Note: throughout this course \(C^\times = \mathbb{C} \setminus \{0\} \) and \(C_\infty = \mathbb{C} \cup \{\infty\} \). For simplicity we often denote partial derivatives by subscripts, e.g., \(f_z = \partial f / \partial z \).

Recall from topology that, by definition, a continuous map \(\varphi : M \to N \) between topological spaces pulls open sets back to open sets (equally, pulls closed sets back to closed sets) and maps compact sets to compact sets. Recall also the Heine-Borel theorem: a closed bounded subset of Euclidean space is compact.

(1) Let \(S^2 = \{(a, b, c) \in \mathbb{R}^3 : a^2 + b^2 + c^2 = 1\} \).

Let \(e_3 = (0, 0, 1) \) be the “north pole” and define \(V_1 = S^2 \setminus \{e_3\} \), \(V_2 = S^2 \setminus \{-e_3\} \). Stereographic projection from, respectively, \(e_3 \) and \(-e_3\) to the plane \(c = 0 \), which we identify with \(\mathbb{C} \), gives two maps

\[
\begin{align*}
 f_1 : V_1 &\to \mathbb{C}; & f_1(a, b, c) &= (a + ib) / (1 - c), \\
 f_2 : V_2 &\to \mathbb{C}; & f_2(a, b, c) &= (a - ib) / (1 + c).
\end{align*}
\]

Show that \(\{(V_j, f_j) : j = 1, 2\} \) is a complex atlas for \(S^2 \). Deduce that this makes \(S^2 \) a compact Riemann surface.

(2) Complex projective space. Let \(\mathbb{CP}^n \) denote the set of complex lines (1-dimensional subspaces) in \(\mathbb{C}^{n+1} \). To each \((z_0, z_1, \ldots, z_n) \in \mathbb{C}^{n+1} \setminus \{0\}\) we can assign the line

\[
[z_0, z_1, \ldots, z_n] = \{(tz_0, tz_1, \ldots, tz_n) : t \in \mathbb{C}^\times\},
\]

and every line possesses such a description. We refer to \([z_0, z_1, \ldots, z_n]\) as the homogeneous coordinates. Thus we have a map

\[
\pi : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{CP}^n; \quad (z_0, z_1, \ldots, z_n) \mapsto [z_0, z_1, \ldots, z_n].
\]

We use this to give \(\mathbb{CP}^n \) a topology called the quotient topology: a subset \(U \subset \mathbb{CP}^n \) is open iff \(\pi^{-1}(U) \) is open. This automatically makes \(\pi \) a continuous map.

(a) Let \(S^{2n+1} = \{(z_0, \ldots, z_n) \in \mathbb{C}^{n+1} : |z_0|^2 + \ldots + |z_n|^2 = 1\} \).

Show that \(\pi(S^{2n+1}) = \mathbb{CP}^n \) and deduce that \(\mathbb{CP}^n \) is compact.

(b) For each \(j = 0, \ldots, n \) define

\[
W_j = \{[z_0, \ldots, z_n] \in \mathbb{CP}^n : z_j \neq 0\}.
\]

Define also

\[
\varphi_j : W_j \to \mathbb{C}^n; \quad [z_0, \ldots, z_n] \mapsto \left(\frac{z_0}{z_j}, \ldots, \frac{z_n}{z_j} \right),
\]

(2)
omitting \(z_j/z_j\) in the last \(n\)-tuple. Show that \(\{(W_j, \varphi_j) : j = 0, \ldots, n\}\) is a complex atlas for \(\mathbb{CP}^n\). Deduce that \(\mathbb{CP}^n\) is a compact complex \(n\)-manifold.

Remark. \(\mathbb{CP}^1\) is called the complex projective line; \(\mathbb{CP}^2\) is called the complex projective plane.

(3) A “branch cut” construction of the Riemann surface for \(w^2 = z\). Take two copies of the Riemann sphere \(C_\infty\) and cut each along the line \(0 < \text{Re}(z), \text{Im}(z) = 0\) to obtain cut spheres \(S_1, S_2\). By “cut” we mean this line is doubled, so that the map

\[
\{w = re^{i\theta} \in \mathbb{C} : 0 \leq \theta \leq \pi, 0 \leq r\} \to S_j; \quad w \mapsto w^2,
\]

is injective. On each sheet \(S_j\), label the image of \(\theta = 0\) (together with the point \(\infty_j\) at infinity) by \(C^+_j\) and the image of \(\theta = \pi\) (together with the point \(\infty_j\)) by \(C^-_j\). Now glue \(C_1\) to \(C_2\) so that \(C^-_1 = C^+_2\) and \(C^+_1 = C^-_2\) to obtain an oriented surface \(S(\sqrt{z})\) covering \(C_\infty\). Show how to give this a complex atlas with two charts.

