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MMP FOR MODULI OF SHEAVES ON K3S VIA WALL-CROSSING:
NEF AND MOVABLE CONES, LAGRANGIAN FIBRATIONS

AREND BAYER AND EMANUELE MACRÌ

ABSTRACT. We use wall-crossing with respect to Bridgeland stabilityconditions to system-
atically study the birational geometry of a moduli spaceM of stable sheaves on a K3 surface
X:

(a) We describe the nef cone, the movable cone, and the effective cone ofM in terms of
the Mukai lattice ofX.

(b) We establish a long-standing conjecture that predicts the existence of a birational La-
grangian fibration onM wheneverM admits an integral divisor classD of square zero
(with respect to the Beauville-Bogomolov form).

These results are proved using a natural map from the space ofBridgeland stability conditions
Stab(X) to the coneMov(X) of movable divisors onM ; this map relates wall-crossing in
Stab(X) to birational transformations ofM . In particular, every minimal model ofM appears
as a moduli space of Bridgeland-stable objects onX.
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1. INTRODUCTION

By our previous work [BM12], a moduli space of Bridgeland stable objects comes equipped
with a numerically positive determinant line bundle, depending only on the stability condition.
This provides a direct link between wall-crossing for stability conditions and birational trans-
formations of the moduli space. In the present paper, we exploit this link to systematically
study the most important birational properties of a moduli spaceM of stable sheaves (or
Bridgeland stable complexes) on a K3 surface via wall-crossing.

The motivation for our work comes from several directions:

• Given the recent success [BCHM10] of the minimal model program (MMP), there has
been a lot of interest to relate the MMP for moduli spaces to the underlying moduli
problem; we refer [FS10] for a survey of the case of the moduli spaceMg,n of stable
curves, which is known as the Hassett-Keel program. Ideally, one would like a moduli
interpretation for every chamber of the base locus decomposition of the movable or
effective cone; in our situation, we will show that this moduli interpretation comes
naturally as a moduli of Bridgeland stable objects.

• In light of Verbitsky’s recent proof in [Ver09] of a global Torelli statement for hy-
perkähler manifolds it has become particularly interesting to understand their nef
cones: two hyperkähler varietiesX1,X2 are isomorphic if and only if there exists
and isomorphism of integral Hodge structuresH2(X1) → H2(X2), that is induced
by parallel transport in a family, and that maps the nef cone of X1 to the nef cone of
X2 (see [Huy11, Mar11]).

• According to a long-standing conjecture, the existence of a(birational) Lagrangian
torus firationM → Y can be detected by an integral divisor classD ∈ NS(M)
that has square zero with respect to the Beauville-Bogomolov pairing. Birationality
of wall-crossing allows us to prove this conjecture by reducing it to the well-known
case of a moduli space of torsion sheaves, first studied by Beauville in [Bea91].

Birationality of wall-crossing and the map to the movable cone. Consider a projective K3
surfaceX, and a primitive algebraic classv in the Mukai lattice, whose self-intersection with
respect to the Mukai pairing satisfiesv2 > 0. Let σ, τ be two stablity conditions1 onX, and
assume that they aregenericwith respect tov. By [BM12, Theorem 1.3], the moduli spaces
Mσ(v) andMτ (v) of stable objectsE ∈ Db(X) with Mukai vectorv(E) = v exist as a
smooth projective variety. Choosing a path fromσ to τ in Stab(X) relates them by a series of
wall-crossings. Our first result, based on a detailed analysis of the possible wall-crossings, is
the following:

Theorem 1.1. Letσ, τ be generic stability conditions with respect tov.

(a) The two moduli spacesMσ(v) andMτ (v) of Bridgeland-stable objects are birational
to each other.

(b) More precisely, there is a birational map induced by a derived (anti-)autoequivalence
Φ of Db(X) in the following sense: there exists a common open subsetU ⊂ Mσ(v),
U ⊂Mτ (v), with complements of codimension at least two, such that foranyu ∈ U ,
the corresponding objectsEu ∈ Mσ(v) and Fu ∈ Mτ (v) are related viaFu =
Φ(Eu).

1Throughout this introduction we will tacitly assume that all stability conditions onX are contained in the
component of the space of stability conditions constructedby Bridgeland in [Bri08].
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As a consequence, we can canonically identify the Néron-Severi groups ofMσ(v) and
Mτ (v).

Now consider the chamber decomposition of the spaceStab(X) of stability conditions with
respect tov: for each open chamberC ⊂ Stab(X), there is a moduli spaceMC(v) of σ-stable
object of classv for everyσ ∈ C. The main result of [BM12] gives a natural map

(1) ℓC : C → NS (MC(v))

to the Néron-Severi group of the moduli space, whose image is contained in the ample cone
of MC(v).

Theorem 1.2. Fix a base pointσ ∈ Stab(X).

(a) Under the identification of the Ńeron-Severi groups induced by the birational maps
of Theorem1.1, the mapsℓC of (1) glue to a piece-wise analytic continuous map

(2) ℓ : Stab(X) → NS (Mσ(v)) .

(b) The image ofℓ is the intersection of the movable cone with the big cone ofMσ(v).
(c) The mapℓ is compatible, in the sense that for any genericσ′ ∈ Stab(X), the moduli

spaceMσ′(v) is the birational model corresponding toℓ(σ′). In particular, every
smoothK-trivial birational model ofMσ(v) appears as a moduli spaceMC(v) of
Bridgeland stable objects for some chamberC ⊂ Stab(X).

(d) For a chamberC ⊂ Stab(X), we haveℓ(C) = Amp(MC(v)).

In other words, we can run the MMP of the moduli space via wall-crossing for Bridge-
land stability conditions. Divisorial contractions appear as coarse moduli spaces for stability
conditions on a wall.

The imageℓ(τ) of a stability conditionτ is determined by its central charge; see Theorem
10.2for a precise statement.

In Theorem5.7, we describe the correspondence between walls in the space of stability
conditions and birational modifications of the moduli spaceMσ(v). For each wallW ⊂
Stab(X), there is a rank two sublatticeHW of the Mukai lattice that gets mapped to a line
via the central chargeZ, for every stabilityτ = (Z,P) ∈ W; Theorem5.7 determines the
wall-crossing behavior of the wallW completely in terms ofHW .

The proof of Theorem5.7 takes up Sections5 to 9, and can be considered the heart of
this paper. Our main technique is a detailed analysis of the possible configurations inHW
of Mukai vectors appearing the Jordan-Hölder filtrations of strictly semistable objects, and
Harder-Narasimhan filtration in families; the latter allows us to compare the contraction mor-
phism induced by the nef line bundleℓ(σ0) for a stability conditionσ0 on a wall with rational
maps induced by the Harder-Narasimhan filtrations in families.

We can state the following consequence of Verbitsky’s Torelli Theorem for hyperkähler
manifolds, Mukai-Orlov’s Derived Torelli Theorem for K3 surfaces, and Theorem1.1. It com-
pletes Mukai’s program, started in [Muk81, Muk87b], to understand birational maps between
moduli spaces of sheaves via Fourier-Mukai transforms:

Corollary 1.3. LetX andX ′ be smooth projective K3 surfaces. Letv ∈ H∗
alg(X,Z) and

v
′ ∈ H∗

alg(X
′,Z) be primitive Mukai vectors. LetH (resp.,H ′) be a generic polarization

with respect tov (resp.,v′). ThenMH(v) is birational toMH′(v′) if and only if there exists
a derived (anti-)equivalenceΦ: Db(X)

≃−→ Db(X ′) with Φ(v) = v
′. In this case, we can

chooseΦ such that it maps a generic objectE ∈MH(v) to an objectΦ(E) ∈MH′(v′).
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By [Tod08], stability is an open property in families; therefore suchan equivalenceΦ in-
duces a birational mapMH′(v′) 99K MH(v). We will prove the Corollary at the end of
Section10.

Cones of curves and divisors.As an application, we can use Theorems1.2 and5.7 to de-
termine the cones of effective, movable, and nef divisors (and thus dually the Mori cone of
curves) of any moduli space of Gieseker-stable sheaves completely in terms of the algebraic
Mukai lattice ofX; as an example we will state here our description of the nef cone:

Assume thatH is a polarization that is generic with respect tov, and letMH(v) be the
Gieseker-moduli space of stable sheaves with Mukai vectorv. By [Yos01], the construction of
determinant line bundles gives an isomorhpismθ : v⊥ → NS(MH(v)), wherev⊥ denotes the
orthogonal complement ofv inside the algebrai Mukai latticeH∗

alg(X,Z), andNS the Néron-
Severi group of the moduli space; it identifies the Mukai pairing ( , ) inH∗

alg(X,Z) with the
Beauville-Bogomolov pairing onNS(MH(v)). Let Pos(MH(v)) denote the cone of strictly
positive classesD with respect to the Beauville-Bogomolov pairing, satisfying (D,D) > 0
and(A,D) > 0 for a fixed ample classA ∈ NS(MH(v)). We letPos(MH(v)) denote its
closure, and call it thepositive cone.

Theorem12.1. Consider the chamber decomposition of the closed positive conePos(MH(v))
whose walls are given by linear subspaces of the form

θ(v⊥ ∩ a
⊥),

for all a ∈ H∗
alg(X,Z) satisfyinga2 ≥ −2 and0 ≤ (v,a) ≤ v

2

2 . Then the nef cone ofMH(v)
is one of the chambers of this chamber decomposition.

In other words, given an ample classA ∈ NS(MH(v)), a classD ∈ Pos(MH(v)) is nef if
and only if(D, θ(a)) ≥ 0 for all classesa as above that also satisfy(A, θ(a)) > 0.

We refer to Section12 for similar statements for the movable and effective cone. Note that
the intersection of the movable cone with the positive cone has been determined in general by
Markman in [Mar11, Lemma 6.22] for any hyperkähler variety; the pseudo-effective can also
easily be deduced from Markman’s results. In these cases, our method gives an alternative
wall-crossing proof; the new result is the description of the boundary, due to the proof of the
Lagrangian conjecture discussed below.

However, there was no known description of the nef cone except for specific examples, even
in the case of the Hilbert scheme of points. A general conjecture by Hassett and Tschinkel,
[HT10, Thesis 1.1], suggested that the nef cone (or better, its dual, the Mori cone) of a hy-
perkähler varietyM depends only on the lattice of algebraic cycles inH2(M,Z). In small
dimension, their conjecture has been verified in [HT01, HT09, HT10, HHT12, BJ11]. The
original conjecture turned out to be incorrect, already forHilbert schemes (see [BM12, Re-
mark 9.4] and [CK12, Remark 8.10]). However, Theorem12.1is in fact very closely related
to the Hassett-Tschinkel Conjecture: we will explain this precisely in Section12, in particular
Proposition12.6and Remark12.7. In Section13, we give many explicit examples of nef cone
and movable cones.

Existence of Lagrangian fibrations. The geometry of a hyperkähler varietyM is particularly
rigid. For example, Matsushita proved in [Mat01] that any mapf : M → Y with connected
fibers anddim(Y ) < dim(M) is a Lagrangian fibration; further, Hwang proved in [Hwa08]
that if Y is smooth, it must be isomorphic to projective space.
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It then becomes a natural question to ask when such a fibrationexists, or when it exists
birationally. According to a long-standing conjecture, this can be detected purely in terms of
the quadratic Beauville-Bogomolov form on the Néron-Severi group ofM :

Conjecture 1.4(Tyurin-Bogomolov-Hassett-Tschinkel-Huybrechts-Sawon). LetM be a com-
pact hyperk̈ahler manifold of dimension2m, and letq denote its Beauville-Bogomolov form.

(a) There exists an integral divisor classD with q(D) = 0 if and only if there exists a
birational hyperk̈ahler manifoldM ′ admitting a Lagrangian fibration.

(b) If in addition,M admits anef integral divisor classD with q(D) = 0, then there
exists a Lagrangian fibrationf : M → Pm induced by the complete linear system of
a multiple ofD.

In the literature, it was first suggested by Hassett-Tschinkel in [HT01] for symplectic four-
folds, and, independently, by Huybrechts [GHJ03] and Sawon [Saw03] in general; see [Ver10]
for more remarks on the history of the Conjecture.

Based on the birationality of wall-crossing, we can prove this conjecture for moduli spaces
of sheaves on a K3 surface:

Theorem 1.5. LetX be a smooth projective K3 surface. Letv ∈ H∗
alg(X,Z) be a primitive

Mukai vector withv2 > 0 and letH be a generic polarization with respect tov. Then
Conjecture1.4holds for the moduli spaceMH(v) ofH-Gieseker-stable sheaves.

The basic idea of our proof is the following: as we recalled above, the Néron-Severi group
of MH(v), along with its Beauville-Bogomolov form, is isomorphic tothe orthogonal com-
plementv⊥ ⊂ H∗

alg(X,Z) of v in the algebraic Mukai lattice ofX, along with the restriction
of the Mukai pairing. The existence of an integral divisorD = c1(L) with q(D) = 0 is
thus equivalent to the existence of an isotropic classw ∈ v

⊥: a class with(w,w) = 0
and(v,w) = 0. The moduli spaceY = MH(w) is a smooth K3 surface, and the associated
Fourier-Mukai transformΦ sends sheaves of classv onX to complexes of rank 0 onY . While
these complexes onY are typically not sheaves—not even for a generic object inMH(v)—,
we can arrange them to be Bridgeland-stable complexes with respect to a Bridgeland-stability
conditionτ on Db(Y ). We then deformτ along a path with endpointτ ′, such thatτ ′-stable
complexes of classΦ∗(w) are Gieseker-stable sheaves, necessarily of rank zero. In other
words, the Bridgeland-moduli spaceMτ ′(Φ∗(v)) is a moduli space of sheavesF with support
|F| on a curve of fixed degree. As is well-known, the mapF 7→ |F| defines a map from
Mτ ′(Φ∗(v)) to the linear system of the associated curve, and this map is aLagrangian fibra-
tion. On the other hand, birationality of wall-crossing shows thatMτ (Φ∗(v)) = MH(v) is
birational toMτ ′(Φ∗(v)).

The idea to use a Fourier-Mukai transform to prove Conjecture 1.4was used previously by
Markushevich [Mar06] and Sawon [Saw07] for specific family of examples of Hilbert schemes
on K3 surfaces of Picard rank one; their assumptions impliedthat the Fourier-Mukai transform
of a generic ideal sheaf is a stable torsion sheaf. Birationality of wall-crossing makes such a
claim unnecessary.

Remark 1.6. By [MM12], Hilbert schemes ofn points on projective K3 surfaces are Zariski-
dense in the moduli space of hyperkähler varieties ofK3[n]-type.

Conjecture1.4 has been proved independently by Markman [Mar13] for a general hy-
perkähler varietyM of K3[n]-type, under the assumption that the two dimensional subspace
H2,0(M) ⊕ H0,2(M) of H2(M,C) does not contain any integral class. These varieties are
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dense in the moduli space with respect to the analytic topology. His proof is completely dif-
ferent from ours, based on Verbitski’s Torelli Theorem, anda way to associate a K3 surface
(purely lattice theoretically) to certain hyperkähler manifolds with a square-zero divisor class.

A related result has recently been announced by Matsushita [Mat12b].

Remark 1.7. Theorems12.1and1.5hold for every moduli spaceMσ(v) of Bridgeland-stable
object, forv primitive andσ generic. Similarly, all main results hold for twisted K3 surfaces.

Further applications. We conclude the paper with two additional concrete applications of
our methods. In Section14, we explain how to deduce basic properties of the geometry of
flopping contractions; in particular, we give examples where the contracted locus has either
arbitrarily many connected components, or arbitrarily many irreducible components all inter-
secting in one point. In Section15we apply Theorem1.5to study Le Potier’s Strange Duality
(in the case where one of the two classes involved has square zero).

Relation to previous work on wall-crossing. Various authors have previously studied ex-
amples of the relation between wall-crossing and the birational geometry of the moduli space
induced by the chamber decomposition of its cone of movable divisors: the first examples
(for moduli of torsion sheaves onK-trivial surfaces) were studied in [AB13], and moduli
on abelian surfaces were considered (in varying generality) in [MM11, Mac12, MYY11a,
MYY11b, YY12, Yos12].

Several of our results have analogues for abelian surfaces that have been obtained previously
by Yoshioka, or by Minamide, Yanagida and Yoshioka: the birationality of wall-crossing has
been estabslished in [MYY11a, Theorem 4.3.1]; the ample cone of the moduli spaces is de-
scribed in [MYY11b, Section 4.3]; statements related to Theorem1.2can be found in [Yos12];
the analogue of Corollary1.3 is contained in [Yos09, Theorem 0.1]; and Conjecture1.4 is
proved in [Yos09, Proposition 3.4 and Corollary 3.5] with the same basic approach.

The crucial difference between abelian surfaces and K3 surfaces is the existence spherical
objects on the latter. They are responsible for the existence of totally semistable walls(walls
for which there are no strictly stable objects) that are harder to control; in particular, these can
correspond to any possible type of birational transformation (isomorphism, divisorial contrac-
tion, flop). The spherical classes are the main reason our wall-crossing analysis in Sections
5—9 is fairly involved.

A somewhat different behavior was established in [ABCH13] in many cases for the Hilbert
scheme of points onP2 (extended to torsion-free sheaves in [Hui12, BMW13], and to Hirze-
bruch surfaces in [BC12]): the authors show that the chamber decomposition in the space
of stability conditions corresponds to the base locus decomposition of theeffectivecone. In
particular, while the mapℓC of equation (1) exists similarly in their situation, it will behave dif-
ferently across walls corresponding to a divisorial contraction: in our case, the map “bounces
back” into the ample cone, while in their case, it will extendacross the wall.
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Notation and Convention. For an abelian groupG and a fieldk(= Q,R,C), we denote by
Gk thek-vector spaceG⊗ k.

Throughout the paper,X will be a smooth projective K3 surface over the complex numbers.
For a (locally-Noetherian) scheme (or algebraic space)S, we will use the notationDb(S) for
its bounded derived category of coherent sheaves, andDqc(S) for the unbounded derived
category of quasi-coherent sheaves.

We will abuse notation and denote all derived functors as if they were underived. We denote
bypS andpX the two projections fromS×X toS andX, respectively. GivenE ∈ Dqc(S×X),
we denote the Fourier-Mukai functor associated toE by

ΦE( ) := (pX)∗ (E ⊗ p∗S( )) .

GivenE,F ∈ Db(X), we denote the Euler characteristic by

χ(E,F ) =
∑

p

(−1)p extp(E,F ).

We denote byNS(X) the Néron-Severi group ofX. The space of full numerical stability
conditions onDb(X) will be denoted byStab(X).

The skyscraper sheaf at a pointx ∈ X is denoted byk(x). For a complex numberz ∈ C,
we denote its real and imaginary part byℜz andℑz, respectively.

For a K3 surfaceX, we denote the Mukai vector of an objectE ∈ Db(X) by v(E). We
will often write it asv(E) = (r, c, s), wherer is the rank ofE, c ∈ NS(X) ands the degree
of v(E).

An object withHom(E,E) = C will be called aSchur object. By simple objectin an
abelian category we will denote an object that has no non-trivial subojects. An object with
Ext1(E,E) = 0 will be calledrigid. A rigid Schur object will be calledspherical.

For a spherical objectS we denote the spherical twist atS by STS( ), defined in [ST01]
by the exact triangle, for allE ∈ Db(X),

Hom•(S,E)⊗ S → E → STS(E).

We will write stable (in italics) whenever we are considering strictly stable objects in a
context where there exist strictly semistable objects: fora non-generic stability condition, or
objects with non-primitive Mukai vector.

2. REVIEW: DERIVED CATEGORIES OFK3 SURFACES, BRIDGELAND STABILITY

CONDITIONS, MODULI SPACES, PROJECTIVITY

In this section, we give a review of stability conditions K3 surfaces, and their moduli spaces
of stable complexes. The main references are [Bri07, Bri08, Tod08, Yos01, BM12].
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Bridgeland stability conditions. LetD be a triangulated category.

Definition 2.1. A slicing P of the categoryD is a collection of full extension-closed subcate-
goriesP(φ) for φ ∈ R with the following properties:

(a) P(φ+ 1) = P(φ)[1].
(b) If φ1 > φ2, thenHom(P(φ1),P(φ2)) = 0.
(c) For anyE ∈ D, there exists a collection of real numbersφ1 > φ2 > · · · > φn and a

sequence of triangles

(3) 0 = E0
// E1

//

��⑧⑧
⑧
⑧
⑧

E2
//

}}⑤⑤
⑤
⑤

· · · // En−1
// En = E

yyss
s
s
s
s

A1

cc

A2

aa

An

cc

with Ai ∈ P(φi).

The collection of exact triangles in (3) is called theHarder-Narasimhan filtrationof E.
Each subcategoryP(φ) is extension-closed and abelian. Its nonzero objects are called semistable
of phaseφ, and its simple objects are called stable.

We will write φmin(E) := φn andφmax(E) := φ1. By P(φ − 1, φ] we denote the full
subcategory of objects withφmin(E) > φ − 1 andφmax(E) ≤ φ. This is the heart of a
bounded t-structure(D≤0,D≥0) given by

D≤0 = P(> φ−1) = {E ∈ D : φmin > φ− 1} and D≥0 = P(≤ φ) = {E ∈ D : φmax ≤ φ} .
The associated truncation functors will be denoted by

τ>φ : D → P(> φ) and τ≤φ : D → P(≤ φ)

Definition 2.2. A Bridgeland stability conditiononD is a triple(Λ, Z,P), where

• Λ is a lattice of finite rank together with a surjective mapv : K(D) ։ Λ,
• Z : Λ → C is a group homomorphism,
• P is a slicing ofZ,

satisfying the following compatibilities:

(a) 1
π
argZ(E) = φ, for all non-zeroE ∈ P(φ);

(b) given a norm‖ ‖ onΛR, there exists a constantC > 0 such that

|Z(E)| ≥ C‖v(E)‖,
for all E ∈ P.

A stability condition is calledalgebraicif Im(Z) ⊂ Q⊕Q
√
−1.

We letStabΛ(D) the set of stability conditions with fixed latticeΛ. The main theorem in
[Bri07, KS08] shows that it is a complex manifold of dimension given by therank ofΛ.

Remark 2.3. By [Bri07, Lemma 8.2], we have a left action onStabΛ(D) by the autoe-
quivalence groupAut(D), and a right action bỹGL2(R), the universal cover of the matri-
ces inGL2(R) with positive determinant. The first action is defined, forΦ ∈ Aut(D), by
Φ(Z,P) = (Z ◦ φ−1

∗ ,Φ(P)), whereφ∗ is the automorphism induced byΦ at the level of
Grothendieck groups. The second one is the lift of the actionof GL2(R) onHom(K(D),C)
(by identifyingC ∼= R2).
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The algebraic Mukai lattice. We letX be a smooth projective K3 surface.

