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MMP FOR MODULI OF SHEAVES ON K3S VIA WALL-CROSSING:
NEF AND MOVABLE CONES, LAGRANGIAN FIBRATIONS

AREND BAYER AND EMANUELE MACRI

ABSTRACT. We use wall-crossing with respect to Bridgeland stabditpditions to system-
atically study the birational geometry of a moduli spddeof stable sheaves on a K3 surface
X:
(@) We describe the nef cone, the movable cone, and theieffaxine of M in terms of
the Mukai lattice ofX.
(b) We establish a long-standing conjecture that predi@skistence of a birational La-
grangian fibration ord/ wheneverM admits an integral divisor clads of square zero
(with respect to the Beauville-Bogomolov form).
These results are proved using a natural map from the sp&rédokland stability conditions
Stab(X) to the coneMov(X) of movable divisors on\/; this map relates wall-crossing in
Stab(X) to birational transformations df/. In particular, every minimal model dff appears
as a moduli space of Bridgeland-stable objectskon
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1. INTRODUCTION

By our previous workBBM12], a moduli space of Bridgeland stable objects comes eqdippe
with a numerically positive determinant line bundle, degiag only on the stability condition.
This provides a direct link between wall-crossing for digbtonditions and birational trans-
formations of the moduli space. In the present paper, weoéxpiis link to systematically
study the most important birational properties of a modplkce M of stable sheaves (or
Bridgeland stable complexes) on a K3 surface via wall-éngss

The motivation for our work comes from several directions:

e Giventhe recent succeBCHM10] of the minimal model program (MMP), there has
been a lot of interest to relate the MMP for moduli spaces ¢outhderlying moduli
problem; we referfS1Q for a survey of the case of the moduli sdeem of stable
curves, which is known as the Hassett-Keel program. Ideatig would like a moduli
interpretation for every chamber of the base locus decoitipo®f the movable or
effective cone; in our situation, we will show that this médnterpretation comes
naturally as a moduli of Bridgeland stable objects.

e In light of Verbitsky's recent proof in\fer09 of a global Torelli statement for hy-
perkahler manifolds it has become particularly interestio understand their nef
cones: two hyperkahler varieties;, X, are isomorphic if and only if there exists
and isomorphism of integral Hodge structuré$(X,) — H?(X>), that is induced
by parallel transport in a family, and that maps the nef cdn& pto the nef cone of
X5 (see Huyll, Marll)).

e According to a long-standing conjecture, the existence (firational) Lagrangian
torus firationM — Y can be detected by an integral divisor cld3se NS(M)
that has square zero with respect to the Beauville-Bogomuédring. Birationality
of wall-crossing allows us to prove this conjecture by rédgdt to the well-known
case of a moduli space of torsion sheaves, first studied byviksain [Bea9].

Birationality of wall-crossing and the map to the movable cme. Consider a projective K3
surfaceX, and a primitive algebraic classin the Mukai lattice, whose self-intersection with
respect to the Mukai pairing satisfie$ > 0. Let o, 7 be two stablity conditiorison X, and
assume that they agenericwith respect tov. By [BM12, Theorem 1.3], the moduli spaces
M,(v) and M, (v) of stable objects € D’(X) with Mukai vectorv(£) = v exist as a
smooth projective variety. Choosing a path frerto 7 in Stab(X) relates them by a series of
wall-crossings. Our first result, based on a detailed aisabfsthe possible wall-crossings, is
the following:

Theorem 1.1. Leto, 7 be generic stability conditions with respectsto

(a) The two moduli space¥,, (v) and M (v) of Bridgeland-stable objects are birational
to each other.

(b) More precisely, there is a birational map induced by aided (anti-)autoequivalence
® of D¥(X) in the following sense: there exists a common open subset)M,, (v),
U C M, (v), with complements of codimension at least two, such thatrfpi € U,
the corresponding object§, € M,(v) and F, € M, (v) are related viaF, =
D(E).

lThroughout this introduction we will tacitly assume thalt sthbility conditions onX are contained in the
component of the space of stability conditions construbteBridgeland in Bri08].
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As a consequence, we can canonically identify the NéraiSgroups of M, (v) and
M, (v).

Now consider the chamber decomposition of the sigaab(X ) of stability conditions with
respect tov: for each open chambérc Stab(X), there is a moduli spack/;(v) of o-stable
object of classs for everyos € C. The main result ofBM12] gives a natural map

(l) le: C — NS (Mc(V))

to the Néron-Severi group of the moduli space, whose imagentained in the ample cone
of MC(V).

Theorem 1.2. Fix a base point € Stab(X).

(&) Under the identification of the@on-Severi groups induced by the birational maps
of Theorem.1, the mapg, of (1) glue to a piece-wise analytic continuous map

2 ¢: Stab(X) — NS (M, (v)) .

(b) The image of is the intersection of the movable cone with the big con&/pfv).

(c) The mag is compatible, in the sense that for any genericc Stab(X), the moduli
spaceM,(v) is the birational model corresponding #jc’). In particular, every
smoothXK -trivial birational model of M, (v) appears as a moduli spade;(v) of
Bridgeland stable objects for some chamBer Stab(X).

(d) For a chambel C Stab(X), we have/(C) = Amp(Mc¢(v)).

In other words, we can run the MMP of the moduli space via waidksing for Bridge-
land stability conditions. Divisorial contractions appea coarse moduli spaces for stability
conditions on a wall.

The image/(7) of a stability conditionr is determined by its central charge; see Theorem
10.2for a precise statement.

In Theorem5.7, we describe the correspondence between walls in the spatakility
conditions and birational modifications of the moduli spddg(v). For each wally C
Stab(X), there is a rank two sublattick,y, of the Mukai lattice that gets mapped to a line
via the central charg€, for every stabilityr = (Z,P) € W; Theorem5.7 determines the
wall-crossing behavior of the wally completely in terms ofyy .

The proof of Theorenb.7 takes up Section5 to 9, and can be considered the heart of
this paper. Our main technique is a detailed analysis of dssiple configurations ift{,y
of Mukai vectors appearing the Jordan-Holder filtratiofstoictly semistable objects, and
Harder-Narasimhan filtration in families; the latter albows to compare the contraction mor-
phism induced by the nef line bundiér) for a stability conditiorzy on a wall with rational
maps induced by the Harder-Narasimhan filtrations in fawili

We can state the following consequence of Verbitsky’s Tolldleorem for hyperkahler
manifolds, Mukai-Orlov’s Derived Torelli Theorem for K3daces, and Theorefm 1 It com-
pletes Mukai's program, started iMpk81, Muk87H], to understand birational maps between
moduli spaces of sheaves via Fourier-Mukai transforms:

Corollary 1.3. Let X and X’ be smooth projective K3 surfaces. bLete H;‘lg(X, Z) and
v € H},(X',Z) be primitive Mukai vectors. Lell (resp., H') be a generic polarization
with respect tov (resp.,v’). ThenMy(v) is birational to My (v') if and only if there exists
a derived (anti-)equivalencé: D’(X) = D!(X’) with ®(v) = v’. In this case, we can
choosed such that it maps a generic objeEtc My (v) to an object®(E) € My (v').
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By [Tod0§, stability is an open property in families; therefore sashequivalence in-
duces a birational map/y (v') --» Mg (v). We will prove the Corollary at the end of
SectionlO.

Cones of curves and divisors.As an application, we can use Theorein® and5.7 to de-
termine the cones of effective, movable, and nef divisorsl faus dually the Mori cone of
curves) of any moduli space of Gieseker-stable sheavesletatypin terms of the algebraic
Mukai lattice of X; as an example we will state here our description of the ne¢éco

Assume thatH is a polarization that is generic with respectpand letMy (v) be the
Gieseker-moduli space of stable sheaves with Mukai vact&y [Yos0]], the construction of
determinant line bundles gives an isomorhptmy+ — NS(My (v)), wherev denotes the
orthogonal complement af inside the algebrai Mukai IatticH;‘lg(X, Z), andNS the Néron-
Severi group of the moduli space; it identifies the Mukaiipgif__, ) in H;lg(X, Z) with the
Beauville-Bogomolov pairing otNS(My(v)). Let Pos(Mp(v)) denote the cone of strictly
positive classe® with respect to the Beauville-Bogomolov pairing, satisty(D, D) > 0
and(A, D) > 0 for a fixed ample clasgl € NS(My(v)). We letPos(Mg(v)) denote its
closure, and call it thpositive cone

Theorem12.1 Consider the chamber decomposition of the closed positinelRos(M g (v))
whose walls are given by linear subspaces of the form

f(vtnal),

foralla € Hy, (X, Z) satisfyinga? > —2and0 < (v,a) < "72 Then the nef cone af/;(v)
is one of the chambers of this chamber decomposition.

In other words, given an ample clagse NS(My(v)), a classD € Pos(My(v)) is nef if
and only if(D, §(a)) > 0 for all classesa as above that also satisfyl, 6(a)) > 0.

We refer to Sectiord2 for similar statements for the movable and effective coneteNhat
the intersection of the movable cone with the positive caamelieen determined in general by
Markman in Marll, Lemma 6.22] for any hyperkahler variety; the pseudoetiffe can also
easily be deduced from Markman'’s results. In these casegnethod gives an alternative
wall-crossing proof; the new result is the description @& Boundary, due to the proof of the
Lagrangian conjecture discussed below.

However, there was no known description of the nef cone @xXoeppecific examples, even
in the case of the Hilbert scheme of points. A general conjechy Hassett and Tschinkel,
[HT10, Thesis 1.1], suggested that the nef cone (or better, itk theaMori cone) of a hy-
perkahler varietyM depends only on the lattice of algebraic cycleddn(M,Z). In small
dimension, their conjecture has been verifiedHT(1, HT09, HT10, HHT12, BJ1]. The
original conjecture turned out to be incorrect, alreadyHdbert schemes (sedBM12, Re-
mark 9.4] and CK12, Remark 8.10]). However, Theoreh2.1is in fact very closely related
to the Hassett-Tschinkel Conjecture: we will explain thisgisely in Sectiori 2, in particular
Propositionl2.6and Remarli2.7. In Sectionl3, we give many explicit examples of nef cone
and movable cones.

Existence of Lagrangian fibrations. The geometry of a hyperkahler variety is particularly
rigid. For example, Matsushita proved iMat01] that any mapf: M — Y with connected
fibers anddim(Y') < dim(M) is a Lagrangian fibration; further, Hwang proved iwa0g
that if Y is smooth, it must be isomorphic to projective space.
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It then becomes a natural question to ask when such a fibratigts, or when it exists
birationally. According to a long-standing conjecturdastban be detected purely in terms of
the quadratic Beauville-Bogomolov form on the Néron-Segeoup of M

Conjecture 1.4(Tyurin-Bogomolov-Hassett-Tschinkel-Huybrechts-Sajvd_et M/ be a com-
pact hyperkhler manifold of dimensiom, and letq denote its Beauville-Bogomolov form.

(a) There exists an integral divisor clags with ¢(D) = 0 if and only if there exists a
birational hyperkahler manifold)/’ admitting a Lagrangian fibration.

(b) If in addition, M admits anef integral divisor classD with ¢(D) = 0, then there
exists a Lagrangian fibratiorf : M — P™ induced by the complete linear system of
a multiple ofD.

In the literature, it was first suggested by Hassett-TsaHimk[HTO01] for symplectic four-
folds, and, independently, by Huybrech@®&HJ03 and Sawon$aw03 in general; see\er1(
for more remarks on the history of the Conjecture.

Based on the birationality of wall-crossing, we can provs tlonjecture for moduli spaces
of sheaves on a K3 surface:

Theorem 1.5. Let X be a smooth projective K3 surface. Lete H*lg(X,Z) be a primitive

a.
Mukai vector withv? > 0 and let H be a generic polarization with respect ta Then
Conjecturel.4 holds for the moduli spac/y; (v) of H-Gieseker-stable sheaves.

