Diplomacy, Precrisis Communication, and War

Shuhei Kurizaki

Texas A&M University

October 17, 2011
1 Book Project

2 Informational Origins of Diplomacy and War

3 The Model

4 Equilibria

5 Credibility of Diplomatic Communication

6 Diplomacy and the Risk of War

7 Conclusion

8 APPENDIX
Diplomacy is a primary form of “Politics Among Nations”
Diplomacy is one of the oldest political institutions designed to preserve order in the international society (Hedley Bull 1977).
Diplomacy has evolved as a set of mechanisms for conflict resolution as an alternative to military might (Hans Morgenthau 1973).
IR scholarship has sidestepped the study of diplomacy
Ultimate Goal

Bring diplomacy back into the IR literature, and establish the study of diplomacy as a full-fledged social scientific literature.
This book offers the first comprehensive theory of diplomacy and its role in international disputes.

Emphasizes theoretical foundations, but offers historical and statistical materials.

Diplomacy is an institutional response to bargaining failure.

Diplomacy is a new addition to the “Correlates of War”.

When Diplomacy Works
Three classes of diplomatic mechanisms

- **Cheap-talk communication in pre-crisis diplomacy**

Communication

Pre-crisis diplomacy

Conflict of interests Diplomatic demands
Three classes of diplomatic mechanisms
- Cheap-talk communication in pre-crisis diplomacy
- Diplomatic negotiation in international disputes
- Military threats

Diplomatic negotiation

Diplomatic demands

Military threats
Three classes of diplomatic mechanisms
- Cheap-talk communication in pre-crisis diplomacy
- Diplomatic negotiation in international disputes
- Diplomatic manipulation in military crises
Diplomacy, Precrisis Communication, and War

Shuhei Kurizaki

Texas A&M University

October 17, 2011
Book Project

2 Informational Origins of Diplomacy and War

3 The Model

4 Equilibria

5 Credibility of Diplomatic Communication

6 Diplomacy and the Risk of War

7 Conclusion

8 APPENDIX
Informational Origins of Diplomacy and War

Informational Origin of War

- War occurs when political or military information is private information.
- States have incentives to misrepresent their private information.
- Incomplete information gives rise to the risk-return trade-off.
- A positive probability of war.
One “solution” to incomplete information is to let them talk before crisis bargaining.

Diplomacy offers institutional solutions to the informational cause of war.
The Byzantine Empire

- Aftermath of the fall of the Roman empire and military deficit
- Turned to various manipulative tactics and information
- *Bureau of Barbarians*, the first intelligence agency
Informational Origins of Diplomacy and War

Italian city-states during the Renaissance

- The system of resident, permanent embassies
- To stabilize and facilitate communication among governments
- The fear of invasions by the Ottoman Empire and others
- To overcome mutual mistrust and enhance collective security effort
Cardinal Richellieu

- “Continuous” diplomacy
- Forestall potential frictions or tensions
- Professional diplomats & first ministry of foreign affairs
Scholars of IR also have envisioned this informational “solution” as a key function of diplomacy

Hans Morgenthau

- A main task of diplomacy is to determine one’s foreign policy objectives in light of the military capability (Prudence)
- ...and to assess objectives and motivations of other nations and their military capability.
Conventional Wisdom

Rationalist Approach

- Informational problem in pre-crisis communication
- Pessimistic conclusions
Cheap-Talk Diplomacy (Fearon 1995)

- This “solution” is impossible
 - Diplomacy is ineffective: No info. credibly conveyed
 - Diplomacy is irrelevant: No effect on crisis behavior
- Common wisdom for a long time
Conventional Wisdom

Recent formal models

Institutional arrangements permit:

- Only limited communication (Sartori, Ramsay)
- Full communication only under grim-trigger (Guisinger and Smith)
- When informative, *always* increases the risk of war
- Only exception is Trager (2010)
Credibility of diplomatic communication

Puzzle: Architects and theorists all envisioned diplomacy as an information-revelation device. Are they wrong about that?
Diplomacy and the risk of war

Puzzle: Diplomacy has been used for hundreds of years, and many states have invested significant resources to keeping diplomatic institutions. If diplomacy is dangerous, why keep it?
My Contributions

In this paper . . .