Definition 2.4. LetH∗
alg(X,Z) := H0(X,Z) ⊕NS(X) ⊕H4(X,Z).

(a) We denote byv : K(X) → H∗
alg(X,Z) theMukai vector, given by

v(E) := ch(E)
√

td(X).

(b) TheMukai pairing( , ) is defined onH∗
alg(X,Z) by

((r, c, s), (r′, c′, s′)) := cc′ − rs′ − sr′ ∈ Z.

It is an even pairing of signature(2, ρ(X)), satisfying(v(E),v(F )) = −χ(E,F ),
for E,F ∈ K(X).

(c) Thealgebraic Mukai latticeis defined to be the pair
(
H∗

alg(X,Z), ( , )
)

.

Recall that an embeddingi : V → L of a latticeV into a latticeL is primitive if L/i(V ) is
a free abelian group. In particular, we call a non-zero vector v ∈ H∗

alg(X,Z) primitive if it is
not divisible inH∗

alg(X,Z). Throughout the paperv will often denote a primitive class with
v
2 > 0.
Given a Mukai vectorv ∈ H∗

alg(X,Z), we denote its orthogonal complement byv
⊥.

Remark 2.5. Let α ∈ Br(X) be a torsion class in the Brauer group ofX. The above defini-
tions can be extended to thetwisted K3 surface(X,α), as explained in [HS05]. In particular,

we will denote the algebraic Mukai lattice in the twisted case by
(
H∗

alg(X,α,Z), ( , )
)

. For

the basic theory of twisted K3 surfaces, we refer the reader to [Căl00, HS05, Yos06, Lie07].

Stability conditions on K3 surfaces. LetX be a K3 surface.

Definition 2.6. A (full, numerical)stability conditiononX is a Bridgeland stability condition
onDb(X), whose the latticeΛ is given by the Mukai latticeH∗

alg(X,Z).

In [Bri08], Bridgeland describes a connected component of the space of numerical stability
conditions onX. These results have been extended to twisted K3 surfaces in [HMS08]. We
will briefly summarize his main results in the following.

Let β, ω ∈ NS(X)R be two real divisor classes, withω being ample. In [Bri08, Lemma
6.1], Bridgeland constructs a heartAω,β by tilting at a torsion pair inCohX: its objects are

two-term complexesE−1 d−→ E such that theKer d is a torsion-free sheaf, all of whose HN
filtration factors with respect toµω-slope stability have slopeµω ≤ ω.β, and such that the
torsion-free part ofCok d only has HN filtration factors of slopeµω > ω.β.

Theorem 2.7([Bri08, Sections 10, 11]). Let σ = (Z,P) be a stability condition such that
all skyscraper sheavesk(x) of points areσ-stable. Then there are real divisor classesω, β ∈
NS(X)R with ω ample, such that, up to theGL2-action,σ is determined byP((0, 1]) = Aω,β

and
Z(E) =

(
eiω+β ,v(E)

)
.

We will denote this stability condition byσω,β, and the open subset ofStab(X) consisting
of such stability conditions byU(X).

Using the Mukai pairing, we can identify any central chargeZ ∈ Hom(H∗
alg(X,Z),C)

with a vector inH∗
alg(X,Z) ⊗ C. We will next describe the set of central charges using this

identification: LetP(X) ⊂ H∗
alg(X,Z) ⊗ C be the set of vectorsΩ such thatℑΩ,ℜΩ span a
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positive definite 2-plane inH∗
alg(X,Z) ⊗ R. The subsetP0(X) is defined as the orthogonal

complement of all spherical classes:

P0(X) =
{
Ω ∈ P(X) : (Ω, s) 6= 0, for all s ∈ H∗

alg(X,Z) with s
2 = −2

}
.

Finally, P0(X) has two connected components (corresponding to the orientation induced on
the plane spanned byℑΩ,ℜΩ), and we letP+

0 (X) be the component containing vectors of the
form eiω+β for ω ample,ω2 ≫ 0.

Theorem 2.8([Bri08, Section 8]). Let Stab†(X) be the connected component of the space
of stability conditions containingU(X). LetZ : Stab†(X) → H∗

alg(X,Z) ⊗ C be the map
sending a stability conditions(Z,P) toΩZ , whereZ( ) = (ΩZ , ).

ThenZ is a covering map ofP+
0 (X).

Remark 2.9. Theorem2.7and Theorem2.8have analogous statements, though slightly more
technical, in the context of twisted K3 surfaces(X,α), as proved in [HMS08, Section 3.1].
The analogue objects in the twisted case will be denoted byU(X,α), Stab†(X,α), P+

0 (X,α),
etc.

We will need the following observation:

Proposition 2.10. The stability conditionsσω,β onU(X,α) andσω,−β onU(X,−α) are dual
to each other in the following sense: An objectE ∈ Db(X,α) is σω,β-(semi)stable of phaseφ
if and only if its derived dualE∨[2] ∈ Db(X,−α) is σω,−β-(semi)stable of phase−φ.

Proof. This follows as in [BMT11, Proposition 4.3.6]. �

Walls. One of the main properties of Bridgeland stability conditions is that the space of sta-
bility conditions carries a well-behaved wall and chamber structure. This is due to Bridgeland
and Toda (the precise statement we need is in [BM12, Proposition 2.3]).

Let (X,α) be a twisted K3 surface and letv ∈ H∗
alg(X,α,Z) be a Mukai vector. Then

there exists a locally finite set ofwalls (real codimension one submanifolds with boundary) in
Stab(X,α), depending only onv, with the following properties:

(a) Whenσ varies within a chamber, the sets ofσ-semistable andσ-stable objects of
classv does not change.

(b) Whenσ lies on a single wallW ⊂ Stab(X,α), then there is aσ-semistable object
that is unstable in one of the adjacent chambers, and semistable in the other adjacent
chamber.

(c) When we restrict to an intersection of finitely many wallsW1, . . . ,Wk, we obtain a
wall-and-chamber decomposition onW1 ∩ · · · ∩Wk with the same properties, where
the walls are given by the intersectionsW ∩ W1 ∩ · · · ∩ Wk for any of the walls
W ⊂ Stab(X,α) with respect tov.

Moreover, ifv is primitive, thenσ lies on a wall if and only if there exists a strictlyσ-
semistable object of classv. The Jordan-Hölder filtration ofσ-semistable objects does not
change whenσ varies within a chamber.

Definition 2.11. Let v ∈ H∗
alg(X,α,Z). A stability condition is calledgenericwith respect

to v if it does not lie on a wall.

Remark 2.12. Given a polarizationH that is generic with respect tov, there is always a
Gieseker chamberC: for σ ∈ C, the moduli spaceMσ(v) of Bridgeland stable objects is
exactly the moduli space ofH-Gieseker stable sheaves; see [Bri08, Proposition 14.2].
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Moduli spaces and projectivity. Let (X,α) be a twisted K3 surface and letv ∈ H∗
alg(X,α,Z).

Following [Tod08], by fixing σ = (Z,P) ∈ Stab†(X,α) andφ ∈ R such thatZ(v) ∈
R>0 · eπφ

√
−1, we can define

Mσ(v, φ)
(
resp.Mst

σ (v, φ)
)

as the moduli stack ofσ-semistable (resp.σ-stable) objects with phaseφ and Mukai vectorv.
This is an Artin stack of finite type overC. We will often omitφ or v from the notation, when
it is clear from the context.

By [BM12, Theorem 1.3(a)] (which generalizes [MYY11b, Theorem 0.0.2]), ifσ ∈ Stab†(X,α)
is generic with respect tov, then there exists a coarse moduli spaceMσ(v) of σ-semistable
objects with Mukai vectorv. It is a normal projective irreducible variety withQ-factorial
singularities. Ifv is primitive, thenMσ(v) = M st

σ (v) is a smooth projective hyperkähler
manifold (see Section3).

By results of Yoshioka and Toda, there is a very precise criterion for non-emptyness of a
moduli space, and it always has expected dimension:

Theorem 2.13.Letv = mv0 ∈ H∗
alg(X,α,Z) be a vector withv0 primitive andm > 0, and

let σ ∈ Stab†(X,α) be a generic stability condition with respect tov.

(a) The coarse moduli spaceMσ(v) is non-empty if and only ifv2
0 ≥ −2.

(b) EitherdimMσ(v) = v
2 + 2 andM st

σ (v) 6= ∅, orm > 1 andv2
0 ≤ 0.

In other words, whenv2 6= 0 and the dimension of the moduli space is positive, then it is
given bydimMσ(v) = v

2 + 2.

Proof. This is well-known: we provide a proof for completeness. First of all, claim (a) follows
from results of Yoshioka and Toda (see [BM12, Theorem 5.7]). Sinceσ is generic with respect
tov, we know thatMσ(v) exists as a projective variety, parameterizingS-equivalence classes
of semistable objects. Moreover, ifE ∈ Mσ(v), and we letF →֒ E be such thatφσ(F ) =
φσ(E), thenv(F ) = m′

v0, for somem′ > 0. Hence, the locus of properly semistable objects
in Mσ(v) coincides with the image of the natural map

SSL:
∐

m1+m2=m

(Mσ(m1v0)×Mσ(m2v0)) −→Mσ(v).

If we assumev2
0 > 0 (and so≥ 2), then we can proceed by induction onm. Form =

1, M st
σ (v0) = Mσ(v0) and the conclusion follows from the Riemann-Roch Theorem and

[Muk87a]. If m > 1, then by the inductive assumption, we deduce that the image of the map
SSL has dimension equal to the maximum of(m2

1 +m2
2)v

2
0 + 4, form1 +m2 = m.

We claim that we can construct a semistable object with vector v which is also Schur.
Indeed, again by the inductive assumption, we can consider aσ-stable objectE(m − 1)
with vector (m − 1)v0. Let F ∈ Mσ(v0). Then, again by the Riemann-Roch Theorem,
Ext1(F,E(m− 1)) 6= 0. We can take any non-trivial extension

0 → E(m− 1) → E(m) → F → 0.

Since bothE(m−1) andF are Schur, and they have no morphism between each other,E(m)
is Schur as well.

Again by the Riemann-Roch Theorem and [Muk84], we deduce that the dimension of
Mσ(v) is equal toext1(E(m), E(m)) = m2

v
2
0 + 2. This shows thatM st

σ (v) 6= ∅, as we
wanted. The last part of the statement follows from [BM12, Lemma 6.1 & Lemma 6.2]. �
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Line bundles on moduli spaces.In this final section we recall the main result of [BM12]: it
shows that every moduli space of Bridgeland-stable objectscomes equipped with a numeri-
cally positive line bundle, naturally associated to the stability condition. To avoid complicating
the notation, we state the results only in the untwisted case: the extension to the twisted case
works analogously.

Let X be a K3 surface. LetS be a proper algebraic space of finite type overC, let σ =
(Z,P) ∈ Stab(X), and letE ∈ Db(S ×X) be a family of semistable objects of classv and
phaseφ, namely, for all closed points ∈ S, Es ∈ P(φ) with v(E) = v.

We define a numerical divisor classℓσ ∈ NS(S)R onS as follows: To every curveC ⊂ S,
we associate

ℓσ : C 7→ ℓσ.C := ℑ
(
−Z(ΦEOC))

Z(v)

)
,

and prove that it extends linearly to all curve classes.

Remark 2.14. The linearity can, for example, be seen by comparison with the classical de-
terminant line bundle construction. First of all, we recallthe Donaldson morphism ([HL10,
Section 8.1]):

λE : v
♯ → NS(S),

given as the composition

v
♯ p∗X−−→ Knum(S ×X)

·[E]−−→ Knum(S ×X)
(pS)∗−−−→ Knum(S)

det−−→ NS(S),

whereKnum denotes the Grothendieck group of a variety modulo numerical equivalence, and

v
♯ := {w ∈ Knum(X) : χ(v ⊗w) = 0} .

WhenX is a K3 surface, it is more convenient to use a dual version, called the Mukai mor-
phism,

θE : v
⊥ → NS(S), θE(w) := −λE(v−1(w)∗).

If we assumeZ(v) = −1, and writeZ( ) = (ΩZ , ) as above, then

(4) ℓσ = θE(ℑΩZ).

Theorem 2.15([BM12]). The following are the main properties ofℓσ:

(a) ℓσ is a nef divisor class onS. Additionally, for a curveC ⊂ S, we haveℓσ.C = 0
if and only if, for two general closed pointsc, c′ ∈ C, the corresponding objects
Ec, Ec′ ∈ Db(X) areS-equivalent.

(b) For any Mukai vectorv ∈ H∗
alg(X,Z), ℓσ induces a divisor class on the coarse

moduli spaceMσ(v), when the stability conditionσ ∈ Stab†(X) is generic with
respect tov. Moreover, in such a case,ℓσ is an ample divisor onMσ(v).

For any chamberC ⊂ Stab†(X), we thus get a map

(5) ℓC : C → Amp(MC(v)),

where we used the notationMC(v) to denote the coarse moduli spaceMσ(v), independent of
the choiceσ ∈ C. The main goal of this paper is to understand the global behavior of this map.

We recall one more result from [BM12]. Let v ∈ H∗
alg(X,Z) be aprimitive vector with

v
2 ≥ −2. Let W be a wall forv and letσ0 ∈ W be a generic stability condition on the

wall, namely it does not belong to any other wall (see also Remark5.6). We denote byσ+ and
σ− two generic stability conditions nearbyW in opposite chambers. Then allσ±-semistable
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objects are alsoσ0-semistable. Hence,ℓσ0 induces two nef divisorsℓσ0,+ andℓσ0,− onMσ+(v)
andMσ−

(v) respectively.

Theorem 2.16([BM12, Theorem 1.4(a)]). The divisorsℓσ0,± are big and nef onMσ±
(v). In

particular, they are semi-ample, and induce birational contractions

π± : Mσ±
(v) →M±,

whereM± are normal irreducible projective varieties. The curves contracted byπ± are
precisely curves of objects that areS-equivalent with respect toσ0.

Definition 2.17. We call a wallW:

(a) afake wall, if there are no curves inMσ±
(v) of objects that areS-equivalent to each

other with respect toσ0;
(b) atotally semistable wall, if M st

σ0
(v) = ∅;

(c) aflopping wall, if we can identifyM+ =M− and the induced morphismMσ+(v) 99K
Mσ−

(v) induces a flopping contraction;
(d) adivisorial wall, if the morphismsπ± : Mσ±

(v) →M± are both divisorial contrac-
tions.

By [BM12, Theorem 1.4(b)], ifW is not a fake wall andM st
σ0
(v) ⊂ Mσ±

(v) has com-
plement of codimension at least two, thenW is a flopping wall. We will classify walls in
Theorem5.7.

3. REVIEW: BASIC FACTS ABOUT HYPERK̈AHLER VARIETIES

In this section we give a short review on hyperkähler manifolds. The main references are
[Bea83, GHJ03, Mar11].

Definition 3.1. A projective hyperk̈ahler manifoldis a simply connected smooth projective va-
rietyM such thatH0(M,Ω2

M ) is one-dimensional, spanned by an everywhere non-degenerate
holomorphic2-form.

The Néron-Severi group of a hyperkähler manifold carriesa natural bilinear form, called
theFujiki-Beauville-Bogomolov form. It is induced by a quadratic form on the whole second
cohomology groupq : H2(M,Z) → Z, which is primitive of signature(3, b2(M) − 3). It
satisfies the Fujiki relation

(6)
∫

M

α2n = FM · q(α)n, α ∈ H2(M,Z),

where2n = dimM andFM is theFujiki constant, which depends only on the deformation
type ofM . We will mostly use the notation( , ) := q( , ) for the induced bilinear form
onNS(M).

The Hodge structure
(
H2(M,Z), q

)
behaves similarly to the case of a K3 surface. For

example, by [Ver09], there is a weak global Hodge theoretic Torelli theorem for(deformation
equivalent) hyperkähler manifolds.

Moreover, some positivity properties of divisors onM can be rephrased in terms ofq. We
first recall a few basic definitions on cones of divisors.

Definition 3.2. An integral divisorD ∈ NS(M) is called

• big, if its Iitaka dimension is maximal;
• movable, if its stable base-locus has codimension≥ 2;
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• strictly positive, if (D,D) > 0 and(D,A) > 0 for a fixed ample classA onM .

The real (not necessarily closed) cone generated by big (resp., movable, strictly positive,
effective) integral divisors will be denoted byBig(M) (resp.,Mov(M), Pos(M), Eff(M)).
We have the following inclusions:

Pos(M) ⊂ Big(M) ⊂ Eff(M)

Nef(M) ⊂ Mov(M) ⊂ Pos(M) ⊂ Big(M) = Eff(M).

The only non-trivial inclusion isPos(M) ⊂ Big(M), which follows from [Huy99, Corollary
3.10]. Divisors inPos(M) are calledpositive.

Definition 3.3. Let M be a projective hyperkäler manifold of dimension2n. A Lagrangian
fibration is a surjective morphism with connected fibersh : M → B, whereB is a smooth
projective variety, such that the generic fiber is Lagrangian with respect to the symplectic
form ω ∈ H0(M,Ω2

M ).

By the Arnold-Liouville Theorem, any smooth fiber of a Lagrangian fibration is an abelian
variety of dimensionn. Moreover:

Theorem 3.4([Mat99, Mat01] and [Hwa08]). LetM be a projective hyperk̈ahler manifold of
dimension2n. LetB be a smooth projective variety of dimension0 < dimB < 2n and let
h : M → B be a surjective morphism with connected fibers. Thenh is a Lagrangian fibration,
andB ∼= Pn.

This result explains the importance of Conjecture1.4. There has been recent series of
articles on Lagrangian fibrations with a slightly differentperspective. They treat the following
question (see [Bea10, Question 1.6]): Given a torusL which is a Lagrangian subvariety of
a HK manifold, does there exist a Lagrangian fibration withL as a fiber? This has been
addressed in [GLR11a] for non-projective compact hyperkähler manifolds, and in general in
[HW12, Mat12a] (based on previous results in [Ame11, GLR11b]).

The examples of hyperkähler manifolds we will consider aremoduli spaces of stable com-
plexes, as explained by the theorem below. It has been provenfor moduli of sheaves in [Yos01,
Sections 7 & 8], and generalized to Bridgeland stability conditions in [BM12, Theorem 5.9]):

Theorem 3.5(Huybrechts-O’Grady-Yoshioka). Let (X,α) be a twisted K3 surface and let
v ∈ H∗

alg(X,α,Z) be a primitive vector withv2 ≥ −2. Letσ ∈ Stab†(X,α) be a generic
stability condition with respect tov. Then:

(a) Mσ(v) is a projective hyperk̈ahler manifold, deformation-equivalent to the Hilbert
scheme of points on any K3 surface.

(b) The Mukai morphism induces an isomorphism
• θσ,v : v

⊥ ∼−→ NS(Mσ(v)), if v2 > 0;
• θσ,v : v

⊥/v
∼−→ NS(Mσ(v)), if v2 = 0.

Under this isomorphism, the quadratic Beauville-Bogomolov form forNS(Mσ(v))
coincides with the quadratic form of the Mukai pairing on(X,α).

Hereθσ,v is the Mukai morphism as in Remark2.14, induced by a (quasi-)universal family.
We will often dropσ orv from the notation. It extends to an isomorphism of Hodge structures,
if we take the orthogonal complementv

⊥ inside the whole cohomologyH∗(X,α,Z) (and not
only in the algebraic part); it becomes identified withH2(M,Z). Forv2 > 0 the embedding
H2(M,Z) ∼= v

⊥ →֒ H∗(X,α,Z) of integral Hodge structures determines the birational class
of Mσ(v) via Verbitsky’s Torelli Theorem, see [Mar11, Example 9.6].
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We will also the need the following special case of a result byNamikawa and Wierzba:

Theorem 3.6([Wie03, Theorem 1.2 (ii)] and [Nam01, Proposition 1.4]). Let M be a pro-
jective hyperk̈ahler manifold of dimension2n, and letM be a projective normal variety. Let
π : M → M be a birational projective morphism. We denote bySi the set of pointsp ∈ M
such thatdimπ−1(p) = i. ThendimSi ≤ 2n − 2i.

In particular, if π contracts a divisorD ⊂M , we must havedimπ(D) = m− 2.

Consider a non-primitive vectorv. As shown by O’Grady and Kaledin-Lehn-Sorger, the
moduli spaceMσ(v) can still be thought of as a singular hyperkähler manifold,in the follow-
ing sense:

Definition 3.7. A normal projective varietyM is said to havesymplectic singularitiesif

• The smooth partMreg ⊂M admits a symplectic 2-formω;
• For any resolutionf : M̃ → M , the pull-back ofω to f−1(Mreg) extends to a holo-

morphic form onM̃ .

Our results in [BM12] reduce the following theorem to the case of moduli fo sheaves:

Theorem 3.8([O’G99] and [KLS06]). Let(X,α) be a twisted K3 surface and letv = mv0 ∈
H∗

alg(X,α,Z) be a Mukai vector withv0 primitive andv2
0 ≥ 2. Letσ ∈ Stab†(X,α) be a

generic stability condition with respect tov. ThenMσ(v) has symplectic singularities.

Given a hyperkähler manifoldM and a dominant rational mapM 99K M , whereM is
a normal projective variety with symplectic singularities, then it follows from the definitions
thatdim(M) = dim(M ).

4. HARDER-NARASIMHAN FILTRATIONS IN FAMILIES

In this section, we will show that results by Abramovich-Polishchuk and Toda imply the
existence of Harder-Narasimhan filtrations in families, see Theorem4.3.

Let Y be a smooth projective variety overC, and letσ be a Bridgeland stability condition
onDb(Y ). The results we present will work as well in the twisted context: for simplicity of
notation we only prove and state them in the untwisted context.

Definition 4.1. We sayσ satisfiesopenness of stabilityif the following condition holds: for
any schemeS of finite type overC, and for anyE ∈ Db(S×Y ) such that its derived restriction
Es is a σ-semistable object ofDb(Y ) for somes ∈ S, there exists an open neighborhood
s ∈ U ⊂ S of s, such thatEs′ is σ-semistable for alls′ ∈ U .

Theorem 4.2([Tod08, Section 3]). Openness of stability holds whenY is a K3 surface andσ
is a stability condition in the connected componentStab†(Y ).2

Theorem 4.3. Let σ = (Z,A) ∈ Stab(Y ) be an algebraic stability condition satisfying
openness of stability. Assume we are given an irreducible variety S overC, and an object
E ∈ Db(S × Y ). Then there exists a system of maps

(7) 0 = E0 → E1 → E2 → · · · → Em = E

2Note that in [Tod08, Section 3], this Theorem is only stated for familiesE satisfyingExt<0(Es, Es) = 0 for
all s ∈ S. However, Toda’s proof in Lemma 3.13 and Proposition 3.18 never uses that assumption.
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in Db(S × Y ), and an open subsetU ⊂ S with the following property: for anys ∈ U , the
derived restriction of the system of maps(7)

0 = E0
s → E1

s → E2
s → · · · → Em

s = Es
is the Harder-Narasimhan filtration ofEs.