The basic idea of our proof is the following: as we recalledva) the Néron-Severi group
of My (v), along with its Beauville-Bogomolov form, is isomorphicttee orthogonal com-
plementv C H},(X,Z) of v in the algebraic Mukai lattice ok, along with the restriction
of the Mukai pairing. The existence of an integral dividor= ¢;(L) with ¢(D) = 0 is
thus equivalent to the existence of an isotropic classs v*: a class with(w,w) = 0
and(v,w) = 0. The moduli spac&” = My (w) is a smooth K3 surface, and the associated
Fourier-Mukai transforn® sends sheaves of clas®n X to complexes of rank 0 ok. While
these complexes o¥i are typically not sheaves—not even for a generic objedip(v)—,
we can arrange them to be Bridgeland-stable complexes ®sitect to a Bridgeland-stability
conditionT on D?(Y"). We then deformr along a path with endpoint’, such that-’-stable
complexes of clas®.(w) are Gieseker-stable sheaves, necessarily of rank zerothém o
words, the Bridgeland-moduli spadé.. (®.(v)) is a moduli space of sheav&swith support
|F| on a curve of fixed degree. As is well-known, the mBp— |F| defines a map from
M, (®.(v)) to the linear system of the associated curve, and this mapagengian fibra-
tion. On the other hand, birationality of wall-crossing wisathat M, (®.(v)) = Mg(v) is
birational toM ./ (P, (v)).

The idea to use a Fourier-Mukai transform to prove Conjectut was used previously by
Markushevich [Mar0g and Sawon$aw07 for specific family of examples of Hilbert schemes
on K3 surfaces of Picard rank one; their assumptions impiiatithe Fourier-Mukai transform
of a generic ideal sheaf is a stable torsion sheaf. Biralitgnaf wall-crossing makes such a
claim unnecessary.

Remark 1.6. By [MM12], Hilbert schemes of. points on projective K3 surfaces are Zariski-
dense in the moduli space of hyperkahler varietie& 8f"-type.

Conjecturel.4 has been proved independently by Markmama{13 for a general hy-
perkahler varietyM of K3["-type, under the assumption that the two dimensional swespa
H2%(M) @ H%2(M) of H?(M, C) does not contain any integral class. These varieties are
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dense in the moduli space with respect to the analytic tggolblis proof is completely dif-

ferent from ours, based on Verbitski’'s Torelli Theorem, anday to associate a K3 surface

(purely lattice theoretically) to certain hyperkahlernifalds with a square-zero divisor class.
A related result has recently been announced by MatsudWiaslpH.

Remark 1.7. Theoremdl2.1and1.5hold for every moduli spac#/, (v) of Bridgeland-stable
object, forv primitive ando generic. Similarly, all main results hold for twisted K3 fages.

Further applications. We conclude the paper with two additional concrete apptioat of

our methods. In Sectioh4, we explain how to deduce basic properties of the geometry of
flopping contractions; in particular, we give examples vehitre contracted locus has either
arbitrarily many connected components, or arbitrarily ynereducible components all inter-
secting in one point. In Sectidtb we apply Theorenl.5to study Le Potier's Strange Duality
(in the case where one of the two classes involved has sqeask z

Relation to previous work on wall-crossing. Various authors have previously studied ex-
amples of the relation between wall-crossing and the binatigeometry of the moduli space
induced by the chamber decomposition of its cone of movabieats: the first examples
(for moduli of torsion sheaves oA -trivial surfaces) were studied irAB13], and moduli
on abelian surfaces were considered (in varying generatityMM11, Macl2 MYY1la,
MYY11b, YY12, Yos13.

Several of our results have analogues for abelian surfaaébave been obtained previously
by Yoshioka, or by Minamide, Yanagida and Yoshioka: thetlwreality of wall-crossing has
been estabslished iMYY1la, Theorem 4.3.1]; the ample cone of the moduli spaces is de-
scribed in MYY11b, Section 4.3]; statements related to Theofiefircan be found inYos17;
the analogue of Corollary.3is contained in Yos09 Theorem 0.1]; and Conjectutk4 is
proved in [yos09 Proposition 3.4 and Corollary 3.5] with the same basic aggin.

The crucial difference between abelian surfaces and Kasesfis the existence spherical
objects on the latter. They are responsible for the exist@ftotally semistable wall§walls
for which there are no strictly stable objects) that are éatd control; in particular, these can
correspond to any possible type of birational transforamaisomorphism, divisorial contrac-
tion, flop). The spherical classes are the main reason oulfcwasing analysis in Sections
5—9is fairly involved.

A somewhat different behavior was establishedABCH13] in many cases for the Hilbert
scheme of points oR? (extended to torsion-free sheaves u[12, BMW13], and to Hirze-
bruch surfaces ingC12): the authors show that the chamber decomposition in tlagesp
of stability conditions corresponds to the base locus deomition of theeffectivecone. In
particular, while the maf- of equation {) exists similarly in their situation, it will behave dif-
ferently across walls corresponding to a divisorial carttaa: in our case, the map “bounces
back” into the ample cone, while in their case, it will exteaatoss the wall.
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Notation and Convention. For an abelian groug and a fieldk(= Q, R, C), we denote by
G, the k-vector spacér ® k.

Throughout the papeX will be a smooth projective K3 surface over the complex nursibe
For a (locally-Noetherian) scheme (or algebraic spateaye will use the notatio?(.S) for
its bounded derived category of coherent sheaves,[ap(S) for the unbounded derived
category of quasi-coherent sheaves.

We will abuse notation and denote all derived functors dseij wwere underived. We denote
by ps andpx the two projections frony x X to S and.X, respectively. Give& € D .(SxX),
we denote the Fourier-Mukai functor associated taoy

Pe() == (px)« (€@ ps(L)-

GivenE, F € D*(X), we denote the Euler characteristic by

X(E,F) =) (~1)P ext?(E, F).

We denote byNS(X') the Néron-Severi group of. The space of full numerical stability
conditions orD®(X) will be denoted byStab(X).

The skyscraper sheaf at a point X is denoted by:(z). For a complex number € C,
we denote its real and imaginary part By andSz, respectively.

For a K3 surfaceX, we denote the Mukai vector of an objeEtc D?(X) by v(E). We
will often write it asv(E) = (r, ¢, s), wherer is the rank ofE, ¢ € NS(X) ands the degree
of v(E).

An object withHom(F, E) = C will be called aSchur object By simple objectin an
abelian category we will denote an object that has no nefatrsubojects. An object with
Ext!(E, F) = 0 will be calledrigid. A rigid Schur object will be callegpherical

For a spherical object we denote the spherical twist &tby STs(_ ), defined in 5T0]
by the exact triangle, for alf € D?(X),

Hom®(S,E) ® S -+ E — STg(E).

We will write stable (in italics) whenever we are considering strictly stablg¢eots in a
context where there exist strictly semistable objects:afapn-generic stability condition, or
objects with non-primitive Mukai vector.

2. REVIEW: DERIVED CATEGORIES OFK3 SURFACES BRIDGELAND STABILITY
CONDITIONS, MODULI SPACES PROJECTIVITY

In this section, we give a review of stability conditions KBfaces, and their moduli spaces
of stable complexes. The main references Bré[7, Bri08, Tod0§ Yos01, BM12].
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Bridgeland stability conditions. Let D be a triangulated category.

Definition 2.1. A slicing P of the categonD is a collection of full extension-closed subcate-
goriesP(¢) for ¢ € R with the following properties:

(@) P(¢+1) = P(e)[1].

(b) If qbl > ¢2, thenHom(P(gbl),P(qﬁz)) =0.

(c) For anyE € D, there exists a collection of real numbers> ¢, > --- > ¢, and a
sequence of triangles

3) 0= Ey Ey Ey—--—FE, E,=FE

......Al Az Ap
with 4; € P(4,).

The collection of exact triangles ir8) is called theHarder-Narasimhan filtratiorof E.
Each subcategor?(¢) is extension-closed and abelian. Its nonzero objects #eslcemistable
of phasep, and its simple objects are called stable.

We will write ¢min (F) 1= ¢, and ¢pmax(E) := ¢1. By P(¢ — 1, ¢] we denote the full
subcategory of objects withy,i, (E) > ¢ — 1 and gpax(F) < ¢. This is the heart of a
bounded t-structuréD=°, D=0) given by

DV =P(>¢-1)={F€D: ¢ppin>d—1} and D =P(< ) ={EE€D: dmax < ¢}
The associated truncation functors will be denoted by
Ts¢: D= P(>¢) and 7<4: D — P(< ¢)

Definition 2.2. A Bridgeland stability conditioron D is a triple (A, Z, P), where

e A is alattice of finite rank together with a surjective mapK (D) — A,
e 7: A — Cisagroup homomorphism,
e Pisaslicing ofZ,

satisfying the following compatibilities:

(@) 2argZ(E) = ¢, for all non-zeroE € P(¢);
(b) given a norm|__|| on Ag, there exists a constat > 0 such that

1Z(E)| > C|v(B),
forall E € P.

A stability condition is calledalgebraicif Im(Z) C Q ® Qv/—1.
We letStaby (D) the set of stability conditions with fixed lattice. The main theorem in
[Bri07, KS0g shows that it is a complex manifold of dimension given by iéuek of A.

Remark 2.3. By [Bri07, Lemma 8.2], we have a left action &tab, (D) by the autoe-
quivalence groupAut(D), and a right action bﬁiQ(R), the universal cover of the matri-
ces inGLy(R) with positive determinant. The first action is defined, dore Aut(D), by
®(Z,P) = (Z o ¢, 1, ®(P)), whereg, is the automorphism induced i at the level of
Grothendieck groups. The second one is the lift of the aafo@Ls(R) on Hom (K (D), C)
(by identifying C = R?).
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The algebraic Mukai lattice. We let X be a smooth projective K3 surface.
Definition 2.4. Let H}, (X, Z) := H(X,Z) ® NS(X) ® H*(X, Z).

(a) We denote by : K(X) — Hy,

V(E) = ch(E)\/td(X).

(b) TheMukai pairing(__,_) is defined onH;lg(X,Z) by

(X, Z) theMukai vector given by

((r,e,s),(r',d,s") i=cc —rs —sr' € Z.

It is an even pairing of signatur@, p(X)), satisfying(v(E),v(F)) = —x(E, F),
for E,F € K(X).
(c) Thealgebraic Mukai latticeis defined to be the pa(rH;lg(X, 7),(_, _)).

Recall that an embedding V' — L of a latticeV into a latticeL is primitiveif L/i(V) is
a free abelian group. In particular, we call a non-zero vecte H;‘lg(X, Z) primitive if it is
not divisible inH;lg(X, Z). Throughout the paper will often denote a primitive class with
vZ > 0.

Given a Mukai vector € H;‘lg(X, 7.), we denote its orthogonal complementay.

Remark 2.5. Let o € Br(X) be a torsion class in the Brauer groupXof The above defini-
tions can be extended to theisted K3 surfac€ X, ), as explained inHIS05. In particular,

we will denote the algebraic Mukai lattice in the twistedehyg (H*lg(X, a, ), (_, _)) . For

a

the basic theory of twisted K3 surfaces, we refer the readpzdl00 HS05 Yos0§ LieQ7].
Stability conditions on K3 surfaces. Let X be a K3 surface.

Definition 2.6. A (full, numerical)stability conditionon X is a Bridgeland stability condition

onD?(X), whose the latticé is given by the Mukai IatticeH;lg(X, 7).

In [Bri08], Bridgeland describes a connected component of the sgaererical stability
conditions onX. These results have been extended to twisted K3 surfacéfM$08. We
will briefly summarize his main results in the following.

Let 8,w € NS(X)r be two real divisor classes, with being ample. InBri08, Lemma
6.1], Bridgeland constructs a heatt, 3 by tilting at a torsion pair irCoh X: its objects are

two-term complexegs ! i> F such that thé{er d is a torsion-free sheaf, all of whose HN
filtration factors with respect tp,,-slope stability have slopg, < w.8, and such that the
torsion-free part ook d only has HN filtration factors of slope, > w.S.

Theorem 2.7([Bri08, Sections 10, 11])Leto = (Z,P) be a stability condition such that
all skyscraper sheaveqx) of points ares-stable. Then there are real divisor classess €
NS(X)gr with w ample, such that, up to theL,-action, o is determined b§P((0, 1]) = A, 3
and

Z(E) = (eiw+5,v(E)> .

We will denote this stability condition by,, 3, and the open subset 8tab(.X) consisting
of such stability conditions by (X).

Using the Mukai pairing, we can identify any central chaggec Hom(H;g(X, 7),C)
with a vector inH;lg(X, Z) @ C. We will next describe the set of central charges using this

identification: LetP(X) C H},(X,Z) ® C be the set of vector& such that3(2, R(2 span a
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positive definite 2-plane idf},, (X, Z) @ R. The subseP,(X) is defined as the orthogonal
complement of all spherical classes:

Po(X) ={QeP(X): (Q,5)#0, foralls € H},(X,Z) withs® = —2} .