(4) For \(S^2, \mathbb{CP}^1\) and \(S(\sqrt{z})\), with the complex structures given in the previous exercises, find a biholomorphic map between each of these and \(C_\infty\). Deduce that

\[S^2 \simeq \mathbb{CP}^1 \simeq S(\sqrt{z}) \simeq C_\infty.\]

(5) Following the outline given in example 2.4(4) of the notes, describe explicitly a complex atlas for the planar algebraic curve

\[C = \{(z, w) \in \mathbb{C}^2 : w^2 - z(z - 1)(z - a) = 0\}, \quad a \neq 0, 1.\]

In particular, show \(f(z, w) = w^2 - z(z - 1)(z - a)\) has \(f_w \neq 0\) when \(z \neq 0, 1, a\) and hence the function \(z : C \to \mathbb{C}\) provides a coordinate map when restricted to a suitable neighbourhood of any point for which \(z \neq 0, 1, a\). Show that at about the points where \(z = 0, 1, a, f_z \neq 0\) and therefore \(w : C \to \mathbb{C}\) can be used locally to get coordinates. Verify that your atlas has holomorphic change of coordinates on overlapping charts.

(6) **Projective algebraic planar curves.** A complex polynomial \(F(z_0, z_1, z_2)\) is **homogeneous of degree \(k\)** if

\[F(tz_0, tz_1, tz_2) = t^kF(z_0, z_1, z_2), \quad \text{for all } t \in \mathbb{C}.\]

It follows that

\[S = \{[z_0, z_1, z_2] \in \mathbb{CP}^2 : F(z_0, z_1, z_2) = 0\} \subset \mathbb{CP}^2,\]

is well-defined. Further, it is a closed subset (and therefore compact) since

\[\pi^{-1}(S) = \{(z_0, z_1, z_2) \in \mathbb{C}^3 \setminus \{0\} : F(z_0, z_1, z_2) = 0\}\]

is closed.
(a) Using the charts (2) on \mathbb{CP}^2 assign to S three subsets $C_j \subset \mathbb{C}^2$ defined by $C_j = \varphi_j(S \cap W_j)$. Show that each C_j is an affine algebraic curve and that φ is one-to-one on each C_j. Deduce that $C_j \simeq S \cap W_j$.

$C_0 = \{(z, w) \in \mathbb{C}^2 : F(1, z, w) = 0\}$.

(b) Show that each C_j is non-singular provided the gradient $dF = (F_{z_0}, F_{z_1}, F_{z_2})$ does not vanish on C_j. Deduce that if dF does not vanish on S then S is a compact Riemann surface.

(c) Show that for $a \neq 0, 1$ the homogeneous polynomial

\[F(z_0, z_1, z_2) = z_0 z_2^2 - z_1 (z_1 - z_0)(z_1 - az_0) \]

determines a compact Riemann surface for which C_0 is the affine curve C in question (5).

(7) Let S be a compact Riemann surface and $\varphi : S \to \mathbb{C}_\infty$ a holomorphic map. Show that the number of points on S lying over any fixed $p \in \mathbb{C}_\infty$ is at most $\nu(\varphi)$, the topological degree of φ. In other words

\[\# \varphi^{-1}(p) \leq \nu(\varphi). \]

(8) Now suppose $\varphi : S \to \mathbb{C}_\infty$ is a holomorphic map with topological degree 1. Show that φ must be a bijection. Any holomorphic bijection is a biholomorphism (by the holomorphic inverse function theorem) and therefore S is the Riemann sphere.

(9) Show that every meromorphic function of degree 1 on the Riemann sphere is a fractional linear transformation, i.e.,

\[f(z) = \frac{az + b}{cz + d}, \quad a, b, c, d \in \mathbb{C}, \quad ad - bc \neq 0. \]

Conclude that the group of biholomorphisms of \mathbb{C}_∞ is isomorphic to $PSL(2, \mathbb{C})$ (i.e., $SL(2, \mathbb{C})/\{\pm I\}$).

