter of (1.2) with (1.1), we get

(1.3) p = Lv(x, Hp(x, p)) ∀(x, p) ∈ Tn ×Rn.

For fixed (x, v) ∈ Tn ×Rn, let p = Lv(x, v). Since w = V (x, p) is the unique solution

of p = Lv(x,w), we see that v = V (x, p). Hence, we conclude that

(1.4) v = Hp(x, p) = Hp(x, Lv(x, v)) ∀(x, v) ∈ Tn ×Rn.
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4. By the definition of H, we have

H(x, p) ≥ p · v − L(x, v) ∀x ∈ Tn, p, v ∈ Rn.

Hence, we have

L(x, v) ≥ p · v −H(x, p) ∀x ∈ Tn, p, v ∈ Rn.

That is,

L(x, v) ≥ sup
p∈Rn

(v · p−H(x, p)) ∀(x, v) ∈ Tn ×Rn.

Now fix (x, v) ∈ Tn ×Rn. Set p = Lv(x, v). From (1.4), we have v = Hp(x, p) and

therefore

H(x, p) = p · v − L(x, v).

That is,

L(x, v) = v · p−H(x, p).

Hence

L(x, v) = max
p∈Rn

(v · p−H(x, p)) = v · Lv(x, v)−H(x, Lv(x, p)) ∀(x, v) ∈ Tn ×Rn.

5. From (1.3) we have

p = Lv(x, V (x, p)) = Lv(x, Hp(x, v)) ∀(x, p) ∈ Tn ×Rn,

and hence

I = Lvv(x, V (x, p))Hpp(x, p) ∀(x, p) ∈ Tn ×Rn.

Hence, noting that Lvv(x, v) > 0, we have

Hpp(x, p) = Lvv(x,Hp(x, p))−1 ∀(x, p) ∈ Tn ×Rn.

Fix R > 0 and set

AR = max{Lvv(x,Hp(x, p))ξ · ξ | (x, p, ξ) ∈ Tn ×B(0, R)× Sn−1}.

Then we have

Lvv(x, Hp(x, p)) ≤ ARI ∀(x, p) ∈ Tn ×Rn.
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Consequently, we get

Hpp(x, p) = Lvv(x,Hp(x, p)) ≥ A−1
R I ∀(x, p) ∈ Tn ×B(0, R),

which shows (c) with δR = A−1
R .

Fix any M > 0. We have

H(x, p)
|p| = max

v∈Rn

(
p · v − L(x, v)

|p|
)
≥ p ·Mp̄− L(x,Mp̄)

|p|

=M |p| −
max

v∈B(0,M)
L(x, v)

|p| → ∞ as |p| → ∞.

Here we have used the notation that p̄ denotes the unit vector p/|p|. Thus we see that

lim
r→∞

inf
{

H(x, p)
|p|

∣∣∣∣ x ∈ Tn, |p| ≥ r

}
= ∞,

We have observed the following as well.

Proposition 1.2. We have:

(a) H(x, p) = p · v − L(x, v) for v = Hp(x, p) and

H(x, p) > p · v − L(x, v) if v 6= Hp(x, p).

(b) For each x ∈ Tn, p 7→ Hp(x, p), Rn → Rn is a C1 diffeomorphism and its inverse

map is given by

v 7→ Lv(x, v), Rn → Rn.

(c) Hx(x, p) = −Lx(x, Hp(x, p)) for all (x, p) ∈ Tn ×Rn.

• The map L : Tn ×Rn → Tn ×Rn, (x, v) 7→ (x, Lv(x, v)) is called the Legendre

transform. The Legendre transform L is a C1 diffeomorphism between Tn × Rn and

Tn ×Rn. Its inverse is given by L−1 : (x, p) 7→ (x,Hp(x, p)).

2. Euler-Lagrange equations and Hamiltonian systems

Associated with the variational problem

inf
γ

∫ T

0

L(γ(t), γ̇(t)) dt,
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where the infimum is taken over all γ ∈ AC([0, T ],Tn) (the space of absolutely contin-

uous functions γ on [0, T ]) which satisfy γ(0) = a and γ(T ) = b, where a, b ∈ Tn are

fixed, is the Euler-Lagrange equation

d
dt

Lv(γ(t), γ̇(t)) = Lx(γ(t), γ̇(t)) ∀t ∈ (0, T ),

which is equivalent to

γ̈(t) = Lvv(γ(t), γ̇(t))−1(Lx(γ(t), γ̇(t))− Lvx(γ(t), γ̇(t))γ̇(t)).

Note that the function

(x, v) 7→ Lvv(x, v)−1(Lx(x, v)− Lvx(x, v)v), Tn ×Rn → Rn

is a continuous function, but it is not guaranteed to be locally Lipschitz continuous.

The corresponding Hamiltonian system is given by

(2.1)

{
Ẋ(t) = Hp(X(t), P (t))

Ṗ (t) = −Hx(X(t), P (t)).

Since (Hp,−Hx) is a C1 function on Tn × Rn, one can apply the Cauchy-Lipschitz

theorem for (2.1).

Proposition 2.1. (a) If (X(t), P (t)) exists for α < t < β, then

H(X(t), P (t)) = H(X(t0), P (t0)) ∀t ∈ (α, β),

where t0 ∈ (α, β) is any fixed number. (b) For any (x0, p0) ∈ Tn × Rn and t0 ∈ R

there is a unique solution (X(t), P (t)), defined on R, of (2.1) satisfying

X(t0) = x0, P (t0) = p0.

Proof. 1. We compute that

d
dt

H(X(t), P (t)) = Hx(X(t), P (t))Ẋ(t) + Hp(X(t), P (t))Ṗ (t)

= Hx(X(t), P (t))Hp(X(t), P (t))−Hp(X(t), P (t))Hx(X(t), P (t))

= 0.

Hence we have

H(X(t), P (t)) = H(X(t0), P (t0)) ∀t ∈ (α, β),
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which proves (a).

2. By the Cauchy-Lipschitz theorem, there is a unique solution (X(t), P (t)) of (2.1)

satisfying (X(t0), P (t0)) = (x0, p0). Let (α, β) be the maximal interval of existence for

the solution (X(t), P (t)). There is a constant C1 > 0 such that

H(x, p) ≥ |p| − C1 ∀(x, p) ∈ Tn ×Rn.

Then, since

|P (t)| − C1 ≤ H(x0, p0) ∀t ∈ (α, β),

{(X(t), P (t)) | t ∈ (α, β)} is bounded in Tn ×Rn. This implies, due to the Cauchy-

Lipschitz theorem in ODE theory, that (α, β) = R, which concludes the proof of (b).

Proposition 2.2. Let (X(t), P (t)) be a solution of (2.1) and set γ(t) := X(t). Then γ

is a C2 function on R and satisfies

(2.2)
d
dt

Lv(γ(t), γ̇(t)) = Lx(γ(t), γ̇(t)) ∀t ∈ R.

Proof. Since γ̇(t) = Ẋ(t) = Hp(γ(t), P (t)), the function γ is a C2 function on R and

also, recalling that (x, p) = (x, Lv(x, v)) if and only if (x, v) = (x, Hp(x, p)), we find

that

P (t) = Lv(γ(t), γ̇(t)).

Therefore we have

d
dt

Lv(γ(t), γ̇(t)) = Ṗ (t) = −Hx(γ(t), P (t)) = Lx(γ(t), Hp(γ(t), P (t)))

= Lx(γ(t), γ̇(t)).

Proposition 2.3. Let γ(t) be a C1 function on (α, β) such that

t 7→ Lv(γ(t), γ̇(t))

is a C1 function on (α, β) and such that

(2.3)
d
dt

Lv(γ(t), γ̇(t)) = Lx(γ(t), γ̇(t)) ∀t ∈ (α, β).

Then (X(t), P (t)) := (γ(t), Lv(γ(t), γ̇(t))) is a solution of (2.1) on (α, β).

Proof. Note first that

γ̇(t) = Hp(γ(t), P (t)),
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which, in particular, shows that γ ∈ C2((α, β)) and Ẋ(t) = Hp(X(t), P (t)). By (2.3),

we get

Ṗ (t) = Lx(γ(t), γ̇(t)) = −Hx(γ(t), P (t)) = −Hx(X(t), P (t)).

Here we have used the observation (Proposition 1.2, (c)) that

Hx(γ(t), P (t)) = −Lx(γ(t),Hp(γ(t), P (t))) = −Lx(γ(t), γ̇(t)).

Thus we see that (X(t), P (t)) is a solution of (2.1).

• The Legendre transform L maps the solutions (γ, γ̇) of the Euler-Lagrange equation

(2.3) to the solutions (X(t), P (t)) of the Hamiltonian system (2.1).

Notation. We define the collections {φL
t }t∈R and {φH

t }t∈R of maps of Tn × Rn to

Tn ×Rn by

φL
t (x, v) = (γ(t), γ̇(t)),

where γ is the solution of (2.3) which satisfies the initial condition (γ(0), γ̇(0)) = (x, v)

and

φH
t (x, p) = (X(t), P (t)),

where (X, P ) is the solution of (2.1) satisfying the condition (X(0), P (0)) = (x, p). By

the uniqueness of the solution for the Cauchy problem, we see that

φL
t+s = φL

t ◦ φL
s , φH

t+s = φH
t ◦ φH

s ∀t, s ∈ R.

As we have seen in Propositions 2.2 and 2.3,

L ◦ φL
t ◦ L−1 = φH

t ∀t ∈ R.

3. Existence of minimizers for actions
Let L : Tn × Rn → R be a given Lagrangian which satisfies the assumptions

described before. Let ψ be a given function on Tn which satisfies:

• ψ ∈ C(Tn).

Fix T > 0 and x0 ∈ Tn. Consider the variational problem

(3.1) V = inf
γ

(∫ T

0

L(γ(t), γ̇(t)) dt + ψ(γ(T ))

)
,

where γ ranges over all γ ∈ AC([0, T ],Tn) (the space of all absolutely continuous

functions on [0, T ]) such that γ(0) = x0.
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Theorem 3.1. There exists a minimizer for V .

Lemma 3.2. Let x1 ∈ Tn and define

V (x1) = inf
γ

∫ T

0

L(γ(t), γ̇(t)) dt,

where γ ranges over all γ ∈ AC([0, T ],Tn) such that γ(0) = x0 and γ(T ) = x1. Then

there is a minimizer for V (x1).

Lemma 3.3. There is a constant C0 > 0 such that

V (x1) ≤ C0 ∀x1 ∈ Tn.

Proof. Define γ0 ∈ AC([0, T ],Tn) by γ0(t) := x0 + T−1t(x1 − x0). We have

∫ T

0

L(γ0(t), γ̇0(t)) dt =
∫ T

0

L(γ0(t), T−1(x1 − x0)) dt ≤ C0,

where

C0 := T max{L(x, v) | (x, v) ∈ Tn ×Rn, |v| ≤ T−1
√

n}.

Lemma 3.4. Let {γk}k∈N ⊂ AC([0, T ],Tn). Assume that γk(0) = x0 for all k ∈ N

and that there is a constant C > 0 such that
∫ T

0

L(γk(t), γ̇k(t)) dt ≤ C ∀k ∈ N.