Finally, Py(X) has two connected components (corresponding to the atimmiaduced on
the plane spanned Ky, RQ2), and we letP; (X ) be the component containing vectors of the
form ¢ *7 for w ample,w? > 0.

Theorem 2.8([Bri08, Section 8]) Let Stab!(X) be the connected component of the space
of stability conditions containing/(X). Let Z: Stab'(X) — H;,(X,Z) ® C be the map
sending a stability condition&Z, P) to Qz, whereZ(_ ) = (27, ).

ThenZ is a covering map 0Py (X).

Remark 2.9. Theorem2.7 and Theoren2.8 have analogous statements, though slightly more
technical, in the context of twisted K3 surfacek, «), as proved in fHMS08 Section 3.1].
The analogue objects in the twisted case will be denotdd(®Y, o), Stab' (X, a), P (X, @),

etc.

We will need the following observation:

Proposition 2.10. The stability conditions,,, g onU (X, o) ando,, g onU (X, —«) are dual
to each other in the following sense: An objétE D°(X, ) is o, 5-(semi)stable of phase
if and only if its derived duakV 2] € D°(X, —a) is o, _s-(semi)stable of phaseg.

Proof. This follows as in BMT11, Proposition 4.3.6]. O

Walls. One of the main properties of Bridgeland stability condiias that the space of sta-
bility conditions carries a well-behaved wall and chamlgrcture. This is due to Bridgeland
and Toda (the precise statement we need i8M12, Proposition 2.3]).

Let (X, a) be a twisted K3 surface and let € H), (X, «,Z) be a Mukai vector. Then
there exists a locally finite set @falls (real codimension one submanifolds with boundary) in
Stab(X, «), depending only ow, with the following properties:

(&) Whengo varies within a chamber, the sets @fsemistable and-stable objects of
classv does not change.

(b) Wheno lies on a single walWw C Stab(X, «), then there is @-semistable object
that is unstable in one of the adjacent chambers, and séeistethe other adjacent
chamber.

(c) When we restrict to an intersection of finitely many wads, ..., W,, we obtain a
wall-and-chamber decomposition &%, N - - - N W, with the same properties, where
the walls are given by the intersectioh® N W, N --- N W, for any of the walls
W C Stab(X, «) with respect tov.

Moreover, if v is primitive, theno lies on a wall if and only if there exists a strictby
semistable object of class. The Jordan-Holder filtration of-semistable objects does not
change whew varies within a chamber.

Definition 2.11. Letv € H;g(X,a,Z). A stability condition is calledyenericwith respect
to v if it does not lie on a wall.

Remark 2.12. Given a polarizationH that is generic with respect to, there is always a
Gieseker chambef: for o € C, the moduli space\/,(v) of Bridgeland stable objects is
exactly the moduli space df -Gieseker stable sheaves; sBe(8, Proposition 14.2].
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Moduli spaces and projectivity. Let (X, «) be a twisted K3 surface and lete H;‘lg(X, o, 7).
Following [Tod0§, by fixing ¢ = (Z,P) € Stab’(X,a) and¢ € R such thatZ(v) e
R-o - e™V~1 we can define

M, (v,¢) (resp. I (v, ¢))

as the moduli stack af-semistable (respr-stable) objects with phasgeand Mukai vectow.
This is an Artin stack of finite type ovél. We will often omit¢ or v from the notation, when
it is clear from the context.

By [BM12, Theorem 1.3(a)] (which generalizédYY11b, Theorem 0.0.2]), i € Stab'(X, a)
is generic with respect to, then there exists a coarse moduli spaég(v) of o-semistable
objects with Mukai vectow. It is a normal projective irreducible variety witQ-factorial
singularities. Ifv is primitive, thenM, (v) = M2t (v) is a smooth projective hyperkahler
manifold (see Sectiof).

By results of Yoshioka and Toda, there is a very preciseraitefor non-emptyness of a
moduli space, and it always has expected dimension:

Theorem 2.13.Letv = mv, € H), (X, o, Z) be a vector withv, primitive andm > 0, and

let o € Stab'(X, ) be a generic stability condition with respectyo
(@) The coarse moduli spadd,,(v) is non-empty if and only ¥Z > —2.
(b) Eitherdim M, (v) = v2 + 2 and M2t (v) # (), orm > 1 andv < 0.

In other words, wher?2 = 0 and the dimension of the moduli space is positive, then it is
given bydim M, (v) = v2 + 2.

Proof. This is well-known: we provide a proof for completenessstaf all, claim @) follows
from results of Yoshioka and Toda (s&M 12, Theorem 5.7]). Since is generic with respect
to v, we know that)/, (v) exists as a projective variety, parameteriztigquivalence classes
of semistable objects. Moreover, i € M, (v), and we letF' — E be such that,(F') =

¢ (E), thenv(F) = m'v, for somem’ > 0. Hence, the locus of properly semistable objects
in M, (v) coincides with the image of the natural map

ssL: [ (Mz(mavo) x Ms(mavo)) — My(v).

mi1+mo=m

If we assumev? > 0 (and so> 2), then we can proceed by induction en Form =
1, M3 (vy) = M,(vp) and the conclusion follows from the Riemann-Roch Theoreh an
[Muk874. If m > 1, then by the inductive assumption, we deduce that the imbadeonap
SSL has dimension equal to the maximum(ef? + m3)v3 + 4, for m; + mg = m.

We claim that we can construct a semistable object with veetavhich is also Schur.
Indeed, again by the inductive assumption, we can consideisi@ble object E(m — 1)
with vector (m — 1)vy. Let F' € M,(vo). Then, again by the Riemann-Roch Theorem,
Ext!(F, E(m — 1)) # 0. We can take any non-trivial extension

0—E(m-—1)— E(m) - F — 0.

Since bothE(m — 1) and F' are Schur, and they have no morphism between each dtfer)
is Schur as well.

Again by the Riemann-Roch Theorem anduk84], we deduce that the dimension of
M,(v) is equal toext! (E(m), E(m)) = m?v3 + 2. This shows that\/s!(v) # 0, as we
wanted. The last part of the statement follows fr@M12, Lemma 6.1 & Lemma 6.2]. O
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Line bundles on moduli spaces.In this final section we recall the main result &\112]: it
shows that every moduli space of Bridgeland-stable objeatses equipped with a numeri-
cally positive line bundle, naturally associated to théiitg condition. To avoid complicating
the notation, we state the results only in the untwisted:cdmseextension to the twisted case
works analogously.

Let X be a K3 surface. Lef be a proper algebraic space of finite type oledet o =
(Z,P) € Stab(X), and let€ € D®(S x X) be a family of semistable objects of clasand
phasep, namely, for all closed point € S, & € P(¢) with v(E) = v.

We define a numerical divisor clags € NS(S)r on S as follows: To every curvé€' C S,

we associate
Z(®:0¢))
lby: C—4,C =8 | —————
g g 5 < Z(’U) b
and prove that it extends linearly to all curve classes.

Remark 2.14. The linearity can, for example, be seen by comparison wighcthssical de-
terminant line bundle construction. First of all, we redhlk Donaldson morphismH[L10,
Section 8.1]):

Ae: v — NS(S),
given as the composition

Vi (8 x X)) B R (S x x) P K (8) 49t NS (),

whereK,.,» denotes the Grothendieck group of a variety modulo numlezipaivalence, and
vii={w e Kpum(X): x(v® w) =0} .
When X is a K3 surface, it is more convenient to use a dual versidieccéhe Mukai mor-
phism,
fs: vt — NS(S), s (W) := —de(v H(w)*).
If we assumeZ(v) = —1, and writeZ(_) = (Q2z,_) as above, then
4) Uy = 0g(30Qz).

Theorem 2.15([BM12]). The following are the main properties &f:

(a) ¢, is a nef divisor class o. Additionally, for a curvel’ C S, we havel,.C' = 0
if and only if, for two general closed pointsc € C, the corresponding objects
., &y € DY(X) are S-equivalent.

(b) For any Mukai vectorv € H;g(X, 7), ¢, induces a divisor class on the coarse

moduli spacelM, (v), when the stability conditiom € Stab(X) is generic with
respect tov. Moreover, in such a casé, is an ample divisor o/, (v).

For any chambe€ C Stab'(X), we thus get a map
(5) le: C — Amp(Mc(v)),

where we used the notatiavl¢(v) to denote the coarse moduli spatk (v), independent of
the choicer € C. The main goal of this paper is to understand the global behafthis map.
We recall one more result fronBM12]. Letv € H;lg(X,Z) be aprimitive vector with
vZ > —2. Let W be a wall forv and letoy € W be a generic stability condition on the
wall, namely it does not belong to any other wall (see also &&%.6). We denote by, and

o_ two generic stability conditions nearB¥ in opposite chambers. Then all.-semistable
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objects are alsay-semistable. Hencé,,, induces two nef divisoré,, . and/,, _ onM,_ (v)
andM,_(v) respectively.

Theorem 2.16([BM12, Theorem 1.4(a)]) The divisor</,, + are big and nef on\/,, (v). In
particular, they are semi-ample, and induce birational tantions

aE M, (v) — My,

where M ;. are normal irreducible projective varieties. The curvesitacted byr* are
precisely curves of objects that afeequivalent with respect tay.

Definition 2.17. We call a wallw:

(a) afake wall if there are no curves if/,,_ (v) of objects that ar&-equivalent to each
other with respect tey;

(b) atotally semistable wallif M5! (v) = 0;

(c) aflopping wall if we canidentifyA/ ; = M _ and the induced morphisit,,, (v) --»
M,_(v) induces a flopping contraction;

(d) adivisorial wall, if the morphismsr: M, (v) — M are both divisorial contrac-
tions.

By [BM12, Theorem 1.4(b)], ifW is not a fake wall andV/5! (v) C M,, (v) has com-
plement of codimension at least two, thivi is a flopping wall. We will classify walls in
Theoremb.7.

3. REVIEW: BASIC FACTS ABOUT HYPERKAHLER VARIETIES

In this section we give a short review on hyperkahler mad&o The main references are
[Bea83 GHJO3 Marl]].

Definition 3.1. A projective hyperthler manifoldis a simply connected smooth projective va-
riety M such that7°(M, Q2,) is one-dimensional, spanned by an everywhere non-dedenera
holomorphic2-form.

The Néron-Severi group of a hyperkahler manifold cardasatural bilinear form, called
the Fujiki-Beauville-Bogomolov formit is induced by a quadratic form on the whole second
cohomology group; : H?(M,Z) — 7Z, which is primitive of signature3, bo(M) — 3). It
satisfies the Fuijiki relation

(6) /M o®" = Fyr - q(a)™, o€ H*(M,Z),

where2n = dim M and F, is theFujiki constant which depends only on the deformation
type of M. We will mostly use the notatiof , ) := ¢(_,_ ) for the induced bilinear form
onNS(M).

The Hodge structur¢ H2(M, Z),q) behaves similarly to the case of a K3 surface. For
example, by Yer09], there is a weak global Hodge theoretic Torelli theorem(ftmformation
equivalent) hyperkahler manifolds.

Moreover, some positivity properties of divisors &fican be rephrased in terms @fWe
first recall a few basic definitions on cones of divisors.

Definition 3.2. An integral divisorD € NS(M) is called

e big, if its litaka dimension is maximal;
e movable if its stable base-locus has codimensjorz;
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o strictly positive if (D, D) > 0and(D, A) > 0 for a fixed ample clasd on M.

The real (not necessarily closed) cone generated by big.(resvable, strictly positive,
effective) integral divisors will be denoted Wig(M) (resp.,Mov (M), Pos(M), Eff(M)).
We have the following inclusions:

Pos(M) C Big(M) C Eff(M)
Nef(M) € Mov(M) C Pos(M) C Big(M) = Eff(M).

The only non-trivial inclusion i¥os(M) C Big(M ), which follows from Huy99, Corollary
3.10]. Divisors inPos(M) are calledpositive

Definition 3.3. Let M be a projective hyperkaler manifold of dimensidn. A Lagrangian
fibration is a surjective morphism with connected fibérsM — B, whereB is a smooth
projective variety, such that the generic fiber is Lagramgidth respect to the symplectic
formw € HO(M, Q%)).