(10) Let $g = u(x, y) + iv(x, y)$ be a smooth complex-valued function on (an open subset of) \mathbb{R}^2. Show that the Cauchy-Riemann equations for g are equivalent to the equation $\partial g / \partial \bar{z} = 0$. This is why $\partial / \partial \bar{z}$ is referred to as the Cauchy-Riemann operator. Now consider g as a map

\[g : \mathbb{R}^2 \to \mathbb{R}^2; \quad (x, y) \mapsto (u, v), \]

with total derivative at each point $p = (x, y)$ given by

\[dg_p : \mathbb{R}^2 \to \mathbb{R}^2; \quad dg_p = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}. \]

Let $J : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map representing multiplication by i using the identification $\mathbb{R}^2 \simeq \mathbb{C}$. Show that g satisfies the Cauchy-Riemann equations if and only if at each point

\[dg \circ J = J \circ dg. \]
(11) Let \(f \in \mathcal{O}_U \). Show that \(\tilde{f} \) is anti-holomorphic (i.e., holomorphic in \(\bar{z} \)). hence \(\mathcal{O}_U \) is the algebra of anti-holomorphic functions on \(U \).

(12) (a) Let \(\xi \in T_p\mathbb{R}^n \) be a real tangent vector at some point \(p \in \mathbb{R}^n \), i.e., \(\xi : \mathcal{E}_p^0 \to \mathbb{R} \) is \(\mathbb{R} \)-linear and \(\xi(fg) = (\xi f)g(p) + f(p)(\xi g) \) for \(f, g \in \mathcal{E}_p^0 \). Show that \(\xi k = 0 \) for any constant function \(k \in \mathbb{R} \).

(b) Let \(x^1, \ldots, x^n \) be the canonical coordinates on \(\mathbb{R}^n \). A version of Taylor’s theorem in several variables says that if \(f \) is a smooth function on some open \(U \subset \mathbb{R}^n \) then it can be expanded around a point \(p \in U \) in the form

\[
f(x) = f(p) + \sum_{j=1}^n \frac{\partial f}{\partial x_j}(p)(x_j - x_j(p)) + \sum_{j,k=1}^n h_{jk}(x)(x_j - x_j(p))(x_k - x_k(p)),
\]

where the \(h_{jk} \) are smooth functions. Show that for any \(\xi \in T_p\mathbb{R}^n \)

\[
\xi f = \sum_{j=1}^n (\xi x_j) \frac{\partial f}{\partial x_j}(p).
\]

Deduce from this that \(T_p\mathbb{R}^n \) is spanned by the tangent vectors \(X_1, \ldots, X_n \) where \(X_j = (\partial x_j)_p \), i.e.,

\[
X_j : \mathcal{E}_p^0 \to \mathbb{R}, \quad X_jf = \frac{\partial f}{\partial x_j}(p).
\]

(c) Let \(M \) be a complex \(m \)-manifold. Given \(p \in M \) let \((U, z_1, \ldots, z_m) \) be a chart about \(p \) and write \(z_j = x_j + iy_j \). Prove that \(T^C_p M \simeq T_p M \otimes_{\mathbb{R}} \mathbb{C} \) and

\[
T_p M = \mathbb{R}\langle X_1, Y_1, \ldots, X_m, Y_m \rangle,
\]

where \(X_j = (\partial x_j)_p, Y_j = (\partial y_j)_p \). Deduce that

\[
\dim_{\mathbb{R}}(T_p M) = \dim_{\mathbb{C}}(T^C_p M) = 2m.
\]

(d) Deduce from the pervious part that in any coordinate chart \((U, z_1, \ldots, z_m) \) on \(M \)

\[
\mathcal{T}_U = \mathcal{E}_U^0 \langle \partial z_1, \ldots, \partial z_m, \partial \bar{z}_1, \ldots, \partial \bar{z}_m \rangle,
\]

\[
\Theta_U = \mathcal{O}_U \langle \partial z_1, \ldots, \partial z_m \rangle.
\]

(e) Let \(\xi \in T_p M \) be a complex tangent vector at a point \(p \in M \). Show that for every chart \(U \subset M \) about \(p \) there is a (non-unique) complex vector field \(Z \in \mathcal{T}_U \) such that \(\xi = Z_p \). Deduce that \(\mathcal{T}_U \to T^C_p M; Z \mapsto Z_p \) is onto. Deduce that this holds also for any open neighbourhood \(U \) of \(p \).