The proof is based on the notion of constant family of t-structures due to Abramovich and
Polishchuk, constructed in [AP06] (in caseS is smooth) and [Pol07] (in general).

Throughout the remainder of this section, we will assume that σ andS satisfy the assump-
tions of Theorem4.3. A t-structure is calledclose to Noetherianif it can be obtained via tilting
from a t-structure whose heart is Noetherian. Forφ ∈ R, the categoryP((φ− 1, φ]) ⊂ Db(Y )
is the heart of a close to Noetherian bounded t-structure onY given byD≤0 = P((φ−1,+∞))
andD≥0 = P((−∞, φ]) (see the example discussed at the end of [Pol07, Section 1]). In this
situation, Abramovich and Polishchuk’s work induces a bounded t-structure(D≤0

S ,D≥0
S ) on

Db(S × Y ); we paraphrase their main results as follows:

Theorem 4.4([AP06, Pol07]). LetA be the heart of a close to Noetherian bounded t-structure
(D≤0,D≥0) onDb(Y ). Denote byAqc ⊂ Dqc(Y ) the closure ofA under infinite coproducts
in the derived category of quasi-coherent sheaves.

(a) For any schemeS of finite type ofC there is a close to Noetherian bounded t-structure
(D≤0

S ,D≥0
S ) onDb(S × Y ), whose heartAS is characterized by

E ∈ AS ⇔ (pY )∗ (E|Y×U ) ∈ Aqc for every open affineU ⊂ S

(b) The above construction defines a sheaf of t-structures over S: whenS =
⋃

i Ui is
an open covering ofS, thenE ∈ AS if and only if E|Y×Ui ∈ AUi for everyi. In
particular, for i : U ⊂ S open, the restriction functori∗ is t-exact.

(c) Wheni : S′ ⊂ S is a closed subscheme, theni∗ is t-exact, andi∗ is t-right exact.

We briefly comment on the statements that are not explicitly mentioned in [Pol07, Theorem
3.3.6]: From part (i) of [Pol07, Theorem 3.3.6], it follows that the t-structure constructed there
onD(S×Y ) descends to a bounded t-structure onDb(S×Y ). To prove that the push-forward
in claim (c) is t-exact, we first use the sheaf property to reduce to the case whereS is affine; in
this case, the claim follows by construction. By adjointness, it follows thati∗ is t-right exact.

For an algebraic stability conditionσ = (Z,P) on Db(Y ) and a phaseφ ∈ R, we will
from now on denote its associated t-structure byP(> φ) = D≤−1, P(≤ φ) = D≥0, and the
associated truncation functors byτ>φ, τ≤φ. By [Pol07, Lemma 2.1.1], it induces a t-structure
on Dqc(Y ), which we denote byPqc(> φ),Pqc(≤ φ). For the t-structure onDb(S × Y )

induced via Theorem4.4, we will similarly writePS(> φ),PS(≤ φ), andτ>φ
S , τ≤φ

S .
We start with a technical observation:

Lemma 4.5. The t-structures onDb(S×Y ) constructed via Theorem4.4satisfy the following
compatiblity relation:

(8)
⋂

ǫ>0

PS(≤ φ+ ǫ) = PS(≤ φ).

Proof. AssumeE is in the intersection of the left-hand side of (8). By the sheaf property, we
may assume thatS is affine. The assumption implies(pY )∗E ∈ Pqc(≤ φ+ ǫ) for all ǫ > 0.
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By [Pol07, Lemma 2.1.1], we can describePqc(≤ φ+ ǫ) ⊂ Dqc(Y ) as the right orthogonal
complement ofP(> φ+ ǫ) ⊂ Db(Y ) insideDqc(Y ); thus we obtain
⋂

ǫ>0

Pqc(≤ φ+ ǫ) =
⋂

ǫ>0

(
P(> φ+ ǫ)

)⊥
=

(⋃

ǫ>0

P(> φ+ ǫ)
)⊥

=
(
P(> φ)

)⊥
= Pqc(≤ φ).

Hence(pY )∗E ∈ Pqc(≤ φ), proving the lemma. �

We next observe that the truncation functorsτ>φ
S , τ≤φ

S induce a slicing onDb(S×Y ). (See
Definition 2.1 for the notion of slicing on a triangulated category.)

Lemma 4.6. Assume thatσ = (Z,P) is an algebraic stability condition, andPS(> φ),PS(≤
φ) are as defined above. There is a slicingPS onDb(S × Y ) defined by

PS(φ) = PS(≤ φ) ∩
⋂

ǫ>0

PS(> φ− ǫ).

Note thatPS(φ) cannot be characterized by the anologue of Theorem4.4, part (a). For
example, consider the case whereY is a curve and(Z,P) the standard stability condition
corresponding to ordinarly slope-stability inCohY . ThenP(1) ⊂ CohY is the category of
torsion sheaves, andPS(1) ⊂ CohS×Y is the category of sheavesF that are torsion relative
overS. However, forU ⊂ S affine and a non-trivial familyF , the push-forward(pY )∗F|U is
never a torsion sheaf.

Proof. By standard arguments, it is sufficient to consider the caseE ∈ AS := PS(0, 1]. In
particular, sinceσ is algebraic, we can assume that bothA := P(0, 1] andAS are Noetherian.
For anyφ ∈ (0, 1], we havePS(φ, φ + 1] ⊂ 〈AS ,AS [1]〉. By [Pol07, Lemma 1.1.2], this
induces a torsion pair(Tφ,Fφ) onAS with

Tφ = AS ∩ PS(φ, φ + 1] and Fφ = AS ∩ PS(φ− 1, φ].

Let Tφ →֒ E ։ Fφ be the induced short exact sequence inAS . Assumeφ < φ′; since
Fφ ⊂ Fφ′ , the surjectionE ։ Fφ factors viaE ։ Fφ′ ։ Fφ. SinceAS is Noetherian, the set
of induced quotients{Fφ : φ ∈ (0, 1]} of E must be finite. In addition, ifFφ

∼= Fφ′ , we must
also haveFφ′′

∼= Fφ for anyφ′′ ∈ (φ, φ′).
Thus, there exist real numbersφ0 = 1 > φ1 > φ2 > · · · > φl > φl+1 = 0 such thatFφ

is constant forφ ∈ (φi+1, φi), but such thatFφi−ǫ 6= Fφi+ǫ. Let us assume for simplicity that
Fφ1+ǫ

∼= E ; the other case is treated similarly by settingF 1 = Fφ1+ǫ, and shifting all other
indices by one. Fori = 1, . . . , l we set

• F i := Fφi−ǫ,
• E i := Ker(E ։ F i), and
• Ai = E i/E i−1.

We haveE i ∈ PS(> φi − ǫ) andE i−1 = τ>φi+ǫ
S E i for all ǫ > 0. Hence the quotientAi

satisfies, for allǫ > 0,

• Ai ∈ PS(> φi − ǫ),
• Ai ∈ PS(≤ φi + ǫ).

The latter impliesAi ∈ PS(≤ φi) by Lemma4.5. By definition, we obtainAi ∈ PS(φ).
Finally, we haveF l ∈ PS(0, 1] ∩ PS(≤ ǫ) for all ǫ > 0. Using Lemma4.5 again, we obtain
F l = 0, and thusE l = E . Thus theE i induce a Harder-Narasimhan filtration as claimed.�

The following lemma is an immediate extension of [AP06, Proposition 3.5.3]:
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Lemma 4.7. Assume thatE ∈ PS(φ) for someφ ∈ R. and thatEs 6= 0 for s ∈ S generic.
Then there exists a dense subsetZ ⊂ S, such thatEs is semistable of phaseφ for all s ∈ Z.

Proof. By [AP06, Proposition 3.5.3], applied to the smooth locus ofS, there exists a dense
subsetZ ⊂ S such thatEs ∈ P((φ− 1, φ]). SinceE ∈ P(> φ− ǫ) for all ǫ > 0, and sincei∗s
is t-right exact, we also haveEs ∈ P(> φ− ǫ) for all ǫ > 0. Considering the HN filtration of
Es, this shows thatEs ∈ P(φ) for all s ∈ Z. �

Proof of Theorem4.3. The statement now follows easily from the above two lemmata:First
of all, under the assumption of openness of stability, the dense subsetZ of Lemma4.7may of
course be taken to be open.

Given anyE ∈ Db(S × Y ), let

(9) 0 = E0 → E1 → · · · → Em = E
be the Harder-Narasimhan filtration with respect to the slicing of Lemma4.6, and letAj be
the HN filtration quotients fitting in the exact triangleEj−1 → Ej → Aj . Let j1, . . . , jl be the
indices for which the generic fiberi∗sA

j does not vanish, and letφi be the phase ofAji . Then
we claim that

(10) 0 = E0 → Ej1 → Ej2 → · · · → Em = E
has the desired property. Indeed, there is an open subsetU such that for alls ∈ U , the fibers
Aji

s are semistable for alli = 1, . . . , l, and such thatAj
s = 0 for all j /∈ {i1, . . . , il}. Then, for

each suchs, the restriction of the sequence of maps (10) via i∗s induces a sequence of maps
that satisfies all properties of a HN filtration. �

5. THE HYPERBOLIC LATTICE ASSOCIATED TO A WALL

Our second main tool will be a rank two hyperbolic lattice associated to any wall. Let
(X,α) be a twisted K3 surface. Fix a primitive vectorv ∈ H∗

alg(X,α,Z) with v
2 > 0, and a

wall W of the chamber decomposition with respect tov.

Proposition 5.1. To each such wall, letHW ⊂ H∗
alg(X,α,Z) be the set of classes

w ∈ HW ⇔ ℑZ(w)

Z(v)
= 0 for all σ = (Z,P) ∈ W.

ThenHW has the following properties:

(a) It is a primitive sublattice of rank two and of signature(1,−1) (with respect to the
restriction of the Mukai form).

(b) Letσ+, σ− be two sufficiently close and generic stability conditions on opposite sides
of the wallW, and consider anyσ+-stable objectE ∈ Mσ+(v). Then any Harder-
Narasimhan filtration factorAi of E with respect toσ− has Mukai vectorv(Ai)
contained inHW .

(c) If σ0 is a generic stability condition on the wallW, the conclusion of the previous
claim also holds for anyσ0-semistable objectE of classv.

(d) Similarly, letE be any object withv(E) ∈ HW , and assume that it isσ0-stable for
a generic stability conditionσ0 ∈ W. Then every Jordan-Ḧolder factors ofE with
respect toσ0 will have Mukai vector contained inHW .

The precise meaning of “sufficiently close” will become apparent in the proof.
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Proof. The first two claims of (a) are evident. To verify the claim on the signature, first note
that by assumption onv, the latticeHW is either hyperbolic or positive (semi-)definite. On
the other hand, consider a stability conditionσ = (Z,A) with Z(v) = −1. Since(ℑZ)2 > 0
by Theorem2.8, sinceHW is contained in the orthogonal complement ofℑZ, and since the
algebraic Mukai lattice has signature(2, ρ(X)), this leaves the hyperbolic case as the only
possibility.

In order to prove the remaining claims, consider anǫ-neighborhoodBǫ(τ) of a generic
stability conditionsτ ∈ W, with 0 < ǫ ≪ 1. LetSv be the set of objectsE with v(E) = v,
and that are semistable for some stability condition inBǫ(τ). Let Uv be the set of classes
u ∈ H∗

alg(X,α,Z) that can appear as Mukai vectors of Jordan-Hölder factors of E ∈ Sv, for
any stability conditioin(Z ′,A′) ∈ Bǫ(τ). As shown in the proof of local finiteness of walls
(see [Bri08, Proposition 9.3] or [BM11, Proposition 3.3]), the setUv is finite; indeed, such a
class would have to satisfy|Z ′(u)| < |Z ′(v)|. Hence, the union of all walls for all classes in
Uv is still locally finite.

To prove claim (b), we may assume thatW is the only wall separatingσ+ andσ−, among
all walls for classes inUv. Let σ0 ∈ W be a generic stability condition in the wall separating
the chambers ofσ+, σ−. It follows that bothE, and eachAi, is σ0-semistable. Since this
argument works for genericσ0, we must havev(Ai) ∈ HW by the definition ofHW .

Claim (c) follows from the same discusstion, and (d) similarly by considering the set of all
walls for the classesUv(E) instead ofUv. �

Our main approach is to characterize which hyperbolic latticesH ⊂ H∗
alg(X,α,Z) corre-

spond to a wall, and to determine the type of wall purely in terms ofH. We start by making
the following definition:

Definition 5.2. LetH ⊂ H∗
alg(X,α,Z) be a primitive rank two hyperbolic sublattice contain-

ing v. A potential wallW associated toH is a connected component of the real codimension
one submanifold of stability conditionsσ = (Z,P) with the condition thatZ(H) is contained
in a line.

Remark 5.3. The statements of Proposition5.1 are still valid whenW is a potential wall as
in the previous definition.

Definition 5.4. Given any hyperbolic latticeH ⊂ H∗
alg(X,α,Z) of rank two containingv, we

will denote byPH ⊂ H ⊗ R the cone generated by integral classesu ∈ H with u
2 ≥ 0 and

(v,u) > 0. We will call PH thepositive coneof H, and a class inPH ∩ H will be called a
positive class.

We note that the condition(v,u) > 0 just picks out one of the two components of the set
of real classes withu2 > 0. Also observe thatPH can be an open or closed cone, depending
on whether the lattice contains integral classesw that are isotropic:w2 = 0.

Proposition 5.5. Let W be a potential wall associated to a hyperbolic rank two sublattice
H ⊂ H∗

alg(X,α,Z). For anyσ = (Z,P) ∈ W, let Cσ ⊂ H ⊗ R be the cone generated by
classesu ∈ H satisfying the two conditions

u
2 ≥ −2 and ℜZ(u)

Z(v)
> 0.

This cone does not depend on the choice ofσ ∈ W, and it containsPH.
If u ∈ Cσ, then there exists a semistable object of classu for everyσ′ ∈ W. If u /∈ Cσ,

then there does not exist a semistable object of classu for genericσ′ ∈ W.
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From here on, we will writeCW instead ofCσ, and call it the cone of effective classes in
H. Given two different wallsW1, W2, the corresponding effective conesCW1 , CW2 will only
differ by spherical classes.

Proof. If u
2 ≥ −2, then by Theorem2.13 there exists aσ-semistable object of classu for

everyσ = (Z,P) ∈ W. HenceZ(u) 6= 0, i.e, we cannot simultaneously haveu ∈ H (which
impliesℑZ(u)

Z(v) = 0) andℜZ(u)
Z(v) = 0. Therefore, the conditionℜZ(u)

Z(v) > 0 is invariant under
deforming a stability condition insideW, andCσ does not depend on the choice ofσ ∈ W.

Now assume for contracdiction thatPH is not contained inCW . Sincev ∈ CW , this is
only possible if there is a real classu ∈ PH with ℜZ(u)

Z(v) = 0; after deformingσ ∈ W slightly,
we may assumeu to be integral. As above, this impliesZ(u) = 0, in contradiction to the
existence of aσ-semistable object of classu.

The statements about existence of semistable objects follow directly from Theorem2.13.
�

Remark 5.6. Note that by construction,CW ⊂ H⊗R is strictly contained in a half-plane. In
particular, there are only finitely many classes inCW ∩v−CW ∩H (in other words, effective
classesu such thatv − u is also effective).

We will use this observation throughout in order to freely make genericity assumptions:
a generic stability conditionσ0 ∈ W will be a stability condition that does not lie on any
additional wall (other thanW) for any of the above-mentioned classes. Similarly, by stability
conditionsσ+, σ− nearbyσ0 we will mean stability conditions that lie in the two chambers
adjacent toσ0 for the wall-and-chamber decompositions with respect to any of the classes in
CW ∩ v −CW ∩H.

The behavior of the potential wallW is completely determined by the latticeH and its
effective coneCW :

Theorem 5.7. LetH ⊂ H∗
alg(X,α,Z) be a primitive hyperbolic rank two sublattice contain-

ing v. LetW ⊂ Stab(X,α) be a potential wall associated toH (see Definition5.2).
The setW is a totally semistable wall if and only if there exists either an isotropic class

w ∈ H with (v,w) = 1, or an effective spherical classs ∈ CW ∩ H with (s,v) < 0. In
addition:

(a) The setW is a wall inducing a divisorial contraction if one of the following three
conditions hold:
(Brill-Noether): there exists a spherical classs ∈ H with (s,v) = 0, or
(Hilbert-Chow): there exists an isotropic classw ∈ H with (w,v) = 1, or
(Li-Gieseker-Uhlenbeck): there exists an isotropic classw ∈ H with (w,v) = 2.

(b) Otherwise, ifv can be written as the sumv = a + b of two positive3 classes, or
if there exists a spherical classs ∈ H with 0 < (s,v) ≤ v

2

2 , thenW is a wall
corresponding to a flopping contraction.

(c) In all other cases,W is either a fake wall (if it is a totally semistable wall), or it is
not a wall.

The Gieseker-Uhlenbeck morphism from the moduli space of Gieseker semistable sheaves
to slope-semistable vector bundle was constructed in [Li93]. Many papers deal with birational
transformations between moduli spaces of twisted Giesekersemistable sheaves, induced by

3In the sense of Definition5.4.
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variations of the polarization. In particular, we refer to [Tha96, DH98] for the general theory
of variation of GIT quotients and [EG95, FQ95, MW97] for the case of sheaves on surfaces.
Theorem5.7can be thought as a generalization and completion of these results in the case of
K3 surfaces.

The proof of the above theorem will be broken into four sections. We will distinguish two
cases, depending on whetherH contains isotropic classes:

Definition 5.8. We say thatW is anisotropicwall if HW contains an isotropic class.

In Section6, we will analyze totally semistable non-isotropic walls, and Section7 will de-
scribe non-isotropic walls corresponding to divisorial contractions. In Section8, we will use a
Fourier-Mukai transform to reduce the treatment of isotropic walls to the well-known behav-
ior of the Li-Gieseker-Uhlenbeck morphism from the Gieseker moduli space to the Uhlenbeck
space, and Section9 will describe which of the remaining cases correspond to flopping walls,
to fake walls, or to no wall at all.

6. TOTALLY SEMISTABLE NON-ISOTROPIC WALLS

In this section, we will analyzetotally semistable walls; while some of our intermediate
results hold in general, we will focus on the case whereH does not contain an isotropic class.
The relevance of this follows from Theorem2.13: in this case, if the dimension of a moduli
spaceMσ(u) is positive, then it is given byu2 + 2.

We will first describe the possible configurations of effective spherical classes inCW , and
of spherical objectsS ∈ P(1) with v(S) ∈ HW .

We start with the following classical argument of Mukai (cfr. [Bri08, Lemma 5.2]). Given
an exact sequence in the heart of a bounded t-structureA

0 → A→ E → B → 0,

we assume thatHom(A,B) = 0.

Lemma 6.1(Mukai). We have an inequality

ext1(E,E) ≥ ext1(A,A) + ext1(B,B).

The following is a well-known consequence of Mukai’s lemma (cfr. [HMS08, Section 2]):

Lemma 6.2. Assume thatS is a semistable rigid object with respect to a given stability con-
dition. Then any Jordan-Ḧolder filtration factor ofS is also spherical.

Proof. LetS be any semistable object withExt1(S, S) = 0. Pick any stable subobjectT ⊂ S
of the same phase. Then there exists a short exact sequence

T̃ →֒ S ։ R

with the following two properties:

(a) The objectT̃ is an iterated extension ofT .
(b) Hom(T,R) = 0.

Indeed, this can easily be constructed inductively: we letR1 = S/T . If Hom(T, S/T ) = 0,
the subobject̃T = T already has the desired properties. Otherwise, any non-zero morphism
T → R1 is necessarily injective; if we letR2 be its quotient, then the kernel ofS ։ R2 is a
self-extension ofT , and we can proceed inductively.
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It follows thatHom(T̃ , R) = 0, and we can apply Lemma6.1to conclude thatExt1(T̃ , T̃ ) =
0. Hence(v(T̃ ),v(T̃ )) < 0, which also implies(v(T ),v(T )) < 0. Thusv(T ) is spherical,
too.

The lemma follows by induction on the length ofS. �

Proposition 6.3. LetW be a potential wall associated to the primitive hyperbolic latticeH,
and letσ0 = (Z0,P0) ∈ W be a generic stability condition withZ0(H) ⊂ R. ThenH andσ0
satisfy one of the following mutually exclusive conditions:

(a) The latticeH does not admit a spherical class.
(b) The latticeH admits, up to sign, a unique spherical class, and there exists a unique

σ0-stable objectS ∈ P0(1) with v(S) ∈ H.
(c) The latticeH admits infinitely many spherical classes, and there exist exactly two

σ0-stable spherical objectsS, T ∈ P0(1) with v(S),v(T ) ∈ H. In this case,H is
not isotropic.

Proof. Given any spherical class,s ∈ HW , then by Theorem2.13, there exists aσ-semistable
objectS with v(S) = s andS ∈ P0(1). If H admits a unique spherical class, then by
Proposition5.1and Lemma6.2, S must be stable.

Hence it remains to consider the case whereH admits two linearly independent spherical
classes. If we consider the Jordan-Hölder filtrations ofσ0-semistable objects of the corre-
sponding class, and apply Proposition5.1 and Lemma6.2, we see that there must be two
σ0-stable objectsS, T whose Mukai vectors are linearly independent.

Now assume that there are three stable spherical objectsS1, S2, S3 ∈ P(1), and letsi =
v(Si). Since they are stable of the same phase, we haveHom(Si, Sj) = 0 for all i 6= j, as
well asExtk(Si, Sj) = 0 for k < 0. Combined with Serre duality, this implies(si, sj) =
ext1(Si, Sj) ≥ 0.