Then there exist a subsequence {γkj}j∈N and γ ∈ AC([0, T ],Tn) such that

γkj (t) → γ(t) uniformly on [0, T ]

as j →∞ and

∫ T

0

L(γ(t), γ̇(t)) dt ≤ lim inf
k→∞

∫ T

0

L(γk(t), γ̇k(t)) dt.

Using Lemma 3.4 whose proof will be given later, we first prove Lemma 3.2 and

Theorem 3.1.

Proof of Lemma 3.2. 1. Fix x1 ∈ Tn. Noting that L is bounded below, we set

L0 = min
Tn×Rn

L.
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We have

L0T ≤ V (x1) ≤ C0,

where C0 is the constant from Lemma 3.3.

2. Choose a minimizing sequence {γk}k∈N ⊂ AC([0, T ],Tn) for V (x1) so that
∫ T

0

L(γk(t), γ̇k(t)) dt < V (x1) +
1
k

∀k ∈ N.

Here the γk are assumed to satisfy γk(0) = x0 and γk(T ) = x1.

Noting that ∫ T

0

L(γk(t), γ̇k(t)) dt ≤ C0 + 1 ∀k ∈ N,

by virtue of Lemma 3.4, there are a subsequence {γkj}j∈N and γ ∈ AC([0, T ],Tn) such

that

(3.2) γkj (t) → γ(t) uniformly on [0, T ] as j →∞

and

(3.3)
∫ T

0

L(γ(t), γ̇(t)) dt ≤ lim inf
k→∞

∫ T

0

L(γk(t), γ̇k(t)) dt.

From (3.2) we have

γ(0) = x0, γ(T ) = x1.

From (3.3) we get ∫ T

0

L(γ(t), γ̇(t)) dt ≤ V (x1).

Thus we find that γ is a minimizer for V (x1).

Lemma 3.5. The function V is lower semicontinuous on Tn.

Proof. Fix x1 ∈ Tn and a sequence {yk}k∈N ⊂ Tn so that yk → x1 as k → ∞.

According to Lemma 3.2, for each k ∈ N there is a γk ∈ AC([0, T ],Tn) satisfying

γk(0) = x0 and γk(T ) = yk such that

V (yk) =
∫ T

0

L(γk(t), γ̇k(t)) dt ∀k ∈ N.

By Lemma 3.3, there is a constant C1 > 0 such that
∫ T

0

L(γk(t), γ̇k(t)) dt ≤ C1 ∀k ∈ N.

10



Now, by Lemma 3.4, we find a γ ∈ AC([0, T ],Tn) satisfying γ(0) = x1 and γ(T ) = x1

such that ∫ T

0

L(γ(t), γ̇(t)) dt ≤ lim inf
k→∞

∫ T

0

L(γk(t), γ̇k(t)) dt.

This inequality implies that

V (x1) ≤ lim inf
k→∞

V (yk),

which shows that V is lower semicontinuous on Tn.

Proof of Theorem 3.1. Note that

V = inf
γ

∫ T

0

L(γ(t), γ̇(t)) dt = min
x1∈Tn

(V + ψ)(x1).

Since V + ψ is lower semicontinuous on Tn, there is a point x1 ∈ Tn where it attains a

minimum. By Lemma 3.2, there is a minimizer γ1 for V (x1). Hence, γ1 is a minimizer

for V .

It remains to prove Lemma 3.4. We fix C and {γk} as in Lemma 3.4. By replacing

L(x, v) and C by L(x, v) + C2 and C + C2T , respectively, where C2 > 0 is a constant

such that minTn×Rn L ≥ −C2, if necessary, we may assume that

L(x, v) ≥ 0 for all (x, v) ∈ Tn ×Rn.

Lemma 3.6. The sequence {γk} is equi-absolutely continuous on [0, T ].

Proof. By the superlinearity of L, for any A > 1 there is a constant CA > 0 such that

L(x, v) ≥ A|v| − CA ∀(x, v) ∈ Tn ×Rn.

Hence, for any Borel set B ⊂ [0, T ] we have

C ≥
∫ T

0

L(γk(t), γ̇k(t)) dt ≥
∫

B

L(γk(t), γ̇k(t)) dt ≥
∫

B

(A|γ̇k(t)| − CA) dt,

that is, ∫

B

|γ̇k(t)| dt ≤ C0

A
+

CA

A
|B|.

Fix any ε > 0. Choose A > 0 so that C0/A ≤ ε
2 and δ > 0 so that

CAδ

A
<

ε

2
.
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Then we have

|B| ≤ δ =⇒
∫

B

|γ̇k(t)| dt < ε,

which shows that {γk} is equi-absolutely continuous on [0, T ].

Lemma 3.7 (Selection theorem of Helly). For k ∈ N let fk : [0, T ] → R be a

non-decreasing function on [0, T ]. Assume that {fk} is uniformly bounded on [0, T ].

Then there is a subsequence {fkj
} of {fk} such that for all t ∈ [0, T ], the sequence

{fkj
(t)} is convergent.

See [Fr] for a proof of the above lemma.

Lemma 3.8. Fix (x, v) ∈ Tn ×Rn and ε > 0. Then there is a constant δ > 0 such

that for all (y, w) ∈ Tn ×Rn, if |y − x| ≤ δ, then

L(y, w) ≥ L(x, v) + Lv(x, v) · (w − v)− ε.

Proof. We choose a constant M1 > 0 so that

|Lv(x, v)| ≤ M1,

for instance, M1 = |Lv(x, v)|+ 1, and a constant M2 > 0 so that

L(y, w) ≥ 2M1|w| −M2 ∀(y, w) ∈ Tn ×Rn.

Then we have

L(y, w) ≥ |Lv(x, v)||w| −M2 + M1|w|
≥Lv(x, v) · w + M1|w| −M2 ∀(y, w) ∈ Tn ×Rn.

Noting that

L(x, 0) ≥ L(x, v) + Lv(x, v) · (0− v) ∀(x, v) ∈ Tn ×Rn,

we choose M3 > 0 so that

M1M3 −M2 ≥ L(x, v)− Lv(x, v) · v.

Now, for all (y, w) ∈ Tn ×Rn, if |w| ≥ M3, then we have

L(y, w) ≥Lv(x, v) · w + M1|w| −M2 ≥ Lv(x, v) · w + M1M3 −M2(3.4)

≥Lv(x, v) · w + L(x, v)− Lv(x, v) · v = L(x, v) + Lv(x, v) · (w − v).

12



By the convexity of w 7→ L(x,w), we have

L(x,w) ≥ L(x, v) + Lv(x, v) · (w − v) ∀w ∈ Rn.

Since the function

(y, w) 7→ L(y, w)− L(x, v)− Lv(x, v) · (w − v)

is uniform continuous on the compact set Tn×B(0,M3), there is a constant δ > 0 such

that for all (y, w) ∈ Tn ×Rn, if |y − x| ≤ δ, then

(3.5) L(y, w)− L(x, v)− Lv(x, v) · (w − v) ≥ −ε.

Combining (3.4) and (3.5), we conclude that for all (y, w) ∈ Tn ×Rn, if |y − x| ≤ δ,

then

L(y, w) ≥ L(x, v) + Lv(x, v) · (w − v)− ε.

Proof of Lemma 3.4. 1. Define the functions βk : [0, T ] → R by

βk(t) =
∫ t

0

L(γk(t), γ̇k(t)) dt.

We may choose a subsequence of {βkj} of {βk} so that

lim
j→∞

βkj (T ) = lim inf
k→∞

∫ T

0

L(γk(t), γ̇k(t)) dt.

The functions βk are non-decreasing on [0, T ] since L ≥ 0, and they are uniformly

bounded since

0 ≤ βk(t) ≤
∫ T

0

L(γk(t), γ̇k(t)) dt ≤ C ∀t ∈ [0, T ].

In view of Lemma 3.7, we may assume by selecting a subsequence of {βkj} if necessary

that

βkj (t) → β(t) as j →∞

for some non-decreasing function β : [0, T ] → R.

2. In view of the compactness of Tn, Lemma 3.6 and Ascoli-Arzela theorem, by

selecting again a subsequence of {γkj} if necessary, we may assume that

(3.6) γkj (t) → γ(t) uniformly on [0, T ] as j →∞
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for some γ ∈ C([0, T ]). By Lemma 3.6, we can see that γ ∈ AC([0,T]). We see as well

that γ(0) = x0 and γ(T ) = x1.

3. Note that non-decreasing functions and absolutely continuous functions are a.e.

differentiable. Accordingly, β and γ are a.e. differentiable on [0, T ]. Fix any of differ-

entiability points in [0, T ) of (β, γ) and denote it by c. Fix any ε > 0 and, in view of

Lemma 3.8, select δ > 0 so that for all (y, w) ∈ Tn ×Rn, if |y − γ(c)| ≤ δ, then

L(y, w) ≥ L(γ(c), γ̇(c)) + Lv(γ(c), γ̇(c)) · (w − γ̇(c))− ε.

4. In view of Lemma 3.6 and that as j →∞,

γkj (c) → γ(c),

we may choose J ∈ N so that for all t ∈ [c, c + J−1] and j ≥ J ,

|γkj (t)− γ(c)| ≤ δ.

Fix j,m ∈ N so that j ≥ J and m ≥ J . We have

L(γkj (t), γ̇kj (t)) ≥ L(γ(c), γ̇(c)) + Lv(γ(c), γ̇(c)) · (γ̇kj (t)− γ̇(c))− ε

for a.e. t ∈ [c, c+m−1]. Integrating this over [c, c+m−1] and multiplying the resulting

inequality by m, we get

m

∫ c+m−1

c

L(γkj (t), γ̇kj (t)) dt ≥ L(γ(c), γ̇(c))

+ Lv(γ(c), γ̇(c)) · (m
∫ c+m−1

c

γ̇kj
(t) dt− γ̇(c))− ε

= L(γ(c), γ̇(c)) + Lv(γ(c), γ̇(c)) · [m(γk(c + m−1)− γkj (c))− γ̇(c)]− ε.

By the definition of βk, we get

m(βkj (c + m−1)− βkj (c))

≥ L(γ(c), γ̇(c)) + Lv(γ(c), γ̇(c)) · [m(γkj (c + m−1)− γkj (c))− γ̇(c)]− ε.

Sending j →∞, we have

m(β(c + m−1)− β(c))

≥ L(γ(c), γ̇(c)) + Lv(γ(c), γ̇(c)) · [m(γ(c + m−1)− γ(c))− γ̇(c)]− ε.
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Next, sending m →∞ yields

β̇(c) ≥ L(γ(c), γ̇(c)) + Lv(γ(c), γ̇(c)) · [γ̇(c)− γ̇(c)]− ε = L(γ(c), γ̇(c))− ε.

From this we conclude that for every point t ∈ [0, T ) of differentiability of (β, γ), we

have

(3.7) β̇(t) ≥ L(γ(t), γ̇(t)).

5. Integrating both sides of (3.7), we get

∫ T

0

L(γ(t), γ̇(t)) dt ≤
∫ T

0

β̇(t) dt ≤ β(T )− β(0) = β(T ).