- Use the same analytical focus of the previous models
- Generalize the previous models
- Refine the analysis
- Find new, improved answers.
- Provide better understanding on the role of diplomacy.
1. Book Project
2. Informational Origins of Diplomacy and War
3. The Model
4. Equilibria
5. Credibility of Diplomatic Communication
6. Diplomacy and the Risk of War
7. Conclusion
8. APPENDIX
State 1 and State 2 are in a dispute over some good of size $v_i > 0$, for $i = 1, 2$
Before the crisis, State 2 sends a cheap-talk message $m \in \{\text{resist, surrender}\}$

![Diagram of game theory model]

- State 2 has two options: resist or surrender.
- State 1 observes State 2's message and chooses to attack or resist.
- The payoffs are as follows:
 - Resist: $p v_1 - c_1$ (if State 2 resists and State 1 resists)
 - Surrender: $(1 - p) v_2 - c_2$ (if State 2 resists and State 1 surrenders)
 - Status quo: $(0, v_2)$ (if State 2 surrenders and State 1 resists)
 - Surrender: $(v_1, 0)$ (if State 2 surrenders and State 1 surrenders)
Stage game is indefinitely repeated with $\delta \in (0, 1)$.

$m \in \{r, s\}$

Attack

Resist

$p v_1 - c_1$

$(1 - p)v_2 - c_2$

Status quo

$(0, v_2)$

Surrender

$(v_1, 0)$
1 Book Project
2 Informational Origins of Diplomacy and War
3 The Model
4 Equilibria
5 Credibility of Diplomatic Communication
6 Diplomacy and the Risk of War
7 Conclusion
8 APPENDIX
Equilibrium: Trigger Strategy

Normal Phase

- S_2 maintains normal diplomatic relations with S_1.

Punishment Phase

- S_1 suspends diplomatic relations with S_2, so ignores m
- Lasts for N periods
 - $N = 0$ (Fearon 1995)
 - $N = 2$ (Sartori 2002)
 - $N = \infty$ (Guisinger & Smith 2002)
- Diplomatic normalization occurs if S_2 plays the equilibrium strategy during diplomatic punishment.
Equilibrium: Two Cases

Babbling Equilibria

- Diplomacy conveys no meaningful information
- Crisis behavior is not influenced
- Risk of war remains the same as in the game without diplomacy
- Basis for coercive diplomacy

Informative Equilibria

- Diplomacy conveys no meaningful information
- Diplomacy can increase the risk of war
- Diplomacy can decrease the risk of war
- Basis for the “peace by peaceful means”
Babbling Equilibria

- S_2 randomizes its diplomatic messages
Babbling Equilibria

- No information is conveyed
 - Crisis behavior not influenced
 - Same *ex ante* risk of war as in the game without diplomacy
Diplomatic mechanisms “turned off”

- Equivalent to one-shot game $\iff \delta = 0$

\implies Conventional wisdom holds only in the absence of diplomatic institutions
Informative Equilibria

- Information conveyed
 - Deception equilibrium: Commitments are partially revealed
 - Sincere equilibrium: Commitments are fully revealed
Informative Equilibria

- Diplomacy affects crisis behavior
Informative Equilibria

- Threats to break off diplomatic relations induce truth-telling
 - Babbling equilibria constitute the Nash (reversion) threat
Informative Equilibria

- Describe how diplomatic communication and representation come together to form diplomatic institutions.
- Use the informative equilibria to ask
 - Question about the informativeness of diplomacy and its conditions
 - Question about its effect on the risk of war
1 Book Project
2 Informational Origins of Diplomacy and War
3 The Model
4 Equilibria
5 Credibility of Diplomatic Communication
6 Diplomacy and the Risk of War
7 Conclusion
8 APPENDIX
Credibility of Diplomatic Communication

Credibility of Diplomacy and Equilibrium Types

\[
\begin{cases}
\text{Diplomacy is not credible in the babbling equilibria} \\
\text{Diplomacy is partially credible in the deception equilibrium} \\
\text{Diplomacy is fully credible in the sincere equilibrium}
\end{cases}
\]

Credibility conditions \div Equilibrium condition
Equilibrium Condition: Common Discount Factor

Let \(\delta = \frac{c_2 G(\kappa(r))}{(1-p(1-G(\kappa(r))))(w_2(H)-w_2(D_1))} \).