However, a rank two lattice of signature(1,−1) can never contain three spherical classes
s1, s2, s3 with (si, sj) ≥ 0 for i 6= j: We may assume thats1, s2 are linearly independent. Let
m := (s1, s2) ≥ 0; sinceH has signature(1,−1), we havem ≥ 3. If we writes3 = xs1+ys2,
we get the following implications:

(s1, s3) ≥ 0 ⇒ y ≥ 2

m
x

(s2, s3) ≥ 0 ⇒ y ≤ m

2
x

(s3, s3) = −2 ⇒ −2x2 + 2mxy − 2y2 < 0

However, by solving the quadratic equation fory, it is immediate that the term in the last
inequality is positive in the range2

m
x ≤ y ≤ m

2 x (see also Figure1).
Finally, if H admits two linearly independent spherical classs, t, then the group generated

by the associated reflectionsρs, ρt is infinite; the orbit ofs consists of infintely many spherical
classes. Additionally, an isotropic class would be a rational solution of−2x2+2mxy−2y2 =
0, but the discriminantm2 − 4 can never be a square whenm is an integerm ≥ 3. �

Whenever we are in case (c), we will will denote the twoσ0-stable spherical objects by
S, T . We may assume thatS has smaller phase thanT with respect toσ+; conversely,S
has bigger phase thanT with respect toσ−. We will also writes := v(S), t = v(T ), and
m := (s, t) > 2. We identifyR2 with HW ⊗ R by sending the standard basis to(s, t); under
this identification, the ordering of phases inR2 will be consistent with the ordering induced by
σ+. We denote byQ(x, y) = −2x2+2mxy−2y2 the pull-back of the quadratic form induced
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y = r1x

y = r2x

Q(x, y) > 0

Q(x, y) > 0

Q(x, y) < 0

Q(x, y) < 0

S

T

S[1]

T [1]

FIGURE 1. The planeHW , oriented compatibly withσ+

by the Mukai pairing onHW . Let r1 < r2 be the two solutions of−2r2 + 2mr − 2 = 0;
they are both positive and irrational (asm2 − 4 cannot be a square form ≥ 3 integral). The
positive conePH is thus the cone between the two linesy = rix, and the effective coneCW
is the upper right quadrantx, y ≥ 0.

We will first prove that the condition for the existence of totally semistable walls given in
Theorem5.7 is necessary in the case of non-isotropic walls. We start with an easy numerical
observation:

Lemma 6.4. Givenl > 1 positive classesa1, . . . ,al ∈ PH with a
2
i > 0, seta = a1+ · · ·+al.

Then
l∑

i=1

(
a
2
i + 2

)
< a

2.

Proof. Since theai are integral classes, andHW is an even lattice, we havea2i ≥ 2. If

ai 6= aj , thenai,aj span a lattice of signature(1,−1), which gives(ai,aj) >
√

a2ia
2
j ≥ 2.

Hencea2 >
∑l

i=1 a
2
i + 2l(l − 1) ≥ ∑l

i=1 a
2
i + 2l. �

Lemma 6.5. Assume that the potential wallW associated toH satisfies the following condi-
tions:

(a) The wall is non-isotropic.
(b) There does not exist an effective spherical classs ∈ CW with (s,v) < 0.

ThenW cannot be a totally semistable wall.

In other words, there exists aσ0-stable object of classv.

Proof. We will consider two maps from the moduli spaceMσ+(v): On the one hand, by
Theorem2.16, the line bundleℓσ0 onMσ+(v) induces a birational morphism

π+ : Mσ+(v) →M.

The curves contracted byπ+ are exactly curves of S-equivalent objects.
For the second map, first assume for simplicity thatMσ+(v) is a fine moduli space, and letE

be a universal family. Consider the relative Harder-Narasimhan filtration forE with respect to
σ− given by Theorem4.3. Leta1, . . . ,am be the Mukai vectors of the semistable HN filtration
quotients of a generic fiberEm for m ∈ Mσ+(v). On the open subsetU of the Theorem4.3,
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Q(x, y) = (v,v)

s

t

y = 2
m
x

y = m
2
x

v

a

FIGURE 2. a
2 ≤ v

2

the filtration quotientsE i/E i−1 are flat families ofσ−-semistable objects of classai; thus we
get an induced rational map

HN: Mσ+(v) 99K Mσ−
(a1)× · · · ×Mσ−

(am).

Let I ⊂ {1, 2, . . . ,m} be the subset of indicesi with a
2
i > 0, and leta =

∑
i∈I ai.

Our first claim isa2 ≤ v
2, with equality if and only ifa = v, i.e., if there are no classes

with a
2
i < 0: Let us consider case (c) of Proposition6.3; case (b) is simpler, and (a) trivial.

Let vx, vy be the coordinates ofv in R2; the conditions(s,v) ≥ 0 and (t,v) ≥ 0 imply
2
m

≤ vy
vx

≤ m
2 . The intersections of the linesy = 2

m
x and y = m

2 x with the hyperbola
Q(x, y) = v

2 are the points with horizontal and vertical tangent lines, respectively. (Indeed,
the line y = 2

m
x as well as the hyperbola are fixed under the reflectionρs, and similarly

y = m
2 x for the reflectionρt.) Thusv lies in between these two points, where the hyperbola

has negative slope. Ifax, ay are the coordinates ofa, then0 ≤ ax ≤ vx and0 ≤ ay ≤ vy, as
v − a is an effective class inCW . The claim thus follows from Figure2, which shows thata
cannot lie in the interiorQ(x, y) > v

2 of the hyperbola.
Lemma6.4then implies

(11) v
2 + 2 ≥ a

2 + 2 ≥
∑

i∈I

(
a
2
i + 2

)
,

with equality if and only if|I| = 1. By Theorem2.13, part (b), this says that the target of the
rational mapHN has at most the dimension of the source:

(12) dimMσ+(v) ≥
m∑

i=1

dimMσ−
(ai).

However, ifHN(E1) = HN(E2), thenE1, E2 are S-equivalent: indeed, they admit Jordan-
Hölder filtrations that are refinements of their Harder-Narasimhan filtrations with respect to
σ−, which have the same filtration quotients.

It follows that any curve contracted byHN is also contracted byπ+; therefore
m∑

i=1

dimMσ−
(ai) ≥ dimM = dimMσ+(v)

Hence we have equality in each step of the above inequalities, the relative Harder-Narasimhan
filtration is trivial, and the generic fiberEm is σ−-stable.
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In caseMσ+(v) does not admit a universal family, we can constructHN by first passing
to an étale neighborhoodf : U → Mσ+(v) admitting a universal family; the induced rational
map fromU induced by the relative Harder-Narasimhan filtration will then factor viaf . �

We recall some theory of Pell’s equation in the language of spherical reflections of the
hyperbolic latticeH:

Proposition and Definition 6.6. LetGH ⊂ AutH be the group generated by spherical re-
flectionsρs for effective spherical classess ∈ CW . Given a positive classv ∈ PH ∩ H, the
GH-orbit GH.v contains a unique classv0 such that(v0, s) ≥ 0 for all effective spherical
classess ∈ CW .

We callv0 theminimal classof the orbitGH.v.

Note that the notion of minimal class depends on the potential wall W, not just on the lattice
H.

Proof. Again, we only treat the case (c) of Proposition6.3, the other cases being trivial. It
is sufficient to prove that(v0, s) ≥ 0 and(v0, t) ≥ 0. Assume(v, s) < 0. Thenρs(v) =
v − |(v, s)| · s is still in the upper right quadrant, with smallerx-coordinate thanv, and with
the samey-coordinate. Similarly if(v, t) < 0. If we proceed inductively, the procedure has
to terminate, thus reachingv0.

The uniqueness follows from Proposition6.7below. �

Assume additionally thatH admits infinitely many spherical classes, so we are in case (c)
of Proposition6.3. The hyperbolav2 = −2 intersects the upper right quadrantx, y ≥ 0
in two branches, starting ats andt, respectively. Lets0 = s, s−1, s−2, . . . be the integral
spherical classes on the lower branch starting ats, andt1 = t, t2, t3, . . . be those on the upper
branch starting att, see also Figure3. Thesi can be defined recursively bys−1 = ρs(t), and
sk−1 = ρsk(sk+1) for k ≤ −1; similarly for theti.

Proposition 6.7. Given a minimal classv0 of aGH-orbit, definevi, i ∈ Z viavi = ρti(vi−1)
for i > 0, andvi = ρsi+1(vi+1) for i < 0. Then the orbitG.v0 is given by{vi : i ∈ Z},
where the latter are ordered according to their slopes inR2.

Note that these classes may coincide pairwise, in casev0 is orthogonal tos or t.

Proof. The groupGH is the free productZ2 ⋆Z2, generated byρs andρt. It is straightforward
to check that withvi defined as above, we have

v−1 = ρs(v0), v−2 = ρsρt(v0), v−3 = ρsρtρs(v0), . . . ,

and similarlyv1 = ρt(v0) and so on. This list containsg(v0) for all g ∈ Z2 ⋆ Z2. That thevi

are ordered by slopes is best seen by drawing a picture; see also Figure3. �

For i > 0, let T+
i ∈ P0(1) be the uniqueσ+-stable object withv(T+

i ) = ti; similarly for
S+
i with v(S+

i ) = si for i ≤ 0. We also writeT−
i andS−

i for the correspondingσ−-stable
objects.

Proposition 6.8. LetW be a potential wall, and assume there is an effective spherical class
s̃ ∈ CW with (v, s̃) < 0. ThenW is a totally semistable wall.

Additionally, letv0 be the minimal class in the orbitGH.v, and writev = vl as in Propo-
sition 6.7. If φ+(v) > φ+(v0), then

STT+
l
◦STT+

l−1
◦ · · · ◦ STT+

1
(E0)
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Q(x, y) = −2

s0 = s

t1 = t

v1 = ρt(v)

v0
v−1 = ρs(v)

s−1

t2

v−2 = ρs
−1

(v−1)

FIGURE 3. The orbit ofv0

is σ+-stable of classv, for everyσ0-stable objectE0 of classv0.
Simlarly, ifφ+(v) < φ+(v0), then

ST−1
S+
−l+1

◦ST−1
S+
−l+2

◦ · · · ◦ ST−1
S+
0

(E0)

is σ+-stable of classv for everyσ0-stable object of classv0.
The analogous statement holds forσ−.

Note that when we are in case (b) of Proposition6.3, the above sequence of stable spherical
objects will consist of just one object.

Before the proof, we recall the following statement (see [BM11, Lemma 5.9]):

Lemma 6.9. Assume thatA,B are simple objects in an abelian category. IfE is an extension
of the form

A →֒ E ։ B⊕r

withHom(B,E) = 0, then any quotient ofE is of the formB⊕r′ . Similarly, given an extension

A⊕r →֒ E ։ B

withHom(E,A) = 0, then any subobject ofE is of the formA⊕r′ .

Proof. We consider the former case, i.e., an extensionA →֒ E ։ B⊕r; the latter case follows
by dual arguments. LetE ։ N be any quotient ofE. SinceA is a simple object, the
compositionψ : A →֒ E ։ N is either injective, or zero.

If ψ = 0, thenN is a quotient ofB⊕r, and the claim follows. Ifψ is injective, letM
be the kernel ofE ։ N . ThenM ∩ A = 0, and soM is a subobject ofB⊕r. SinceB is
a simple object,M is of the formB⊕r′ for somer′ < r; sinceHom(B,E) = 0, this is a
contradiction. �

Proof of Proposition6.8. Consider the first claim. By Lemma6.2, there is aσ0-stablespher-
ical objectS̃ with (v(S̃),v) < 0. If E is aσ0-stableobject of classv, thenHom(S̃, E) =

Hom(E, S̃) = 0; hence(v(S̃),v) = ext1(S̃, E) ≥ 0, a contradiction.
To prove the construction ofσ+-stable objects, let us assume that we are in the case of

infinitely many spherical classes. Let us also assume thatφ+(v) > φ+(v0), the other case is
analogous; in the notation of Proposition6.7, this meansv = vl for somel > 0. We define
Ei inductively by

Ei = STT+
i
(Ei−1).
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By the compatibility of the spherical twistSTS̃ with the reflectionρ
v(S̃) and Proposition6.7,

we havev(Ei) = vi. Lemma6.9 shows thatE1 is σ+-stable; however, for the following
induction steps, we cannot simply use Lemma6.9 again, as neitherEi nor T+

i are simple
objects inP0(1).

Instead, we will need a slightly stronger induction statement. Using Proposition5.1, in
particular part (b), we can define a torsion pair(Ti,Fi) in A0 := P0(1) as follows: we let
Ti be the extension closure of allσ+-stable objectsF ∈ A0 with φ+(F ) > φ+(ti+1); by
Theorem2.13, Ti is the extension-closureTi = 〈T+

1 , . . . , T
+
i 〉. Then letAi = 〈Fi,Ti[−1]〉

(see Figure4). We can also describeAi+1 inductively as the tilt ofAi at the torsion pair
(T ,F) with T = (T+

i+1)
⊕k andF = (T+

i+1)
⊥.

Induction claim: We haveEi ∈ Fi, and bothEi andT+
i+1 are simple objects ofAi.

By construction of the torsion pair(Ti,Fi), this also shows thatEi is σ+-stable.
The casei = 0 follows by the assumption thatE0 is σ0-stable. To prove the induction step,

we first considerT+
i+1. By stability, we haveT+

i+1 ∈ T ⊥
i = Fi. Using stability again, we

also see that any non-trivial quotient ofT+
i+1 contained inTi, soT+

i+1 is a simple object ofFi.
SinceT+

i+1 is stable of maximal slope inFi, there also cannot be a short exact sequence as in
(13) below. Therefore, Lemma6.10shows thatT+

i+1 is a simple object ofAi.
SinceEi (by induction assumption) is also a simple object inAi, this showsHom(Ei, T

+
i+1) =

Hom(T+
i+1, Ei) = 0. Therefore,RHom(T+

i+1, Ei) = Ext1(T+
i+1, Ei)[−1], andEi+1 =

ST
T+
i+1

(Ei) fits into a short exact sequence

0 → Ei →֒ Ei+1 ։ T+
i+1 ⊗ Ext1(T+

i+1, Ei) → 0.

In particular,Ei+1 is also an object ofAi. Note that

RHom(T+
i+1, Ei+1) = RHom(ST−1

T+
i+1

(T+
i+1),ST

−1
T+
i+1

(Ei+1)) = RHom(T+
i+1[1], Ei)

is concentrated in degree -2; this shows both thatEi+1 ∈ (T+
i+1)

⊥ ⊂ Ai, and that there are no

extensionsEi+1 →֒ F ′
։ T⊕k

i+1. Applying Lemma6.10via the inductive description ofAi+1

as a tilt ofAi, this proves the induction claim. �

Lemma 6.10. Let (T ,F) be a torsion pair in an abelian categoryA, and letF ∈ F be an
object that is simple in the quasi-abelian categoryF , and that admits no non-trivial short
exact sequences

(13) 0 → F →֒ F ′
։ T → 0

withF ′ ∈ F andT ∈ T . ThenF is a simple object in the tilted categoryA♯ = 〈F ,T [−1]〉.

Proof. Consider a short exact sequenceA →֒ F ։ B in A♯. The long exact cohomology
sequence with respect toA is

0 → H0
A(A) →֒ F → F ′

։ H1
A(A) → 0

with H0
A(A) ∈ F , F ′ ∈ F andH1

A(A) ∈ T . SinceF is a simple object inF , we must have
H0

A(A) = 0. Thus we get a short exact sequence as in (13), a contradiction. �



28 AREND BAYER AND EMANUELE MACR̀I

T1

T2

A1
A2

A0

S1

T1

T1[−1]

S0

T2

FIGURE 4. The tilt categoriesA1 andA2

7. DIVISORIAL CONTRACTIONS IN THE NON-ISOTROPIC CASE

In this section we examine Theorem5.7 in the case of divisorial contractions when the
latticeHW does not contain isotropic classes. The goal is to prove the following proposition.

Proposition 7.1. Assume that the potential wallW is non-isotropic. ThenW is a divisorial
contraction if and only if there exists a spherical classs̃ ∈ HW with (s̃,v) = 0. If we choose
s̃ to be effective, then the class of the contracted divisorD is given byD ≡ θ(s̃).

If S̃ is a stable spherical object of classv(S̃) = s̃, thenD can be described as a Brill-
Noether divisor of̃S: it is given either by the conditionHom(S̃, ) 6= 0, or byHom( , S̃) 6=
0.

One can use more general results of Markman in [Mar09] to show that a divisorial contrac-
tion implies the existence of an orthogonal spherical classin the non-isotropic case. We will
instead give a categorical proof in our situation.

We first treat the case in which there exists aσ0-stableobject of classv:

Lemma 7.2. Assume thatH is non-isotropic, and thatW is a potential wall associated to
H. If v is a minimal class of aGH-orbit, and if there is no spherical class̃s ∈ HW with
(s̃,v) = 0, then the set ofσ0-stableobjects inMσ+(v) has complement of codimension at
least two.

In particular,W cannot induce a divisorial contraction.

Proof. The argument is similar to Lemma6.5; an additional ingredient is Namikawa’s and
Wierzba’s characterization of divisorial contractions recalled in Theorem3.6.

For contradiction, assume that there is a divisorD ⊂ Mσ+ of objects that are strictly
semistable with respect toσ0. Let morphismπ+ : Mσ+ → M be the morphism induced by
ℓσ0 ; it is either an isomorphism or a divisorial contraction. Let D ⊂ Mσ+ be an irreducible
divisor of strictlyσ0-semistable objects. The morphismπ+ may are may not be contracted by
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π+; by Theorem3.6, we havedimπ+(D) ≥ dimD − 1 = dimMσ+(v) − 2 = v
2 in either

case.
On the other hand, consider the restriction of the universalfamily E on Mσ+(v) to the

divisor D, and its relative Harder-Narasimhan filtration with respect to σ−. As before, this
induces a rational map

HND : D 99K Mσ−
(a1)× · · · ×Mσ−

(al).

Again, letI ⊂ {1, . . . , l} be the subset of indicesi with a
2
i > 0, anda =

∑
i∈I ai. The proof

based on Figure2 still applies, and showsa2 ≤ v
2.

If I 6= {1, . . . , l}, there exists a classaj appearing in the Harder-Narasimhan filtration of
the formaj = ms̃, s̃2 = −2. Under the assumptions, we now have thestrict inequality
(s̃,v) > 0, from which we obtaina2 ≤ (v − s̃)2 ≤ v

2 − 3.
Otherwise, ifI = {1, . . . , l}, we have|I| > 1, and we can apply Lemma6.4; in either case

we obtain
l∑

i=1

dimMσ−(ai) =
∑

i∈I
(a2i + 2) < v

2 = dimπ+(D).

As before, this is a contradiction to the observation that any curve contracted byHND is also
contracted byπ+. �

The case of totally semistable walls can be reduced to the previous one:

Corollary 7.3. Assume thatH is non-isotropic, and that there does not exist a spherical class
s̃ ∈ H with (s̃,v) = 0. Then a potential wall associated toH cannot induce a divisorial
contraction.

In fact, we will later see that all potential walls associated toH are mapped to the same wall
in the movable cone of the moduli space; thus they have to exhibit idential birational behavior.

Proof. As before, consider the minimal classv0 of the orbitGH.v, in the sense of Definition
6.6. By Lemma7.2, there is an open subsetU ⊂ Mσ+(v0) of objects that areσ0-stablethat
has complement of codimension at least two.

Let Φ be the composition of spherical twists given by Proposition6.8, such thatΦ(E0) is
σ+-stable of classv for every [E0] ∈ U . Observe thatΦ(E0) has a Jordan-Hölder filtration
such thatE0 is one of its filtration factors (the other factors are stablespherical objects).
Therefore, the induced mapΦ∗ : U →Mσ+(v) is injective, and the image does not contain any
curve of S-equivalent objects with respect toσ0. Also,Φ∗(U) has complement of codimension
at least two (see e.g. [GHJ03, Proposition 21.6]). Sinceℓσ0 does not contract any curves in
Φ∗(U), it cannot contract any divisors inMσ+(v). �

The next step is to construct the divisorial contraction when there exists an orthogonal
spherical class. To clarify the logic, we first treat the simpler case of a wall that is not totally
semistable:

Lemma 7.4. AssumeH is non-isotropic,W a potential wall associated toH, and thatv is a
minimal class of aGH-orbit. If there exists a spherical class̃s ∈ H with (s̃,v) = 0, thenW
induces a divisorial contraction.

If we assume that̃s is effective, then the contracted divisorD ⊂ Mσ+(v) has classθ(s̃).
The HN filtration of a generic element[E] ∈ D with respect toσ− is of the form

0 → S̃ →֒ E ։ F → 0 or 0 → F →֒ E ։ S̃ → 0,
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whereS̃ andF areσ0-stable objects of class̃s andv− s̃, respectively.

Proof. As before, we only treat the case whenH admits infinitely many spherical classes. In
that case, we must havẽs = s or s̃ = t; we may assumẽs = s, and the other case will follow
by dual arguments.

We first prove thatv−s is a minimal class in itsGH-orbit by a straightforward computation.
If v2 = 2, then(v− s)2 = 0 in contradiction to the assumption; thereforev

2 ≥ 4. If we write
v = xs + yt, then(v, s) = 0 givesy = 2

m
x. Plugging inv2 ≥ 4 givesx2

(
1− 4

m2

)
≥ 2.

Sincem ≥ 3, we obtain

x2
(
1− 4

m2

)2

> x2
(
1− 4

m2

)
1

2
≥ 1,

and therefore

(t,v − s) = m(x− 1)− 2
2

m
x = mx

(
1− 4

m2

)
−m ≥ 0.

Also, (s,v−s) = 2 > 0, and thereforev−s has positive pairing with every effective spherical
class.

By Lemma6.5, the generic elementF ∈Mσ+(v−s) is alsoσ0-stable. Since(s,v−s) = 2
andHom(F, S) = Hom(S,F ) = 0, there is a family of extensions

0 → S →֒ Ep ։ F → 0

parametrized byp ∈ P1 ∼= P(Ext1(F, S)). By Lemma6.9, they areσ+-stable. Since allEp

are S-equivalent to each other, the contraction morphismπ+ : Mσ+(v) →M associated toW
will contract the image of this rational curve. VaryingF ∈ M st

σ0
(v − s), these span a family

of dimension1 + (v − s)2 + 2 = v
2 + 1; this is a divisor inMσ+(v) contracted byπ+.

Sinceπ+ has relative Picard-rank equal to one, it cannot contract any other component. �

The following lemma treats the general case, for which we will first set up notation. As
before, we letv0 be the minimal class in theGH-orbit of v. By s̃0 we denote the effective
spherical class with(v0, s̃0) = 0; we havẽs0 = t or s̃0 = s. Accordingly, in the list of the
GH-orbit of v given by Proposition6.7, we have eitherv2i = v2i+1, or v2i = v2i−1 for all i,
sincev0 is fixed under the reflectionρs̃0 at s̃0. We choosel such thatv = vl, and such that
the corresponding sequence of reflections sendss̃0 to s̃:

s̃ =

{
ρtl ◦ ρtl−1

◦ · · · ◦ ρt0(s̃0) if l > 0

ρsl ◦ ρsl/1 ◦ · · · ◦ ρs−1(s̃0) if l < 0

Depending on the ordering of the slopesφ+(v), φ+(v0), we let Φ be the composition of
spherical twists appearing in Proposition6.8.