By the Arnold-Liouville Theorem, any smooth fiber of a Lagg&n fibration is an abelian
variety of dimensiom. Moreover:

Theorem 3.4([Mat99, Mat01] and [Hwa08§). Let M be a projective hypedhler manifold of
dimension2n. Let B be a smooth projective variety of dimensionr< dim B < 2n and let
h: M — B be a surjective morphism with connected fibers. Thena Lagrangian fibration,
and B = P,

This result explains the importance of Conjectird. There has been recent series of
articles on Lagrangian fibrations with a slightly differgrarspective. They treat the following
guestion (seeHBealQ Question 1.6]): Given a torus which is a Lagrangian subvariety of
a HK manifold, does there exist a Lagrangian fibration wittas a fiber? This has been
addressed inGLR114 for non-projective compact hyperkahler manifolds, andyéneral in
[HW12, Mat12g (based on previous results iAjnell GLR11H).

The examples of hyperkahler manifolds we will considerrapeluli spaces of stable com-
plexes, as explained by the theorem below. It has been pfovemduli of sheaves infos01,
Sections 7 & 8], and generalized to Bridgeland stabilitydibans in BM12, Theorem 5.9]):

Theorem 3.5(Huybrechts-O’Grady-Yoshioka)Let (X, «) be a twisted K3 surface and let
v € H;lg(X,a,Z) be a primitive vector withv2 > —2. Leto e Stab(X, «) be a generic
stability condition with respect to. Then:
(@) M,(v) is a projective hypes&hler manifold, deformation-equivalent to the Hilbert
scheme of points on any K3 surface.
(b) The Mukai morphism induces an isomorphism
e 0,y: vt = NS(M,(v)), if v2 > 0;
e 0,y: vt/v = NS(M,(v)), if v2 = 0.
Under this isomorphism, the quadratic Beauville-Bogomdiarm for NS(M, (v))
coincides with the quadratic form of the Mukai pairing QN, «).

Hered, . is the Mukai morphism as in RemaPkl4 induced by a (quasi-)universal family.
We will often dropo or v from the notation. It extends to an isomorphism of Hodgecstimes,
if we take the orthogonal complement inside the whole cohomologhf * (X, o, Z) (and not
only in the algebraic part); it becomes identified wiit? (M, Z). Forv? > 0 the embedding
H?(M,Z) = v+ — H*(X,a,Z) of integral Hodge structures determines the birationascla
of M, (v) via Verbitsky’s Torelli Theorem, sed/far1l, Example 9.6].
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We will also the need the following special case of a resulNaynikawa and Wierzba:

Theorem 3.6 ([Wie03, Theorem 1.2 (ii)] andNlamO03, Proposition 1.4]) Let M be a pro-
jective hyperkhler manifold of dimensiofin, and letM be a projective normal variety. Let
m: M — M be a birational projective morphism. We denote$ythe set of pointy € M
such thatdim 7—*(p) = i. Thendim S; < 2n — 2i.

In particular, if 7 contracts a divisotD C M, we must haveim 7(D) = m — 2.

Consider a non-primitive vectoar. As shown by O’'Grady and Kaledin-Lehn-Sorger, the
moduli spaceV/,,(v) can still be thought of as a singular hyperkahler manifoidhe follow-
ing sense:

Definition 3.7. A normal projective varietyM/ is said to havesymplectic singularitiesf

e The smooth pard/,., C M admits a symplectic 2-forme;
e For any resolutiory: M — M, the pull-back ofv to f~!(M,,) extends to a holo-
morphic form on)M.

Our results inBM12] reduce the following theorem to the case of moduli fo sheave

Theorem 3.8([0’G99] and [KLS06]). Let (X, «) be a twisted K3 surface and let= mv, €
H;, (X, a,Z) be a Mukai vector with primitive andv} > 2. Leto € Stab'(X,«) be a

generic stability condition with respect ta Then)M,, (v) has symplectic singularities.

Given a hyperkahler manifold/ and a dominant rational map/ --» M, whereM is
a normal projective variety with symplectic singulariti¢isen it follows from the definitions
thatdim(M ) = dim(M).

4. HARDER-NARASIMHAN FILTRATIONS IN FAMILIES

In this section, we will show that results by Abramovich4iBlathuk and Toda imply the
existence of Harder-Narasimhan filtrations in familieg $eeorent.3.

Let Y be a smooth projective variety ov€r, and lets be a Bridgeland stability condition
onD?(Y). The results we present will work as well in the twisted canhtéor simplicity of
notation we only prove and state them in the untwisted cantex

Definition 4.1. We sayo satisfiesopenness of stabilitif the following condition holds: for
any schemé of finite type overC, and for any€ € D®(S x Y") such that its derived restriction
&, is ao-semistable object ab®(Y') for somes € S, there exists an open neighborhood
s € U c S of s, such that, is o-semistable for aly’ € U.

Theorem 4.2(]Tod08 Section 3]) Openness of stability holds whihis a K3 surface and
is a stability condition in the connected compongnth'(Y").2

Theorem 4.3. Letoc = (Z, A) € Stab(Y) be an algebraic stability condition satisfying
openness of stability. Assume we are given an irreducibtietyaS over C, and an object
£ € D’(S x Y). Then there exists a system of maps

7 0=l o2 5...08m=¢

2Note that in fod08§ Section 3], this Theorem is only stated for famil@satisfyingExt<° (s, &) = 0 for
all s € S. However, Toda’s proof in Lemma 3.13 and Proposition 3.2%nases that assumption.
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in D?(S x Y), and an open subséf C S with the following property: for any € U, the
derived restriction of the system of mg@$

0=60 =&l &2 ... 5Em=¢,
is the Harder-Narasimhan filtration ;.

The proof is based on the notion of constant family of t-streess due to Abramovich and
Polishchuk, constructed i\P0Og (in caseS is smooth) andPol07 (in general).

Throughout the remainder of this section, we will assumedtend S satisfy the assump-
tions of Theoren#.3. A t-structure is calledlose to Noetheriaif it can be obtained via tilting
from a t-structure whose heart is Noetherian. &ar R, the category?((¢ — 1, ¢]) C Db(Y)
is the heart of a close to Noetherian bounded t-structudé given byD=<0 = P((¢—1, +c0))
andD=" = P((—o0, ¢]) (see the example discussed at the endPof(7, Section 1]). In this
situation, Abramovich and Polishchuk’s work induces a lemeht-structurgD5°, D) on
D?(S x Y'); we paraphrase their main results as follows:

Theorem 4.4([APOG, Pol07). Let.A be the heart of a close to Noetherian bounded t-structure
(D=°,D=%) on D’(Y'). Denote byA,. C Dq.(Y) the closure of4 under infinite coproducts
in the derived category of quasi-coherent sheaves.

(a) For any schemsé of finite type ofC there is a close to Noetherian bounded t-structure
(D5, D3") onD(S x V), whose heard is characterized by

EeAs < (py)«(Elyxu) € Ay for every open affin€ C S

(b) The above construction defines a sheaf of t-structures $vwhenS = | J, U; is
an open covering of, thené € Ag if and only if €|y «y, € Ay, for everyi. In
particular, fori: U C S open, the restriction functar* is t-exact.

(c) Wheni: S’ c S'is a closed subscheme, tharnis t-exact, and* is t-right exact.

We briefly comment on the statements that are not explicigytioned in Pol07, Theorem
3.3.6]: From part (i) of Pol07, Theorem 3.3.6], it follows that the t-structure consteacthere
onD(S x Y) descends to a bounded t-structureldS x Y'). To prove that the push-forward
in claim (C) is t-exact, we first use the sheaf property to reduce to the whereS is affine; in
this case, the claim follows by construction. By adjointéasfollows thati* is t-right exact.

For an algebraic stability condition = (Z,P) on D*(Y)) and a phase < R, we will
from now on denote its associated t-structureffy> ¢) = D="1, P(< ¢) = D=9, and the
associated truncation functors by?, 7=¢. By [Pol07, Lemma 2.1.1], it induces a t-structure
on D (Y), which we denote byP,.(> ¢), P,(< ¢). For the t-structure oi®(S x Y)
induced via Theorer.4, we will similarly write Ps(> ¢), Ps(< ¢), andrg ?, 757,

We start with a technical observation:

Lemma 4.5. The t-structures ol (S x Y") constructed via Theorerh4 satisfy the following
compatiblity relation:

8) (Ps(< & +e€) =Ps(< ).
e>0

Proof. Assume€ is in the intersection of the left-hand side 8).( By the sheaf property, we
may assume tha is affine. The assumption impli€sy ).£ € P,(< ¢ +¢) forall e > 0.
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By [Pol07, Lemma 2.1.1], we can descrilig.(< ¢ +¢€) C Dq.(Y') as the right orthogonal
complement ofP(> ¢ + ¢) € D*(Y) insideD(Y); thus we obtain

NPuo+9=PGo+a) = (UPGo+a) = (P> a) =Pul<o)

e>0 e>0 e>0
Hence(py )€ € Pye(< ¢), proving the lemma. O

We next observe that the truncation functogs‘b, T§¢ induce a slicing od?(S x Y). (See
Definition 2.1 for the notion of slicing on a triangulated category.)

Lemma 4.6. Assume that = (Z, P) is an algebraic stability condition, anBs(> ¢), Ps(<
) are as defined above. There is a sliciRg on D*(S x Y) defined by

Ps(¢) = Ps(< ¢) N [ Ps(> ¢ —e).

e>0

Note thatPg(¢) cannot be characterized by the anologue of Theofetnpart @). For
example, consider the case whéfeis a curve and Z, P) the standard stability condition
corresponding to ordinarly slope-stability @oh Y. ThenP(1) C CohY is the category of
torsion sheaves, arfds (1) € Coh S x Y is the category of sheavéSthat are torsion relative
overS. However, forU C S affine and a non-trivial familyF, the push-forwardpy ).F |y is
never a torsion sheaf.

Proof. By standard arguments, it is sufficient to consider the ¢ase As := Pg(0,1]. In
particular, sincer is algebraic, we can assume that bgth= P (0, 1] and.As are Noetherian.
For any¢ € (0,1], we havePs(¢, ¢ + 1] C (Ag, Ag[1]). By [Pol07 Lemma 1.1.2], this
induces a torsion paif7,, F,) on Ag with

Ty =AsNPs(d, ¢ +1] and Fy = AsNPs(éd—1,9]

Let T, — & — F, be the induced short exact sequencedip. Assume¢ < ¢'; since
Fy C Fy, the surjectiorf — F, factors via — Fy — Fy. SinceAg is Noetherian, the set
of induced quotient§ Fy : ¢ € (0, 1]} of £ must be finite. In addition, ify = Fj, we must
also haveFy, = F, forany¢” € (¢, ¢’).

Thus, there exist real numbegg = 1 > ¢1 > ¢ > --- > ¢ > ¢ = 0 such thatFy
is constant fok) € (¢;+1, ¢;), but such thaty, . # Fy, .. Let us assume for simplicity that
Fy, e = &; the other case is treated similarly by settiig = F, ;., and shifting all other
indices by one. For=1,...,] we set

L] FZ = F@*ﬁ’
o & :=Ker(£ - F'), and
o Al = gi/gi—l_

We haveS’ € Pg(> ¢; —¢) and&~! = 75%1¢i for all ¢ > 0. Hence the quotient!’
satisfies, for alk > 0,

o Al € Ps(> ¢ — e),

o Al e Py(< ¢ + ).
The latter impliesA? € Ps(< ¢;) by Lemma4.5. By definition, we obtainA® € Pg(¢).
Finally, we haveF! € Pg(0,1] N Ps(< ¢) for all e > 0. Using Lemma4.5 again, we obtain
F! =0, and thu£! = £. Thus the€ induce a Harder-Narasimhan filtration as claimed

The following lemma is an immediate extension AP06, Proposition 3.5.3]:
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Lemma 4.7. Assume thaf € Pgs(¢) for somep € R. and thatf, # 0 for s € S generic.
Then there exists a dense sub8et S, such thatf, is semistable of phasefor all s € Z.

