kori-homma 本文へジャンプ
KORI'S OFFICE AND HOMMA'S OFFICE


郡敏昭 経歴・論文


経歴
  • 1964年 京都大学理学部数学科卒業
  • 1975年 パリVI大学研究院(D.E.A)卒業
  • 1976年 Docteur es Sciences
  • 1964-66年 文部省統計数理研究所研究員
  • 1966-68年 東京教育大学理学部助手
  • 1968-71年 静岡大学理学部講師
  • 1971-1976年 早稲田大学理工学部助教授
  • 1977年-現在 同教授
  • 2012年 早稲田大学名誉教授

論文
タイトル  更新
31 Pre-symplectic structures on the space of connections Differential Geometry and its Application 67, 2019 .
30 Quaternifications and extensions of current algebras on S^3 (with Imai Yuto)
Symmetry 7 (2015), no. 4, 215-2180.
29 Lie algebra extensions of current algebras on S^3 (with Imai Yuto)
Int. J. Geom. Methods Mod. Phys. 12 (2015), no. 9
28 Pre-symplectic structure on the space of connections Geometry, integrability and quantization XVI, 188-194, Avangard Prima, Sofia, 2015.
27 Extensions of current groups on S 3 and the adjoint representations J. Math. Soc. Japan 66 (2014), no. 3, 819-838
26 Chern-Simons pre-quantizations over four-manifolds Differential Geom. Appl. 29 (2011), no. 5, 670-684
25 郡 敏昭 詩集「苦しい夜のために」 ふらんす堂(2005)
25 Yang-Mills方程式のハミルトン形式(Japanese) 数理研講究録 No. 1408, (2004), 110-122.
24 Cohomology Groups of Harmonic Spinors on Conformally Flat Manifold, Trends in Math. Advances in Analysis and Geometry, 209-225, Birkhauser, 2004.
23 Four-dimensional Wess-Zumino-Witten actions Journal of Geometry and Physics,47(2003),235-258.
22 Spinor analysis on C^2 and on conformally flat manifolds, Japanese Journal of Mathematics, vol. 28-1, 1-30 (2002).
21 Chiral anomaly and Grassmannian boundary conditions. Geometric aspects of partial differential equations (Roskilde, 1998), 35--42, Contemp. Math., 242, Amer. Math. Soc., Providence, RI, 1999.
20 Poles and residues of zero-mode spinors over conformally flat $4$-manifolds. (Japanese) 数理研講究録 No. 1070, (1998), 154--164.
19 Index of the Dirac operator on $S^4$ and the infinite-dimensional Grassmannian on $S^3$. Japan. J. Math. (N.S.) 22 (1996), no. 1, 1--36.
18 Lie algebra of the infinitesimal automorphisms on $S\sp 3$ and its central extension J. Math. Kyoto Univ. 36 (1996), no. 1, 45--60.
17 Extension problems for spinors on $S\sp 4$. State of the art and perspectives of studies on nonlinear integrable systems (Japanese) 数理研講究録 No. 822, (1993), 62--69.
16 Fermion Fock space on $S\sp 3$. State of the art and perspectives of studies on nonlinear integrable systems (Japanese) 数理研講究録 No. 822, (1993), 56--61
15 Dual of the space of holomorphic functions with continuous boundary values on a strictly pseudo-convex domain in ${C}\sp n$ Math. Ann. 284 (1989), no. 4, 537--562.
14 Th?or?mes de dualit? sur la fronti?re fortement pseudoconvexe. II. Dualit? d'Alexandroff. (French) [Duality theorems on the strongly pseudoconvex boundary. II. Aleksandrov duality] Publ. Res. Inst. Math. Sci. 20 (1984), no. 3, 659--670.
13 Th?or?mes de dualit? du type Serre et du type Poincar?\mhy Lefschetz sur la fronti?re fortement pseudoconvexe. (French) [Duality theorems of Serre and Poincare-Lefschetz type on the strongly pseudoconvex boundary] Tokyo J. Math. 5 (1982), no. 2, 299--327.
12 Th?or?me de dualit? pour la cohomologie locale au bord des ouverts fortement pseudoconvexes. (French) [Duality theorem for local cohomology at the boundary of strongly pseudoconvex open sets] Hokkaido Math. J. 10 (1981), 374--423
11 Cohomologie de de Rham au bord d'un domaine fortement pseudoconvexe. (French) Tokyo J. Math. 3 (1980), no. 1, 37--74
10 Probl?mes au bord sur un espace harmonique. (French) Potential theory, Copenhagen 1979 (Proc. Colloq., Copenhagen, 1979), pp. 185--190, Lecture Notes in Math., 787, Springer, Berlin, 1980
9 Sur une classe des solutions du probl?me de Dirichlet ext?rieur dans un espace harmonique de Brelot. (French) S?minaire de Th?orie du Potentiel de Paris, No. 2 (Univ. Paris, Paris, 1975--1976), pp. 142--160. Lecture Notes in Math., Vol. 563, Springer, Berlin, 1976.
8 La th?orie des espaces fonctionnels ? nullit? $1$ et le probl?me de Neumann sur les espaces harmoniques. (French) Ann. Inst. Fourier (Grenoble) 27 (1977), no. 4, ix, 45--119.
7 Neumann problem on a symmetric Brelot's harmonic space. Function theoretic methods for partial differential equations (Proc. Internat. Sympos., Darmstadt, 1976), pp. 314--326. Lecture Notes in Math., Vol. 561, Springer, Berlin, 1976.
6 Sheaf cohomology theory on harmonic spaces J. Math. Kyoto Univ. 14 (1974), 555--595.
5 Probl?me de Neumann sur les espaces harmoniques. Math. Ann. 224 (1976), no. 1, 53--76.
4 Axiomatic theory of non-negative fullsuperharmonic functions. J. Math. Soc. Japan 23 1971 481--526.
3 On a characterization of certain additive functionals of Markov processes. Osaka J. Math. 5 1968 49--68.
2 Axiomatic treatment of fullsuperharmonic functions and submarkov resolvents. Proc. Japan Acad. 44 1968 981--986.
1 On the resolvent of a Brownian motion with drift. Ann. Inst. Statist. Math. 19 1967 39--53.
詳細は,理工学ホームページ研究者データベースから見ることができます.