Lemma 7.5. Assume thatH is non-isotropic, andW a corresponding potential wall. If there
is an effective spherical̃s ∈ CW with (v, s̃) = 0, thenW induces a divisorial contraction.

The contracted divisorD has classθ(s̃). The Jordan-Ḧolder filtration of a generic element
E ∈ D is a refinement of a short exact sequence of the form

(14) 0 → S̃ →֒ E ։ F → 0 or 0 → F →֒ E ։ S̃ → 0,

whereF andS̃ areσ+-stable objects of classv − s̃ and s̃, respectively.
In addition, there exists an open subsetU+ ⊂ Mσ+(v0), with complement of codimension

two, such thatΦ(E0) is σ+-stable for everyσ+-stable objectE0 ∈ U .
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Proof. We rely on the construction in the proof of Proposition6.8, and in particular on the
induction claim proved therein.

Let S̃0 be the stable spherical object of classs̃0; we haveS̃0 = S or S̃0 = T . As in the
proof of Lemma7.4, one shows thatv0 − s̃0 is the minimal class in itsGH-orbit.

LetF0 be a genericσ0-stableobject of classv0 − s̃0. Applying Proposition6.8to the class
v − s̃, we see thatF := Φ(F0) is σ+-stable of that class.

Up to duality, we may again assume thatΦ is of the formST+
Tl
◦ · · · ◦ STT+

1
. Inductively,

one shows thatΦ(S) = T+
l+1 andΦ(T ) = Tl[−1]. These are both simple objects of the

categoryAl defined by tilting in the proof of Proposition6.8; therefore,S̃ := Φ(S̃0) is simple
in Al. By the induction claim,F = Φ(F0) is also a simple object in this category. In particular,
Hom(S̃, F ) = Hom(F, S̃) = 0 andext1(S̃, F ) = 2. Applying Lemma6.9 again, and using
the compatibility ofAl with stability, we obtain a stable extension of the form (14).

This gives a divisor contracted byπ+, and we can proceed as in the previous lemma.
LetD0 ⊂ Mσ+(v0) be the contracted divisor for the classv0. The above proof also shows

that for a generic objectE0 ∈ D0 (whose form is given by Lemma7.4), the objectΦ(E0) is
aσ+-stable (contained in the contracted divisorD). Thus we can takeU+ to be the union of
all σ0-stableobjects inMσ+(v0), with the open subset ofD0 of objects of the form given in
Lemma7.4. �

Proof of Proposition7.1. The statements follow from Corollary7.3and Lemma7.5. �

8. ISOTROPIC WALLS AREUHLENBECK WALLS

In this section, we study potential wallsW in the case whereH admits an isotropic class
w ∈ H,w2 = 0. Following an idea of Minamide, Yanagida, and Yoshioka [MYY11b], we
study the wallW via a Fourier-Mukai transform after whichw becomes the class of a point.
Thenσ+ corresponds to Gieseker-stability and, as proven in [Lo12], the wall corresponds to
the contraction to the Uhlenbeck compactification, as constructed by Jun Li in [Li93].

Parts of this section are well-known. In particular, [Yos99, Proposition 0.5] deals with the
existence of stable locally-free sheaves. For other general results, see [Yos01].

The Uhlenbeck compactification. We start with the following observation:

Lemma 8.1. Assume that there exists an isotropic class inH. Then there are two effective,
primitive, isotropic classesw0 andw1 in H, such that, for a generic stability conditionσ0 ∈
W, we have

(a) Mσ0(w0) =M st
σ0
(w0), and

(b) eitherMσ0(w1) = M st
σ0
(w1), or there exists aσ0-stable spherical objectS, with

Mukai vectors, such that(s,w1) < 0 andW is a totally semistable wall forw1.

Any positive classv′ ∈ PH satisfies(v′,wi) ≥ 0 for i = 1, 2.

Proof. Let w̃ ∈ H be primitive isotropic class; up to replacing̃w by −w̃, we may assume it
to be effective. We completẽw to a basis{ṽ, w̃} of HQ. Then, for all(a, b) ∈ Q, we have

(aṽ + bw̃)2 = a ·
(
aṽ2 + b(ṽ, w̃)

)
.

This shows the existence of a second integral isotropic class. If we choose it to be effecitve,
then the positive cone, generated byPH, is exactly the coneR≥0 ·w0 + R≥0 ·w1; from this,
the claim(v′,wi) ≥ 0 follows easily.
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By Theorem2.13, we haveMσ0(w̃) 6= ∅. If W does not coincide with a wall for̃w, then
we can takew0 = w̃, and claim (a) will be satisfied.

Otherwise, letσ ∈ Stab†(X,α) be a generic stability condition nearbyW; by [BM12,
Lemma 6.2], we haveMσ(w̃) =M st

σ (w̃) 6= ∅.
Up to applying a Fourier-Mukai equivalence, we may assume that w̃ = (0, 0, 1) is the

Mukai vector of a point on a twisted K3 surface; then we can apply the classification of walls
for isotropic classes in [Bri08, Theorem 12.1], extended to twisted surfaces in [HMS08]. If
W is a totally semistable wall for̃w, then we are in cases(A+) and(A−) of [Bri08, Theorem
12.1]. Hence, there exists a sphericalσ0-stable twisted vector bundleS such thatS or S[2]
is a JH factor for the skyscraper sheafk(x), for anyx ∈ Mσ(w̃). Moreover, the other non-
isomorphic JH factor is eitherSTS(k(x)), or ST−1(k(x)). In both cases, the Mukai vector
w0 of this last JH factor is primitive and isotropic, andW is not a wall forw0.

Finally, if W is a wall forw̃, but not a totally semistable wall, it must be a wall of type(Ck).
However, the rank two lattice corresponding to a wall of type(Ck) is negative semi-definite;
on the other hand, by Proposition5.1, claim (d), it must coincide withH, which has signature
(1,−1); this is a contradiction. �

Let w0,w1 ∈ CW be the effective, primitive, isotropic classes given by theabove lemma,
and letY :=Mσ0(w0). ThenY is a K3 surface and, by [Muk87a, Căl02, Yos06, HS06], there
exist a classα′ ∈ Br(Y ) and a Fourier-Mukai transform

Φ: Db(X,α)
∼−→ Db(Y, α′)

such thatΦ(w0) = (0, 0, 1). By construction, skyscraper sheaves of points onY areΦ∗(σ0)-
stable. By Bridgeland’s Theorem2.7 (generalized to twisted K3 surfaces in [HMS08]), there
exist divisor classesω, β ∈ NS(Y )Q, with ω ample, such that up to thẽGL2-action,Φ∗(σ0)
is given byσω,β. In particular, the categoryPω,β(1) is the extension-closure of skyscraper
sheaves of points, and the shiftsF [1] of µω-stable torsion-free sheavesF with slopeµω,β(F ) =
ω · β. Sinceσ0 by assumption does not lie on any other wall with respect tov, the divisorω is
generic with respect toΦ∗(v).

By abuse of notation, we will from now on write(X,α) instead of(Y, α′), v instead of
Φ∗(v), andσ0 instead ofσω,β. Let σ+ = σω,β−ǫ andσ− = σω,β+ǫ; hereǫ is a sufficiently
small positive multiple ofω.

Proposition 8.2([Lo12, LQ11]). An object of classv is σ+-stable if and only if it is the shift
F [1] of a β-twisted Gieseker stable sheafF on (X,α); the shift [1] induces the following
identification of moduli spaces:

Mσ+(v) =Mω,β(−v).

Moreover, the contraction morphismπ+ induced via Theorem2.16for genericσ0 ∈ W is the
Li-Gieseker-Uhlenbeck morphism to the Uhlenbeck compactification.

Finally, an objectF of classv is σ−-stable if and only if it is the shiftF∨[2] of the derived
dual of a(−β)-twisted Gieseker stable sheaf on(X,−α).
Proof. The identification ofMσ+(v) with the Gieseker-moduli space is well-known, and fol-
lows with the same arguments as in [Bri08, Proposition 14.2]. The identification ofπ+ with
the morphism to the Uhlenbeck space follows from the combination of [Lo12, Theorem 3.1]
with Theorem2.16.

The claim aboutF∨[2] beingσ−-stable follows by combining Proposition2.10 with the
previous statements (see also see [MYY11a, Proposition 2.2.7] in the caseα = 0). �
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In other words, the coarse moduli spaceMσ0(v) is isomorphic to the Uhlenbeck compact-
ification ([Li93, Yos06]) of the moduli space of slope-stable vector bundles on(X,α). Given
a (twisted) Gieseker-stable sheafF ∈ Mω,β(−v), theσ+-stable objectF [1] becomes strictly
semistable with respect toσ0 if and only if F is not locally free, or ifF is not slope-stable.

In particular, when the rank of−v equals one, then the contraction morphismπ+ is the
Hilbert-Chow morphismHilbn(X) → Symn(X); see also [BM12, Example 9.1].

Totally semistable isotropic walls. The goal of this section is to estimate the locus inMσ+(v) =
Mω(−v) of sheaves which are neither slope-semistable nor locally-free. We start with the ex-
istence of a unique spherical stable object in the case the wall is totally semistable:

Lemma 8.3. Assume thatW is a totally semistable wall forv.

(a) There exists a unique sphericalσ0-stable objectS ∈ Pσ0(1).
(b) LetE ∈ Mσ+(v) be a generic object. Then its HN filtration with respect toσ− has

length2 and takes the form

(15) S⊕a → E → F, or F → E → S⊕a,

with a ∈ Z>0. Theσ−-semistable objectF is generic inMσ−
(v′), for v′ := v(F ),

anddimMσ−
(v′) = dimMσ+(v) = v

2 + 2.

The idea of the proof is very similar to the one in Lemma6.5. The only difference is that we
cannot use a completely numerical criterion like Lemma6.4and we will replace it by Mukai’s
Lemma6.1.

Proof of Lemma8.3. We first prove (a). We consider again the two maps

π+ : Mσ+(v) →M,

HN: Mσ+(v) 99K Mσ−
(a1)× · · · ×Mσ−

(am).

The first one is induced byℓσ0 and the second by the existence of relative HN filtrations. By
[HL10, Section 4.5], we have, for alli = 1, . . . ,m and for allAi ∈Mσ−

(ai),

dimMσ−
(a1) ≤ ext1(Ai, Ai).

Hence, by Mukai’s Lemma6.1, we deduce

(16) dimMσ+(v) ≥
m∑

i=1

dimMσ−
(ai).

Equation (16) is the analogue of (12) in the non-isotropic case. Since any curve contracted by
HN is also contracted byπ+, it follows that

m∑

i=1

dimMσ−
(ai) ≥ dimM = dimMσ+(v).

Therefore equality holds, andHN is a dominant map.
This shows that the projections

Mσ+ 99KMσ−
(ai)

are dominant. By Theorem3.8,Mσ−
(ai) has symplectic singularities. Hence, we deduce that

eitherMσ−
(ai) is a point, ordimMσ−

(ai) = dimMσ+(v) = v
2 + 2. Sincem ≥ 2, by

Lemma6.2this shows the existence of a sphericalσ0-stable object inPσ0(1). By Proposition
6.3, there can only be one such spherical object.
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To prove (b), we first observe that by uniqueness (and by Lemma6.2 again), allσ−-
spherical objects appearing in a HN filtration of a generic elementE ∈ Mσ+(v) must be
σ0-stable as well. As a consequence, the length of a HN filtration of E with respect toσ−
must be2 and have the form (15). Since the mapsMσ+ 99K Mσ−

(ai) are dominant, the
σ−-semistable objectF is generic. �

We can now prove the first implication for the characterization of totally semistable walls
in the isotropic case. We lets := v(S), whereS is the uniqueσ0-stable object inPσ0(1).

Proposition 8.4. LetW be a totally semistable wall forv. Then either there exist an isotropic
vectorw with (w,v) = 1, or the effective spherical classs satisfies(s,v) < 0.

Proof. We continue to use the notation of Lemma8.3. In particular, considerv′ = v − as
with a > 0.

If (v′)2 > 0, then by Lemma8.3 and Theorem2.13(b), we have(v′)2 = v
2. Since

v
′ = v − as, a > 0, this implies(s,v) < 0.
So we may assumev′2 = 0. Thenv2 = 0+2a(v′, s)−2a2, and it follows that(v′, s) > 0.

In the notation of Lemma8.1, this means thatv′ is a positive multiple ofw0, which we can
take to be the class of a point:v′ = cw0 = c(0, 0, 1).

Then the coarse moduli spaceMσ0(v
′) is the symmetric productSymcX; if we definen

by v
2 = 2n− 2, then the equality of dimensions in Lemma8.3becomesc = n. Therefore

2n− 2 = v
2 = (as+ nw0)

2 = −2a2 + 2an(s,w0)

or, equivalently,

(17) a
(
n(s,w0)− a

)
= n− 1.

Recall that(s,w0) > 0; by the geometric-arithmetric mean inequality, this implies(s,w0) =
1. (Concretely, this means the spherical objectS is the shift of a line bundle.)

In this case, solving (17) for a gives the two solutionsa = 1 anda = n− 1. In the former
case,(v,w0) = 1. In the latter case, observe thatw1 = w0 + s, and(v,w1) = 1 follows
directly. �

The converse statement follows from Proposition6.8above, and Lemma8.5below.

Lemma 8.5. Let W be a potential wall. If there exists an isotropic classw ∈ HW with
(w,v) = 1, thenW is a totally semistable wall.

Proof. Note that by Lemma8.1, the primitive classw is automatically effective. Letσ0 ∈ W
be a generic stability condition. IfM st

σ0
(w) 6= ∅, then we can assumew = (0, 0, 1). In

this case−v has rank one,Mσ+(v) is the Hilbert scheme, andW is the Hilbert-Chow wall
discussed in [BM12, Example 9.1]; in particular, it is totally semistable.

Otherwise,M st
σ0
(w) = ∅; hence, in the notation of Lemma8.1, we are in the casew = w1,

and there exists aσ0-stable spherical objectS, with Mukai vectors, such that(s,w1) < 0.
Writew1 = w0 + rs, wherer = (s,w0) ∈ Z>0. Then

1 = (v,w1) = (v,w0) + r(v, s).

By Lemma8.1, (v,w0) is strictly positive, and so(v, s) ≤ 0. If the inequality is strict,
Proposition6.8applies. Otherwise,(v, s) = 0 and(v,w1) = (v,w0) = 1; thus we are again
in the case of the Hilbert-Chow wall, andW is a totally semistable wall forv. �



MMP FOR MODULI OF SHEAVES ON K3S VIA WALL-CROSSING 35

Divisorial contractions. We now deal with divisorial contractions for isotropic walls. The
case of a flopping wall, a fake wall, and no wall will be examined in Section9.

Proposition 8.6. LetW be a wall inducing a divisorial contraction. Assume that(v,w) 6=
1, 2, for all isotropic vectorsw ∈ H. Then there exists an effective spherical classs ∈ H with
(s,v) = 0.

Proof. The proof is similar to the one of Lemma7.2: in particular, we are going to use Theo-
rem3.6. LetD ⊂ Mσ+(v) be an irreducible divisor contracted byπ+ : Mσ+(v) → M . We
know thatdimπ+(D) = v

2. Consider the rational map

HND : D 99KMσ−
(a1)× · · · ×Mσ−

(al)

induced by the relative HN filtration with respect toσ−. We letI ⊂ {1, . . . , l} be the subset
of indicesi with a

2
i > 0, anda =

∑
i∈I ai.

Step 1.There exists an effective spherical classs ∈ H.
Indeed, assume for a contradiction that it does not exist. Then we can writev = n0w0 +

n1w1 + a, with (w0,w1) > 0 and(v,wi) ≥ 3, for i = 0, 1. We have

a
2 = (v − n0w0 − n1w1)

2 = v
2 − 2n0(v,w0)− 2n1(v,w1) + 2n0n1(w0,w1)

= v
2 − n0

(
2(v,w0)− (n1w1,w0)

)
− n1

(
2(v,w1)− (n0w0,w1)

)
.

But ( ,wi) is positive on effective classes, fori = 0, 1. Hence,(v,w0) > (n1w1,w0) and
(v,w1) > (n0w0,w1). Therefore,

a
2 ≤ v

2 − n0((v,w0) + 1)− n1((v,w1) + 1) ≤ v
2 − 4n0 − 4n1.

So the dimension ofMσ−
(a1)× · · · ×Mσ−

(al) is bounded above by

a
2 + 2 + 2n0 + 2n1 ≤ v

2 − 2n0 − 2n1 < v
2,

a contradiction.

Step 2.We have(s,v) ≤ 0.
Indeed, assume for a contradiction that(s,v) > 0. Thenw1 = ρs(w0) and we can write

v = as+ bw0 + a. We have, as before,

a
2 = (v − as− bw0)

2 = v
2 − 2a(v, s) − 2a2 − 2b(v,w0) + 2ab(s,w0)

= v
2 − 2a(v, s) − 2a2 − 2b((v,w0)− (as,w0))

≤ v
2 − 2a(v, s) − 2a2 − 2b.

Hence, the dimension ofMσ−
(a1)× · · · ×Mσ−

(al) is bounded above by

a
2 + 2 + 2b ≤ v

2 − 2a(v, s) − 2a2 + 2 < v
2,

a contradiction.

Step 3.We have(s,v) = 0.
Indeed, assume for a contradiction that(s,v) < 0. By Proposition6.8, W is a totally

semistable wall forv. We considerv′ = ρs(v) as in Lemma8.3. The wallW induces a
divisorial contraction forv if and only if it induces one forv′. But, since(v,w) 6= 1, 2, for
all w isotropic, then(v′,w) 6= 1, 2 as well. Moreover,(s,v′) > 0. This is a contradiction, by
Step 2. �

The converse of Proposition8.6 is a consequence of the following three lemmata:
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Lemma 8.7. Let W be a potential wall. Assume that(v,w0) = 2. ThenW induces a
divisorial contraction.

Proof. By identifyingMσ+(v) withMω,β(−v), this follows if there is a divisor ofω-Gieseker
stable sheaves which are torsion-free but not locally-free. We can describe explicitly a con-
tracted divisor ofσ0-semistable objects as follows. Since(v,w0) = 2, we can assume thatv
has the form−(2,D, s), withD an integral divisor which is either primitive orD = 0. We can
consider the vectorv′ = −(2,D, s+1). By assumption,(v′)2 ≥ −2, and soMω,β(−v

′) 6= ∅
by Theorem2.13. Given anyω-Gieseker stable sheafF with vectorv′ and a pointx ∈ X, the
surjectionsF ։ k(x) induce extensions

k(x) → E[1] → F [1] → k(x)[1]

of objects inMσ+(v) that areS-equivalent wiht respect toσ0. Dimension counting shows that
they sweep out a divisor. �

Lemma 8.8. LetW be a potential wall. Assume that there exists an effective spherical class
s ∈ H such that(v, s) = 0. ThenW induces a divisorial contraction.

Proof. LetS ∈Mσ0(s) be the uniqueσ0-stable spherical object with Mukai vectors. Consider
the vectora = v − s. Then we have

a
2 = (v − s)2 = v

2 − 2

(a, s) = −s
2 = 2.

If v2 > 2, thena2 > 0. Sincew1 = bs +w0, with b > 0, we have(w1,a) > (w0,a). If
(w0,a) ≥ 2, thenW is not a totally semistable wall fora. Hence, givenA ∈ Mσ0(a), all the
extensions

S → E → A

give a divisorD ⊂ Mσ+(v), which is aP1-fibration overM st
σ0
(a) and which gets contracted

by crossing the wallW. If (w0,a) = 1, then also(w0, s) = 1. Hence,−v has rank2. Then
W induces a divisorial contraction by Lemma8.7.

Finally, assume thatv2 = 2. Thena is an isotropic vector with(a,v) = (a, s) = 2. But this
implies that(w0,v) = 1, 2. The case(w0,v) = 2 is again Lemma8.7; and if (w0,v) = 1,
then−v has rank1, and we are in the case of the Hilbert-Chow wall. �

Lemma 8.9. LetW be a potential wall. If there exists an isotropic classw such that(v,w) ∈
{1, 2}, thenW induces a divisorial contraction.

Proof. By Lemma8.1, the classw is automatically effective. By Lemma8.7, the only remain-
ing case isw = w1, with w1 = as + w0 anda > 0. By Lemma8.8, we can assume that
(s,v) 6= 0.

If (s,v) > 0, then
(w1,v) = a(s,v) + (w0,v) ∈ {1, 2}.

Since(w0,v) > 0 anda > 0, this is possible only if(w0,v) = 1, which corresponds to the
Hilbert-Chow contraction.

Hence, we can assume(s,v) < 0. By Proposition6.8, W is a totally semistable wall for
v, andW induces a divisorial contraction with respect tov if and only if it induces one with
respect tov′ = ρs(v). But then(v′,w0) = (v,w1) ∈ {1, 2}. Again, we can use Lemma8.7
to finish the proof. �
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9. FLOPPING WALLS

This section deals with the remaining case of a potential wall W: assuming thatW does
not correspond to a divisorial contraction, we describe in which cases it is a flopping wall, a
fake wall, or not a wall. This is the content of Propositions9.1and9.4.

Proposition 9.1. Assume thatW does not induce a divisorial contraction. If either

(a) v can be written as the sumv = a1 + a2 of two positive classesa1,a2 ∈ PH ∩H, or
(b) there exists a spherical classs̃ ∈ W with 0 < (s̃,v) ≤ v

2

2 ,

thenW induces a small contraction.

Lemma 9.2. LetM be a lattice of rank two, andC ⊂M⊗R2 be a convex cone not containing
a line. If a primitive lattice elementv ∈ M ∩ C can be written as the sumv = a + b of
two classes ina,b ∈ M ∩ C, then it can be written as a sumv = a

′ + b
′ of two classes

a
′,b′ ∈ m∩C in such a way that the parallelogram with vertices0,a′,v,b′ does not contain

any other lattice point besides its vertices.

Proof. If the parallelogram0,a,v,b contains an additional lattice pointa′, we may replacea
by a

′ andb by v − a
′. This procedure terminates. �

Lemma 9.3. Let a,b,v ∈ H ∩ CW be effective classes withv = a + b. Assume that the
following conditions are satisfied:

• The phases ofa,b satisfyφ+(a) < φ+(b).
• The objectsA,B areσ+-stable withv(A) = a,v(B) = b.
• The parallegram inH ⊗ R with vertices0,a,v,b does not contain any other lattice

point.
• The extensionA →֒ E ։ B satisfiesHom(B,E) = 0.

ThenE is σ+-stable.