Notice that for any non-decreasing function g on [0, T ], we have

∫ T

0

ġ(t) dt ≤ g(T )− g(0).

Since

β(T ) = lim
j→∞

βkj (T ) = lim inf
k→∞

∫ T

0

L(γk(t), γ̇k(t)) dt,

we have ∫ T

0

L(γ(t), γ̇(t)) dt ≤ lim inf
k→∞

∫ T

0

L(γk(t), γ̇k(t)) dt.

This and (3.6) together complete the proof.

The following lemma will be useful later.

Lemma 3.8. There is a constant C2 > 0, depending only on T and L, such that for

any x1, x2 ∈ Tn and any minimizer γ ∈ AC([0, T ],Tn) for V (x1),

ess inf
t∈[0, T ]

|γ̇(t)| ≤ C2.

Proof. As before there are constants C0 > 0 and C1 > 0, which depend only on T and

L, such that

V (x1) ≤ C0,

L(x, v) ≥ |v| − C1 ∀(x, v) ∈ Tn ×Rn.
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Since γ is a minimizer for V (x1), we have

∫ T

0

|γ̇(t)| dt ≤ C0 + C1T.

Hence,

ess inf
t∈[0, T ]

|γ̇(t)| ≤ C0T
−1 + C1.

4. Regularity of minimizers

Let γ ∈ AC([0, T ],Tn) be a minimizer for V given by (3.1).

1. The minimizer γ ∈ AC([0, T ],Tn) is a.e. differentiable. Fix t0 ∈ (0, T ), where γ

is differentiable. Choose a constant C > 0 so that |γ̇(t0)| < C and a constant δ > 0 so

that [t0 − δ, t0 + δ] ⊂ [0, T ] and

|γ(t)− γ(t0)| ≤ C|t− t0| ∀t ∈ [t0 − δ, t0 + δ].

2. Due to ODE theory and the implicit function theorem, there exists a constant

δ1 ∈ (0, δ] such that

π ◦ φL
t ({γ(t0)} ×B(0, 2C)) ⊃ B(γ(t0), C|t|) ∀t ∈ [−δ1, δ1].

3. For each v ∈ B(0, 2C) let p = Lv(γ(t0), v) and choose ψv ∈ C2(Tn) so that

Dψv(γ(t0)) = p. We can choose the family {ψv}v∈B(0,2C) so that it is bounded in

C2(Tn). According to the method of characteristics (see, e.g., [L]), there exists a con-

stant δ2 ∈ (0, δ1] and for each v ∈ B(0, 2C) a function Sv ∈ C(Tn × [t0 − δ2, t0 + δ2])

such that

Sv(x, t0) = ψv(x) ∀x ∈ Tn,

Sv
t (x, t) + H(x, Sv

x(x, t)) = 0 ∀(x, t) ∈ Tn × [t0 − δ2, t0 + δ2].

4. Fix any τ ∈ (0, δ2] and set t1 = t0 + τ , y0 = γ(t0), and y1 = γ(t1). Choose

v ∈ B(0, 2C) so that if µ(t) = π ◦ φL
t−t0(γ(t0), v), then µ(t1) = γ(t1). Observe that for

any ν ∈ AC([t0, t1],Tn) such that ν(t0) = y0 and ν(t1) = y1, since

Sv
x(ν(t), t)ν̇(t) ≤ H(ν(t), Sv

x(ν(t), t)) + L(ν(t), ν̇(t)),
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we have

Sv(y1, t1)− Sv(y0, t0) = Sv(ν(t1), t1)− Sv(ν(t0), t0)

=
∫ t1

t0

(Sv
t (ν(t), t) + Sv

x(ν(t), t)ν̇(t)) dt

≤
∫ t1

t0

(Sv
t (ν(t), t) + H(ν(t), Sv

x(ν(t), t)) + L(ν(t), ν̇(t))) dt

=
∫ t1

t0

L(ν(t), ν̇(t)) dt.

Observe as well that, since

Sv
x(µ(t), t)µ̇(t) = Sv

x(µ(t), t)Hp(µ(t), Sv
x(µ(t), t))

=H(µ(t), Sv
x(µ(t), t)) + L(µ(t), µ̇(t))

by Proposition 1.2, (a), we have

Sv(y1, t1)− Sv(y0, t0) = Sv(µ(t1), t1)− Sv(µ(t0), t0)

=
∫ t1

t0

(Sv
t (µ(t), t) + Sv

x(µ(t), t)µ̇(t)) dt

=
∫ t1

t0

(Sv
t (µ(t), t) + H(µ(t), Sv

x(µ(t), t)) + L(µ(t), µ̇(t))) dt

=
∫ t1

t0

L(µ(t), µ̇(t)) dt.

These observations show that for any ν ∈ AC([t0, t1],Tn) such that ν(t0) = y0 and

ν(t1) = y1, if ν 6= µ, then

∫ t1

t0

L(µ(t), µ̇(t)) dt <

∫ t1

t0

L(ν(t), ν̇(t)) dt.

Consequently, we find that µ(t) = γ(t) for all t ∈ [t0, t1] and hence µ(t) = γ(t) for all

t ∈ [0, T ]. Since µ ∈ C2(R), we conclude that γ ∈ C2([0, T ]). Thus we have

Theorem 4.1. Let γ ∈ AC([0, T ],Tn) be a minimizer for V defined by (3.1). Then

γ ∈ C2([0, T ]).

5. Weak KAM theorem

The weak KAM theorem [Fa1] due to A. Fathi is now stated as
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Theorem 5.1 (weak KAM theorem). There are functions u−, u+ ∈ Lip(Tn) and a

constant c0 ∈ R having the properties:

(a) For any γ ∈ AC([a, b],Tn), where a < b,

u±(γ(b))− u±(γ(a)) ≤
∫ T

0

L(γ(t), γ̇(t)) dt + c0(b− a).

(b) For each x ∈ Tn, there are functions γ− ∈ AC((−∞, 0],Tn), γ+ ∈ AC([0, ∞),Tn)

such that γ±(0) = x and

u−(γ−(0))− u−(γ−(−t)) =
∫ 0

−t

L(γ−(t), γ̇−(t)) ds + c0t ∀t > 0,

and

u+(γ+(t))− u+(γ+(0)) =
∫ t

0

L(γ+(s), γ̇+(s)) ds + c0t ∀t > 0.

For each t > 0 and φ ∈ C(Tn) we introduce T−t φ : Tn → R by

T−t φ(x) = inf
γ(t)=x

[∫ t

0

L(γ(s), γ̇(s)) ds + φ(γ(0))
]

,

where the infimum is taken over all γ ∈ AC([0, t],Tn) such that γ(t) = x. Similarly we

define T+
t φ : Tn → R by

T+
t φ(x) = sup

γ(0)=x

[
−

∫ t

0

L(γ(s), γ̇(s)) ds + φ(γ(t))
]

,

where the infimum is taken over all γ ∈ AC([0, t],Tn) such that γ(0) = x.

With this notation, as we will see later, Theorem 5.1 is equivalent to the following

theorem.

Theorem 5.2. There are functions u−, u+ ∈ Lip(Tn) and a constant c0 ∈ R such that

(5.1) u−(x) = T−t u−(x) + c0t ∀t > 0, x ∈ Tn,

and

(5.2) u+(x) = T+
t u+(x)− c0t ∀t > 0, x ∈ Tn.

In the rest of this section we are mostly devoted to proving a weaker form of Theorem

5.2. That is, we prove the following proposition.
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Theorem 5.3. There are functions u−, u+ ∈ Lip(Tn) and constants c0, d0 ∈ R such

that

u−(x) = T−t u−(x) + c0t ∀t > 0, x ∈ Tn,

and

(5.3) u+(x) = T+
t u+(x)− d0t ∀t > 0, x ∈ Tn.

We postpone until next section to prove that d0 = c0, and in this section, assuming

that d0 = c0, we prove that Theorem 5.3 is equivalent to Theorem 5.1.

Define the L̂ : Tn ×Rn → R by L̂(x, v) = L(x,−v). Fix λ ∈ (0, 1). Define vλ on

Tn by

vλ(x) = inf
γ(0)=x

∫ ∞

0

e−λtL̂(γ(t), γ̇(t)) dt.

Lemma 5.4. min
Tn×Rn

L̂ ≤ λvλ(x) ≤ L̂(x, 0) for x ∈ Tn.

Proof. Set C = min
Tn×Rn

L. Fix x ∈ Tn. For any γ ∈ AC([0,∞),Tn) satisfying γ(0) = x,

we have ∫ ∞

0

e−λtL̂(γ(t), γ̇(t)) dt ≥
∫ ∞

0

e−λtC dt = Cλ−1.

Hence,

λvλ(x) ≥ C.

Also, we have

vλ(x) ≤
∫ ∞

0

e−λtL̂(x, 0) dt = L̂(x, 0)λ−1.

Thus we get

C ≤ λvλ(x) ≤ L̂(x, 0).

Lemma 5.5 (Dynamic programming principle). For any T > 0 and x ∈ Tn, we

have

vλ(x) = inf
γ(0)=x

[∫ T

0

e−λtL̂(γ(t), γ̇(t)) dt + e−λT vλ(γ(T ))

]
.

Proof. We denote by w(x) the right hand side of the above formula. Fix x ∈ Tn. Fix

any γ ∈ AC([0, ∞),Tn) such that γ(0) = x. Note that
∫ ∞

0

e−λtL̂(γ(t), γ̇(t)) dt

=
∫ T

0

e−λtL̂(γ(t), γ̇(t)) dt + e−λT

∫ ∞

0

e−λtL̂(γ(t + T ), γ̇(t + T )) dt

≥
∫ T

0

e−λtL̂(γ(t), γ̇(t)) dt + e−λT vλ(γ(T )) ≥ w(x).
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Hence we have vλ(x) ≥ w(x).

Fix any γ ∈ AC([0,∞),Tn) such that γ(0) = x, and then any µ ∈ AC([0,∞),Tn)

such that µ(0) = γ(T ). Define ν ∈ AC([0,∞),Tn) by

ν(t) =
{

γ(t) (0 ≤ t < T ),
µ(t− T ) (T ≤ t).

Then we have

vλ(x) ≤
∫ T

0

e−λtL̂(ν(t), ν̇(t)) dt + e−λT

∫ ∞

0

e−λtL̂(ν(t + T ), ν̇(t + T )) dt

≤
∫ T

0

e−λtL̂(γ(t), γ̇(t)) dt + e−λT

∫ ∞

0

e−λtL̂(µ(t), µ̇(t)) dt.

Consequently, we have

vλ(x) ≤
∫ T

0

e−λtL̂(γ(t), γ̇(t)) dt + e−λT vλ(γ(T )).

From this we find that

vλ(x) ≤ w(x).

Lemma 5.6. The functions vλ, with λ ∈ (0, 1), are equi-Lipschitz continuous on Tn.

Proof. Set

C = min
Tn×Rn

L,

and note that

vλ(x)− λ−1C = vλ(x)− C

∫ ∞

0

e−λt dt = inf
γ

∫ ∞

0

e−λt(L̂(γ(t), γ̇(t))− C) dt.