\[
\begin{cases}
\text{Babbling equil exist} & \text{if} & \bar{\delta} = 0 \\
\text{Deception equil can exist} & \text{if} & 0 < \delta < \bar{\delta} \\
\text{Sincere equil can exist} & \text{if} & \delta \geq \bar{\delta}
\end{cases}
\]
Minimum discount factor $\bar{\delta}$ to sustain the sincere equilibrium.
Equilibrium Condition: Punishment Duration

Let \(\overline{N} = \frac{\ln(\delta - \zeta(1-\delta))}{\ln(\delta)} - 1 \).

\[
\begin{cases}
\text{Only Babbling equil exist} & \text{if} \quad N = 0 \\
\text{Deception equil can exist} & \text{if} \quad 0 < N < \overline{N} \\
\text{Sincere equil can exist} & \text{if} \quad N \geq \overline{N}
\end{cases}
\]

where \(\zeta = \frac{G(\kappa^*)c_2}{(1-p(1-G(\kappa^*))(\pi(C) - \pi(D)))} \).
Credibility of Diplomatic Communication

Minimum punishment length to sustain the Sincere Equilibrium

Minimum suspension, N

Capability ratio, p, and Discount factor, δ

- δ, $c=0.2$
- δ, $c=0.4$
- δ, $c=0.6$
- p, $c=0.2$
- p, $c=0.4$
- p, $c=0.6$
Diplomatic Suspensions in Europe, 1820-1915

<table>
<thead>
<tr>
<th>Suspension duration (year)</th>
<th>Frequency</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>350</td>
<td>(41.8)</td>
</tr>
<tr>
<td>2</td>
<td>160</td>
<td>(19.1)</td>
</tr>
<tr>
<td>3</td>
<td>61</td>
<td>(7.3)</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
<td>(6.6)</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
<td>(3.9)</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>(2.3)</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>(1.8)</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>(1.7)</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>(1.1)</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>(1.6)</td>
</tr>
<tr>
<td>> 10</td>
<td>102</td>
<td>(12.2)</td>
</tr>
<tr>
<td>Total</td>
<td>837</td>
<td>(100)</td>
</tr>
</tbody>
</table>

Average 5.36 years
Median 2 years
Pacifying (deterrent) effect

Diplomatic communication, when informative, always reduces the prob that S_1 attacks:

$$1 - G(\lambda^*) \geq 1 - G(\kappa_d^*) > 1 - G(\kappa_s^*).$$
War-risking (commitment) effect

Diplomatic communication generally increases the probability that S_2 resists if attacked:

$$1 - F(\beta^*) > 1 - F(\gamma^*).$$
Diplomatic communication is designed to deter aggression, but its process creates a new commitment for State 2.

Deterrent effect vs. Commitment effect.

No analytical account of how these countervailing effects balance out to affect the overall probability of armed conflict.

Whether the deterrent effect dominates the commitment effect depends on parameter conditions.

→ Nonlinearity
Risk of War: Numerical Approach

<table>
<thead>
<tr>
<th>N</th>
<th>Parameters</th>
<th>Cutoff points</th>
<th>Risk of war</th>
<th>Equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ</td>
<td>c₁</td>
<td>c₂</td>
<td>p</td>
</tr>
<tr>
<td>2</td>
<td>.9</td>
<td>.1</td>
<td>.1</td>
<td>.518</td>
</tr>
<tr>
<td>2</td>
<td>.9</td>
<td>.1</td>
<td>.1</td>
<td>.800</td>
</tr>
<tr>
<td>5</td>
<td>.6</td>
<td>.1</td>
<td>.1</td>
<td>.364</td>
</tr>
<tr>
<td>5</td>
<td>.6</td>
<td>.1</td>
<td>.1</td>
<td>.890</td>
</tr>
<tr>
<td>1</td>
<td>.9</td>
<td>.4</td>
<td>.4</td>
<td>.350</td>
</tr>
<tr>
<td>1</td>
<td>.9</td>
<td>.4</td>
<td>.4</td>
<td>.440</td>
</tr>
<tr>
<td>1</td>
<td>.9</td>
<td>.4</td>
<td>.4</td>
<td>.500</td>
</tr>
<tr>
<td>2</td>
<td>.8</td>
<td>.1</td>
<td>.2</td>
<td>.344</td>
</tr>
<tr>
<td>2</td>
<td>.8</td>
<td>.1</td>
<td>.2</td>
<td>.750</td>
</tr>
</tbody>
</table>