Proof. Let ai be the Mukai vector of a Harder-Narashimhan filtration factor of E. By Propo-
sition 5.1 part (c) and Remark5.3, we haveai ∈ H. We haveE ∈ P+([φ

+(a), φ+(b)]),
and henceai is contained in the cone generated bya,b. Since the same holds forv − ai =∑

j 6=i aj, ai is in fact contained in the parallelogram with vertices0,a,v,b. Since it is also a
lattice point, the assumption on the parallelogram impliesai ∈ {a,b,v}.

Assume thatE is not σ+-stable, and letA1 ⊂ E be the first HN filtration factor. Since
φ+(a1) > φ+(v), we must havea1 = b. By the stability ofA,B we haveHom(A1, A) = 0,
andHom(A1, B) = 0 unlessA1

∼= B. Either of these is a contradiction. �

Proof of Proposition9.1. We first consider case (a), sov = a1 + a2 with a1,a2 ∈ PH. Using
Lemma9.2, we may assume that the parallelogram with vertices0,a1,v,a2 does not contain
an interior lattice point. In particular,a1,a2 are primitive. We may also assume thatφ+(a1) <
φ+(a2). By the signature ofH (see the proof of Lemma6.4), we have(a1,a2) > 2. By
Theorem2.13, there existσ+-stable objectsAi of classv(Ai) = ai. The inequality for the
Mukai pairing impliesext1(A2, A1) > 2. By Lemma9.3, any extension

0 → A1 →֒ E ։ A2 → 0

of A2 by A1 is σ+-stable of classv. As all these extensions are S-equivalent to each other
with respect toσ0, we obtain a projective space of dimension at least two that gets contracted
by π+.
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Now consider case (b). First assume that̃s is an effective class. Note that(v − s̃)2 ≥ −2.
Consider the paralleogram with vertices0, s̃,v,v − s̃. If it contains additional lattice pointa,
then a simple computation showsa2 > −2, i.e.,a2 ≥ 0; thusv can be written as the sum of
positive classes, and the claim follows from the previous paragraph. Otherwise, observe that
(s̃,v− s̃) = (s̃,v)+2 > 2. If S̃ is theσ+-stable object of class̃s, andF anyσ+-stable object
of classv − s̃, then againext1(S̃, F ) = ext1(F, S̃) > 2. Thus, with the same arguments we
obtain a family ofσ+-stable objects parametrized by a projective space that gets contracted by
π+.

We are left with the case wherẽs is not effective. Set̃t = −s̃, which is an effective
class. With the same reasoning as above, we may assume that the parallelogram with vertices
0, t̃,v,v − t̃ contains no additional lattice points. Setv

′ = ρ
t̃
(v) − t̃ = v −

(
(s̃,v) + 1

)
t̃.

We havev′2 ≥ −2 and(t̃,v′) = (t̃,v) + 2 > 2. The lattice points in the parallelogram with
vertices0,

(
(t̃,v) + 1

)
t̃,v,v′ are given bykṽ andv′ + kṽ for k ∈ Z, 0 ≤ k ≤ (t̃,v) + 1

(otherwise, already the parallelogram with vertices0, t̃,v,v − t̃ would contain additional
lattice points).

Let T̃ andF beσ+-stable objects of class̃t andv′, respectively. Let us assumeφ+(t̃) >
φ+(v), the other case being analogous. Any subspaceV ⊂ Ext1(T̃ , F ) of dimension(t̃,v)+
1 defines an extension

0 → F →֒ E ։ T̃ ⊗V → 0

such thatE is of classv(E) = v, and satisfiesHom(T̃ , E) = 0. If E were notσ+-stable, then
the class of the maximal destabilizing subobjectA would have to be a lattice point in the par-
allelogram with vertices0,

(
(t̃,v)+1

)
t̃,v,v′; therefore,v(A) = kt̃. The onlyσ+-semistable

object of this class is̃T⊕k, and we get a contradiction. Thus, we have constructed a family
of σ+-stable objects of classv parametrized by the GrassmannianGr((t̃,v) + 1, ext1(T̃ , F ))
that become S-equivalent with respect toσ0. �

It remains to prove the converse of Proposition9.1:

Proposition 9.4. Assume thatW does not induce a divisorial contraction. Assume thatv

can’t be written as the sum of two positive classes inPH, and that there is no spherical class
s ∈ H with 0 < (s,v) ≤ v

2

2 . ThenW is either a fake wall, or not a wall.

Proof. First consider the case wherev = v0 is the minimal class in its orbitGH.v. We will
prove that everyσ+-stable objectE of classv0 is alsoσ0-stable. Assume otherwise, thatE is
σ−-unstable. Leta1, . . . ,al be the Mukai vectors of the HN filtration factors ofE with respect
to σ−. If all classesai are positive,ai ∈ PH, then we have an immediate contradiction to the
assumptions.

Otherwise,E must have a spherical destabilizing subobject, or a spherical destabilizing
quotient. Let̃s be the class of this spherical object. If there is only oneσ0-stable spherical

object, then it is easy to see thatv0 − s̃ is in the positive cone; therefore,(s̃,v0) <
v
2
0
2 in

contradiction to our assumption.
If there are twoσ0-stable spherical objects of classess, t, consider the two vectorsv0 − s

andv0 − t. The assumptions imply(v0 − s)2 < −2 and(v0 − t)2 < −2; on the other hand,
v − s̃ is effective; using Lemma6.2, this implies thatv0 − s or v0 − t must be effective. We
claim that this leads to a simple numerical contradiction. Indeed,(v0 − t)2 < −2 constrains
v0 to lie below a concave down hyperbola, and(v0 − s)2 < −2 to lie above a concave up
hyperbola; the two hyperbolas intersect at the points0 and s + t. Therefore, if we write
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v
2 = v

2
0

(v − t)2 = −2

(v − s)2 = −2

v0

S1

S2

FIGURE 5. The three hyperbolas in the proof of Proposition9.4

v0 = xs+ yt, we havex, y < 1. Thus, neitherv0 − s norv0 − t can be effective (see Figure
5).

In the case wherev is not minimal,v 6= v0, let Φ be the sequence of spherical twists
given by Proposition6.8. Since the assumptions of our proposition are invariant under the
GH-action, they are also satisfied byv0. By the previous case, we know that everyσ+-
stable objectsE0 of classv0 is alsoσ0-stable. ThusΦ induces a morphismΦ∗ : Mσ+(v0) →
Mσ+(v); sinceΦ∗ is injective and the two spaces are smooth projective varieties of the same
dimension, it is an isomorphism. The S-equivalence class ofΦ(E0) is determined by that
of E0; since S-equivalence is a trivial equivalence relation onMσ+(v0), the same holds for
Mσ+(v), and thusπ+ is an isomorphism. �

Proposition9.4finishes the proof of Theorem5.7.

10. MAIN THEOREMS

We will first complete the proof of Theorem1.1.

Proof of Theorem1.1, part (b). We consider a wallW with nearby stability conditionsσ±,
and σ0 ∈ W. SinceMσ±

areK-trivial varieties, it is sufficient to find an open subset
U ⊂ Mσ±

(v) with complement of codimension two, and an (anti-)autoequivalenceΦW of
Db(X,α), such thatΦW(E) is σ−-stable for allE ∈ U .

We will distinguish cases according to Theorem5.7. First consider the case whenW corre-
sponds to a flopping contraction, or whenW is a fake wall. IfW does not admit an effective
spherical classs ∈ HW with (s,v) < 0 then we can chooseU to be the open subset ofσ0-
stableobjects; its complement has codimension two, and there is nothing to prove. Otherwise,
there exists a spherical object destabilizing every objectin Mσ+(v). Let v0 ∈ HW be the
minimal class of theGH-orbit of v, in the sense of Definition6.6. The subsetU of σ0-stable
objects inMσ0(v0) has complement of codimension two. Then the sequence of spherical
twists of Proposition6.8, applied forσ+ andσ−, identifiesU with subsets ofMσ+(v) and
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Mσ−
(v) via derived equivalencesΦ+,Φ−; then the compositionΦ− ◦ (Φ+)

−1 has the desired
property.

Next assume thatW induces a divisorial contraction. We have three cases to consider:

Brill-Noether: Again, we first assume that there is no effective spherical classs with (s,v) <
0. The contracted divisor is described in Proposition7.1, and the Harder-Narasimhan fil-
tration of the destabilized objects in Lemma7.4. We may assume that we are in the case
where the Brill-Noether divisor inMσ+(v) is described byHom(S̃, ) 6= 0. Now consider
the spherical twistSTS̃ at S̃, applied to objectsE ∈ Mσ+(v). Note that byσ+-stability,
we haveExt2(S̃, E) = Hom(E, S̃)∨ = 0 for any suchE; since(v(S̃),v(E)) = 0, it
follows thathom(S̃, E) = ext1(S̃, E).

If E does not lie on the Brill-Noether divisor, thenRHom(S̃, E) = 0, and soSTS̃(E) =
E. Also, for generic suchE (away from a codimension two subset), the objectE is also
σ−-stable.

If E is a generic element of the Brill-Noether divisor, thenHom(S̃, E) ∼= C ∼= Ext1(S̃, E),
and hence we have an exact triangle

S̃ ⊕ S̃[−1] → E → STS̃(E).

Its long exact cohomology sequence with respect to the t-structure ofσ0 induces two short
exact sequences

S̃ →֒ E ։ F and F →֒ STS̃(E) ։ S̃.

By Lemma7.5, the former is the HN filtration ofE with respec toσ−; the latter is the dual
extension, which is aσ−-stable object by [BM12, Lemma 5.9].

Thus, in both cases,STS̃(E) is σ−-stable, proving the claim.
If instead there is an effective spherical classs with (s,v) < 0, we reduce to the previous

case, similarly to the situation of flopping contractions: Let v0 again denote the minimal
class in the orbitGH.v; note thatW also induces a divisorial contraction of Brill-Noether
type forv0. In this case, Lemma7.5states that the sequenceΦ of spherical twists identifies
an open subsetU+ ⊂ Mσ+(v0) (with complement of codimension two) with an open
subset ofMσ+(v); similarly for U− ⊂ Mσ−

(v0). Combined with the single spherical
twist identifying a common open subset ofMσ±

(v0), this implies the claim.
Hilbert-Chow: As shown in Section8, we may assume that shift by one identifiesMσ+(v)

with the Gieseker-moduli spaceMω(−v) of stable sheaves of rank one on a twisted K3
surface(Y, α′). After tensoring with a line bundle, we may assume that objects inMσ+(v)
are exactly the shiftsIZ [1] of ideal sheaves of 0-dimensional subschemesZ ⊂ Y .

In the setting of Proposition8.2, we haveβ = 0. Since there are line bundles on(Y, α′),
the Brauer group elementα′ is trivial. By the last statement of the same Proposition, the
moduli spaceMσ−

(v) parametrizes the shifts of derived duals ideal sheaf. Thus there is
a natural isomorphismMσ−

(v) ∼= Mσ+(v) induced by the derived anti-autoequivalence
( )∨[2].

Li-Gieseker-Uhlenbeck: We will argue along similar lines as in the previous case; unfortu-
nately, the details are more involved. The first difference is that we can’t assumeβ = 0.
Instead, first observe thatMσ+(v) = Mω,β(−v) is parametrizingβ-twisted Gieseker-
stable sheavesF of rank 2 = (v,w), and of slopeµω(F ) = ω.β. If we assumeω to
be generic, then Gieseker-stability is independent of the choice of β; we can consider
Mσ+(v) =Mω(−v) to be the moduli space of shiftsF [1] of ω-Gieseker-stable sheavesF .
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Since(Y, α′) admits rank two vector bundles, the order ofα′ in the Brauer group is
one or two; in both cases, we can identify(Y, α′) with (Y,−α′), and thus the derived dual
E 7→ E∨ defines an anti-autoequivalence ofDb(Y, α′).

Write −v as−v = (2, c, d), and letL be the unique line bundle withc1(L) = c. From
the previous discussion it follows thatΦ( ) = ( )∨ ⊗ L[2] is the desired functor:

Indeed, any object inMσ+(v) is of the formF [1] for a ω-Gieseker stable sheafF of
classv. ThenΦ(F [1]) = F∨ ⊗ L[1] the derived dual of a Gieseker-stable sheaf, and has
classv. By Proposition8.2, this is an object ofMσ−

(v).

�

Consider two adjacent chamberC+, C− separated by a wallW; as always, we pick stability
conditionsσ± ∈ C±, and a stability conditionσ0 ∈ W. By the identification of Néron-Severi
groups induced by Theorem1.1, we can think of the corresponding mapsℓ± of equation (5)
as maps

ℓ± : C± → NS(Mσ+(v)).

They can be written as the following composition of maps

Stab(X,α)
Z−→ H∗

alg(X,α,Z) ⊗ C
I−→ v

⊥ θ
C±−−→ NS(Mσ+(v))

whereZ is the map defined in Theorem2.8, I is given byI(ΩZ) = ℑ ΩZ
−(ΩZ ,v) , and whereθC±

are the Mukai morphisms, as reviewed in Remark2.14.
Our next goal is to show that these two maps behave as nicely asone could hope; we will

distinguish two cases according to the behaviour of the contraction morphism

π+ : Mσ+(v) →M
+

induced byW via Theorem2.16:

Lemma 10.1. The mapsℓ+, ℓ− agree on the wallW (when extended by continuity).

(a) (Fake or flopping walls) Whenπ+ is an isomorphism, or a small contraction, then
the mapsℓ+, ℓ− are analytic continuations of each other.

(b) (Bouncing walls) Whenπ+ is a divisorial contraction, then the analytic continuations
of ℓ+, ℓ− differ by the reflectionρD in NS(Mσ+(v)) at the divisorD contracted by
ℓσ0 .

Here “reflection atD” denotes the linear involution leavingD⊥ fixed, and sendingD to
−D. Markman proved in [Mar09] that such a reflection is an integral linear transformation,
for any irreducible exceptional divisor on a hyperkähler variety; of course in our situation, this
statement can easily be deduced from the classification of divisorial contractions.

As a consequence, walls of the former type (a) are fake walls whenπ+ is an isomorphism, or
induce a flop whenπ+ is a divisorial contraction; for walls of the latter type (b), corresponding
to a divisorial contraction, the moduli spacesMσ+(v),Mσ−

(v) for the two adjacent chambers
are isomorphic.

Proof. We have to proveθC− = θC+ in case (a), and θC− = ρD ◦ θC+ in case (b). We
will always assume for simplicity that the two moduli spacesadmit universal families; the
arguments apply identically to quasi-universal families.

Consider case (a). If the wall is not totally semistable, then the two moduli spacesMC±(v)
share a common open subset, with complement of codimension two, on which the two univer-
sal families agree. By the projectivity of the moduli spaces, the mapsθC± are determined



42 AREND BAYER AND EMANUELE MACR̀I

by their restriction to curves contained in this subset; this proves the claim. If the wall
is instead totally semistable, we additionally have to use Proposition6.8. Let Φ+ andΦ−

be the two sequences of spherical twists, sendingσ0-stable objects of classv0 to σ+- and
σ−-stable objects of classv, respectively. The autoequivalence inducing the birational map
Mσ+(v) 99K Mσ−

(v) is given byΦ− ◦ (Φ+)−1. As the classes of the spherical objects occur-
ring in Φ+ andΦ− are identical, this does not change the class of the universal family in the
K-group; therefore, the Mukai morphismsθC+ , θC− agree.

Now consider the case of a Brill-Noether divisorial contraction; we first assume that there
is no effective spherical classs′ ∈ HW with (s′,v) < 0. The contraction induced by a
spherical objectS with Mukai vectors := v(S) ∈ v

⊥. The class of the contracted divisor is
θ(s). The universal families differ (up to a subset of codimension two) by the spherical twist
STS( ). This induces the reflection ats in H∗

alg(X,α,Z); thus the Mukai morphisms differ
by reflection atθ(s), as claimed.

If in addition tos ∈ v
⊥, there does exist an effective spherical classs

′ ∈ HW with (s′,v) <
0, we have to rely on the constructions of Lemma7.5, as in the proof of Theorem1.1. We
have a common open subsetU ⊂ Mσ±

(v0), such that the two universal familiesE±|U are
related by the spherical twist at a spherical objectS0 of classs0. LetΦ± be the sequences of
spherical twists obtained from Lemma7.5, applied toσ+ or σ−, respectively. Their induced
mapsΦ± : H∗

alg(X,α,Z) → H∗
alg(X,α,Z) on the Mukai lattice are identical, as they are

obtained by twists of spherical objects of the same classes;it sendsv0 tov, and thuss0 to±s.
Therefore, the compositionΦ− ◦ STS0 ◦(Φ+)−1 induces the reflection ats, as claimed.

It remains to consider divisorial contractions of Hilbert-Chow and Li-Gieseker-Uhlenbeck
type. We may assumeMσ+(v) is the Hilbert scheme, or a moduli space of Giesker-stable
sheaves of rank two.

By the proof of Theorem1.1, there is a line bundleL onX such thatRHomMσ±×X(E , (pX)∗L[2])
is a universal family with respect toσ− onMσ−

(v) =Mσ+(v). We will compareθC± by eval-
uating its degree on a test curveC ⊂Mσ±

. Let i denote the inclusioni : C×X →֒Mσ±
×X,

and byp the projectionp : C × X → X. This yields the following chain of equalities for
a ∈ v

⊥:

θC−(a).C =
(
a,v

(
p∗i

∗(E−)
))

=
(
a,v

(
p∗RHomC×X(i∗E ,OC ⊠ L[2])

))
(18)

=
(
a,v

(
p∗RHomC×X(i∗E , ωC [2]⊠ L)

))
(19)

=
(
a,v

(
RHomX(p∗i

∗E ,L)
))

(20)

=
(
a
∨ · ch(L),v(p∗i∗E)

)
= θC+

(
a
∨ · ch(L)

)
.C(21)

Here we used compatibility of duality with base change in (18), a ∈ v
⊥ in (19), and Grothendieck

duality in (20). In (21), we wrotea∨ for the class corresponding toa under duality( )∨, i.e.,
the class that agrees witha except for the sign of the component in the divisor partNS(X).

In the Hilbert-Chow case, withv = −(1, 0, 1 − n), the class of the contracted divisorD
is proportional to(1, 0, n − 1), and we haveL ∼= OX ; in the Li-Giesker-Uhlenbeck case, we
can writev = (2, c, d), the class of the contracted divisor as a multiple of(2, c, c

2

2 − d), and
c1(L) = c. In both cases, a direct verification shows that the reflection ρD is compatible with
the above chain of equalities:ρD(a) = a

∨ · ch(L). �
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Proof of Theorem1.2, (a), (b), (c). Lemma10.1proves part (a). Part (c) follows directly from
the positivityℓC(C) ⊂ AmpMC(v) once we have established part (b).

Consider a big class in the movable cone, given asθσ(a) for some classa ∈ v
⊥,a2 > 0;

we have to show that it is in the image ofℓ. Recall the definition ofP+
0 (X,α) given in the

discussion preceding Theorem2.8. If we setΩ′ = ia − v

v2 ∈ H∗
alg(X,Z) ⊗ C, then clearly

Ω′ ∈ P(X,α). In case there is a spherical classs ∈ H∗
alg(X,α,Z) with (Ω′, s) = 0, we

modify Ω′
a

by a small real multiple ofs to obtainΩ ∈ P0(X,α), otherwise we setΩa = Ω′
a
;

in either case, we haveΩa ∈ P0(X,α) with (Ωa,v) = −1 andℑΩa = a. In addition, the fact
thatθ(a) is contained in the positive cone givesΩ ∈ P+

0 (X,α).
LetΩσ ∈ P+

0 (X,α) be the central charge for the chosen basepointσ ∈ Stab(X,α). Then
there is a pathγ : [0, 1] → P+

0 (X,α) starting atΩσ and ending atΩa with the following

additional property: for allt ∈ [0, 1], the class− θσ(ℑγ(t))
(γ(t),v) is contained in the movable cone of

Mσ(v).
By Theorem2.8, there is a liftσ : [0, 1] → Stab†(X,α) of γ starting atσ(0) = σ. By

the above assumption onγ, this will never hit a wall of the movable cone correspondingto
a divisorial contraction; by Lemma10.1, the mapℓ extends analytically, withθσ = θσ(0) =
θσ(1). Therefore,

ℓσ(1)(σ(1)) = θσ(1)(a) = θσ(a)

as claimed. �

In fact, following [Mar11, Section 6], one can use a Weyl group action on the positive
cone to give a global description of the mapℓ. As in [Mar11, Definition 6.8], we denote by
WExc ⊂ Aut(NS(Mσ(v))) the hyperbolic reflection group group generated by the reflections
ρD at exceptional divisorsD of divisorial contractions.

We consider its action on the conePos(Mσ(v)) of strictly positive divisors. Theexceptional
chamberof this Weyl group action is defined by(D, ) ≥ 0 for all exceptional divisorsD.
As explained by Markman, the general theory of hyperbolic reflection groups shows that this
is a fundamental domain forWExc. On the other hand, it coincides with the image ofℓ; by
Theorem1.2, the exceptional chamber is equal to the intersection of themovable cone with
the big cone. This recovers [Mar11, Lemma 6.22].

The exceptional chamber of a hyperbolic reflection group intersects everyWExc-orbit ex-
actly once. Thus there is a map

W : Pos(Mσ(v)) → Mov(Mσ(v))

sending any class to the intersection of itsWExc-orbit with the fundamental domain. Then
Lemma10.1and Theorem1.2 immediately give the following:

Theorem 10.2. The mapℓ of Theorem1.2 can be given as the composition of the following
maps:

Stab†(X,α)
Z−→ H∗

alg(X,α,Z) ⊗ C
I−→ v

⊥ θσ−→ Pos(Mσ(v))
W−→ Mov(Mσ(v)).

To finish the proof of Theorem1.2, (d), we have the following observation:

Proposition 10.3. Let C ⊂ Stab†(X,α) be a chamber of the chamber decomposition with
respect tov. Then the image ofℓC(C) ⊂ NS(MC(v)) of the chamberC is exactly the ample
cone of the corresponding moduli spaceMC(v).
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Proof. In light of Theorems2.15and1.2, (a), (b), (c), the only potential problem is given by
wallsW ⊂ ∂C that do not get mapped to walls of the nef cone of the moduli space. These are
totally semistable fake walls induced by an effective spherical classs ∈ HW with (s,v) < 0.
The idea is that there is always a potential wallW ′, with the same latticeHW ′ = HW , for
which all effective spherical classes have positive pairing with v. By Theorem5.7, W ′ is not
a wall, and it will have the same image in the nef cone ofMC(v) as the wallW.

Let σ0 = (Z0,P0) ∈ W be a very general stability condition on the given wall: thismeans
we can assume thatHW contains all integral classesa ∈ H∗

alg(X,α,Z) with ℑZ0(a) = 0.
If we write Z0( ) = (Ω0, ) as in Theorem2.8, we may assume thatΩ0 is normalized by
(Ω0,v) = −1 andΩ2

0 = 0, i.e.,(ℜΩ0,ℑΩ0) = 0 and(ℜΩ0)
2 = (ℑΩ0)

2 (see [Bri08, Section
10]). We will now replaceσ0 by a stability condition whose central charge has real part give
by (−v, ), and identical imaginary part.