Proof. By [APOQ6, Proposition 3.5.3], applied to the smooth locusSefthere exists a dense
subsetZ C S such that, € P((¢ — 1,¢]). Since€ € P(> ¢ —¢) for all e > 0, and sincea?
is t-right exact, we also havg, € P(> ¢ — ¢) for all e > 0. Considering the HN filtration of
&, this shows thaf; € P(¢) forall s € Z. O

Proof of Theorend.3 The statement now follows easily from the above two lemmEBiest
of all, under the assumption of openness of stability, thesdesubsel of Lemmad4.7 may of
course be taken to be open.

Given any€ € D*(S x Y), let

(9) 0=E=¢&t— ... em=¢

be the Harder-Narasimhan filtration with respect to thersliof Lemma4.6, and let4’ be
the HN filtration quotients fitting in the exact triangfé—! — £/ — A7, Letjy, ..., ; be the
indices for which the generic fibét A’ does not vanish, and let be the phase ofis. Then
we claim that

(10) 0= & 582 5... 5 6m=¢

has the desired property. Indeed, there is an open sUbseth that for alls € U, the fibers
Al" are semistable for all=1,...,l, and such that? = 0 for all j ¢ {i1,...,4;}. Then, for
each sucls, the restriction of the sequence of mafi§)(via i} induces a sequence of maps
that satisfies all properties of a HN filtration. O

5. THE HYPERBOLIC LATTICE ASSOCIATED TO A WALL

Our second main tool will be a rank two hyperbolic latticecasated to any wall. Let
(X, @) be a twisted K3 surface. Fix a primitive vectore H), (X, «, Z) with vZ>0,and a
wall W of the chamber decomposition with respectto

Proposition 5.1. To each such wall, le¥,, C H*

a1g (X, Z) be the set of classes

Z(w)
93 — —
weHy & JZ(V)_O forallo = (Z,P) e W.

Then#,y has the following properties:

(@) Itis a primitive sublattice of rank two and of signaturg —1) (with respect to the
restriction of the Mukai form).

(b) Letoy,o_ be two sufficiently close and generic stability condition®pposite sides
of the wall)V, and consider any . -stable objectt'’ € M, (v). Then any Harder-
Narasimhan filtration factorA; of E with respect too_ has Mukai vectov(A4;)
contained inHyy.

(c) If og is a generic stability condition on the waly, the conclusion of the previous
claim also holds for any(-semistable objecE of classv.

(d) Similarly, letE be any object witlv(E) € Hyy, and assume that it isy-stable for
a generic stability conditiormy € W. Then every Jordan-dlder factors ofE with
respect targ will have Mukai vector contained iy .

The precise meaning of “sufficiently close” will become aggpet in the proof.
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Proof. The first two claims of&) are evident. To verify the claim on the signature, first note
that by assumption o, the lattice#,y is either hyperbolic or positive (semi-)definite. On
the other hand, consider a stability conditior= (Z, A) with Z(v) = —1. Since(3Z)? > 0

by Theorem?2.8, since?{,y is contained in the orthogonal complementX¥, and since the
algebraic Mukai lattice has signatuf®, p(X)), this leaves the hyperbolic case as the only
possibility.

In order to prove the remaining claims, considereameighborhoodB,.(7) of a generic
stability conditionsr € W, with 0 < € < 1. Let &, be the set of objects’ with v(E) = v,
and that are semistable for some stability conditiorBirfr). Let 4L, be the set of classes
u € H}), (X, a,Z) that can appear as Mukai vectors of Jordan-Holder factofs @ &y, for
any stability conditioin(Z’, A") € B.(r). As shown in the proof of local finiteness of walls
(see Bri08, Proposition 9.3] orBM11, Proposition 3.3]), the sét,, is finite; indeed, such a
class would have to satisfy’(u)| < |Z’(v)|. Hence, the union of all walls for all classes in
iy is still locally finite.

To prove claim ), we may assume thay is the only wall separating; ando_, among
all walls for classes il,. Letog € VW be a generic stability condition in the wall separating
the chambers of,o_. It follows that bothFE, and each4;, is og-semistable. Since this
argument works for generig,, we must have(A;) € Hyy by the definition ofty.

Claim (c) follows from the same discusstion, ard) §imilarly by considering the set of all
walls for the classel, g instead o, . O

Our main approach is to characterize which hyperbolicdest{ c H;lg(X, a,7Z) corre-
spond to a wall, and to determine the type of wall purely imteiof 7. We start by making
the following definition:

Definition 5.2. LetH C H;g(X, a, 7)) be a primitive rank two hyperbolic sublattice contain-
ing v. A potential wall»V associated t@{ is a connected component of the real codimension
one submanifold of stability conditions = (Z, P) with the condition thatZ (# ) is contained

in aline.

Remark 5.3. The statements of Propositiénl are still valid when/V is a potential wall as
in the previous definition.

Definition 5.4. Given any hyperbolic latticé{ C H;‘lg(X, a, 7)) of rank two containings, we

will denote byPy;; C H ® R the cone generated by integral clasaes #H with u?> > 0 and
(v,u) > 0. We will call P}, the positive coneof H, and a class iy, N #H will be called a
positive class

We note that the conditiofv, u) > 0 just picks out one of the two components of the set
of real classes witm? > 0. Also observe thaP;; can be an open or closed cone, depending
on whether the lattice contains integral classethat are isotropicw? = 0.

Proposition 5.5. Let W be a potential wall associated to a hyperbolic rank two stitda
H C Hy,(X,a,Z). Foranyo = (Z,P) € W, letC, C H @ R be the cone generated by

a.

classean € H satisfying the two conditions

Z(u)
2
> — ——— )
u’ > -2 and %Z(V) >0
This cone does not depend on the choice af VW, and it containsPy.
If u € C,, then there exists a semistable object of cladsr everys’ € W. If u ¢ C,,

then there does not exist a semistable object of alefes generico’ € W.
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From here on, we will write”y, instead ofC,,, and call it the cone of effective classes in
‘H. Given two different wall3/V;, Ws, the corresponding effective con€$y, , Cyy, will only
differ by spherical classes.

Proof. If u> > —2, then by Theoren2.13there exists ar-semistable object of class for
everyo = (Z,P) € W. HenceZ(u) # 0, i.e, we cannot simultaneously haues # (which
implies %% =0) and%% = 0. Therefore, the conditioﬂ?% > 0 is invariant under
deforming a stability condition insid&/’, andC,, does not depend on the choicecoE W.

Now assume for contracdiction th&t, is not contained irCyy. Sincev € C)yy, this is
only possible if there is a real claase Py with ER% = 0; after deformings € W slightly,
we may assume to be integral. As above, this impligg(u) = 0, in contradiction to the
existence of a-semistable object of class

The statements about existence of semistable objectsvfdiiiectly from Theoren?.13

O

Remark 5.6. Note that by constructior(;yy C ‘H ® R is strictly contained in a half-plane. In
particular, there are only finitely many classe£iy Nv — Cy, NH (in other words, effective
classear such thatv — u is also effective).

We will use this observation throughout in order to freelyken@enericity assumptions:
a generic stability conditiomy € VW will be a stability condition that does not lie on any
additional wall (other thai) for any of the above-mentioned classes. Similarly, byiktab
conditionso, ,o_ nearbyoy we will mean stability conditions that lie in the two chamber
adjacent tas for the wall-and-chamber decompositions with respect joddrhe classes in
Cywnv—CuwNH.

The behavior of the potential wally is completely determined by the lattié¢ and its
effective coneCyy:

Theorem 5.7.LetH C H;‘lg(X, «, 7)) be a primitive hyperbolic rank two sublattice contain-
ing v. Let)V C Stab(X, «) be a potential wall associated # (see Definitiorb.2).

The setWV is a totally semistable wall if and only if there exists eitla@ isotropic class
w € H with (v,w) = 1, or an effective spherical classe C)y N H with (s,v) < 0. In

addition:

(@) The setV is a wall inducing a divisorial contraction if one of the folling three
conditions hold:
(Brill-Noether): there exists a spherical classs #H with (s,v) = 0, or
(Hilbert-Chow): there exists an isotropic class € H with (w,v) =1, or
(Li-Gieseker-Uhlenbeck): there exists an isotropic class € H with (w,v) = 2.

(b) Otherwise, ifv can be written as the sum = a + b of two positivé classes, or
if there exists a spherical clags € ‘H with 0 < (s,v) < "72 thenW is a wall
corresponding to a flopping contraction.

(c) In all other cases)V is either a fake wall (if it is a totally semistable wall), dris
not a wall.

The Gieseker-Uhlenbeck morphism from the moduli space e§€ker semistable sheaves
to slope-semistable vector bundle was constructeti®#8]. Many papers deal with birational
transformations between moduli spaces of twisted Giessimistable sheaves, induced by

3In the sense of DefinitioB.4.
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variations of the polarization. In particular, we refer Thh96 DH98] for the general theory
of variation of GIT quotients andG95 FQ95 MW97] for the case of sheaves on surfaces.
Theoremb.7 can be thought as a generalization and completion of thesétsen the case of
K3 surfaces.

The proof of the above theorem will be broken into four settioWe will distinguish two
cases, depending on wheth¥ércontains isotropic classes:

Definition 5.8. We say thatV is anisotropicwall if #,,, contains an isotropic class.

In Section6, we will analyze totally semistable non-isotropic walladaSection will de-
scribe non-isotropic walls corresponding to divisoriahwactions. In Sectio8, we will use a
Fourier-Mukai transform to reduce the treatment of isdtrapalls to the well-known behav-
ior of the Li-Gieseker-Uhlenbeck morphism from the Giesekeduli space to the Uhlenbeck
space, and Sectidhwill describe which of the remaining cases correspond tgpilogpwalls,
to fake walls, or to no wall at all.

6. TOTALLY SEMISTABLE NON-ISOTROPIC WALLS

In this section, we will analyzéotally semistable wallswhile some of our intermediate
results hold in general, we will focus on the case wherdoes not contain an isotropic class.
The relevance of this follows from TheorePal3 in this case, if the dimension of a moduli
spacelM, (u) is positive, then it is given by? + 2.

We will first describe the possible configurations of effeetspherical classes i, and
of spherical object$ € P(1) with v(S) € Hyy.

We start with the following classical argument of Mukai (¢Bri08, Lemma 5.2]). Given
an exact sequence in the heart of a bounded t-strugture

0--A—F—B—0,
we assume thdfom (A4, B) = 0.
Lemma 6.1(Mukai). We have an inequality
ext! (B, E) > ext! (4, A) + ext! (B, B).
The following is a well-known consequence of Mukai’s lemmf. ([HMSO08, Section 2]):

Lemma 6.2. Assume thab is a semistable rigid object with respect to a given stapition-
dition. Then any Jordan-élder filtration factor ofS is also spherical.

Proof. Let S be any semistable object wiitxt! (S, S) = 0. Pick any stable subobje@t c S
of the same phase. Then there exists a short exact sequence

TSR

with the following two properties:
(@) The objectl is an iterated extension @f.
(b) Hom(T, R) = 0.
Indeed, this can easily be constructed inductively: weklet= S/T. If Hom(T,S/T) = 0,

the subobjecff = T already has the desired properties. Otherwise, any nanfmerphism
T — R; is necessarily injective; if we leR, be its quotient, then the kernel 6f— Rs is a
self-extension of”’, and we can proceed inductively.
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It follows thatHom(T', R) = 0, and we can apply Lemnalto conclude thaBxt! (T, T') =
0. Hence(v(T),v(T)) < 0, which also impliegv(T),v(T)) < 0. Thusv(T) is spherical,
too.

The lemma follows by induction on the length $f O

Proposition 6.3. Let W be a potential wall associated to the primitive hyperbotittite 7,
and letoy = (Zp, Pp) € W be a generic stability condition withy(#) C R. ThenX andoy
satisfy one of the following mutually exclusive conditions

(a) The latticeH does not admit a spherical class.

(b) The latticeH admits, up to sign, a unique spherical class, and there asinique
op-stable objectS € Py(1) withv(S) € H.

(c) The lattice admits infinitely many spherical classes, and there exiatt®x two
op-stable spherical objectS, T € Py(1) with v(S),v(T) € H. In this case}H is
not isotropic.

Proof. Given any spherical class,c Hyy, then by Theoren2.13 there exists a-semistable
object S with v(S) = s andS € Py(1). If H admits a unique spherical class, then by
Propositions.1and Lemmg6.2, .S must be stable.