Risk of war is red if \(\omega_{s,t} < \omega_b \) or

\[
Pr(war|\text{informative}) < Pr(war|\text{babbling})
\]
Risk of War: Numerical Approach

Four functional forms linking diplomacy, power, and war

Functional form 1

- Example: $N=2$, $\delta = 0.9$, $c_1 = c_2 = 0.4$

Functional form 2

- Example: $N=5$, $\delta = 0.6$, $c_1 = c_2 = 0.1$

Functional form 3

- Example: $N=1$, $\delta = 0.9$, $c_1 = c_2 = 0.4$

Functional form 4

- Example: $N=2$, $\delta = 0.8$, $c_1 = 0.1$, $c_2 = 0.2$
Why empirics?

- Use statistical analysis to supplement the theoretical ambiguity.
- No unique prediction available (theoretically)
- Not a test of a point prediction, rather an exploration of the data to refine the prediction
- To single out a unique ceteris paribus structure in the data, I use GAM to let the data “speak” for themselves about the functional form.
What Exactly Are We Looking For?

- Not the probability of war w/ and w/out diplomacy.
- The impact of credible diplomatic communication on war.
- Communication is credible in the informative equilibrium.
Empirical Challenge

Measuring credible diplomatic precrisis communication

- Hard to know whether precrisis communication took place for each crisis case.
 - Important sources of information are social networks with local officials in the host government
 - Dinner parties, receptions, balls very crucial
 - Newspapers or news wires do not pick up any of this
Empirical Challenge

Measuring **credible** diplomatic **precrisis** communication

- Hard to know if communication was **credible**.
 - Hard to know if a message was received and taken seriously
 - Hard to know if any given observation (of MIDs) belongs to the informative equilibria, not the babbling equilibria.
Empirical Solution

Use resident diplomatic missions as a proxy measure

- The device for reliable diplomatic communication
- Limit the empirical domain to European powers (plus the Ottoman Empire and U.S.)
- 1815-1914: Before communication revolutions (telegrams, jetliners)
- Anecdotal evidence suggests this proxy is good until WWI (or perhaps today)
Model Specification

- **Dependent variable(s):** Use of force in MIDs
 - coded as a “1” if both sides, A and B, use force
 - coded as a “0” otherwise

- **Independent Variables**
 - Diplomatic representation $B \rightarrow A$ before MID
 - Resides in the capital at the rank of Chargé d’Affaires or above.
 - If the position is vacant, absent, located in other states, or consulate coded as a “0”
 - Interacted with p, balance of power

- **Controls**
 - Diplomatic representation $A \rightarrow B$ before MID
 - Interacted with p
 - Other factors that influence diplomatic exchange
Risk of War: Semiparametric Specification

\[\text{Force} = f_1(\text{cap. ratio} \times A \rightarrow B) + f_2(\text{cap. ratio} \times B \rightarrow A) + f_3(\text{cap. ratio}) + \beta_4 A \rightarrow B + \beta_5 B \rightarrow A + \sum_{i=6}^{k} \beta_i x_i + a + \varepsilon, \]

- \(f_i(\cdot) \): Smooth function to estimate
- \(\beta_i(\cdot) \): Linear coefficient to estimate
- \(B \rightarrow A \): Diplomatic representation \(B \) to \(A \) (dummy)
- \(A \rightarrow B \): Diplomatic representation \(A \) to \(B \) (dummy)
- \(\sum_{i=6}^{k} x_i \): Set of controls
Risk of War: Semiparametric Approach

Diplomatic Mission A to B

Diplomatic Mission B to A

Probability of Armed Conflict

Capabilities Ratio
1 Book Project
2 Informational Origins of Diplomacy and War
3 The Model
4 Equilibria
5 Credibility of Diplomatic Communication
6 Diplomacy and the Risk of War
7 Conclusion
8 APPENDIX
Precrisis communication is much more informative than previously suggested.

Defender’s credible precrisis communication reduces the risk of war roughly by 20% unless capabilities ratio is excessively skewed

Overall pacifying effect does not reject the war-risking effect of the commitment trap

Model and data here do not answer two questions:

- Causal mechanism — Chapter 6
- Diplomacy increases the risk of war if a militarily weak challenger uses it
Conclusion . . .