To this end, letσ1 ∈ C be a stability condition nearbyσ0, whose central charge is defined
byΩ1 = Ω0 + iǫ, whereǫ ∈ H∗

alg(X,α,Z) ⊗R is a sufficiently small vector with(ǫ,v) = 0;
we may also assume that multiples ofv are the only integral classesa ∈ H∗

alg(X,α,Z) with
with (ℑΩ1, ã) = 0. Let Ω2 = −v + iℑΩ1; then a straight-forward computation shows
that the straight path connectionΩ1 with Ω2 lies completely withinP+

0 (X,α). Finally, let
Ω3 = −v + ℑΩ0; by Theorem5.7, there are no spherical classess̃ ∈ HW with (v, s) = 0,
implying that the straight path fromΩ2 toΩ3 is also contained inP+

0 (X,α).
By Theorem2.8, there is a lift of the pathΩ0 7→ Ω1 7→ Ω2 7→ Ω3 to Stab(X,α); let

σ2 andσ3 the stability conditions corresponding toΩ2 andΩ3, respectively. By choice of
ǫ, we may assume that the pathsσ0 7→ σ1 and σ2 7→ σ3 do not cross any walls. Since
(Ω1,v) = (Ω2,v) = −1, and since the imaginary part on the pathΩ1 7→ Ω2 is constant, the
same holds for the pathσ1 7→ σ2. Henceσ3 is in the closure of the chamberC. In particular,
σ3 lies on a potential wall ofC with hyperbolic lattice given byHW ; by construction, any
spherical classs ∈ HW with (v, s) < 0 satisfies(Ω3, s) > 0, and thuss is not effective.

By Theorem5.7, σ3 does not lie on a wall. SinceℑΩ3 = ℑΩ0, the imageslC(σ0) = lC(σ3)
in the Néron-Severi group ofMC(v) agree. �

We conclude this section by proving Corollary1.3.

Proof of Corollary1.3. We first prove the two implications.
“⇐”: Assume thatΨ: Db(X)

≃−→ Db(X ′) is a derived (anti-)equivalence such thatΨ∗(v) =
v
′. Its associated Fourier-Mukai kernel induces a Hodge isometry Ψ∗ : H∗(X,Z) → H∗(X ′,Z),

sendingv tov
′. By Verbitsky’s Torelli Theorem in theHilbn(K3)-deformation type, the bira-

tional class of the moduli space is determined by the embeddingv
⊥ →֒ H∗(X), see [Mar11,

Corollary 9.5 and Example 9.6].
“⇒”: Now assume thatMH(v) is birational toMH′(v′). Applying the Torelli Theorem

again, we obtain a Hodge isometryψ : H∗(X,Z)
≃−→ H∗(X ′,Z). Sincev andv′ are prim-

itive, this givesψ(v) = ±v
′. Up to composing with the derived dual functor and the shift

functor, we can assume thatψ(v) = v
′ andψ is orientation-preserving. By Mukai-Orlov’s

Derived Torelli Theorem (see [Orl97, HS06, HMS09]) for K3 surfaces, there exists a derived
equivalenceΨ: Db(X)

≃−→ Db(X ′) such thatΨ∗ = ψ.
To prove the final claim, choose stability conditionsσ ∈ Stab(X), σ′ ∈ Stab(X ′) such that

Mσ(v) =MH(v) andMσ′(v) =MH′(v). By the construction of the derived equivalenceΨ,
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it is easy to see thatΨ∗σ is in the same connected component asσ′. Thus we can apply Theo-
rem1.1to obtain an auto-equivalenceΦ of Db(X ′) that sends a generic element ofMΨ∗σ(v

′)
to an element ofMσ′(v′). Then the compositionΦ ◦Ψ has the desired property. �

11. APPLICATION 1: LAGRANGIAN FIBRATIONS

In this section, we will explain how birationality of wall-crossing implies Theorem1.5,
verifying the Lagrangian fibration conjecture.

One implication in Theorem1.5 is immediate: iff : MH(v) 99K Z is a rational abelian
fibration, then the pull-backf∗D of any ample divisorD onZ has volume zero; by equation
(6), the self-intersection off∗D with respect to the Beauville-Bogomolov form must also
equal zero.

We will prove the converse for any moduli spaceMσ(v) of Bridgeland-stable objects on a
(possibly twisted) K3 surface(X,α), under the assumptions thatv is primitive, andσ generic
with respect tov. We will first restate carefully the argument establishing part (a) of Conjec-
ture1.4, which was already sketched in the introduction; then we will explain how to extend
the argument to also obtain part(b).

Assume that there is an integral divisorD onMσ(v) with q(D) = 0. Applying the inverse
of the Mukai morphismθv of Theorem3.5, we obtain a primitive vectorw = θ−1

v
(D) ∈ v

⊥

with w
2 = 0.

After a small deformation, we may assume thatσ is also generic with respect tow. As in
Section8, we consider the moduli spaceY := Mσ(w) of σ-stable objects, which is a smooth
K3 surface. There is a derived equivalence

(22) Φ: Db(X,α)
∼−→ Db(Y, α′)

for the appropriate choice of a Brauer classα′ ∈ Br(Y ); as before, we haveΦ∗(w) = (0, 0, 1).
By definition,Φ induces an isomorphism

(23) Mσ(v) ∼=MΦ∗(σ)(Φ(v)),

whereΦ(σ) is generic with respect toΦ(v).

Lemma 11.1. The Mukai vectorΦ∗(v) has rank zero.

Proof. This follows directly fromΦ∗(w) = (0, 0, 1) and(Φ∗(w),Φ∗(v)) = (w,v) = 0. �

We writeΦ(v) = (0, C, s), with C ∈ Pic(Y ) ands ∈ Z. Sincev2 > 0 we haveC2 > 0.

Lemma 11.2. After replacingΦ by the compositionΨ ◦ Φ, whereΨ ∈ Aut(Db(Y, α′)), we
may assume thatC is ample, and thats 6= 0.

Proof. Up to shift [1], we may assume thatH ′.C > 0, for a given ample classH ′ on Y . In
particular,C is an effective class; it is ample unless there is a rational−2-curveD ⊂ Y with
C.D < 0. Applying the spherical twistSTOD

at the structure sheaf4 ofD replacesC its image
C ′ under the reflection atD, which satisfiesC ′.D > 0. This procedure terminates; indeed,
the nef cone is the fundamental exceptional chamber of the Weyl group action generated by
reflections at−2-curves.

Since tensoring with an (untwisted) line bundle onY induces an autoequivalence ofDb(Y, α′),
we may also assumes 6= 0. �

4Note that the restriction ofα to any curve vanishes, hence the structure sheafOD is a coherent sheaf on
(Y, α′).
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LetH ′ ∈ Amp(Y ) be a generic polarization with respect tow.

Lemma 11.3. The moduli spaceMH′(Φ∗(v)) is non-empty and admits a structure of La-
grangian fibration.

Of course, this is just a small (and well-known) generalization of Beauville’s integrable
system [Bea91].

Proof. The non-emptyness follows directly from [Yos01, Theorem 8.1]. The structure of La-
grangian fibration is given as follows:

Consider the line bundleL′ onM ′ :=MH′(Φ(v)) given byθv((0, 0,−1)). By an argument
of Faltings and Le Potier (see [LP05, Section 1.3]), we can construct sections ofL′ as follows:
for all y ∈ Y , we define a sectionsy ∈ H0(M ′, L′) by its zero-locus

Z(sy) :=
{
E ∈M ′ : Hom(E, k(y)) 6= 0

}
.

Whenevery is not in the support ofE, then sy does not vanish atE; hence the sections
{sy}y∈Y generateL′. The image ofE is determined by its set-theoretic support; hence the
image of the map induced byL′ is the complete local system ofC; by Matsushita’s theorem
[Mat99, Mat01], the map must be a Lagrangian fibration. �

Lemma 11.4. The stability conditionΦ∗σ onDb(Y, α′) is contained in the connected compo-
nentStab†(Y, α′) constructed in[Bri08, HMS08].

Proof. By construction of the equivalence in (22), skyscraper sheaves of points areΦ∗-stable;
then the statement follows from [Bri08, Proposition 10.3]. In Lemma11.2, we had to modifyΦ
by a composition of spherical twists at structure sheaves ofrational curves; by [Bri08, Section
12], this will not cause us to leave the connected component. �

By Remark2.12, there exists a generic stability conditionσ′ ∈ Stab†(Y, α′) with the prop-
erty thatMH′(Φ(v)) = Mσ′(Φ(v)). On the other hand, by the birationaliy of wall-crossing,
Theorem1.1, the moduli spacesMσ′(Φ∗(v)) andMΦ∗(σ)(Φ∗(v)) are birational; combined
with the identification (23), this shows thatMσ(v) is birational to a Lagrangian fibration.

It remains to prove part(b), so let us assume thatD is nef. Using the Fourier-Mukai
transformΦ as above, and after replacingσ by Φ∗σ, we may also assume thatv has rank
zero, and thatw = θ−1

σ (D) is the class of skyscraper sheaf of points. Now consider the
autoequivalenceΨ ∈ AutDb(Y, α′) of Lemma11.2. Except for the possible shift[1], each
autoequivalence used in the construction ofΨ leaves the classw invariant. Thus, in the moduli
spaceMΨ∗σ(Ψ∗v) =Mσ(v), the divisor classD is still given byD = ±θΨ∗σ(w), up to sign.

Let f : Mσ(v) 99K MH(v) be the birational map to the Gieseker-moduli spaceMH(v) of
torsion sheaves induced by a sequence of wall-crossings as above. The Lagrangian fibration
MH(v) → Pn is induced by the divisorθH(−w). By Theorem10.2, the classesf∗D and
θH(−w) are (up to sign) in the sameWExc-orbit. Since they are both nef on a smooth K-
trivial birational model, they are in the closure of the movable cone (and in particular, their
orbits agree, not just up to sign).

Now recall from the discussion preceding Theorem10.2that the exceptional chamber for
the action ofWExc on the positive cone is a fundamental domain, which intersects everyWExc-
orbit exactly once. The same holds for the closure of the exceptional chamber and the action
on the closure of the positive cone. Therefore, the classesf∗D andθH(−w) have to be equal.

SinceMσ(v) andMH(v) are isomorphic in codimension two, the section rings ofD and
f∗D agree. In particular,D is effective. The conclusion now follows, for example, by [Kaw85,
Fuj11]. This completes the proof of Theorem1.5.
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Remark 11.5. In fact, the above proof shows the following two additional statements:

(a) IfD ∈ NS(Mσ(v)) with q(D) = 0 lies in the closure of the movable cone, then there
is a birational Lagrangian fibration induced byD. (In particular,D is movable.)

(b) AnyWExc-orbit of divisors onMσ(v) satisfyingq(D) = 0 contains exactly one mov-
able divisor, which induces a birational Lagrangian fibration.

12. APPLICATION 2: MORI CONE, NEF CONE, MOVABLE CONE, EFFECTIVE CONE

Let v be a primitive vector withv2 > 0, let σ be a generic stability condition with respect
to v, and letM := Mσ(v) be the moduli space ofσ-semistable objects. In this section, we
will completely describe the cones associated to the birational geometry ofM in terms of the
Mukai lattice ofX.

Recall thatPos(M) ⊂ NS(M)R denotes the (closed) cone of positive classes defined by the
Beauville-Bogomolov quadratic form. LetPos(M)Q ⊂ Pos(M) be the subcone generated by
all rational classes inPos(M); it is the union of the interiorPos(M) with all rational rays in
the boundary∂ Pos(M). We fix an ample divisor classA onM (which can be obtained from
Theorem2.15).

In the following theorems, we will say that a subcone ofPos(M)Q (or of its closure) is “cut
out” by a collection of linear subspaces if it is one of the closed chambers of the wall-and-
chamber decomposition ofPos(M)Q whose walls are the given collection of subspaces. This
is easily translated into a more explicit statement as in theformulation of Theorem12.1given
in the introduction.

Theorem 12.1. The nef cone ofM is cut out inPos by all linear subspaces of the form
θ(v⊥ ∩ a

⊥), for all classesa ∈ H∗
alg(X,α,Z) satisfyinga2 ≥ −2 and0 ≤ (v,a) ≤ v

2

2 .

Via the Beauville-Bogomolov form we can identify the groupN1(M) of curves up to nu-
merical equivalences with a lattice in the Néron-Severi group: N1(M)Q ∼=

(
N1(M)Q

)∨ ∼=
N1(M)Q. In particular, we get an induced rational pairing onN1(M); we then say that the
cone of positive curvesis the cone of classes[C] ∈ N1(M)R with (C,C) > 0 andC.A > 0.
Also, we obtain a dual Mukai isomorphism

(24) θ∨ : H∗
alg(X,α,Z)/v ⊗Q → N1(M)Q.

As the dual statement to Theorem12.1, we obtain:

Theorem 12.2.The Mori cone of curves inM is generated by the cone of positive curves, and
by all curve classesθ∨(a), for all a ∈ H∗

alg(X,α,Z),a
2 ≥ −2 satisfying0 ≤ (v,a) ≤ v

2

2

andθ∨(a).A > 0.

Some of these classesa may not define a wall bordering the nef cone; in this case,θ∨(a) is
in the interior of the Mori cone (as it intersects every nef divisor positively).

Theorem 12.3.The movable cone ofM is cut out inPos(M)Q by the following two types of
walls:

(a) θ(s⊥ ∩ v
⊥) for every spherical classs ∈ v

⊥.
(b) θ(w⊥ ∩ v

⊥) for every isotropic classw ∈ H∗
alg(X,α,Z) with 1 ≤ (w,v) ≤ 2.

Theorem 12.4. The effective cone ofM is generated byPos(M)Q along with the following
exceptional divisors:

(a) D := θ(s) for every spherical classs ∈ v
⊥ with (D,A) > 0, and



48 AREND BAYER AND EMANUELE MACR̀I

(b) D := θ(v2 · w − (v,w) · v) for every isotropic classw ∈ H∗
alg(X,α,Z) with

1 ≤ (w,v) ≤ 2 and(D,A) > 0.

Note that only those classesD whose orthogonal complementD⊥ is a wall of the movable
cone will correspond to irreducible exceptional divisors.

The movable cone has essentially been described by Markman for any hyperkähler variety;
more precisely, [Mar11, Lemma 6.22] gives the intersection of the movable cone withthe
strictly positive conePos(M). While our methods give an alternative proof, the only new
statement of Theorem12.3 concerns rational classesD with D2 = 0 in the closure of the
movable cone; such aD is movable due to our proof of the Lagrangian fibration conjecture in
Theorem1.5.

Using the divisorial Zariski decomposition of [Bou04], one can show for any hyperkähler
variety that the pseudo-effective cone is dual to the closure of the movable cone. In particular,
Theorem12.4could also be deduced from Markman’s results and Theorem1.5.

Proof of Theorem12.1. Let C be the chamber ofStab(X,α) containingσ. By Theorem1.2,
the boundary of the ample cone inside the positive cone is equal to the union of the images
ℓ(W), for all wallsW in the boundary ofC that induce a non-trivial contraction morphism.
(These are walls that are not “fake walls” in the sense of Definition 2.17.) Theorem5.7char-
acterizes hyperbolic lattices corresponding to such walls.

For any such hyperbolic latticeH, we get a classa as in Theorem12.1as follows:

• in the cases (b) of divisorial contractions, we leta be the corresponding spherical of
isotropic class;

• in the subcase of (b) of a flopping contraction induced by a spherical classs, we also
seta = s;

• and in the subcase of (b) of a flopping contraction induced by a sumv = a+ b, we
may assume(v,a) ≤ (v,b), which is equivalent to(v,a) ≤ v

2

2 .

Stability conditionsσ = (Z,A) in the corresponding wallW satisfyℑZ(a)
Z(v) = 0, or, equiva-

lently, ℓ(σ) ∈ θ(v⊥ ∩ a
⊥).

Conversely, givena, we obtain a rank two latticeH := 〈v,a〉. If H is hyperbolic, then it
is straightforward to check that it conversely induces one of the walls listed in Theorem5.7.
Otherwise,H is positive-semidefinite. Then the orthogonal complementH⊥ = v

⊥ ∩ a
⊥ does

not contain any positive classes, and thus its image underθ in NS(M) does not intersect the
positive cone and can be ignored. �

Proof of Theorem12.3. As already discussed in Section10, the intersectionMov(M)∩Pos(M)
follows directly from Theorem1.2; the statement of Theorem12.3is just an explicit descrip-
tion of the exceptional chamber of the Weyl group action.

A movable classD in the boundary of the positive cone, with(D,D) = 0, automatically
has to be rational. Conversely, by our proof of Theorem1.5, if we have a rational divisor with
(D,D) = 0 that is in the closure of the movable cone, then there is a Lagrangian fibration
induced byD on a smooth birational model ofM ; in particular,D is movable. �

Proof of Theorem12.4. As indicated above, the pseude-effective cone is dual to themovable
cone; thus we just need to verify that the Theorem gives the correct description of the boundary.

For exceptional divisors, with(D,D) < 0, this follows from our classification and con-
struction of divisorial contractions. For classes with(D,D) = 0, this again follows from
Theorem1.5. �
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Relation to Hassett-Tschinkel’s conjecture on the Mori cone. Hassett and Tschinkel gave a
conjectural description of the nef and Mori cones via interesection numbers of extremaly rays
in [HT10]. While their conjecture turned out to be incorrect (see [BM12, Remark 9.4] and
[CK12, Remark 8.10]), we will now explain that it is in fact very closely related to Theorem
12.2.

We first recall their conjecture. Via the identificationN1(M)Q ∼= N1(M)Q explained
above, the Beauville-Bogomolov extends to a quadratic formonN1(M) with values inQ; we
will also denote it byq( ). The following lemma follows immediately from this definition,
and the definition ofθ∨:

Lemma 12.5. Consider the isomorphismv⊥
Q

∼= N1(M)Q induced by the dual Mukai mor-
phismθ∨ of (24). This isomorphism respects the quadratic form on either side.

Let 2n be the dimension ofM , and as above letA be an ample divisor. LetC ⊂ N1(M)R
be the cone generated by all integral curve classesR ∈ N1(M)Z that satisfyq(R) ≥ −n+3

2
andR.A ≥ 0. In [HT10, Conjecture 1.2], the authors conjectured that for of any hyperkähler
varietyM deformation equivalent to the Hilbert scheme of a K3 surface, the coneC is equal
to the Mori cone.

Our first observation shows that the Mori cone is contained inC:

Proposition 12.6. LetR be the generator of an extremal ray of the Mori cone ofM . Then
(R,R) ≥ −n+3

2 .

Proof. Note that it is enough to prove the inequality for some effective curve on the extremal
ray. LetW be a wall inducing the extremal contraction corresponding to the ray generated
by R, andHW ⊂ H∗

alg(X,Z) its associated hyperbolic lattice. Letσ+ be a nearby stability
condition in the chamber ofσ, andσ0 ∈ W. Leta ∈ HW be a corresponding class satisfying
the assumptions in Theorem12.2: a2 ≥ −2 and0 ≤ (v,a) ≤ v

2

2 .
We first claim that there exists a contracted curve whose integral class is given byθ∨(a).

For simplicity we assume thatW is not a totally semistable wall for any class inHW ; the
general case can be reduced to this one with the same methods as in the previous sections. By
assumptions, we have botha2 ≥ −2 and(v − a)2 ≥ −2; therefore, we can chooseσ0-stable
objectsA andB of classa andv − a, respectively. SinceHW is hyperbolic, the assumptions
also imply(a,v) < a

2. Therefore,ext1(B,A) = ext1(A,B) = (a,v− a) > 0; in fact, in all
the cases of Theorem5.7we have(a,v − a) ≥ 2.

Assume thatφ+(a) < φ+(v) < φ+(v − a); the opposite case follows similarly. Varying
the extension class inExt1(B,A) produces curves of objects inMσ+(v) that are S-equivalent
with respect toσ0; in order to compute its class, we have to make the construction explicit. Let
P(Ext1(B,A)) be the projective space of one-dimensional subspaces ofExt1(B,A). Choose
a parametrized lineP1 →֒ P(Ext1(B,A)), corresponding to a sectionν of

H0(P1,O(1) ⊗ Ext1(B,A)) = Ext1P1×X(OP1 ⊠B,OP1(1) ⊠A).

Let E ∈ Db(P1 ×X) be the extensionOP1 ⊠B → E → OP1(1) ⊠A given byν. By Lemma
6.9, every fiber ofE is σ+-stable. Thus we have produced a rational curveR ⊂ Mσ+(v) of
S-equivalent objects.

To compute its class, it is sufficient to compute the intersection productθ(D).R with a
divisor θ(D), for anyD ∈ v

⊥. We have

θ(D).R = (D,v(Φ(OR)) = (D,v(B) + 2v(A)) = (D,v + a) = (D,a) = θ(D).θ∨(a),
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whereΦ: Db(Mσ+(v)) → Db(X) denotes the Fourier-Mukai transform, and where we used
D ∈ v

⊥ in the second-to-last equality.
Let a0 ∈ H∗

alg(X,Z) denote the projection ofa to the orthogonal complement ofv. By
Lemma12.5, we have(R,R) = a

2
0, and for the latter we obtain:

(a0,a0) =

(
a− (v,a)

v2
v,a− (v,a)

v2
v

)
= a

2 − (v,a)2

v2
≥ −2− v

2

4
= −n+ 3

2
.

�

Remark 12.7. WhenM is the Hilbert scheme of points onX, we can make the comparison to
Hassett-Tschinkel’s conjecture even more precise: in thiscase, it is easy to see thatθ∨ induces
an isomorphism

H∗
alg(X,Z)(X,Z)/v → N1(M)

of lattices, respecting the integral structures. Given a classR ∈ N1(M) satisfying the inequal-
ity (R,R) ≥ −n+3

2 of [HT10], let a0 ∈ v
⊥
Q be the (rational) class withθ∨(a0) = R. Let k be

any integer satisfyingk ≤ n− 1 andk2 ≥ (2n− 2)(−2−a
2
0); by the assumptions,k = n− 1

is always an example satisfying both inequalities. Thena := a0 +
k

2n−2v is a rational class
in the algebraic Mukai lattice that satisfies the assumptions appearing in Theorem12.2. In
addition, it has has integral pairing with bothv, and with every integral class inv⊥; thus, it is
potentially an integral class. The Hassett-Tschinkel conjecture holds if and only if for every
extremal ray ofC, there is a choice ofk such thata is an integral class.