Thus, by replacing vλ(x) and L̂, respectively, by vλ(x)− λ−1C and L̂−C if necessary,

we may assume that L̂ ≥ 0 on Tn ×Rn, so that vλ ≥ 0 on Tn.

Fix x, y ∈ Tn. Assume that x 6= y. By Lemma 5.5, for any γ ∈ AC([0, |x− y|],Tn)

with γ(0) = y, we have

vλ(y) ≤
∫ |x−y|

0

e−λtL(γ(t), γ̇(t)) dt + e−λ|x−y|vλ(γ(|x− y|)).

Define µ ∈ AC([0, |x− y|],Tn) by

µ(t) = y + t|x− y|−1(x− y).

20



Then we get

vλ(y) ≤
∫ |x−y|

0

e−λtL̂(µ(t), µ̇(t)) dt + e−|x−y|vλ(x)

≤
∫ |x−y|

0

L̂(µ(t), |x− y|−1(x− y)) dt + vλ(x)

≤C1

∫ |x−y|

0

dt + vλ(x) = vλ(x) + C1|x− y|.

Here C1 is a positive constant such that

max
Tn×B(0,1)

L ≤ C1.

Thus we get

vλ(y)− vλ(x) ≤ C1|x− y| ∀x, y ∈ Tn,

and conclude that

|vλ(x)− vλ(y)| ≤ C1|x− y| ∀x, y ∈ Tn.

Proof of Theorem 5.3. 1. For T > 0 and φ ∈ C(Tn) we define Q−T φ : Tn → R by

Q−T φ(x) = inf
γ(0)=x

[∫ T

0

L̂(γ(t), γ̇(t)) dt + φ(γ(T ))

]
,

where the infimum is taken over all γ ∈ AC([0, T ],Tn) such that γ(0) = x. We show

that there exist a function u− ∈ Lip(Tn) and a constant c0 ∈ R such that

(5.4) u−(x) = Q−T u−(x) + c0T ∀T > 0.

2. By Lemma 5.4, the collection {λvλ(0) | λ ∈ (0, 1)} is bounded. Therefore we can

select a sequence {λj}j∈N ⊂ (0, 1) so that, as j →∞,

λj → 0 and λjv
λj (0) → −c0

for some c0 ∈ R.

3. Set wλ(x) = vλ(x)−vλ(0) for x ∈ Tn. The collection {wλ | λ ∈ (0, 1)} ⊂ Lip(Tn)

is uniformly bounded and equi-Lipschitz on Tn. Hence, we may assume that, as j →∞,

wλj (x) → w(x) uniformly on Tn

for some w ∈ Lip(Tn).
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4. Fix x ∈ Tn and T > 0. Using Lemma 5.5, we get

(5.5) wλ(x) = inf
γ(0)=x

[∫ T

0

e−λtL̂(γ(t), γ̇(t)) dt + e−λT wλ(γ(T ))

]
+

(
e−λT − 1

)
vλ(0).

Fix any γ ∈ AC([0,∞),Tn) so that γ(0) = x. From the above, we have

wλ(x) ≤
∫ T

0

e−λtL̂(γ(t), γ̇(t)) dt + e−λT wλ(γ(T ))− T
e−λT − 1
−λT

λvλ(0)

Passing to the limit along the sequence λ = λj as j →∞, we get

w(x) ≤
∫ T

0

L̂(γ(t), γ̇(t)) dt + w(γ(T ))− T · 1 · (−c0)

=
∫ T

0

L̂(γ(t), γ̇(t)) dt + w(γ(T )) + c0T.

Thus we have

(5.6) w(x) ≤ Q−T w(x) + c0T ∀x ∈ Tn, T > 0.

5. In view of (5.5), we choose γλ ∈ AC([0,∞),Tn), with γλ(0) = x, so that

(5.7) wλ(x) + λ >

∫ T

0

e−λtL̂(γλ(t), γ̇λ(t)) dt + e−λT wλ(γλ(T )) + (e−λT − 1)vλ(0).

We rewrite this as

wλ(x) + λ > e−λT
(∫ T

0

L̂(γλ(t), γ̇λ(t)) dt + w(γλ(T ))
)

(5.8)

+ (e−λT − 1)vλ(0) + eλ

≥ e−λT Q−T w(x) + (e−λT − 1)vλ(0) + eλ,

where

eλ =
∫ T

0

(e−λt − e−λT )L̂(γλ(t), γ̇λ(t)) dt + e−λT
[
wλ(γλ(T ))− w(γλ(T ))

]
.

6. Noting that there is a constant C2 > 0 such that

L̂(y, v) ≥ −C2 ∀(y, v) ∈ Tn ×Rn,
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we have
∫ T

0

(e−λt − e−λT )L̂(γλ(t), γ̇λ(t)) dt ≥ −C2

∫ T

0

(e−λt − e−λT ) dt ≥ −C2T (1− e−λT ).

Consequently, we have

(5.9) eλ ≥ −C2T (1− e−λT )− e−λT max
Tn

|wλ − w|.

7. From (5.8) and (5.9), we get

wλ(x) + λ > e−λT Q−
T w(x) + (e−λT − 1)vλ(0)− C2T (1− e−λT )−max

Tn
|wλ − w|.

Sending λ → 0 along the sequence λ = λj , we now find that

w(x) ≥ Q−
T w(x) + c0T.

This together with (5.6) yields

w(x) = Q−T w(x) + c0T ∀x ∈ Tn, T > 0.

8. Let (x, t) ∈ Tn × (0, ∞). From the above identity we get

w(x) = Q−t w(x) + c0t = inf
γ(0)=x

[∫ t

0

L̂(γ(s), γ̇(s)) ds + w(γ(t))
]

+ c0t

= inf
µ(t)=x

[∫ t

0

L̂(µ(s),−µ̇(s)) ds + w(µ(0))
]

+ c0t

= inf
µ(t)=x

[∫ t

0

L(µ(s), µ̇(s)) ds + w(µ(0))
]

+ c0t

= T−t w(x) + c0t.

Here we used the observation that for γ ∈ AC([0, t],Tn), with γ(t) = x, if we set

µ(s) = γ(t− s) for s ∈ [0, t], then µ ∈ AC([0, t],Tn) and µ(0) = x.

Thus we find that the pair (w, c0) ∈ Lip(Tn) × R has the required properties for

(u−, c0) in Theorem 5.3.

9. We repeat the arguments in the paragraphs 1 to 7 above with L in place of L̂, to

conclude that there is a function v ∈ Lip(Tn) and a constant d0 ∈ R such that

v(x) = inf
γ(0)=x

[∫ t

0

L(γ(s), γ̇(s)) ds + v(γ(t))
]

+ d0t ∀t > 0,
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where the infimum is taken over all γ ∈ AC([0, t],Tn) such that γ(0) = x. Multiplying

this by −1 and writing u = −v, we find that

u(x) = sup
γ(0)=x

[
−

∫ t

0

L(γ(s), γ̇(s)) ds + u(γ(t))
]
− d0t ∀t > 0,

which shows that the pair (u, d0) has the properties required for (u+, d0) in Theorem

5.3.

Now, we turn to the proof of the equivalence of Theorems 5.1 and 5.2.

Proof of Theorem 5.1 from Theorem 5.2. Let u−, u+, c0 be those from Theorem

5.2.

1. Fix any γ ∈ AC([a, b],Tn), with a < b. Define µ ∈ AC([0, b − a],Tn) by

µ(s) = γ(s + a). Since

u−(x) = Tb−au−(x) + c0(b− a) ∀x ∈ Tn,

we get

u−(µ(b− a)) ≤
∫ b−a

0

L(µ(s), µ̇(s)) ds + u−(µ(0)) + c0(b− a),

and hence

u(γ(b))− u−(γ(a)) ≤
∫ b

a

L(γ(s), γ̇(s)) ds + c0(b− a).

Similarly, we get

u+(µ(0)) ≥ −
∫ b−a

0

L(µ(s), µ̇(s)) ds + u+(µ(b− a))− c0(b− a)

and

u+(γ(a)) = −
∫ b

a

L(γ(s), γ̇(s)) ds + u+(γ(b))− c0(b− a).

from which we find that

u+(γ(b))− u+(γ(a)) ≤
∫ b

a

L(γ(s), γ̇(s)) ds + c0(b− a).

Thus assertion (a) has been shown.

2. To prove (b), fix x ∈ Tn. We construct γ− ∈ AC((−∞, 0],Tn) as follows. First

note that

u−(y) = inf
γ(t)=y

[∫ t

t−1

L(γ(s), γ̇(s)) ds + u−(γ(t− 1))
]

+ c0 ∀y ∈ Tn.
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Define the sequence γk ∈ C2([−k, −k + 1],Tn), k ∈ N by selecting γk inductively. We

first select γ1 so that

γ1(0) =x,

u−(x) =
∫ 0

−1

L(γ1(s), γ̇1(s)) ds + u−(γ1(−1)) + c0.

For k > 1 we select γk so that

γk(−k + 1) = γk−1(−k + 1),

u−(γk(−k + 1)) =
∫ −k+1

−k

L(γk(s), γ̇k(s)) ds + u−(γk(−k)) + c0.

Indeed, according to Theorem 3.1, such γk, with k ∈ N, exist. Define γ− ∈
AC((−∞, 0],Tn) by setting

γ−(s) = γk(s) for s ∈ [−k,−k + 1], k ∈ N.

3. We have

u−(x) =
∫ 0

−k

L(γ−(s), γ̇−(s)) ds + u−(γ−(−k)).

This and (a) guarantee that γ− is a minimizer for

inf
γ

∫ b

a

L(γ(s), γ̇(s)),

with any −∞ < a < b ≤ 0, where the infimum is taken over all γ ∈ AC([a, b],Tn) such

that γ(a) = γ−(a) and γ(b) = γ−(b). This shows that

u−(x) =
∫ 0

−t

L(γ−(s), γ̇−(s)) ds + u−(γ−(−t)) ∀t > 0

and that γ− ∈ C2((−∞, 0]) by Theorem 4.1.

4. Fix x ∈ Tn. We can select γ1 ∈ C2([0, 1]) so that

γ1(0) = x,

u+(x) = −
∫ 1

0

L(γ1(s), γ̇1(s)) ds + u+(γ1(1))− c0.

Next, we can choose γk ∈ C2([k − 1, k]) inductively for k > 1 so that

γk(k − 1) = γk−1(k − 1),

u+(γk(k − 1)) = −
∫ k

k−1

L(γk(s), γ̇k(s)) ds + u+(γk(k))− c0.
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Setting

γ+(s) = γk(s) for s ∈ [k − 1, k], k ∈ N,

we find a γ+ ∈ C2([0, ∞)) such that γ+(0) = x and

u+(γ+(t)) = u+(x) +
∫ t

0

L(γ+(s), γ̇+(s)) ds + c0t ∀t > 0.

The proof is now complete.

Proof of Theorem 5.2 from Theorem 5.1. 1. Let u−, u+ c0 be those from

Theorem 5.1. We show that

u−(x) = T−t u−(x) + c0t ∀t > 0,(5.10)

u+(x) = T+
t u+(x)− c0t ∀t > 0.(5.11)

We only prove (5.10). The proof of (5.11) can be done in a parallel way.