Hence it remains to consider the case whiradmits two linearly independent spherical
classes. If we consider the Jordan-Holder filtrationsrgfsemistable objects of the corre-
sponding class, and apply Propositibri and Lemma6.2, we see that there must be two
og-Stable objects, T" whose Mukai vectors are linearly independent.

Now assume that there are three stable spherical obfgcts, Ss € P(1), and lets; =
v(S;). Since they are stable of the same phase, we Have(S;, S;) = 0 for all i # j, as
well asExt*(S;, S;) = 0 for k& < 0. Combined with Serre duality, this impligs;,s;) =
extl(Si,Sj) > 0.

However, a rank two lattice of signatufé, —1) can never contain three spherical classes
s1, 82,83 With (s;,s;) > 0 for ¢ # j: We may assume that, s, are linearly independent. Let
m := (s1,s2) > 0; sinceH has signaturél, —1), we haven > 3. If we write s3 = zs1 +ysa,
we get the following implications:

2
(s1,83) >0 = y>—z

(s2,83) >0 = y< —=x

SIEE

(s3,83) = =2 = —22%42may —2y*> <0

However, by solving the quadratic equation fgrit is immediate that the term in the last
inequality is positive in the rang%x <y < Fx (see also Figuré).

Finally, if H admits two linearly independent spherical class, then the group generated
by the associated reflectiops, p is infinite; the orbit ofs consists of infintely many spherical
classes. Additionally, an isotropic class would be a ratieolution of—222 +2mzy — 2y? =
0, but the discriminantn? — 4 can never be a square whenis an integerm > 3. O

Whenever we are in case)( we will will denote the twooy-stable spherical objects by
S,T. We may assume that has smaller phase thah with respect tas ; conversely,S
has bigger phase thah with respect tar_. We will also writes := v(S),t = v(T'), and
m = (s,t) > 2. We identify R? with Hyy ® R by sending the standard basis(tot); under
this identification, the ordering of phasesRA will be consistent with the ordering induced by
o.. We denote by)(z,y) = —222+ 2may — 2y the pull-back of the quadratic form induced
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FIGURE 1. The planeH,y, oriented compatibly witlar

by the Mukai pairing or#{yy. Letr; < ry be the two solutions of-2r? + 2mr — 2 = 0;
they are both positive and irrational (a8 — 4 cannot be a square far > 3 integral). The
positive conePy is thus the cone between the two lings= r;x, and the effective con€'yy,
is the upper right quadraat y > 0.

We will first prove that the condition for the existence ofalft semistable walls given in
Theorem5.7 is necessary in the case of non-isotropic walls. We stalt aiit easy humerical
observation:

Lemma 6.4. Givenl > 1 positive classeay, ...,a; € Py witha? > 0, seta = a; +---+a;.
Then

(al2 + 2) < a’.

l
=1

KA
Proof. Since thea; are integral classes, arid,y, is an even lattice, we have? > 2. |If
a; # a;, thena;, a; span a lattice of signatur@, —1), which gives(a;, a;) > a?a? > 2.
Hencea? > Y1 a2 +2i(1—1) > Y\ a2 +2l. O
Lemma 6.5. Assume that the potential wall associated td{ satisfies the following condi-

tions:

(a) The wall is non-isotropic.
(b) There does not exist an effective spherical ctassCyy with (s, v) < 0.

Then)V cannot be a totally semistable wall.
In other words, there existsog-stable object of class.

Proof. We will consider two maps from the moduli spagé,,(v): On the one hand, by
Theorem2.16 the line bundl€/,,, on M, (v) induces a birational morphism

™ M, (v) = M.

The curves contracted by are exactly curves of S-equivalent objects.

For the second map, first assume for simplicity thét, (v) is a fine moduli space, and &t
be a universal family. Consider the relative Harder-Namndsin filtration forE with respect to
o_ given by Theorend.3. Leta,, ..., a,, be the Mukai vectors of the semistable HN filtration
quotients of a generic fibet,, for m € M, (v). On the open subséf of the Theoren.3,
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A /
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FIGURE 2. a2 < v?

the filtration quotients’?/£~! are flat families ofr_-semistable objects of class; thus we
get an induced rational map

HN: M, (v) -=» My_(a;) x --- X My_(ay,).

LetI C {1,2,...,m} be the subset of indiceswith a > 0, and leta = Y., a;.

Our first claim isa® < v?2, with equality if and only ifa = v, i.e., if there are no classes
with a? < 0: Let us consider case)(of Proposition6.3, case b) is simpler, and §) trivial.
Let v,, v, be the coordinates of in R?; the conditions(s,v) > 0 and (t,v) > 0 imply
2 < & < 2. The intersections of the lings = 2z andy = Z:a with the hyperbola
Q(z,y) = v? are the points with horizontal and vertical tangent linespectively. (Indeed,
the liney = %:c as well as the hyperbola are fixed under the reflectignand similarly
y = x for the reflectionps.) Thusv lies in between these two points, where the hyperbola
has negative slope. if,, a, are the coordinates af, then0 < a, < v, and0 < a, < v,, as
v — a is an effective class i¥)y. The claim thus follows from Figurg, which shows thaa
cannot lie in the interiof)(z, y) > v? of the hyperbola.

Lemma6.4then implies

(11) vi+2>a’+2>> (af +2),

icl
with equality if and only if| 7| = 1. By Theorem2.13 part ©), this says that the target of the
rational mapHN has at most the dimension of the source:

m
(12) dim My, (v) > dim M,_(ay).
=1
However, ifHN(E;) = HN(E>), thenE,, E5 are S-equivalent: indeed, they admit Jordan-
Holder filtrations that are refinements of their Harderd$amhan filtrations with respect to
o_, which have the same filtration quotients.
It follows that any curve contracted BN is also contracted by™; therefore

Z dim M, _(a;) > dim M = dim M, (v)
i=1

Hence we have equality in each step of the above inequalitieselative Harder-Narasimhan
filtration is trivial, and the generic fibet,, is o_-stable.
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In caseM,_ (v) does not admit a universal family, we can constrdet by first passing
to an étale neighborhoofl: U — M, (v) admitting a universal family; the induced rational
map fromU induced by the relative Harder-Narasimhan filtration wikn factor viaf. [

We recall some theory of Pell’s equation in the language bkgpal reflections of the
hyperbolic latticeH:

Proposition and Definition 6.6. Let Gy; C Aut# be the group generated by spherical re-
flectionsps for effective spherical classese Cyy. Given a positive class € Py N H, the
Gy-orbit G3.v contains a unique classg, such that(vg,s) > 0 for all effective spherical
classes € Cyy.

We callvy theminimal classof the orbitGy.v.

Note that the notion of minimal class depends on the potemtith V), not just on the lattice
H.

Proof. Again, we only treat the case)(of Proposition6.3, the other cases being trivial. It
is sufficient to prove thatvy,s) > 0 and(vo,t) > 0. Assume(v,s) < 0. Thenps(v) =
v — |(v,s)| - sis still in the upper right quadrant, with smallefcoordinate tharv, and with
the samey-coordinate. Similarly if(v,t) < 0. If we proceed inductively, the procedure has
to terminate, thus reaching,.

The uniqueness follows from Propositiér below. O

Assume additionally that! admits infinitely many spherical classes, so we are in ogse (
of Proposition6.3. The hyperbolav? = —2 intersects the upper right quadranty > 0
in two branches, starting atandt, respectively. Lety = s,s_1,8_o,... be the integral
spherical classes on the lower branch starting ahdt; = t, t9, t3,... be those on the upper
branch starting at, see also Figur8. Thes; can be defined recursively By ; = ps(t), and
Sk—1 = Ps; (Sk,1) for & < —1; similarly for thet;.

Proposition 6.7. Given a minimal class of aGy-orbit, definev;, i € Z viav; = pg, (vi—1)
fori > 0, andv; = ps,,(viy1) fori < 0. Then the orbitG.vq is given by{v; : i € Z},
where the latter are ordered according to their slope®Rih

Note that these classes may coincide pairwise, in eg$e orthogonal tas or t.

Proof. The groupGy is the free producZ, x Z,, generated by andpy. It is straightforward
to check that withv; defined as above, we have

vo1=ps(Vo), V_2=pspt(Vo), V_3=pspeps(Vo),. ..,

and similarlyv; = p(vo) and so on. This list containgvy) for all g € Zy x Zo. That thev;
are ordered by slopes is best seen by drawing a picture; se€&iglures. a

Fori > 0, letT;" € Py(1) be the uniquer, -stable object withv(7") = t;; similarly for
S with v(S;) = s; for i < 0. We also writeT;” andS; for the corresponding _-stable
objects.

Proposition 6.8. Let W be a potential wall, and assume there is an effective sphleciass
§ € Cyy with (v,s) < 0. ThenWV is a totally semistable wall.

Additionally, letvy be the minimal class in the orbit,.v, and writev = v; as in Propo-
sition 6.7. If ¢ (v) > ¢ ™ (vy), then

STTZ+ ¢} STT;:1 O--+0 STT1+ (Eo)
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Vo2 =ps_y(v-1)

FIGURE 3. The orbit ofv

is o -stable of classs, for everyo(-stable objectF, of classvy.
Simlarly, if¢*(v) < ¢*(vo), then

STl oST_!

Sil+1 Siuz

is o-stable of classs for everyoy-stable object of classy.

The analogous statement holds for.

0w 0 ST (Ey)
S()

Note that when we are in cada) pf Proposition6.3, the above sequence of stable spherical
objects will consist of just one object.
Before the proof, we recall the following statement (88®[L1, Lemma 5.9]):

Lemma 6.9. Assume thatl, B are simple objects in an abelian categoryHlfis an extension
of the form
A~ E — B%"
withHom(B, E) = 0, then any quotient oF is of the formB®"’. Similarly, given an extension
A" < E - B
with Hom(E, A) = 0, then any subobject df is of the formA®™",

Proof. We consider the former case, i.e., an extenslonrs £ — B®"; the latter case follows
by dual arguments. LeE — N be any quotient off. Since A is a simple object, the
compositiony: A — E — N is either injective, or zero.

If v = 0, then N is a quotient ofBY", and the claim follows. I} is injective, letM
be the kernel off — N. ThenM N A = 0, and soM is a subobject of3®". SinceB is
a simple objectM is of the form B®"' for somer’ < r; sinceHom(B, E) = 0, this is a
contradiction. O

Proof of Propositior6.8. Consider the first claim. By Lemm&2, there is arg-stablespher-
ical objectS with (v(S),v) < 0. If E is ac,-stableobject of classv, thenHom(S, E) =
Hom(E, S) = 0; hence(v(S),v) = ext' (S, E) > 0, a contradiction.

To prove the construction of . -stable objects, let us assume that we are in the case of
infinitely many spherical classes. Let us also assumegthét) > ¢ (v), the other case is
analogous; in the notation of Propositiétv, this meanss = v; for somel > 0. We define
E; inductively by

Ei == STTi+ (Ez;l).
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By the compatibility of the spherical twiStT ; with the reflectionpv( 3) and Propositior6.7,
we havev(E;) = v;. Lemma6.9 shows thatF,; is o -stable; however, for the following
induction steps, we cannot simply use Lemf@ again, as neithef; nor 7" are simple
objects inPy(1).

Instead, we will need a slightly stronger induction statetneJsing Propositiorb.1, in
particular part i§), we can define a torsion paif;, F;) in Ay := Py(1) as follows: we let
7; be the extension closure of ail, -stable objectd’ € Ag with ¢ (F) > ¢*(t;11); by
Theorem2.13 7; is the extension-closur& = (T;",...,T;"). Then let4; = (F;, Ti[-1])
(see Figured). We can also describd;, 1 inductively as the tilt ofA4; at the torsion pair
(T, F)with T = (T;1,)®" and F = (T;%,)".

Induction claim: We haveE; € F;, and bothZ; andT;fH are simple objects afl;.

By construction of the torsion paif7;, F;), this also shows that; is o -stable.

The caseé = 0 follows by the assumption thd, is o(-stable To prove the induction step,
we first consideﬂ}il. By stability, we haveT;[1 € 7? = JF;. Using stability again, we
also see that any non-trivial quotientBf; ; contained ir7;, soT}% , is a simple object of7;.
SinceT}!, is stable of maximal slope iff;, there also cannot be a short exact sequence as in
(13) below. Therefore, Lemm@10shows tha’rljjH is a simple object of4;.