(13) Let \(M \) be a complex \(m \)-manifold. Given a chart \((U, z_1, \ldots, z_m) \) about \(p \in M \) define \(z_j = x_j + iy_j \) and \(X_j = \partial x_j, Y_j = \partial y_j \). Define also the \(\mathbb{R} \)-linear map

\[
J_p : T_p M \to T_p M, \quad J_p(X_j) = Y_j, \quad J_p(Y_j) = -X_j.
\]
Then $J^2_p = -\text{id}$, hence it is a complex structure on the \mathbb{R}-space $T_p M$. Prove that J_p is independent of the choice of chart about p.

(14) Let $S = \mathbb{C}/\Lambda$ be a complex torus and $\pi : \mathbb{C} \to S$ the covering map $z \mapsto z + \Lambda$. We say a vector field $Z \in T_c \mathbb{C}$ is Λ-periodic if for each $\lambda \in \Lambda$ the translation map $\tau_\lambda : \mathbb{C} \to \mathbb{C}$, $\tau_\lambda(z) = z + \lambda$ has $(\tau_\lambda)_* Z = Z$. Similarly, a 1-form ω on \mathbb{C} is Λ-periodic if $\tau_\lambda^* \omega = \omega$ for every $\lambda \in \Lambda$.

(a) Show that $d\pi : T\mathbb{C} \to TS$ gives a bijective correspondence between T_S and Λ-periodic vector fields on \mathbb{C}, and π^* identifies 1-forms on S with Λ-periodic 1-forms on \mathbb{C}.

(b) Show that $\partial_z, \partial_{\bar{z}}$ are both Λ-periodic vector fields on \mathbb{C}. Deduce that $T_S = \mathcal{E}_S^0(\partial_z, \partial_{\bar{z}})$, $\Theta_S = \mathcal{C}(\partial_z)$, where we have identified ∂_z with its push-forward $\pi_* \partial_z$.

(c) Show that $dz, d\bar{z}$ are Λ-periodic, hence $\mathcal{E}_S^1 = \mathcal{E}_S^0(dz, d\bar{z})$, $\Omega_1^S = \mathcal{C}(dz)$, where we have identified $dz, d\bar{z}$ with 1-forms on S. Hence S has genus 1.

(d) Let $\omega = fdx + gdy$ be a smooth real differential on S, where $z = x + iy$ on \mathbb{C} and we think of f, g as Λ-periodic smooth real-valued functions on \mathbb{C}. Show that ω is harmonic iff f, g satisfy the Cauchy-Riemann equations and therefore are harmonic conjugates. Conclude that f, g must be constant functions, hence $H^1(S) = \mathcal{C}(dx, dy) = \mathcal{C}(dz, d\bar{z})$.

(15) Use the definitions from the lectures to verify the exterior differentiation formulas: for any functions f, g and 1-form ω,

\[
\begin{align*}
 d(fg) &= gdf + fdg, \\
 d(f\omega) &= df \wedge \omega + fd\omega.
\end{align*}
\]

(16) (a) Let $\varphi : \mathbb{C}_\infty \to \mathbb{C}/\Lambda$ be a holomorphic map from the Riemann sphere to a complex torus. Use the fact that $\varphi^* dz \in \Omega^1_{\mathbb{C}_\infty} = \{0\}$ to show that the tangent map $d\varphi$ vanishes everywhere. Deduce that φ is constant.

(b) Now suppose S is a compact Riemann surface of genus $g > 0$, hence $\dim(\Omega_1^S) > 0$. Use a similar argument to the previous part to show that a holomorphic map $\varphi : \mathbb{C}_\infty \to S$ must be constant (you may assume every non-zero $\omega \in \Omega^1_S$ has $\omega_p \neq 0$ at all but finitely many points $p \in S$).

(17) Let $\omega = f dx + g dy$ be a smooth 1-form over the standard 2-simplex $\Delta_2 \subset \mathbb{R}^2$, where $f, g \in \mathcal{E}_\mathbb{R}^0$. Show that Stokes’ theorem is just Green’s theorem in the plane in this case.
(18) Let \(S = C \cup \{ \infty_c \} \) be the one point compactification of the affine elliptic curve
\[
C = \{ (x, y) \in \mathbb{C}^2 : y^2 = x(x-1)(x-a) \}
\]
where the real constant \(a \) has \(a > 1 \). From Q5 we can equip this with an atlas which puts about \(P \in C \) the coordinate \(y \) if \(y(P) = 0 \) and \(x - x(P) \) if \(y(P) \neq 0 \). About the point \(\infty_c \) at infinity we use \(1/y \) on a sufficiently small neighbourhood. Let \(R_0 = (0,0) \), \(R_1 = (1,0) \) and \(R_2 = (a,0) \) be the unique points on \(S \) for which \(y = 0 \). For any meromorphic function \(f \) on \(S \) let \((f) \) denote its divisor of zeroes and poles, i.e., the formal sum
\[
(f) = \sum_{P \in S} \nu_P(f)P,
\]
where we recall that \(\nu_f(P) \in \mathbb{Z} \) is the degree of \(f \) at \(P \).