2. Fix any x ∈ Tn and t > 0. Let γ ∈ AC([0, t],Tn) be such that γ(t) = x. By

Theorem 5.1, (a), we have

u−(x) ≤
∫ t

0

L(γ(s), γ̇(s)) ds + u−(γ(0)) + c0t.

Hence we have

(5.12) u−(x) ≤ T−t u−(x) + c0t.

Let γ− ∈ C2((−∞, 0],Tn) be the one from Theorem 5.1, (b). Setting µ(s) = γ−(s− t)

for s ∈ [0, t] and noting that µ(t) = x, we have

u−(x) =
∫ 0

−t

L(γ−(s), γ̇−(s)) ds + u−(γ−(−t)) + c0t

=
∫ t

0

L(µ(s), µ̇(s)) ds + u−(µ(0)) + c0t ≥ T−t u−(x) + c0t.

This together with (5.12) proves (5.10).

6. A PDE approach
We consider a general scalar first order partial differential equation

(6.1) F (x, u(x), Du(x)) = 0 in Ω,
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where Ω is an open subset of Rn and Du denotes the gradient of u : Ω → R. We assume

that F is continuous on Ω×R×Rn.

A lower semicontinuous function u : Ω → R is called a viscosity supersolution of

(6.1) if for any (ψ, x) ∈ C1(Ω)× Ω such that (u− ψ)(x) = minΩ(u− ψ),

F (x, u(x), Dψ(x)) ≥ 0.

An upper semicontinuous function u : Ω → R is called a viscosity subsolution of

(6.1) if for any (ψ, x) ∈ C1(Ω)× Ω such that (u− ψ)(x) = maxΩ(u− ψ),

F (x, u(x), Dψ(x)) ≤ 0.

A continuous function u : Ω → R is called a viscosity solution of (6.1) if it is both a

viscosity supersolution and a viscosity subsolution of (6.1).

Note that u is a viscosity supersolution (resp., subsolution) of (6.1) if and only if

v := −u is a viscosity subsolution (resp., supersolution) of

−F (x,−v(x),−Dv(x)) = 0 in Ω.

We refer the reader to [CL, CEL, BC, B, L] for general references on viscosity

solutions of first order PDE.

A first remark based on the PDE approach on the weak KAM theorem is the fol-

lowing.

Proposition 6.1. Let φ ∈ C(Tn) and define u : Tn× [0,∞) → R by u(x, t) = T−t φ(x).

Then

(a) u is continuous on Tn × [0,∞);

(b) for each t > 0 there is a constant Ct > 0 such that

|u(x, s)− u(y, s)| ≤ Ct|x− y| ∀x, y ∈ Tn, s ≥ t;

(c) u is a viscosity solution of

(6.2) ut(x, t) + H(x, ux(x, t)) = 0 in Tn × (0,∞).

Remark. To be precise, the definition of u for t = 0 should be understood as

u(x, 0) = T−0 φ(x) = φ(x).
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Lemma 6.2 (Dynamic programming principle). For any t ≥ 0, s ≥ 0, φ ∈ C(Tn),

and x ∈ Tn we have

T−t+sφ(x) = T−t ◦ T−s φ(x).

The arguments in the proof of Lemma 5.5 apply to the proof of this lemma, which

we omit to reproduce here.

Proof of Proposition 6.1. 1. We first show the continuity of u at t = 0. Since

u(x, t) = inf
γ(t)=x

[∫ t

0

L(γ(s), γ̇(s)) ds + φ(γ(0))
]

≤
∫ t

0

L(x, 0) ds + φ(x) ∀(x, t) ∈ Tn × [0, ∞),

we have

(6.3) u(x, t)− φ(x) ≤ t max
x∈Tn

L(x, 0) ∀(x, t) ∈ Tn × [0, ∞).

2. Let ωφ be the modulus of continuity of φ. That is,

ωφ(r) = sup{|φ(x)− φ(y)| | x, y ∈ Tn, |x− y| ≤ r} for r ≥ 0.

Fix (x, t) ∈ Tn × (0, t). Let γ ∈ C2([0, t]) be a minimizer for

inf
µ(t)=x

[∫ t

0

L(µ(s), µ̇(s)) ds + φ(µ(0))
]

.

For each A ≥ 1 we choose a constant CA > 0 so that

L(x, v) ≥ A|v| − CA ∀(x, v) ∈ Tn ×Rn.

We compute that

T−t φ(x)− φ(x) ≥A

∫ t

0

|γ̇(s)|ds− tCA + φ(γ(0))− φ(x)

≥A|γ(t)− γ(0)| − tCA − ωφ(|γ(t)− γ(0)|).

Define the function ν : [1, ∞) → R by

ν(A) = sup{ωφ(r)−Ar | r ≥ 0}.
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Observe that ν is a non-increasing function on [1, ∞) and ν(A) ≥ ωφ(0) = 0 for all

A ≥ 1. Also, since ωφ(r) is bounded on [0, ∞), we have

ωφ(r) ≤ C ∀r ≥ 0

for some constant C > 0, and hence

ν(A) = sup{ωφ(r)−Ar | 0 ≤ r ≤ A−1C} ≤ ωφ(A−1C).

Note that

T−t φ(x)− φ(x) ≥ −ν(A)− tCA ∀A ≥ 1.

Setting

ρ(s) = inf
A≥1

(ν(A) + sCA) for s ≥ 0,

we get

T−t φ(x)− φ(x) ≥ −ρ(t).

Observe that ρ is upper semicontinuous on [0,∞), ρ(s) ≥ 0 for all s ≥ 0, ρ(s) ≤
ν(1) + sCA for all s ≥ 0, and

ρ(0) ≤ inf
A≥1

ν(A) ≤ inf
A≥1

ωφ(A−1C) = 0.

This and (6.3) together show that there is a continuous function σ on [0, ∞), with

σ(0) = 0, such that

(6.4) |u(x, t)− φ(x)| ≤ σ(t) ∀(x, t) ∈ Tn × [0,∞).

We may assume that σ(t) ≤ C0(t+1) for all t ≥ 0 and for some constant C0 > 0. Finally

note that ρ depends only on ωφ and the family {CA | A > 1} and hence σ depends only

on ωφ, {CA}A>1, and maxx∈Tn L(x, 0).

3. Next we prove (b). Let C0 > 0 be a constant for which σ(t) ≤ C0(t + 1) for all

t ≥ 0. Choose C1 > 0 so that

L(x, v) ≥ |v| − C1 ∀(x, v) ∈ Tn ×Rn.

Fix any x, y ∈ Tn. Choose a minimizer γ ∈ C2([0, t]) for

T−t φ(x) = inf
µ(t)=x

[∫ t

0

L(µ(s), µ̇(s)) ds + φ(µ(0))
]

.
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Observing that

∫ t

0

|γ̇(s)|ds ≤ tC1 + σ(t)− φ(γ(0)) ≤ tC1 + C0(t + 1) + max
Tn

|φ|,

we find a τ ∈ [0, t] such that

t|γ̇(τ)| ≤ tC1 + C0(t + 1) + max
Tn

|φ|.

Setting C1(r) = C1 + C0 + r−1(C0 + max
Tn

|φ|), we have |γ̇(τ)| ≤ C1(r).

4. In view of Proposition 2.1, (a), we have

H(γ(s), Lv(γ(s), γ̇(s))) = H(γ(τ), Lv(γ(τ), γ̇(τ))) ∀s ∈ [0, t].

Consequently,

H(γ(s), Lv(γ(s), γ̇(s))) ≤ max
(x,v)∈Tn×B(0,C1(r))

H(x, Lv(x, v)) ∀s ∈ [0, t].

By the superlinearity of H, there exists a constant C2(r) > 0 such that

|Lv(γ(s), γ̇(s))| ≤ C2(r) ∀s ∈ [0, t].

Since γ̇(s) = Hp(γ(s), Lv(γ(s), γ̇(s))) for all s ∈ [0, t], we find a constant C3(r) > 0

such that

|γ̇(s)| ≤ C3
t ∀s ∈ [0, t].

5. We define µ ∈ AC([0, t],Tn) by

µ(s) =





γ(s) for 0 ≤ s ≤ t− r,

γ(s) +
s− t + r

r
(y − x) for t− r ≤ s ≤ t.

Noting that µ(0) = γ(0), µ(t) = γ(t) + y − x = y, and |µ̇(s)| ≤ |γ̇(s)| + 1
r |x − y| ≤

C3(r) +
√

n
r and writing C4(r) = C3(r) +

√
n

r , we have

T−t φ(y) ≤
∫ t

0

L(µ(s), µ̇(s)) ds + φ(µ(0))

≤
∫ t

0

L(γ(s), γ̇(s)) ds + φ(γ(0))

+
(

max
Tn×B(0,C4(r))

|Lx|r + max
Tn×B(0,C4(r))

|Lv|
)
|x− y|.
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Hence we get

T−t φ(y)− T−t φ(x) ≤
(

max
Tn×B(0,C4(r))

|Lx|r + max
Tn×B(0,C4(r))

|Lv|
)
|x− y|.

From this, setting

C5(r) =
(

max
Tn×B(0,C4(r))

|Lx|r + max
Tn×B(0,C4(r))

|Lv|
)

,

we conclude that

(6.5) |u(x, t)− u(y, t)| ≤ C5(r)|x− y| ∀x, y ∈ Tn, t ≥ r,

and hence assertion (b).

6. From (6.4) we get

|u(x, t)− u(y, t)| ≤ |φ(x)− φ(y)|+ 2σ(t) ≤ ωφ(|x− y|) + 2σ(t) ∀x, y ∈ Tn, t ≥ 0.

Fix any ε > 0, x, y ∈ Tn, t ≥ 0. From the above, if |x− y|+ ε ≥ t, then

|u(x, t)− u(y, t)| ≤ |φ(x)− φ(y)|+ 2σ(t) ≤ ωφ(|x− y|) + 2σ(|x− y|+ ε).

On the other hand, by (6.5), if |x− y|+ ε < t, then

|u(x, t)− u(y, t)| ≤ C5(ε)|x− y|.

Combining these yields

|u(x, t)− u(y, t)| ≤ ωφ(|x− y|) + 2σ(|x− y|+ ε) + C5(ε)|x− y|.

Define ω̄ : [0, ∞) → R by

ω̄(r) = inf
s>0

(ωφ(r) + 2σ(r + s) + C5(s)r) .

We have then

(6.6) |u(x, t)− u(y, t)| ≤ ω̄(|x− y|) ∀x, y ∈ Tn, t ≥ 0.

Observe that ω̄(r) ≥ 0 for all r ≥ 0 and ω̄(r) = ωφ(r) + 2σ(r + s) + C5(s)r for all

r ≥ 0 and s > 0 and hence that limr↘0 ω̄(r) = 0. Therefore, (6.6) guarantees that the

collection {u(·, t) | t ≥ 0} ⊂ C(Tn) is equi-continuous.
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7. The above arguments 1 and 2 applied to T−t ψ, with ψ = u(·, s), where t ≥ 0 and

s ≥ 0, yields a modulus σ̄ ∈ C([0, ∞)) such that

|T−t ◦ T−s φ(x)− T−s φ(x)| ≤ σ̄(t) ∀t ≥ 0, s ≥ 0, x ∈ Tn.