Big Picture

- Diplomacy is not just the message that is sent, or the act of sending a message
- ... rather an equilibrium in which such communication gains credibility due to
 - Expectations of repeated diplomatic interaction
 - Expectations of diplomatic break down
- Diplomacy is more effective as an instrument of statecraft than previously believed.
Thank you!
Barack Obama’s commitment to diplomacy

“It is important ... to talk to ... enemies. In fact, that’s where diplomacy makes the biggest differences.”

Presidential debate

Clinton: “I believe in coercive diplomacy”
McCain: “This is dangerous. It isn’t just naive; it’s dangerous”
The Model: Information, Beliefs, and History

Two-sided incomplete information.

- Both player's valuations are drawn from $F(\cdot)$ and $G(\cdot)$ each period.
- S_1 updates its belief about v_2, upon hearing S_2's diplomatic talk about its intention.
- S_1's belief-updating at t is contingent on a history h^t

Two kinds of history are relevant for history-dependent beliefs:

1. A history h^t_C that induces the "normal" phase at t, where S_2's failure to honor her commitment has not been detected in the previous N periods.

2. A history h^t_{DN} that invokes the "punishment" phase, where S_2's failed commitment has been detected at $t - N$.
Proposition 1 (Cheap-talk diplomacy)

There always exists a perfect Bayesian equilibrium, where in every period each type of S_2 announces anything or randomizes between “$m = r$” and “$m = s$,” and S_1 attacks if $v_1 \geq \lambda^*$ or maintains the status quo if $v_1 < \lambda^*$, where $\lambda^* = \frac{[1-F(\gamma)]c_1}{p+(1-p)F(\gamma)}$.
Proposition 2 (Sincere equilibrium)

There exists a set of fully separating equilibria in stationary strategies, in which:

- all types with \(v_2 \geq \alpha \) make a threat \((m^* = r)\) and resists if attacked
- all types with \(v_2 < \alpha \) make no threat \((m^* = s)\) and surrenders if attacked

as long as \(S_2 \) has an honesty reputation. Given the dishonesty reputation, players play the babbling equilibrium.
Sincere Equilibrium

If $\delta \geq \bar{\delta}$, the following strategies and beliefs constitute a perfect Bayesian equilibrium in trigger strategies. Providing h_C, S_2 announces that it will resist (i.e., $m = r$) and resists when attacked if $v_2 \geq \alpha^*$, and announces $m = s$ and surrenders when attacked if $v_2 < \alpha^*$. Upon receiving $m = r$, S_1 believes that S_2 always resists and attacks if $v_1 \geq \kappa^*(r)$, while upon receiving $m = s$, S_1 believes that S_2 never resists and hence attacks always. Providing h_{DN} for $N = \{1, 2, \ldots, \infty\}$, both states play the babbling equilibrium.
Proposition 3 (Deception equilibrium)

There exists a perfect Bayesian equilibrium in stationary strategies in which S_2 types are partitioned into three subsets provided that S_2 has a reputation for honesty

- $v_2 \geq \beta$ make a threat and resist if attacked
- $v_2 \in [\alpha, \beta]$ make a threat but surrender if attacked
- $v_2 < \alpha$ make no threat and surrender

Given the dishonesty reputation, players play the babbling equilibrium
Deception Equilibrium

If $\delta < \overline{\delta}$, the following strategies and beliefs constitute a perfect Bayesian equilibrium in trigger strategies. Given h_C, S_2 plays: all types with $v_2 \geq \beta^*$ announce that $m = r$ and resist if attacked; types with $v_2 \in [\alpha^*, \beta^*]$ say $m = r$ but surrender if attacked; and types with $v_2 < \alpha^*$ say $m = s$ and surrender if attacked. Upon receiving a message r, S_1 believes that S_2 will resist with probability $(1 - F(\beta^*))/(1 - F(\alpha^*))$ and attacks if $v_1 \geq \kappa^*(r)$; upon receiving s, the posterior belief is zero and hence S_2 always attacks, where $\kappa^*(r) = \psi \frac{\alpha}{\psi}$. Given h_{DN}, both states play the babbling equilibrium.
Another type of the equilibrium diplomatic message is not possible:

Lemma 1: Another type of informative equilibria
There is no PBE in which S_2 falsely says $m = s$ but actually resists if attacked.
Telecommunication would invalidate diplomatic representation as a proxy measure

- **Impact of telecommunication**
 - Queen Victoria opposed to upgrading British legation at Rome to the status of an embassy in 1876 since telegraphy had rendered the expensive embassy obsolescent.