SinceF; (by induction assumption) is also a simple objectin this showdHom (E;, T;EH) =
Hom(T}, |, E;) = 0. Therefore, RHom(T}, |, E;) = Ext!(T}}, E;)[-1], and B, =
ST+ (E;) fits into a short exact sequence

i+1

0— E; < By — T4 @ Ext!(T)h |, E;) — 0.
In particular, E; 1 is also an object off;. Note that

RHom(}},, Bi1) = RHom(ST,L (T}%,),ST,! (i) = RHom(Ti, 1] )

is concentrated in degree -2; this shows both fiaa; € (7;%,)* C A;, and that there are no

extensionst; 1 < F' — Jﬁ’j. Applying Lemma6.10via the inductive description of;, 1

as a tilt of A;, this proves the induction claim. O

Lemma 6.10. Let (7, F) be a torsion pair in an abelian categong, and letF’ € F be an
object that is simple in the quasi-abelian categdfy and that admits no non-trivial short
exact sequences

(13) 0=F—=F -»T—=0
with F/ € F andT € 7. ThenF is a simple object in the tilted catego# = (F, T[—1]).

Proof. Consider a short exact sequende— F — B in Af. The long exact cohomology
sequence with respect #is

0—HY(A) = F— F - HY A =0

with #%(A) € F,F' € F andHY(A) € T. SinceF is a simple object inF, we must have
’H&(A) = 0. Thus we get a short exact sequence ag8), @ contradiction. a
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FIGURE 4. The tilt categoriesA; and A,

7. DIVISORIAL CONTRACTIONS IN THE NON-ISOTROPIC CASE

In this section we examine TheoreBi/ in the case of divisorial contractions when the
lattice H,y does not contain isotropic classes. The goal is to provedif@fing proposition.

Proposition 7.1. Assume that the potential wall is non-isotropic. ThenV is a divisorial
contraction if and only if there exists a spherical class 7,y with (s, v) = 0. If we choose
S to be effective, then the class of the contracted dividas given byD = 6(8).

If S is a stable spherical object of clasgS) = 8, thenD can be described as a Brill-
Noether divisor ofS: it is given either by the conditioRlom (S, _) # 0, or byHom(_, S) #
0.

One can use more general results of MarkmarmMarD9 to show that a divisorial contrac-
tion implies the existence of an orthogonal spherical dlagke non-isotropic case. We will
instead give a categorical proof in our situation.

We first treat the case in which there existgjastableobject of class:

Lemma 7.2. Assume tha#{ is non-isotropic, and thatV is a potential wall associated to
H. If v is a minimal class of a3y-orbit, and if there is no spherical class € H,y with
(8,v) = 0, then the set ofy-stableobjects inM,_ (v) has complement of codimension at
least two.

In particular,)V cannot induce a divisorial contraction.

Proof. The argument is similar to Lemm&5; an additional ingredient is Namikawa’'s and
Wierzba'’s characterization of divisorial contractionsaked in Theoren3.6.

For contradiction, assume that there is a divisdorC M, of objects that are strictly
semistable with respect t@. Let morphismr™: M,, — M be the morphism induced by
{s,; itis either an isomorphism or a divisorial contraction.t e C M, be an irreducible
divisor of strictly op-semistable objects. The morphistii may are may not be contracted by
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7T; by TheorenB.6, we havedim 7™ (D) > dim D — 1 = dim M, (v) — 2 = v? in either
case.

On the other hand, consider the restriction of the univelaalily £ on M, (v) to the
divisor D, and its relative Harder-Narasimhan filtration with red¢peco_. As before, this
induces a rational map

HND: D --» Ma, (al) X oo X Ma, (al).

Again, let] C {1,...,1} be the subset of indiceswith a? > 0, anda = },_; a;. The proof
based on Figuré still applies, and showa? < v2.

If I # {1,...,1}, there exists a clags; appearing in the Harder-Narasimhan filtration of
the forma; = ms, §2 = —2. Under the assumptions, we now have $tect inequality
(8,v) > 0, from which we obtaim? < (v —§)? < v? — 3.

Otherwise, ifl = {1,...,1}, we havelI| > 1, and we can apply Lemn4; in either case
we obtain

l

Z dimyy, (a) = Z(al2 +2) < v? =dim7 (D).
i=1 i€l

As before, this is a contradiction to the observation thgt@anve contracted by AN is also

contracted byr ™. O

The case of totally semistable walls can be reduced to thégu®one:

Corollary 7.3. Assume that{ is non-isotropic, and that there does not exist a spheritzs
§ € H with (§,v) = 0. Then a potential wall associated #& cannot induce a divisorial
contraction.

In fact, we will later see that all potential walls assoaibte?{ are mapped to the same wall
in the movable cone of the moduli space; thus they have td@xtiential birational behavior.

Proof. As before, consider the minimal clasg of the orbitG.v, in the sense of Definition
6.6. By Lemma7.2, there is an open subskt C M, (vo) of objects that are-stablethat
has complement of codimension at least two.

Let ® be the composition of spherical twists given by Proposid®) such thatb(Ey) is
o -stable of class for every[Ey| € U. Observe tha(E)) has a Jordan-Holder filtration
such thatEy is one of its filtration factors (the other factors are stadpberical objects).
Therefore, the induced map.: U — M, (v) isinjective, and the image does not contain any
curve of S-equivalent objects with respecttp Also, @, (U) has complement of codimension
at least two (see e.gGHJO3 Proposition 21.6]). Sincé,, does not contract any curves in
@, (U), it cannot contract any divisors i, (v). O

The next step is to construct the divisorial contraction mvligere exists an orthogonal
spherical class. To clarify the logic, we first treat the dengase of a wall that is not totally
semistable:

Lemma 7.4. AssumeH is non-isotropic, )V a potential wall associated t&, and thatv is a
minimal class of a-orbit. If there exists a spherical clagse H with (s, v) = 0, thenW
induces a divisorial contraction.

If we assume that is effective, then the contracted divisbr C M, (v) has clasg(s).
The HN filtration of a generic elemefi] € D with respect tar_ is of the form

0SS E—-F—0 oo 0>F<—E—»S—0,
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whereS and F' are o-stable objects of classandv — §, respectively.

Proof. As before, we only treat the case whinadmits infinitely many spherical classes. In
that case, we must hage= s or s = t; we may assumg = s, and the other case will follow
by dual arguments.

We first prove that —s is a minimal class in it674,-orbit by a straightforward computation.
If v2 = 2, then(v —s)? = 0in contradiction to the assumption; therefere> 4. If we write
v = xs + yt, then(v,s) = 0 givesy = Zz. Plugging inv? > 4 givesz? (1 — ) > 2.
Sincem > 3, we obtain

and therefore
2 4
(t,v—s)=m(z—-1)—2—z=mzx(1l—— ) —m>0.
m

Also, (s,v—s) = 2 > 0, and therefore —s has positive pairing with every effective spherical
class.

By Lemma6.5, the generic elemert € M, (v —s) is alsooy-stable Since(s,v—s) = 2
andHom(F, S) = Hom(S, F') = 0, there is a family of extensions

0—=S—=E,—-F—=0

parametrized by € P! = P(Ext!(F, S)). By Lemma6.9, they areo, -stable. Since alE,
are S-equivalent to each other, the contraction morphismaZ,, (v) — M associated tdV
will contract the image of this rational curve. Varyidge M;! (v — s), these span a family
of dimensionl + (v — s)? + 2 = v2 + 1; this is a divisor inM,,, (v) contracted byr ™.
Sincer™ has relative Picard-rank equal to one, it cannot contracbémer component. [

The following lemma treats the general case, for which weé fivéit set up notation. As
before, we letvy be the minimal class in th€'y-orbit of v. By §; we denote the effective
spherical class witlivg,Sy) = 0; we haves, = t or §y = s. Accordingly, in the list of the
Gy-orbit of v given by Propositior6.7, we have eitheps; = vg;11, Or vo; = v9;—1 for all ¢,
sincevy is fixed under the reflectiops, atsy. We choosé such thatv = v;, and such that
the corresponding sequence of reflections sépds s:

5o Pt, © P, 0 -0 pey(Sg) IF1>0
Psi © Psy o---0ps_,(S9) Ifl<O

Depending on the ordering of the slopg$(v), ¢™ (vp), we let® be the composition of
spherical twists appearing in Propositiérs.

Lemma 7.5. Assume that{ is non-isotropic, andV a corresponding potential wall. If there
is an effective spherica € C)y with (v,s) = 0, thenW induces a divisorial contraction.

The contracted divisoD has clas9/(s). The Jordan-Hlder filtration of a generic element
E € D is arefinement of a short exact sequence of the form

(14) 03S—FE—»F—=0 or 0F<—E-—»8—0,

whereF" and S are o -stable objects of class — § ands, respectively.
In addition, there exists an open subggt C M, (vq), with complement of codimension
two, such thatb(Ey) is o -stable for every . -stable objectt, € U.
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Proof. We rely on the construction in the proof of Propositiéi8, and in particular on the
induction claim proved therein.

Let Sy be the stable spherical object of clags we haveS; = S or Sy = 7. As in the
proof of Lemmar.4, one shows thaty — s is the minimal class in ité74-orbit.

Let Fy be a generie-stableobject of class/g — 8. Applying Propositior6.8to the class
v — §, we see that’ := ®(Fy) is o,-stable of that class.

Up to duality, we may again assume tldats of the formSTJTfl 0---0 STT1+. Inductively,

one shows thaf(S) = Tli;l and ®(T) = T;[-1]. These are both simple objects of the

category.4; defined by tilting in the proof of Propositioh 8 therefore,S := <I>(§0) is simple

in A;. By the induction claimf’' = ®(F}) is also a simple object in this category. In particular,
Hom(S, F) = Hom(F, S) = 0 andext! (S, F) = 2. Applying Lemma6.9 again, and using
the compatibility of.4; with stability, we obtain a stable extension of the fortd)(

This gives a divisor contracted hy", and we can proceed as in the previous lemma.

Let Dy C M, (vo) be the contracted divisor for the clagg. The above proof also shows
that for a generic objedty € D, (whose form is given by Lemma4), the objectd(Ey) is
ao -stable (contained in the contracted divide). Thus we can také& " to be the union of
all op-stableobjects inM,,, (vo), with the open subset dD, of objects of the form given in
Lemma7.4. O

Proof of Proposition7.1 The statements follow from Corollafgz3and Lemma/.5. O

8. ISOTROPIC WALLS AREUHLENBECK WALLS

In this section, we study potential wal¥’ in the case wher@{ admits an isotropic class
w € H,w? = 0. Following an idea of Minamide, Yanagida, and YoshiokéY[Y11b], we
study the wallWV via a Fourier-Mukai transform after whick becomes the class of a point.
Theno corresponds to Gieseker-stability and, as prover.alp], the wall corresponds to
the contraction to the Uhlenbeck compactification, as caottd by Jun Li in [i93].

Parts of this section are well-known. In particulafp§99 Proposition 0.5] deals with the
existence of stable locally-free sheaves. For other géresalts, seeYos01].

The Uhlenbeck compactification. We start with the following observation:

Lemma 8.1. Assume that there exists an isotropic clas$4in Then there are two effective,
primitive, isotropic classesry andw in #, such that, for a generic stability conditian, <
W, we have
(@) My, (wo) = M3t (wyo), and
(b) either M, (wy) = M3 (w), or there exists ary-stable spherical objecf, with
Mukai vectors, such that(s,w;) < 0 andW is a totally semistable wall fow.

Any positive class’ € Py, satisfiegv',w;) > 0fori=1,2.

Proof. Letw € #H be primitive isotropic class; up to replacing by —w, we may assume it
to be effective. We complet& to a basis{v, w} of Hg. Then, for all(a, b) € Q, we have
(av +bW)* = a- (aVv? 4+ b(¥,W)) .

This shows the existence of a second integral isotropicscldsve choose it to be effecitve,
then the positive cone, generated By, is exactly the con®>( - wg + R - wy; from this,
the claim(v’, w;) > 0 follows easily.
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By Theorem2.13 we haveM,,(w) # 0. If VW does not coincide with a wall fok, then
we can takewy = w, and claim §) will be satisfied.

Otherwise, letr € Stab'(X,«) be a generic stability condition nearby; by [BM12,
Lemma 6.2], we havé/, (w) = M35 (w) # (.