If we are given the latticev⊥, then the algebraic Mukai lattice ofX can be any lattice in
v
⊥
Q ⊕ Q · v containing bothv⊥ andv, as long asv is primitive. In general, the Hassett-

Tschinkel conjecture will hold for some of these lattices, but not for others. The question
is thus closely related to the fact that a strong global Torelli statement needs the embedding
H2(M) →֒ H∗(X), rather than justH2(M).

13. EXAMPLES OF NEF CONES AND MOVABLE CONES

In this section we examine examples of cones of divisors.

K3 surfaces with Picard number 1... Let X be a K3 surface such thatPic(X) ∼= Z · H,
with H2 = 2d. We letM := Hilbn(X), for n ≥ 2, andv = (1, 0, 1 − n). In this case,
everything is determined by certain Pell’s equations. We recall that a basis ofNS(M) is
given byH̃ = θ(0,−H, 0), the big and nef divisor given by the symmetric power ofH, and
B = θ(−1, 0, 1− n); the exceptional divisor of the Hilbert-Chow morphism has class2B.

By Theorem5.7, divisorial contractions can be divided in three cases:

Brill-Noether: If there exists a spherical classs with (s,v) = 0.
Hilbert-Chow: If there exists an isotropic classw with (w,v) = 1.
Li-Gieseker-Uhlenbeck: If there exists an isotropic classw with (w,v) = 2.

The case of BN-contraction depends on the following Pell’s equation

(25) (n− 1)X2 − dY 2 = 1,

wheres = (r, cH, (n − 1)r),X = r andY = c.
The case of HC-contractions is governed by the Pell’s equation

(26) X2 − d(n − 1)Y 2 = 1,

wherew = (r, cH, (n − 1)r − 1), X = 2(n − 1)r − 1 andY = 2c.
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Finally, for the case of LGU-contractions, the Pell’s equation is again (26), but noww =
(r, cH, (n − 1)r − 2), X = (n − 1)r − 1 andY = c. This already gives the structure of the
movable cone:

Proposition 13.1. AssumePic(X) ∼= Z ·H. The movable cone of the Hilbert schemeM =
Hilbn(X) has the following form:

(a) If d = k2

h2 (n− 1), with k, h ≥ 1, (k, h) = 1, then

Mov(M) = 〈H̃, hH̃ − kB〉,
whereq(hH̃ − kB) = 0, and it induces a (rational) Lagrangian fibration onM .

(b) If d(n − 1) is not a perfect square, and(25) has a solution, then

Mov(M) = 〈H̃, H̃ − d
y1

x1(n− 1)
B〉,

where(x1, y1) is the non-trivial solution to(25) with smallest possiblex1 > 0 and
y1 > 0.

(c) If d(n − 1) is not a perfect square, and(25) has no solution, then

Mov(M) = 〈H̃, H̃ − d
y′1
x′1
B〉,

where(x′1, y
′
1) is the non-trivial solution to(26) with smallest possiblex′1 > 0 and

y′1 > 0.

Proof. Part (a) follows directly from Theorem1.5. To prove part (b) and part (c), we first
notice that (26) has always solutions. If (25) has a solution, by taking(x1, y1) the non-trivial
solution with the smallestx1 > 0 andy1 > 0, then an easy computation shows that the divisor
onM associated is

D := H̃ − d
y1

x1(n− 1)
B.

Hence, the fact thatx1 is the smallest possible, guarantees thatD has the smallest slope, with
respect to the divisors associated to the other solutions to(25).

Since we know that a wall for the movable cone isH̃, which is of Hilbert-Chow type and
thatD is associated to some divisorial contractions (on a certainbirational model ofM ), D
must be the other wall.

The case in which (25) has no solution follows similarly. �

Example 13.2. If d = n− 2, then

Mov(M) = 〈H̃, H̃ − n− 2

n− 1
B〉.

To fully understand the structure of the nef cone, we start with the easy casen = 2. Con-
sider the Pell’s equation

(27) X2 − dY 2 = 5.

The associated spherical class iss = (r, cH, r − 1),X = 2r − 1 andY = 2c.

Lemma 13.3. LetM = Hilb2(X). The nef cone ofM has the following form:

(a) If (27) has no solutions, then

Nef(M) = Mov(M).
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(b) If (27) has solutions, we let(x1, y1) be a solution with the smallestx1 > 0 and
y1 > 0 even. Then

Nef(M) = 〈H̃, H̃ − d
y1
x1
B〉.

Proof. The only possibility in which the movable cone is not equal tothe nef cone is if there
is a flop induced by a spherical class. By Theorem5.7, this happens if and only if (27) has a
solution. �

Example 13.4. Let d = 31. Then the nef cone forM = Hilb2(X) is

Nef(M) = 〈H̃, H̃ − 3658

657
B〉.

In particular, this gives a negative answer to [CK12, Question 8.4].
Indeed, (27) has a the smallest solution given byx1 = 657 andy1 = 118. This gives a

(−2)-classs = (329,−59 ·H, 328), which induces a flop, by Lemma13.3.

For highern > 2 the situation is more complicated, since the number of Pell’s equations to
consider is higher. But, in any case, everything is completely determined.

Example 13.5. Consider the case in whichd = 1 andn = 7, M = Hilb7(X). This example
exhibits a flop of “higher degree”, in the following sense: itis induced by a decomposition
v = a + b, with a

2,b2 > 0, and it is not induced by a spherical or isotropic class. Indeed,
v = (1, 0,−6), a = (1,−H, 0) andb = (0,H,−6) give the wanted example. We also notice
that the rank two hyperbolic lattice associated to this wallcontains no spherical or isotropic
classes. The full list of walls in the movable cone is as follows. We consider the divisor class
H̃ − ΓB, for Γ ∈ Q>0. The walls in the movable cone ofM are given by the following table:

Γ a (v,a) Type

0 (0, 0,−1) 1 HC divisorial contraction

1
4 (1,−H, 2) 4 BN flop

2
7 (1,−H, 1) 5 LGU flop

1
3 (1,−H, 0) 6 higher degree flop

6
17 (2,−3H, 5) 7 fake wall

4
11 (1,−2H, 5) 1 BN flop

3
8 −(1,−3H, 10) 4 BN flop

2
5 (1,−2H, 4) 2 LGU divisorial contraction

...and higher Picard number. LetX be a K3 surface such thatPic(X) ∼= Z · ξ1 ⊕ Z · ξ2.
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Example 13.6. We letM := Hilb2(X), andv = (1, 0,−1). We assume that the intersection
form (with respect to the basisξ1, ξ2) is given by

q =

(
28 0
0 −4

)
.

Such a K3 surface exists, see [Mor84, Kov94]. We have:

NS(M) = Z · s⊕NS(X),

wheres = (1, 0, 1). Our first claim is

(28) Nef(M) = Mov(M).

Indeed, by Theorem5.7, a flopping contraction would have to come from a classa with
a
2 ≥ −2 and(v,a) = 1; also, the corresponding latticeH = 〈v,a〉 has to be hyperbolic,

which impliesa2 ≤ 0. In addition,a2 = 0 would correspond to the Hilbert-Chow divisorial
contraction, and thusa2 = −2 is the only possibility. If we writea = (r,D, r + 1) with
D = aξ1 + bξ2, this gives

−2r(r + 1) + 28a2 − 4b2 = −2.

This equation has no solutions modulo 4.
The structure of the nef cone is thus determined by divisorial contractions. These are con-

trolled by the quadratic equation

(29) X2 − 2(7a2 − b2) = 1,

whereX = r, a = (r,D, r). For example, the Hilbert-Chow contraction corresponds tothe
solutiona = b = 0 andX = 1 to (29). Other contractions arise, for example, ata = 4, b = 2,
X = 15, ora = 2, b = 2,X = 7, etc. The nef cone will be a non-round non-finitely generated
cone. Its walls have infinitely many accumulations points atthe boundary of the positive cone:
these come from solutions of

X2 − 2(7a2 − b2) = 0,

corresponding to Lagrangian fibrations.

To simplify the computations and obtain examples of a round nef (or movable) cone, we
consider a twist by a Brauer classα ∈ Br(X). GivenX as before, we can assume thatα
admits aB-field lift B with the properties that

B.NS(X) = 0 and B2 = 0.

(See [HMS08] for more details; in particular, the fact that such K3 surface exists follows as in
[HMS08, Lemma 3.22].)

Example 13.7. We assume that the (twisted) intersection form on

H∗
alg(X,α,Z) = NS(X)⊕ Z · (2, 2B, 0) ⊕ Z · (0, 0,−1)

takes the form

q =




4 0 0 0
0 −4 0 0
0 0 0 2
0 0 2 0


 .

Consider the primitive vectorv = (0, ξ1, 0), and letM := MH(v) be the moduli space of
α-twistedH-Gieseker semistable sheaves onX, forH a generic polarization onX. Then:

(a) Nef(M) = Mov(M);
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(b) Nef(M) is a rational circular cone.

To prove the above statements, observe thatv
2 = 4 and(v,a) ∈ 4Z for all a ∈ H∗

alg(X,α,Z).
According to Theorem5.7, the only possible wall in this situation would be given by a Brill-
Noether divisorial contraction, coming from a spherical classs ∈ v

⊥. But the above lattice
admits no spherical classes, and thus there are no walls.

Thus the nef cone and the closure of the movable cone are both equal to the positive cone.
SinceM obviously admits Lagrangian fibrations, the cone is rational.

Modifying slightly the previous example, we obtain a modulispace with circular movable
cone and locally polyhedral nef cone:

Example 13.8. We assume that the (twisted) intersection form on

H∗
alg(X,α,Z) = NS(X)⊕ Z · (3, 3B, 0) ⊕ Z · (0, 0,−1)

takes the form

q =




6 0 0 0
0 −6 0 0
0 0 0 3
0 0 3 0


 .

Consider the primitive vectorv = (0, ξ1, 1), and letM :=MH(v). Then:

(a) Nef(M) is a rational locally-polyhedral cone;
(b) Mov(M) is a rational circular cone.

Indeed, (b) follows exactly as in Example13.7: there are no spherical classes, and, for all
a ∈ H∗

alg(X,α,Z), (a,v) ∈ 3Z. However, flopping contractions are induced by solutions to
the quadratic equation

a2 − b2 − 2as+ s = 0,

where we setD = aξ1 + bξ2, anda = (3(2a − 1), aξ1 + bξ2 + 3(2a − 1)B, s). This has
infinitely many solutions. It is an easy exercise to deduce (a) from this.

14. THE GEOMETRY OF FLOPPING CONTRACTIONS

One can also refine the analysis leading to Theorem5.7 to give a precise description of the
geometry of the flopping contraction associated to a floppingwall W.

As in Section5, we let σ0 ∈ W be a stability condition on the wall, andσ+ /∈ W be
sufficiently close toσ0. For simplicity, let us assume throughout this section thatthe hyperbolic
latticeHW associated toW via Definition 5.2 does not admit spherical or isotropic classes;
in particular,W is not a totally semistable wall for any classa ∈ H, and does not induce a
divisorial contraction.

Let P be the set of unordered partitionsP = [ai]i of v into a sumv = a1 + · · · + am

of positive classesai ∈ H. We say that a partitionP is a refinement of another partition
Q = [bi]i if it can be obtained by choosing partitions of eachbi. This defines a natural partial
order onP, withP ≺ Q if P is a refinement ofQ. The trivial partition as the maximal element
of P.

GivenP = [ai]i ∈ P, we letMP ⊂ Mσ+(v) be the subset of objectsE such that the
Mukai vectors of the Jordan-Hölder factorsEi of E with respect toσ0 are given byai for all
i. Using openness of stability and closedness of semistability in families, one easily proves:
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Lemma 14.1. The disjoint unionMσ+(v) =
∐

P∈PMP defines a stratification ofMσ+(v)
into locally closed subsets, such thatMP is contained in the closure ofMQ if and only if
P ≺ Q.

In addition, our simplifying assumptions onHW give the following:

Lemma 14.2. Assume thatP = [a1,a2] is a two-element partion ofv. ThenMP ⊂ Mσ+(v)
is non-empty, and of codimension(a1,a2)− 1.

Proof. Sincev is primitive, we may assume thata1 has smaller phase thana2 with repsect
to σ+. By assumption onHW and by Theorem2.13, the generic elementAi ∈ Mσ+(ai)
is σ0-stablefor i = 1, 2. In particular,Hom(A1, A2) = Hom(A2, A1) = 0, and therefore
dimExt1(A2, A1) = (a1,a2). By [BM11, Lemma 5.9], any non-trivial extensionA1 →֒
E ։ A2 is σ+-stable. Using Theorem2.13again, one computes the dimension of the space
of such extensions as

a
2
1 + 2 + a

2
2 + 2 + (a1,a2)− 1 = v

2 + 2− ((a1,a2)− 1) .

�

ForP as above, the flopping contractionπ+ contractsMP to the product of moduli spaces
M st

σ0
(a1) × M st

σ0
(a2) of σ0-stableobjects. The contracted locus ofπ+ is the union ofMP

for all non-trivial partitionsMP . In particular, when there is more than one way to writev

as a sum of two positive classes, our stratification is only partially ordered; this leads to a
generalization of Markman’s notion ofstratified Mukai flopsintroduced in [Mar01] (where
the stratification is indexed by a totally ordered set).

For any givenm ∈ Z>0, one can easily construct examples where the locus contracted by
π+ hasm irreducible components: by Lemma14.2, this is equivalent to constructing a lattice
H such thatv can be written as a sumv = a1 + a2 in exactlym different ways:

Example 14.3.ChooseM ≫ m for whichx2 +Mxy + y2 = −1 does not admit an integral

solution. We define the symmetric pairing onH ∼= Z2 via the matrix

(
2 M
M 2

)
, and let

v =

(
1

m− 1

)
. The positive cone is the open cone containing the upper right quadrant that is

bordered by the lines of slopes approximately− 1
M

and−M . SinceM ≫ m (in fact,M > 2m

is enough), any partition ofv into positive classes is in fact a partition inZ2
≥0. Therefore, the

two-element partitions are given byv =

(
1
k

)
+

(
0

m− 1− k

)
for 0 ≤ k ≤ m− 1. There is

a unique minimal partitionQ, given byv =

(
1
0

)
+(m− 1)

(
0
1

)
. The corresponding stratum

MQ is contained in the closure of any other stratum.

Similarly, one can construct flopping contractions with arbitrarily manyconnectedcompo-
nents:

Example 14.4. Let m be an odd positive integer. ChooseM ≫ m and define the latticeH
by the matrix

(
−4 2M
2M 4

)
. The positive cone lies between the lines of slope approximately

+ 1
M

and−M . We letv =

(
m
2

)
. Any summand in a partition ofv must be of the form

(
x
y

)

with x ≥ 0 andy > 0, and thereforey = 1. Besides the trivial element, the only partitions
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occurring inP are therefore of the formAk =

[(
k
1

)
,

(
m− k

1

)]
, for 0 ≤ k < m

2 . Each

corresponding strataMAk
is one connected component of the exceptional locus ofπ+.

Remark 14.5. To show that the latticesH as above occur as lattice associated to some wall
HW on some K3 surface, we only have to find a K3 surfaceX such thatH embeds into its
Mukai latticeH∗

alg(X,Z). In particular, we may choosePic(X) ∼= H, and the classv to be of
the formv = (0, c, 0) for a corresponding curve classc. In particular, Example14.3occurs in
a relative Jacobian of curves on special double coversX → P2, and Example14.4in special
quarticsX ⊂ P3. This wall-crossing already occurs for Giesker stability with respect to a non-
generic polarizationH. The morphismπ+ contracts sheaves supported on reducible curves
C = C1 ∪ C2 in the corresponding linear system; it forgets the gluing data at the intersection
pointsC1 ∩ C2. The flopping transformation preserves the Lagrangian fibration given by the
Beauville integrable system.

15. LE POTIER’ S STRANGE DUALITY FOR ISOTROPIC CLASSES

In this section, we will explain a relation of Theorem1.5 to Le Potier’s Strange Duality
Conjecture for K3 surfaces. We thank Dragos Oprea for pointing us to this application.

We first recall the basic construction from [LP05, MO08]. Let (X,α) be a twisted K3
surface and letσ ∈ Stab(X,α) be a generic stability condition. Letv,w ∈ H∗

alg(X,α,Z)

be primitive Mukai vectors withv2,w2 ≥ 0. We denote byLw (resp.,Lv) the line bundle
OMσ(v)(−θv(w)) (resp.,OMσ(w)(−θw(v))). We assume:

• (v,w) = 0, and
• for all E ∈Mσ(v) and allF ∈Mσ(w), Hom2(E,F ) = 0.

Then the locus

Θ = {(E,F ) ∈Mσ(v)×Mσ(w) : Hom(E,F ) 6= 0}
gives rise to a section of the line bundleLv,w := Lw ⊠ Lv onMσ(v) ×Mσ(w) (which may
or may not vanish). We then obtain a morphism, well-defined upto scalars,

SD: H0(Mσ(v), Lw)∨ −→ H0(Mσ(w), Lv).

The two basic questions are:

• When ish0(Mσ(v), Lw) = h0(Mσ(w), Lv)?
• If equality holds, is the mapSD an isomorphism?

We answer the two previous questions in the case where one of the two vectors is isotropic:

Proposition 15.1. Let (X,α) be a twisted K3 surface and letσ ∈ Stab(X,α) be a generic
stability condition. Letv,w ∈ H∗

alg(X,α,Z) be primitive Mukai vectors with(v,w) = 0,
v
2 ≥ 2 andw2 = 0.
We assume that−θv(w) ∈ Mov(Mσ(v)) and−θw(v) ∈ Nef(Mσ(w)). Then

(a) h0(Mσ(v), Lw) = h0(Mσ(w), Lv), and
(b) the morphismSD is either zero or an isomorphism.

Proof. Let Y := Mσ(w). By [Muk87a, Căl02, Yos06], there exist an elementβ ∈ Br(Y )

and a derived equivalenceΦ: Db(X,α)
≃−→ Db(Y, β). Replacing(X,α) by (Y, β), we may

assume thatw = (0, 0, 1) andv = (0,D, s), for somes ∈ Z andD ∈ NS(X), and that
X = Mσ(w) is the moduli space of skyscraper sheaves. Moreover,D = −θw(v) ∈ Nef(X)



MMP FOR MODULI OF SHEAVES ON K3S VIA WALL-CROSSING 57

is effective, by assumption. By stability and Serre duality, for all E ∈ Mσ(v) and allx ∈ X,
Hom2(E, k(x)) = Hom(k(x), E)∨ = 0, and the locusΘ gives a section ofLw ⊠ Lv.

By Remark11.5, there exists a chamberL∞ in the interior of the movable coneMov(Mσ(v))
whose boundary contains−θv(w). Moreover, there exist a polarizationH onX and a cham-
ber C∞ ⊂ Stab(X,α) such thatℓ(C∞) = L∞, MH(v) = MC∞(v), and the Lagrangian
fibration induced byw is the Beauville integrable system onMH(v).

The argument in [MO08, Example 8] shows thath0(MH(v), Lw) = h0(X,O(D)) and the
morphismSD is an isomorphism. SinceMH(v) is connected toMσ(v) by a sequence of flops,
which do not change the dimension of the spaces of sections ofLw, we obtain immediately
(a).

To prove (b), we need to study the behavior of the morphismSD under wall-crossing. We
pick a stability conditionσ∞ ∈ C∞. Both σ andσ∞ belong to the open subsetU(X,α) of
Theorem2.7. By Theorem10.2, we can find a path inU(X,α) connectingσ andσ∞ which
crosses only fake or flopping walls with respect tov. If it crosses no totally semistable walls,
then the morphismSD is compatible with the wall-crossing; since it induces an isomorphism
atσ∞, it induces an isomorphism atσ.

Assume instead that there is a totally semistable wall. We writeσ = σω,β. The straight path
from σ∞ to σtω,β , for t ≫ 0, corresponds to a change of polarization for Gieseker stability,
and thus does not cross any totally semistable wall. Therefore, we may replaceσ∞ with σtω,β ,
for t≫ 0.

We claim that all objectsE in Mσ(v) must be actual complexes, withrk(H0(E)) > 0.
Indeed, if there exists a sheafE in Mσ(v), then the generic element is a sheaf. Moreover,
sinceD is nef and big, it is globally generated, and we can assume that the support ofE is a
smooth integral curve. Stability inU(X,α) for torsion sheaves implies, in particular, that the
sheaf is actually stable on the curve. But thenE would be stable fort → ∞. This shows that
we crossed no totally semistable wall.

Hence, sinceE is an actual complex,Hom(E, k(x)) 6= 0, for all x ∈ X. This shows that
Θ is nothing but the zero-section ofLv,w and the induced mapSD is the zero map. �

By applying the previous proposition to stability conditions near the large volume limit, we
deduce the corresponding strange duality statement for moduli of stable sheaves (with respect
to a generic polarization onX).

Example 15.2. Let X be a K3 surface such thatPic(X) = Z · H, with H2 = 2. Let
v = (1, 0,−1) andw = −(1,−H, 1). Consider a stability conditionσ∞ = σtH,−2H , for
t ≫ 0. Then, as observed in [Bea99, Proposition 1.3],Hilb2(X) = Mσ∞

(v) admits a flop
to a Lagrangian fibration induced by the vectorw. The assumptions of Proposition15.1are
satisfied. In this case, for allE[1] ∈ Mσ∞

(w), E ∼= Ipt(−H), and for allΓ ∈ Hilb2(X), we
haveHom(IΓ, E[1]) 6= 0. Hence, the mapSD is the zero map.

The following example shows that the assumption in Proposition 15.1is necessary:

Example 15.3. LetX be a K3 surface withNS(X) = Z · C1 ⊕ Z · C2 and intersection form

q =

(
−2 4
4 −2

)
.

We assume the two rational curvesC1 andC2 generate the cone of effective divisors onX.
Let v = (0, 3C1 +C2, 1) andw = (0, 0, 1). Thenv2 = 4. Pick a generic ample divisorH on
X. We have

H0(MH(v), θv(w)) ∼= C⊕4.
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Indeed, for example, one can argue by flopping at the spherical vector (0, C1, 0). Then we
have a birational mapMH(v) 99K MH(v′), wherev′ = (0, C1 + C2, 1) and a chain of
isomorphisms

H0(MH(v), θv(w)) ∼= H0(MH(v′), θv′(w)) ∼= H0(P3,OP3(1)) ∼= C⊕4.

On the other side, we have

H0(MH(w), θw(v)) ∼= H0(X,OX (3C1 + C2)) ∼= C⊕5.

The last isomorphism follows from the exact sequence

0 → OX(2C1 + C2) → OX(3C1 +C2) → OP1(−2) → 0,

sinceOX(2C1 + C2) is big and nef and thus has no higher cohomology.
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