- **Impact of telegraphy was limited before WWI.**
 - In 1860 the British MOFA instructed its diplomatic missions not to use telegrams unnecessarily since its cost is prohibitively high

- **Embassies as primary communication tool until after WWI**
 - Receiving declaration of war by cable from Austria in 1914, Serbian PM Pašić suspected the telegraph was a practical joke. Only a few hours later when the air-raid of Belgrade began did he discovered that that was not a joke.
For testing the prediction, data collection just completed.

- For each dyad involving European powers (and Ottoman Empire), gathered data on existence and rank of diplomatic representatives of both directions for each year in 1815-1913
- Utilized the automated text analysis and 15 undergrads
- Source: *Almanach de Gotha*
- Augments existing data sets with five-year interval by Singer and Small (1966) and Reşat Bayer (2006)
Independent variable: Existence of diplomatic communication

- coded as a “1” if
 - Chargé d’affaires
 - Minister or Envoy
 - Ambassador

- coded as a “0” if
 - Consuls
 - Other titles
 - No evidence of diplomatic exchange

- coded as a “-9” if
 - Missing
 - Other titles
<table>
<thead>
<tr>
<th>Model Independent variable</th>
<th>GAM Resident mission</th>
<th>GAM Diplo. relations</th>
<th>Probit Resident mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s(A \rightarrow B \times \text{cap. ratio})$</td>
<td>1.500 (7.181)**</td>
<td>1.500 (7.107)**</td>
<td>-1.129 (0.324)**</td>
</tr>
<tr>
<td>$s(B \rightarrow A \times \text{cap. ratio})$</td>
<td>1.500 (4.020)*</td>
<td>1.500 (3.981)*</td>
<td></td>
</tr>
<tr>
<td>$s(\text{cap. ratio})$</td>
<td>4.186 (0.899)</td>
<td>4.360 (0.828)</td>
<td></td>
</tr>
<tr>
<td>cap. ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A \rightarrow B$</td>
<td>0.058 (0.041)</td>
<td>0.074 (0.041)</td>
<td>1.473 (0.484)</td>
</tr>
<tr>
<td>$B \rightarrow A$</td>
<td>-0.092 (0.034)**</td>
<td>-0.095 (0.034)**</td>
<td>-0.522 (0.197)**</td>
</tr>
<tr>
<td>Alliance</td>
<td>0.126 (0.096)</td>
<td>0.127 (0.097)</td>
<td>0.396 (0.287)</td>
</tr>
<tr>
<td>Major power A</td>
<td>-0.050 (0.071)</td>
<td>-0.056 (0.071)</td>
<td>-0.230 (0.197)</td>
</tr>
<tr>
<td>Major power B</td>
<td>-0.170 (0.072)*</td>
<td>-0.173 (0.073)*</td>
<td>-0.600 (0.224)**</td>
</tr>
<tr>
<td>Joint democracy</td>
<td>-0.010 (0.133)</td>
<td>-0.011 (0.133)</td>
<td>-0.115 (0.447)</td>
</tr>
<tr>
<td>ln(peace years)</td>
<td>-0.054 (0.017)**</td>
<td>-0.053 (0.017)**</td>
<td>-0.154 (0.052)**</td>
</tr>
<tr>
<td>ln(distance)</td>
<td>-0.022 (0.028)</td>
<td>-0.021 (0.028)</td>
<td>-0.093 (0.087)</td>
</tr>
<tr>
<td>Contiguity</td>
<td>0.011 (0.068)</td>
<td>0.012 (0.068)</td>
<td>0.012 (0.203)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.713 (0.237)**</td>
<td>0.684 (0.237)**</td>
<td>0.763 (0.838)</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.123</td>
<td>0.123</td>
<td>0.117</td>
</tr>
<tr>
<td>Deviance explained</td>
<td>16.2%</td>
<td>16.3%</td>
<td>-193.8†</td>
</tr>
<tr>
<td>GCV score</td>
<td>0.205</td>
<td>0.205</td>
<td>47.79‡</td>
</tr>
</tbody>
</table>
Probit estimates of diplomacy and war

Diplomatic Mission A to B

Diplomatic Mission B to A