(a) Show that \((x) = 2R_0 - 2\infty_c \) while \((y) = R_0 + R_1 + R_2 - 3\infty_c \).

(b) Show that the meromorphic differential \(dx \) has simple zeroes at \(R_1, R_2, R_3 \) and a degree 3 pole at \(\infty_c \).

(c) Conclude that the meromorphic differential \(\frac{1}{y}dx \) is actually holomorphic with neither zeroes nor poles.

(d) Now conclude, using lemma 8.2, that every holomorphic differential on \(S \) is a constant scalar multiple of \(\frac{1}{y}dx \) and therefore \(S \) has genus 1.

(19) Now choose real numbers \(0 < a_1 < a_2 < \ldots < a_{2g} \) and let \(S = C \cup \{ \infty_c \} \) be the one point compactification of the affine curve
\[
C = \{ (x, y) \in \mathbb{C}^2 : y^2 = x(x-a_1)(x-a_2)\ldots(x-a_{2g}) \}.
\]
As above \(y \) is a local coordinate about each of the points \(R_0, R_1, \ldots, R_{2g} \) at which \(y = 0 \), with \(R_0 = (0,0) \) and \(R_j = (a_j,0) \), while \(x - x(P) \) is a local coordinate about every other point on \(C \) and \(1/y \) is a local coordinate about \(\infty_c \). It is a fact that every meromorphic function on \(S \) can be written in the form
\[
f(x,y) = \frac{a(x) + by(x)}{c(x) + yh(x)}, \quad a, b, c, h \in \mathbb{C}[x].
\]
(a) Show that \((x) = 2R_0 - 2\infty_c \) while
\[
(y) = R_0 + R_1 + \ldots + R_{2g} - (2g + 1)\infty_c.
\]
(b) Show that the meromorphic differential \(\frac{1}{y}dx \) has neither zeroes nor poles on \(C \) and has degree \(2g - 2 \) at \(\infty_c \). Deduce that it is holomorphic when \(g \geq 1 \).

(c) For \(g \geq 1 \) show that if \(\omega \) is a holomorphic differential on \(S \) then
\[
\omega = \frac{p(x)}{y}dx
\]
where \(p(x) \in \mathbb{C}[x] \) is a polynomial of degree \(\deg(p) \leq g - 1 \). Deduce that \(S \) has genus \(g \).

Thus we have examples of compact Riemann surfaces of every genus \(g \). These examples are called hyperelliptic surfaces. In general a Riemann surface is hyperelliptic if it admits a meromorphic function of topological degree 2.

(20) Let \(S \) be the genus 1 surface used in Q18 and \(\Pi_S \) its fundamental domain, which we can view as a quadrilateral in the complex plane.

![Figure 1. Fundamental polygon for an elliptic curve.](image)

Let \(\omega \) be the unique holomorphic differential on \(S \) for which \(\int_a \omega = 1 \). Fix any point \(O \in \Pi_S \) in the interior and define \(f(z) = \int^z_O \omega \) for \(z \in \Pi_S \).

(a) Show that in \(\Pi_S \)

\[
i \int_{\Pi_S} \omega \wedge \bar{\omega} = 2 \int_{\Pi_S} |f'(z)|^2 dx \wedge dy > 0,
\]

where \(dz = dx + idy \).