Here the function σ̄ depends only on ω̄ and the Lagrangian L. The above inequality

can be rewritten as

|u(x, t)− u(x, s)| ≤ σ̄(|t− s|) ∀x ∈ Tn, t, s ∈ [0,∞).

This and (6.6) show that u is indeed uniformly continuous on Tn× [0, ∞), thus proving

(a).

8. Next we show that u is a viscosity subsolution of (6.2). Let ψ ∈ C1(Tn× (0, ∞))

and (x0, t0) ∈ Tn×(0, ∞). Assume that u−ψ attains a maximum at (x0, t0). By adding

a constant to ψ, we may assume that u(x0, t0) = ψ(x0, t0) and u ≤ ψ on Tn × (0, ∞).

Fix ε ∈ (0, t0) and observe by Lemma 6.2 that

ψ(x0, t0) = (T−ε u(·, t0 − ε))(x0) = inf
γ(ε)=x0

[∫ ε

0

L(γ(s), γ̇(s)) ds + u(γ(0), t0 − ε)
]

≤ inf
γ(ε)=x0

[∫ ε

0

L(γ(s), γ̇(s)) ds + ψ(γ(0), t0 − ε)
]

.

Fix any v ∈ Rn and consider the function (or curve) γ defined by γ(s) = x0 + (ε− s)v

for s ∈ [0, ε], to find

ψ(x0, t0) ≤
∫ ε

0

L(x0 + (ε− s)v,−v) ds + ψ(x0 + εv, t0 − ε),

from which we get

0 ≥
∫ ε

0

[
−L(x0 + (ε− s)v,−v) +

d
ds

ψ(x0 + (ε− s)v, t0 + s− ε)
]

ds

=
∫ ε

0

[−L(x0 + (ε− s)v,−v) + ψt(x0 + (ε− s)v, t0 + s− ε)

− vψx(x0 + (ε− s)v, t0 + s− ε)
]
ds.

Dividing this by ε and sending ε → 0, we get

−L(x0,−v)− vψx(x0, t0) + ψt(x0, t0) ≤ 0 ∀v ∈ Rn.
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Taking the supremum over v ∈ Rn yields

ψt(x0, t0) + H(x0, ψx(x0, t0)) ≤ 0,

which was to be shown.

9. What remains is to show that u is a viscosity supersolution of (6.2). Let ψ ∈
C1(Tn× (0, ∞)) and (x0, t0) ∈ Tn× (0, ∞). Assume that u−ψ attains a minimum at

(x0, t0). We may assume that u(x0, t0) = ψ(x0, t0) and u ≥ ψ on Tn × (0, ∞).

Fix ε ∈ (0, t0) and observe that

ψ(x0, t0) = (T−ε u(·, t0 − ε))(x0) = inf
γ(ε)=x0

[∫ ε

0

L(γ(s), γ̇(s)) ds + u(γ(0), t0 − ε)
]

≥ inf
γ(ε)=x0

[∫ ε

0

L(γ(s), γ̇(s)) ds + ψ(γ(0), t0 − ε)
]

.

Choose a minimizer γε ∈ AC([0, ε],Tn) for the last variational problem. Compute that

0 ≤
∫ ε

0

[
L(γε(s), γ̇ε(s)) +

d
ds

ψ(γε(s), t0 + s− ε)
]

ds(6.7)

=
∫ ε

0

[−L(γε(s), γ̇ε(s)) + γ̇ε(s)ψx(γε(s), t0 + s− ε) + ψt(γε(s), t0 + s− ε)] ds

≤
∫ ε

0

[H(γε(s), ψx(γε(s), t0 + s− ε)) + ψt(γε(s), t0 + s− ε)] ds.

Now observe as in the proof of Lemma 3.6 that for any A > 1 there exists a CA > 0

such that L(x, v) ≥ A|v| − CA for all (x, v) ∈ Tn ×Rn and hence

A

∫ ε

0

|γ̇ε(t)| dt ≤ CAε + 2 max
Tn×[t0/2,2t0]

|ψ| if ε ∈ (0, t0/2),

and moreover

A|x0 − γε(0)| ≤ CAε + 2 max
Tn×[t0/2,2t0]

|ψ| if ε ∈ (0, t0/2).

Consequently we have

γε(0) → x0 as ε → 0.

Dividing (6.7) by ε and sending ε → 0, we get

ψt(x0, t0) + H(x0, ψx(x0, t0)) ≥ 0.
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This shows that u is a viscosity supersolution of (6.2). The proof is now complete.

A remark on T+
t similar to Proposition 6.1 is stated as follows.

Proposition 6.3. Let φ ∈ C(Tn) and define u : Tn × [0,∞) → R by

u(x, t) = T+
t φ(x).

Then

(a) u is continuous on Tn × [0,∞);

(b) for each t > 0 there is a constant Ct > 0 such that

|u(x, s)− u(y, s)| ≤ Ct|x− y| ∀x, y ∈ Tn, s ≥ t;

(c) u is a viscosity solution of

(6.8) ut(x, t)−H(x, ux(x, t)) = 0 in Tn × (0,∞).

Proof. Fix φ ∈ C(Tn). Observe that

T+
t φ(x) = sup

γ(0)=x

[
−

∫ t

0

L(γ(s), γ̇(s)) ds + φ(γ(t))
]

= sup
µ(t)=x

[
−

∫ t

0

L̂(µ(s), µ̇(s)) ds + φ(µ(0))
]

= − inf
µ(t)=x

[∫ t

0

L̂(µ(s), µ̇(s)) ds− φ(µ(0))
]

= − T̂−t (−φ)(x) ∀(x, t) ∈ Tn × [0, ∞),

where L̂(x, v) := L(x,−v) and

T̂−t ψ(x) := inf
γ(t)=x

[∫ t

0

L̂(γ(s), γ̇(s)) ds + ψ(γ(0))
]

for ψ ∈ C(Tn).

By Proposition 6.1, setting

v(x, t) = T̂−t (−φ)(x) for (x, t) ∈ Tn × [0, ∞),

we see that v has properties (a) and (b) and so does u = −v. Also, v is a viscosity

solution of

vt + Ĥ(x, vx) = 0 in Tn × (0, ∞),
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where Ĥ(x, p) := sup{vp− L̂(x, v) | v ∈ Rn}. Note that

Ĥ(x, p) = sup
v∈Rn

(−vp− L(x, v)) = H(x,−p) ∀(x, p) ∈ Tn ×Rn.

Hence we find that v is a viscosity solution of

vt + H(x,−vx) = 0 in Tn × (0, ∞).

As we remarked before, the function u = −v is a viscosity solution of

− [(−u)t + H(x,−(−u)x)] = 0 in Tn × (0, ∞).

That is, u is a viscosity solution of

ut −H(x, ux) = 0 in Tn × (0, ∞).

The proof is now complete.

Lemma 6.4. Let G ∈ C(Tn × R × Rn) have the properties: (a) for each (x, p) ∈
Tn ×Rn, the function r 7→ G(x, r, p) is non-decreasing on R; (b) for each r ∈ R,

lim
R→∞

inf{G(x, r, p) | (x, p) ∈ Tn ×Rn, |p| ≥ R} > 0.

Let c, d ∈ R satisfy c < d. Let u ∈ C(Tn) and v ∈ C(Tn) be a viscosity subsolution of

(6.9) G(x, u, ux) = c in Tn,

and a viscosity supersolution of

(6.10) G(x, v, vx) = d in Tn,

respectively. Then u ≤ v on Tn.

Proof. We argue by contradiction. Thus we assume that max
Tn

(u−v) > 0 and will get a

contradiction. We work on Rn. That is, we regard u, v, G(·, r, p) as periodic functions

on Rn.

Note first that u is a Lipschitz continuous function. Indeed, we choose a constant

C > 0 so that

G(x, min
Tn

u, p) > c ∀(x, p) ∈ Tn × (Rn \B(0, C)).
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Fix any y ∈ Rn and consider the function φ ∈ C1(Rn × \{y}) defined by

φ(x) = u(y) + C|x− y|.

Choosing R > 0 large enough, we observe that

u(x) < φ(x) ∀x ∈ ∂B(y,R),

and that

(6.11) G(x, u(x), φx(x)) = G
(
x, u(x), C

x− y

|x− y|
)

> c.

We compare u with φ on the set B(y, R): if u(x̄) > φ(x̄) at a point x̄ ∈ B(y,R), then

x̄ ∈ intB(y, R) \ {y} and, since u is a viscosity subsolution of (6.9), we must have

G
(
x̄, u(x̄), C

x̄− y

|x̄− y|
)
≤ c.

This contradicts (6.11), which shows that u(x) ≤ φ(x) in B(y,R). Here R can be chosen

independently of y. Accordingly we get

u(x) ≤ u(y) + C|x− y| if |x− y| ≤ R,

which implies that

|u(x)− u(y)| ≤ C|x− y| ∀x, y ∈ Rn.

Now we consider the function

Φ(x, y) = u(x)− v(y)− α|x− y|2 − ε(|y|2 + 1)1/2

on Rn ×Rn, where α > 1 and ε > 0 are constants to be sent to ∞ and 0, respectively.

Let (x̄, ȳ) be a maximum point of Φ. Note that

Φ(x̄, ȳ) ≥ Φ(ȳ, ȳ),

which yields

α|x̄− ȳ|2 ≤ u(x̄)− u(ȳ) ≤ C|x̄− ȳ|,

and hence

α|x̄− ȳ| ≤ C.
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Since u and v are a viscosity subsolution of (6.9) and a viscosity supersolution of

(6.10), respectively, we get

G(x̄, u(x̄), 2α(x̄− ȳ)) ≤ c,

G
(
ȳ, v(ȳ), 2α(x̄− ȳ)− ε(|ȳ|2 + 1)−1/2ȳ

)
≥ d.

Sending ε → 0 and α →∞ together, we find that for some x̂ ∈ Rn and p̂ ∈ B(0, C),

G(x̂, u(x̂), p̂) ≤ c < d ≤ G(x̂, v(x̂), p̂),

which is a contradiction.

Remark. The above proposition is valid under the weaker assumption that u ∈
USC(Tn) and v ∈ LSC(Tn). The same proof as above yields this result.

Proposition 6.5. (a) There is a pair of a constant c0 ∈ R and a function u ∈ Lip(Tn)

such that u is a viscosity solution of

(6.12) H(x, ux) = c0 in Tn.

(b) If (d, v) ∈ R× C(Tn) is another pair for which v is a viscosity solution of

H(x, vx) = d in Tn,

then d = c0.

Proof. 1. The underlining idea of the arguments here parallels the proof of Theorem

5.3. We consider the Hamilton-Jacobi equation

(6.13) λuλ(x) + H(x, uλ
x) = 0 in Tn,

where λ ∈ (0, 1) is a parameter to be sent to zero later. This equation has a unique

viscosity solution. Indeed, to see the uniqueness, let u, v ∈ C(Tn) be a viscosity subso-

lution and a viscosity supersolution of (6.13). Fix any ε > 0 and set uε(x) = u(x) − ε

for x ∈ Rn. Then uε is a viscosity subsolution of

λuε + H(x,Duε) = −λε in Tn.

By Lemma 6.4, we see that uε ≤ v on Tn. Since ε > 0 is arbitrary, we get u ≤ v

on Tn, which implies the uniqueness of viscosity solutions of (6.13). The existence of
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a viscosity solution of (6.13) can be deduced by Perron’s method. In fact, it is easily

seen that the function f(x) := −λ−1 max
x∈Tn

H(x, 0) and g(x) := −λ−1 minx∈Tn H(x, 0)

are classical (and hence viscosity) subsolution and superslution of (6.13), respectively.

Note also that f ≤ g on Rn. Therefore, by Perron’s method, we find a function uλ such

that the upper semicontinuous envelope (uλ)∗ of uλ is a viscosity subsolution of (6.13)

and the lower semicontinous envelope uλ
∗ of uλ is a viscosity supersolution of (6.13). As

above, we may apply Lemma 6.4 to (uλ)∗ − ε, with any ε > 0, and uλ
∗ , to deduce that

(uλ)∗− ε ≤ uλ
∗ on Rn, which yields that (uλ)∗ ≤ uλ

∗ on Rn. This last inequality implies

that uλ = (uλ)∗ = uλ
∗ ∈ C(Tn), proving the existence of a viscosity solution of (6.15).

2. Perron’s method has yielded a solution uλ which is given by

uλ(x) = sup{v(x) | v ∈ C(Tn) is a viscosity subsolution of (6.15),

f ≤ v ≤ g on Rn} ∀x ∈ Rn.

From this we see that

(6.14) − max
x∈Tn

H(x, 0) ≤ λuλ(x) ≤ − min
x∈Tn

H(x, 0) ∀x ∈ Rn.

Hence we find that uλ is a viscosity subsolution of

H(x, uλ
x) = max

x∈Tn
H(x, 0) in Rn.

As in the proof of Lemma 6.4, we see that there is a constant C > 0, independent of

λ ∈ (0, 1), such that

(6.15) |uλ(x)− uλ(y)| ≤ C|x− y| ∀x, y ∈ Rn, λ ∈ (0, 1).

We set wλ(x) = uλ(x) − uλ(0) for x ∈ Rn and λ ∈ (0, 1) and cλ = −λuλ(0) for

λ ∈ (0, 1). Then (6.14) and (6.15) guarantee that {cλ}0<λ<1 ⊂ R is bounded and

{wλ}0<λ<1 ⊂ C(Tn) is a uniformly bounded and equi-continuous on Rn. Therefore we

can select a sequence {λj} ∈ (0, 1) so that as j →∞,

λj → 0,

cλj → c0,

wλj (x) → u(x) uniformly for x ∈ Tn,

for some constant c0 and some function u ∈ Lip(Tn). By the stability of the viscosity

property, noting that

λwλ(x) + H(x,wλ
x) = cλ in Rn
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in the viscosity sense, we see that u is a viscosity solution of

H(x, ux) = c0 in Rn.

Thus we have proved (a).

3. By assumption, we have

H(x, ux) = c0 in Tn,

H(x, vx) = d in Tn

in the viscosity sense. By adding a constant to u, we may assume that u > v on Rn.

By Lemma 6.4, we may deduce that c0 ≥ d. By adding another constant to u, we may

assume in turn that u < v on Rn and we may deduce as above that c0 ≤ d. Thus we

see that c0 = d, completing the proof.

Proposition 6.6. Let c0 ∈ R be such that there is a viscosity solution u ∈ Lip(Tn) of

(6.16) H(x, ux) = c0 in Tn.

Then

(6.17) c0 = inf
φ∈C1(Tn)

sup
x∈Tn

H(x, φx(x)).

Proof. 1. Let u ∈ Lip(Tn) be a viscosity solution of (6.16). Let ρ ∈ C∞0 (Rn) be

a standard mollification kernel such that spt ρ ⊂ B(0, 1). Fix ε ∈ (0, 1), and set

ρε(x) = ε−nρ(x/ε) and uε = u∗ρε. Let C0 > 0 be a Lipschitz constant of the function u.

Since u is differentiable a.e. and the a.e. derivatives are identical with the distributional

derivatives, using the Jensen inequality, we have

H(x,Duε(x)) ≤ ρε ∗H(x,Du(·)) ≤ ρε ∗H(·, Du(·)) + ω(ε) ≤ c0 + ω(ε) ∀x ∈ Rn,

where ω is the modulus of the function H on Rn×B(0, C0). Now, letting c1 denote the

right hand side of (6.17), we have

c1 ≤ sup
x∈Rn

H(x,Duε(x)) ≤ c0 + ω(ε) ∀ε ∈ (0, 1).

Because of the arbitrariness of ε, we find that

(6.18) c1 ≤ c0.
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2. To prove that c0 ≤ c1, we argue by contradiction, and so suppose that c0 > c1.

Let u ∈ Lip(Tn) be a viscosity solution of (6.16) as before. Set c = (c0 + c1)/2. Then

u is a viscosity supersolution of By the definition of c1, there is a function φ ∈ C1(Tn)

which is a subsolution of

H(x, ux) = c in Rn

in the classical sense (and hence in the viscosity sense). We may assume by adding a

constant to u if necessary that φ > u on Rn. By Lemma 6.4, since c < c0, we have

φ ≤ u on Rn, which is a contradiction. Thus we see that c0 ≤ c1, completing the proof.

Now, we turn to the PDE

(6.19) −H(x, ux) = −d0 in Tn,

where d0 ∈ R is a constant.

We remark that u ∈ C(Tn) is a viscosity solution of (6.19) if and only if v := −u is

a viscosity solution of

H(x,−vx) = d0 in Tn.

The Hamiltonian (x, p) 7→ H(x,−p) has the properties required in Propositions 6.5

and 6.6. Therefore, we have the following proposition.

Proposition 6.7. (a) There is a pair of a constant d0 ∈ R and a function v ∈ Lip(Tn)

such that v is a viscosity solution of

H(x,−vx) = d0 in Tn.

(b) If (e, w) ∈ R× C(Tn) is another pair for which w is a viscosity solution of

H(x,−wx) = e in Tn,

then e = d0. (c) The formula

(6.20) d0 = inf
φ∈C1(Tn)

sup
x∈Tn

H(x,−φx(x)).

holds.

Corollary 6.8. Let c0 and d0 be constants from Propositions 6.5 and 6.7, respectively.

Then we have c0 = d0.

Proof. From (6.17) and (6.20), we have

c0 = inf
φ∈C1(Tn)

sup
x∈Tn

H(x, φx(x)) = inf
φ∈C1(Tn)

sup
x∈Tn

H(x,−φx(x)) = d0.
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7. Some consequences of the main theorem

Define Pinv as the set of Borel probability measures µ on Tn×Rn which are invariant

under the flow {φL
t }t∈R. Here, by definition, µ is invariant under the flow {φL

t } if for

all θ ∈ Cb(Tn ×Rn),

∫

Tn×Rn

θ ◦ φL
t dµ =

∫

Tn×Rn

θ dµ ∀t ∈ R.

Theorem 7.1. We have

−c0 = inf
µ∈Pinv

∫

Tn×Rn

L dµ.

Proof. Let (u−, γ−, c0) be from the weak KAM theorem, where we not not specify the

value γ−(0).

1. By property (a) of u−, for all (x, v) ∈ Tn ×Rn, we have

u−(π ◦ φL
t (x, v))− u−(π ◦ φL

0 (x, v)) ≤
∫ t

0

L(φL
s (x, v)) ds + c0t ∀t > 0.

Let µ ∈ Pinv. We integrate the above by µ over Tn ×Rn, to get
∫

Tn×Rn

u− ◦ π ◦ φL
t dµ−

∫

Tn×Rn

u− ◦ π dµ

≤
∫ t

0

(∫

Tn×Rn

L ◦ φL
s dµ

)
ds + c0t ∀t > 0.

Hence, using the invariance of µ under {φL
t }, we find that

0 ≤
∫

Tn×Rn

L dµ + c0.

Thus we have

(7.1) −c0 ≤ inf
µ∈Pinv

∫

Tn×Rn

L dµ.

2. Define the Borel probability measures µk, with k ∈ N, on Tn ×Rn by

∫

Tn×Rn

θ dµk =
1
k

∫ 0

−k

θ(γ−(s), γ̇−(s)) ds ∀θ ∈ Cb(Tn ×Rn).

Since

(γ−(t), γ̇−(t)) = φL
t (γ−(0), γ̇−(0)) ∀t ≤ 0,
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there is a constant R > 0 such that

|γ̇−(t)| ≤ R ∀t ≤ 0.

Therefore we have

sptµk ⊂ Tn ×B(0, R),

where the set on the right hand side is a compact set. Thus, we find a subsequnece

{µkj
}j∈N and a Borel probability measure µ− such that as j →∞,

µkj
→ µ− weakly in the sense of measures.

3. We now show that µ− is invariant under the flow {φL
t }. Fix any t ∈ R and

θ ∈ Cb(Tn ×Rn). We have

∫

Tn×Rn

θ ◦ φL
t dµ− = lim

j→∞
1
kj

∫ 0

−kj

θ ◦ φL
t ◦ φL

s (x0, v0) ds

= lim
j→∞

1
kj

∫ 0

−kj

θ ◦ φL
t+s(x0, v0) ds,

where (x0, v0) = (γ−(0), γ̇−(0)), and

∫ 0

−k

θ ◦ φt+s(x0, v0) ds =
∫ t

t−k

θ ◦ φL
s (x0, v0) ds

=
∫ 0

−k

θ ◦ φL
s (x0, v0) ds +

∫ t

0

θ ◦ φL
s (x0, v0) ds +

∫ −k

t−k

θ ◦ φL
s (x0, v0) ds.

Hence, dividing this by k and sending k = kj →∞, we get

∫

Tn×Rn

θ ◦ φL
t dµ− = lim

j→∞
1
kj

∫ 0

kj

θ ◦ φL
s (x0, v0) ds =

∫

Tn×Rn

θ dµ−,

and conclude that µ− ∈ Pinv. Therefore we have

(7.2) inf
µ∈Pinv

∫

Tn×Rn

L dµ ≤
∫

Tn×Rn

L dµ−.

4. We observe that
∫

Tn×Rn

L dµ− = lim
j→∞

1
kj

∫ 0

−kj

L(γ(t), γ̇−(t)) dt

= lim
j→∞

u−(γ(0))− u−(γ(−kj))− c0kj

kj
= −c0.
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Combine this with (7.1) and (7.2), to conclude that

−c0 = inf
µ∈Pinv

∫

Tn×Rn

L dµ =
∫

Tn×Rn

L dµ−.

Remark. The variational problem

inf
µ∈Pinv

∫

Tn×Rn

L dµ

has a minimizer as the above proof shows. In what follows we write

Pmin =
{
µ ∈ Pinv

∣∣
∫

Tn×Rn

L dµ = inf
ν∈Pinv

∫

Tn×Rn

L dν
}
.