(b) Show that along any curve \(\gamma(t) \) in \(S \),

\[
\int_{\gamma} \bar{\omega} = \int_{\gamma} \omega.
\]

(c) Use arguments like those in the proof of theorem 5.9 and 5.10 to show that, for \(B = \int_b \omega \),

\[
\int_{\partial \Pi_S} f \bar{\omega} = -2i \text{Im}(B).
\]

Deduce from Stokes’ theorem that the period integral \(B \) has \(\text{Im}(B) > 0 \).
(21) Let \(S \) be compact Riemann surface of genus \(g \) and show that the Hermitian form
\[
(\ ,\) : \Omega_S^1 \times \Omega_S^1 \to \mathbb{C}; \quad (\omega, \eta) \mapsto i \int_S \omega \wedge \bar{\eta},
\]
is positive definite. By applying this to a normalised basis \(\omega_1, \ldots, \omega_g \) of \(\Omega_S^1 \) with period integrals \(B_{jk} = \int_{b_j} \omega_k \) show that the period matrix \(B = (B_{jk}) \) is symmetric and with positive definite imaginary part \(\text{Im}(B) = (\text{Im}(B_{jk})) \).

(22) For a compact Riemann surface \(S \) and any two distinct points \(P, Q \in S \) recall that \(\eta_{PQ} \) is the unique meromorphic differential satisfying:

(a) \(\eta_{PQ} \) has poles only at \(P \) and \(Q \) with \(\text{Res}_P \eta_{PQ} = -1 \) and \(\text{Res}_Q \eta_{PQ} = 1 \),

(b) \(\int_{a_j} \eta_{PQ} = 0 \).

By adapting the argument in the proof of theorem 5.9 show that if \(A, B \in S \) are also distinct points then
\[
\int_A^B \eta_{PQ} = \int_P^Q \eta_{AB},
\]
provided the paths of integration lie in the same simply connected open subset of \(S \). This is known classically as the reciprocity formula for differentials of the third kind.

(23) Let \(S \) be the one point compactification of the affine curve
\[
C = \{(z, w) \in \mathbb{C}^2 : w^2 - z(z-1)(z-a) = 0\}, \quad a \neq 0, 1.
\]

From Q18 we know \(\Omega_S^1 = \text{Sp}\{dz/w\} \). Show that for any \(P \in S \) the Abel map
\[
A_P : S \to \text{Jac}(S)
\]
is biholomorphic (it suffices to show that it is a holomorphic bijection).

(24) (Addition on an elliptic curve.) Let \(S \) be the curve in Q23 and \(\mu : S \to S \) the holomorphic involution (i.e., automorphism of order 2) given by \(\mu(z, w) = (z, -w) \) on \(C \) and \(\mu(\infty_c) = \infty_c \). From Q6, \(S \) can be identified with the projective curve
\[
\{[z_0, z_1, z_2] : z_0 z_2^2 - z_1(z_1 - z_0)(z_1 - az_0) = 0\}.
\]
Now let \(\alpha, \beta, \gamma \in \mathbb{C} \) be not all zero.

(a) Show that this projective curve intersects the projective line
\[
\ell = \{[z_0, z_1, z_2] : \alpha z_0 + \beta z_1 + \gamma z_2 = 0\}
\]
on a divisor of degree 3, \(P_1 + P_2 + P_3 \) (not necessarily distinct points).

(b) Show that the the meromorphic function
\[
f : S \to \mathbb{C}, \quad f([z_0, z_1, z_2]) = \alpha + \beta \frac{z_1}{z_0} + \gamma \frac{z_2}{z_0}
\]
has divisor \((f) = P_1 + P_2 + P_3 - 3\infty_c\) where \(\infty_c = [0, 0, 1]\). Assuming \(f\) is not constant, deduce that
\[
\mathcal{A}_\infty(P_1) + \mathcal{A}_\infty(P_2) + \mathcal{A}_\infty(P_3) = 0.
\]

(c) For any point \(P \in S\) write down a meromorphic function \(g\) on \(S\) with divisor \((g) = P + \mu(P) - 2\infty_c\). Deduce that \(\mathcal{A}_\infty(\mu(P)) = -\mathcal{A}_\infty(P)\).

Why does this not imply \(\mathcal{A}_\infty(P) = 0\) for fixed points of \(\mu\)? Deduce that, in the previous part,
\[
\mathcal{A}_\infty(P_1) + \mathcal{A}_\infty(P_2) = \mathcal{A}_\infty(\mu(P_3)).
\]

(d) Now consider a binary operation
\[
*: S \times S \to S; \quad P_1 * P_2 = \mu(P_3)
\]
where, given \(P_1, P_2, P_3\) is the third intersection point of \(S\) with a projective line \(\ell \subset \mathbb{CP}^2\) (interpreted in the sense of divisors). Show that this operation turns \(S\) into an abelian group isomorphic to \(\text{Jac}(S)\).