We introduce the Aubry set A−ε , with parameter ε > 0, as the set of points x ∈ Tn

such that there exists γx ∈ AC([−ε, ε],Tn) satisfying γx(0) = x for which

(7.3) u−(γx(ε))− u−(γx(−ε)) =
∫ ε

−ε

L(γx(s), γ̇x(s)) ds + 2εc0.

Remark. Note that A−ε depends also on the choice of u−. We refer to [Fa2, FS1, FS2]

for recent developments related to Aubry sets.

Theorem 7.2. We have:

(a) u− is differentiable at every x ∈ A−ε .

(b) Du−(x) = Lv(x, γ̇x(0)) for all x ∈ A−ε .

(c) The map x 7→ Du−(x), A−ε → Rn is Lipschitz continuous.

Proof. We write u for u−.

1. We prove first (a) and (b). Fix x ∈ A−ε and let γx ∈ C2([−ε, ε],Tn) satisfy (7.3)

and γx(0) = x. We have

u(γx(0))− u(γx(−ε)) =
∫ 0

−ε

L(γx(s), γ̇x(s)) ds + c0ε,(7.4)

u(γx(ε))− u(γx(0)) =
∫ ε

0

L(γx(s), γ̇x(s)) ds + c0ε.(7.5)

2. Fix y ∈ Tn. Define µ− ∈ C2([−ε, 0],Tn) by

µ−(t) = γx(t) +
ε + t

ε
(y − x).
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Note that µ−(0) = y, µ̇−(t) = γ̇x(t)+ 1
ε (y−x) for all t ∈ [−ε, 0], and µ−(−ε) = γx(−ε).

By the property (a) of u− in the weak KAM theorem, we have

(7.6) u(µ−(0))− u(µ−(−ε)) ≤
∫ 0

−ε

L(µ−(s), µ̇−(s)) ds + c0ε.

3. Combining (7.4) and (7.6), we get

u(y)− u(x) ≤u(µ−(−ε))− u(γx(−ε)) +
∫ 0

−ε

[L(µ−, µ̇−)− L(γx, γ̇x)] ds

=
∫ 0

−ε

[L(µ−, µ̇−)− L(γx, γ̇x)] ds.

We choose a constant C > 0 so that

|γ̇x(t)| ≤ C ∀t ∈ [−ε, ε].

Noting that

max{|γ̇x(t)|, |µ̇−(t)|} ≤ C +
|y − x|

ε
≤ Cε ∀t ∈ [−ε, 0],

where we may assume that |x − y| ≤ √
n and consequently we may choose Cε = C +

ε−1
√

n, and applying the Taylor theorem, we get

u(y)− u(x)(7.7)

≤
∫ 0

−ε

(
Lx(γx(s), γ̇x(s)) · ε + s

ε
(y − x) + Lv(γx(s), γ̇x(s)) · 1

ε
(y − x)

)
ds

+ Kε|y − x|2

for some constant Kε > 0, for instance,

Kε =
1
2

(
1 +

1
ε

)
max

(x,v)∈Tn×B(0,Cε)

∥∥∥∥
(

Lxx Lxv

Lvx Lvv

)∥∥∥∥ .

Since γx satisfies the Euler-Lagrange equation

d
dt

Lv(γx(t), γ̇x(t)) = Lx(γx(t), γ̇x(t)) ∀t ∈ [−ε, ε],

by integration by parts, we find that
∫ 0

−ε

ε + t

ε
Lx(γx(t), γ̇x(t)) · (y − x) dt =

∫ 0

−ε

ε + t

ε

d
dt

Lv(γx(t), γ̇−(t)) · (y − x) dt

=
[
ε + t

ε
Lv(γx(t), γ̇x(t)) · (y − x)

]t=0

t=−ε

−
∫ 0

−ε

1
ε
Lv(γx(t), γ̇x(t)) · (y − x) dt

= Lv(γx(0), γ̇x(0)) · (y − x)−
∫ 0

−ε

1
ε
Lv(γx(t), γ̇x(t)) · (y − x) dt.
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This together with (7.7) yields

(7.8) u(y)− u(x) ≤ Lv(x, γ̇x(0)) · (y − x) + Kε|y − x|2.

4. Next define µ+ ∈ C2([0, ε],Tn) by

µ+(t) = γx(t) +
ε− t

ε
(y − x).

Note that µ+(0) = y, µ̇+(t) = γ̇x(t) + 1
ε (x− y) for all t ∈ [0, ε], and µ+(ε) = γx(ε).

By property (a) of u− in the weak KAM theorem, we have

u(µ+(ε))− u(µ+(0)) ≤
∫ ε

0

L(µ+(t), µ̇+(t)) dt + c0ε.

Combine this with

u(γx(ε))− u(γx(0)) =
∫ ε

0

L(γx(t), γ̇x(t)) dt + c0ε,

to get

u(x)− u(y) ≤u(γx(ε))− u(µ+(ε)) +
∫ ε

0

[L(µ+(t), µ̇+(t))− L(γx(t), γ̇x(t))] dt

≤
∫ ε

0

[L(µ+(t), µ̇+(t))− L(γx(t), γ̇x(t))] dt.

Using the Taylor theorem, the Euler-Lagrange equation, and integration by parts, we

get

u(x)− u(y)

≤
∫ ε

0

(Lx(γx(t), γ̇x(t)) · (µ+(t)− γx(t)) + Lv(γx(t), γ̇x(t)) · (µ̇+(t)− γ̇x(t))) dt

+ Kε|x− y|2

=
∫ ε

0

(
ε− t

ε

d
dt

Lv(γx(t), γ̇x(t)) · (y − x)− 1
ε
Lv(γx(t), γ̇x(t)) · (y − x)

)
dt

+ Kε|x− y|2

= −Lv(γx(0), γ̇x(0)) · (y − x) + Kε|y − x|2.

This and (7.8) yield

|u(y)− u(x)− Lv(x, γ̇x(0)) · (y − x)| ≤ Kε|x− y|2 ∀x ∈ A−ε , y ∈ Tn.
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In particular, we see that

Du(x) = Lv(x, γ̇x(0)) ∀x ∈ A−ε ,

which proves (7.1) and (7.2). In order to complete the proof, we just need to apply the

following lemma.

Lemma 7.3. Let A ⊂ Rn and u : Rn → R. Assume that u is differentiable at every

point x ∈ A and that there is a constant K > 0 for which

(7.9) |u(y)− u(x)−Du(x) · (y − x)| ≤ K|y − x|2 ∀y ∈ Rn.

Then

|Du(y)−Du(x)| ≤ 6K|y − x|.

Proof. Let x1, x2 ∈ Rn. Let h ∈ Rn be a vector to be fixed later on. We assume that

|h| = |x1 − x2|. By (7.9), we find that

|u(x1 + h)− u(x1)−Du(x1) · h| ≤ K|h|2,
|u(x1)− u(x2)−Du(x2) · (x1 − x2)| ≤ K|h|2,

|u(x1 + h)− u(x2)−Du(x2) · (h + x1 − x2)| ≤ K|x1 − x2 + h|2 ≤ 4K|h|2.

Noting that
u(x1 + h)− u(x1) + Du(x1) · h
− u(x1) + u(x2) + Du(x2) · (x1 − x2)

+ u(x1 + h)− u(x2)−Du(x2) · (h + x1 − x2)

= (Du(x1)−Du(x2)) · h,

we get

|(Du(x1)−Du(x2)) · h| ≤ |u(x1 + h)− u(x1)−Du(x1) · h|
+ |u(x1)− u(x2)−Du(x2) · (x1 − x2)|
+ |u(x1 + h)− u(x2)−Du(x2) · (h + x1 − x2)| ≤ 6K|h|2.

We amy assume that x1 6= x2. Setting

h =
Du(x1)−Du(x2)
|Du(x1)−Du(x2)| |x1 − x2|,
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we find from the above inequality that

|Du(x1)−Du(x2)| ≤ 6K|x1 − x2|,

which completes the proof.

Define the Mather set M̃0 and the projected Mather set M0 by

M̃0 = closure of
⋃
{ sptµ | µ ∈ Pmin},

M0 = π(M̃0).

Remark. By definition, for a Borel probability measure µ on Tn ×Rn,

spt µ = {(x, v) ∈ Tn ×Rn | µ(U) > 0 for all neighborhood U of (x, v)}.

Proposition 7.4. M̃0 is invariant under the flow {φL
t }.

Proof. We argue by contradiction. Suppose that there were a point (x0, v0) ∈ M̃0 and

t ∈ R such that

φL
t (x0, v0) 6∈ M̃0.

Choose a neighborhood U ⊂ Tn ×Rn of φL
t (x0, v0) such that

U ∩ M̃0 = ∅.

Set V = φL
−t(U). Since V 3 φL

−t(φ
L
t (x0, v0)) = (x0, v0) and φL

−t : Tn ×Rn → Tn ×Rn

is a homeomorphism, V is a neighborhood of (x0, v0). By the definition of M̃0, there is

a µ ∈ Pmin such that ∫
1V dµ > 0.

Note that ∫
1U dµ = 0

and that 1φL
−t

(U) = 1U ◦ φL
t . Using the invariance of µ under {φL

s }, we find that

0 <

∫
1V dµ =

∫
1φL

−t
(U) dµ =

∫
1U ◦ φL

t dµ =
∫

1U dµ = 0.

This is a contradiction, which completes the proof.
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Theorem 7.5. M0 ⊂ A−ε for all ε > 0.

Proof. 1. Define the function ψ : Tn ×Rn → R by

ψ(x, v) =
∫ ε

−ε

L ◦ φL
s (x, v) ds + 2c0ε− u− ◦ π ◦ φL

ε (x, v) + u− ◦ π ◦ φL
−ε(x, v).

Note that ψ ∈ C(Tn ×Rn) and ψ ≥ 0 on Tn ×Rn by property (a) of u− in the weak

KAM theorem.

2. We show that

(7.10) ψ(x, v) = 0 ∀(x, v) ∈ M̃0.

To this end, we argue by contradiction. We suppose that there were a point

(x0, v0) ∈∈ M̃0 such that ψ(x0, v0) > 0. There is an open neighborhood U ⊂ Tn ×Rn

of (x0, v0) such that ψ(x, v) > 0 for all (x, v) ∈ U . Since (x0, v0) ∈ M̃0, there is a

µ ∈ Pmin such that spt µ ∩ U 6= ∅. Then we have

(7.11)
∫

U

ψ dµ > 0.

On the other hand, we have

∫

U

ψ dµ ≤
∫

Tn×Rn

ψ dµ

and ∫

Tn×Rn

ψ dµ =
∫ ε

−ε

ds

∫

Tn×Rn

L ◦ φs dµ

+ 2c0ε−
∫

Tn×Rn

u− ◦ π ◦ φL
s dµ +

∫

Tn×Rn

u− ◦ π dµ

= 2(−c0)ε + 2c0ε = 0.

Hence, ∫

U

ψ dµ ≤ 0.

This contradicts with (7.11), which completes the proof.
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