Up to applying a Fourier-Mukai equivalence, we may assuna¢wh = (0,0, 1) is the
Mukai vector of a point on a twisted K3 surface; then we carafiye classification of walls
for isotropic classes ingri08, Theorem 12.1], extended to twisted surfacesHMB0§. If
W is a totally semistable wall fo&, then we are in casdsit) and(A~) of [Bri08, Theorem
12.1]. Hence, there exists a spheriegtstable twisted vector bundig such thatS or S[2]
is a JH factor for the skyscraper shédf), for anyx € M,(w). Moreover, the other non-
isomorphic JH factor is eitheé8Ts(k(x)), or ST~1(k(z)). In both cases, the Mukai vector
wy of this last JH factor is primitive and isotropic, abd is not a wall forw.

Finally, if W is awall forw, but not a totally semistable wall, it must be a wall of tyi&,).
However, the rank two lattice corresponding to a wall of typg) is negative semi-definite;
on the other hand, by Propositiénl, claim (d), it must coincide witt#{, which has signature
(1,—1); this is a contradiction. O

Let wg, w; € C)y be the effective, primitive, isotropic classes given by @heve lemma,
and letY := M, (wq). ThenY is a K3 surface and, byMuk87a Cal02 Yos06 HS04, there
exist a clasg’ € Br(Y) and a Fourier-Mukai transform

®: D(X,a) 5 DO(Y, )

such that®(wg) = (0,0, 1). By construction, skyscraper sheaves of point&oare ®, (oy)-
stable. By Bridgeland’s Theoreth7 (generalized to twisted K3 surfaces iHN1S08), there
exist divisor classes, f € NS(Y')q, with w ample, such that up to theL,-action, .. (o)
is given byo,, g. In particular, the categor,, 5(1) is the extension-closure of skyscraper
sheaves of points, and the shift$l] of ;.. -stable torsion-free sheavéswith slopey,, g(F') =
w - . Sinceoy by assumption does not lie on any other wall with respeet, tile divisorw is
generic with respect t®., (v).

By abuse of notation, we will from now on writeX, ) instead of(Y, o), v instead of
®,(v), andoy instead ofo,, g. Leto, = 0,3 ando_ = o, g4.; heree is a sufficiently
small positive multiple ofv.

Proposition 8.2([Lo12, LQ11]). An object of class is o -stable if and only if it is the shift
F[1] of a -twisted Gieseker stable she&fon (X, «); the shift[1] induces the following
identification of moduli spaces:

My, (v) = My s(—).

Moreover, the contraction morphism' induced via Theorerd.16for genericoy € W is the
Li-Gieseker-Uhlenbeck morphism to the Uhlenbeck comipaation.

Finally, an objectF of classv is o_-stable if and only if it is the shiff"V[2] of the derived
dual of a(—p)-twisted Gieseker stable sheaf ok, —«).

Proof. The identification of?/, (v) with the Gieseker-moduli space is well-known, and fol-
lows with the same arguments as BriD8, Proposition 14.2]. The identification af" with
the morphism to the Uhlenbeck space follows from the contiminaof [Lo12, Theorem 3.1]
with Theorem2.16

The claim aboutF'V[2] being o_-stable follows by combining Propositich 10 with the
previous statements (see also 9d&'[r11a, Proposition 2.2.7] in the cage= 0). O
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In other words, the coarse moduli spatk, (v) is isomorphic to the Uhlenbeck compact-
ification ([Li93, Yos0§) of the moduli space of slope-stable vector bundleg.&na). Given
a (twisted) Gieseker-stable shdafe M, 3(—v), theo -stable object'[1] becomes strictly
semistable with respect tg) if and only if F' is not locally free, or ifF" is not slopestable

In particular, when the rank of v equals one, then the contraction morphism is the
Hilbert-Chow morphisnHilb™(X) — Sym"(X); see alsoBM12, Example 9.1].

Totally semistable isotropic walls. The goal of this section is to estimate the locusdp, (v) =
M, (—v) of sheaves which are neither slope-semistable nor lofal- We start with the ex-
istence of a unique spherical stable object in the case théswiatally semistable:

Lemma 8.3. Assume thatV is a totally semistable wall fov.

(a) There exists a unique spherical-stable objectS € P, (1).
(b) LetE € M, (v) be a generic object. Then its HN filtration with respectto has
length2 and takes the form

(15) S% s F, o F—E— 8%
with a € Z~. Theo_-semistable objeck’ is generic inM,_(v’), for v/ := v(F),
anddim M,_(v') = dim M,, (v) = v? 4+ 2.

The idea of the proof is very similar to the one in Lemé&a The only difference is that we
cannot use a completely numerical criterion like Lemnéand we will replace it by Mukai's
Lemma6.1

Proof of LemmaB.3. We first prove §). We consider again the two maps
" My, (v) = M,
HN: M, (v) -=» My_(a;) x -+ X My_(ay,).

The first one is induced b§,, and the second by the existence of relative HN filtrations. By
[HL10, Section 4.5], we have, for all=1,...,m and for allA; € M,_(a;),

dim M,_(a;) < ext!(A;, 4;).
Hence, by Mukai’'s Lemm@&.1, we deduce

m
(16) dim My, (v) > dim M,_(ay).

=1
Equation (6) is the analogue ofl) in the non-isotropic case. Since any curve contracted by
HN is also contracted by ™, it follows that

Z dim M, _(a;) > dim M = dim M, (v).
i=1

Therefore equality holds, aridN is a dominant map.
This shows that the projections

M,

oy ~77 MO'7 (ai)

are dominant. By Theore®\8 M,,_(a;) has symplectic singularities. Hence, we deduce that
either M,,_(a;) is a point, ordim M, (a;) = dim M,, (v) = v? + 2. Sincem > 2, by
Lemma6.2this shows the existence of a spheriggistable object ifP,, (1). By Proposition
6.3, there can only be one such spherical object.
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To prove p), we first observe that by uniqueness (and by Len@raagain), allo_-
spherical objects appearing in a HN filtration of a generamantEl € M, (v) must be
op-Stable as well. As a consequence, the length of a HN filmadioL with respect tar_
must be2 and have the form1Q). Since the mapd/,, --» M,_(a;) are dominant, the
o_-semistable object’ is generic. d

We can now prove the first implication for the characteraatof totally semistable walls
in the isotropic case. We lst:= v(S), whereS is the uniquer,-stable object iP,,(1).

Proposition 8.4. LetV be a totally semistable wall for. Then either there exist an isotropic
vectorw with (w,v) = 1, or the effective spherical classsatisfies(s, v) < 0.

Proof. We continue to use the notation of Lem&. In particular, considex’ = v — as
with a > 0.

If (v/)2 > 0, then by LemmaB.3 and Theoren?.13b), we have(v')? = v2. Since
v = v —as,a > 0, this implies(s, v) < 0.

So we may assume? = 0. Thenv? = 0+ 2a(v/,s) — 2a?, and it follows that(v’,s) > 0.
In the notation of Lemma&.1, this means that’ is a positive multiple ofw, which we can
take to be the class of a point! = cwy = ¢(0,0,1).

Then the coarse moduli spadé,,(v') is the symmetric producym® X; if we definen
by v = 2n — 2, then the equality of dimensions in Lemi@a becomes: = n. Therefore

2

2n — 2 = v2 = (as + nwy)? = —2a® 4 2an(s, wy)

or, equivalently,
17) a(n(s,wo) —a) =n— 1.

Recall that(s, wy) > 0; by the geometric-arithmetric mean inequality, this ireplis, wg) =
1. (Concretely, this means the spherical objgds the shift of a line bundle.)

In this case, solvingl(7) for a gives the two solutiongs = 1 anda = n — 1. In the former
case,(v,wy) = 1. In the latter case, observe that = w( + s, and(v,w;) = 1 follows
directly. O

The converse statement follows from Propositio8above, and Lemma@.5 below.

Lemma 8.5. Let W be a potential wall. If there exists an isotropic class € Hy, with
(w,v) =1, thenW is a totally semistable wall.

Proof. Note that by Lemm&.1, the primitive classw is automatically effective. Lety € W
be a generic stability condition. IM;é (w) # 0, then we can assume = (0,0,1). In
this case-v has rank one), (v) is the Hilbert scheme, and’ is the Hilbert-Chow wall
discussed inBM12, Example 9.1]; in particular, it is totally semistable.
Otherwise M;! (w) = (); hence, in the notation of Lemn&al, we are in the case = w1,
and there exists &,-stable spherical objec, with Mukai vectors, such tha{s, w;) < 0.
Write wi = wq + rs, wherer = (s, wq) € Z~o. Then

1= (v,wy) = (v,wqp) +r(v,s).

By Lemmas8.1, (v, wy) is strictly positive, and sdv,s) < 0. If the inequality is strict,
Proposition6.8 applies. Otherwisev,s) = 0 and(v, w;) = (v, wg) = 1; thus we are again
in the case of the Hilbert-Chow wall, an is a totally semistable wall fov. O
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Divisorial contractions. We now deal with divisorial contractions for isotropic v&allThe
case of a flopping wall, a fake wall, and no wall will be exandine Section9.

Proposition 8.6. Let )V be a wall inducing a divisorial contraction. Assume thiat w) #
1,2, for all isotropic vectorsw € . Then there exists an effective spherical clagsH with
(s,v) =0.

Proof. The proof is similar to the one of Lemn¥aZ in particular, we are going to use Theo-
rem3.6. Let D C M, (v) be an irreducible divisor contracted by : M, (v) — M. We
know thatdim 7+ (D) = v2. Consider the rational map

HNp: D --» M, _ (al) X oo X My (al)

induced by the relative HN filtration with respectda. We letl C {1,...,1} be the subset
of indicesi with a? > 0, anda =Y, ; a;.

Step 1.There exists an effective spherical class H.
Indeed, assume for a contradiction that it does not exisenee can writev = ngwg +
niwi + a, with (wg, wy) > 0 and(v,w;) > 3, fori = 0,1. We have

a? = (v — ngwo — niw1)? = vZ = 2ng(v, wo) — 2n1 (v, w1) + 2ngni(wo, w1)

= v? —ng(2(v,wo) — (n1w1, wg)) — n1(2(v, wi) — (nowo, w1)).

But (_, w;) is positive on effective classes, fo= 0,1. Hence,(v,wg) > (nywy,wg) and
(v,w1) > (nowo, wy). Therefore,

a? <v? —ng((v,wo) + 1) —ni((v,w1) + 1) < v? — dng — 4n,.
So the dimension o, _(a;) x --- x M,_(a;) is bounded above by
a2+2—|—2n0—|—2n1 §v2—2n0—2n1 <V2,
a contradiction.

Step 2.We have(s, v) < 0.
Indeed, assume for a contradiction tliatv) > 0. Thenw; = ps(wy) and we can write
v = as + bwq + a. We have, as before,

a? = (v —as — bwo)? = v — 2a(v,s) — 2a% — 2b(v, wy) + 2ab(s, wo)
= v? — 2a(v,s) — 2a® — 2b((v, wq) — (as, wp))
< v? —2a(v,s) — 2a® — 2b.
Hence, the dimension dfl,_(a;) x --- x M,_(a;) is bounded above by
a? +242b < v?—2a(v,s) —2a® + 2 < v,
a contradiction.

Step 3.We have(s, v) = 0.

Indeed, assume for a contradiction tiiatv) < 0. By Proposition6.8 W is a totally
semistable wall forv. We considerv’ = pg(v) as in Lemma8.3 The wall W induces a
divisorial contraction fow if and only if it induces one fox’. But, since(v,w) # 1,2, for
all w isotropic, thenv’, w) # 1,2 as well. Moreover(s, v') > 0. This is a contradiction, by
Step 2. O

The converse of Propositidh6is a consequence of the following three lemmata:
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Lemma 8.7. Let W be a potential wall. Assume thév, wy) = 2. Then)V induces a
divisorial contraction.

Proof. By identifying M, , (v) with M,, g(—v), this follows if there is a divisor ab-Gieseker
stable sheaves which are torsion-free but not locally-f\&e can describe explicitly a con-
tracted divisor ob-semistable objects as follows. Sinbe wy) = 2, we can assume that
has the form-(2, D, s), with D an integral divisor which is either primitive @ = 0. We can
consider the vectov’ = —(2, D, s + 1). By assumption(v’)? > —2, and soM,, 5(—v') # 0
by Theoren?.13 Given anyw-Gieseker stable sheaf with vectorv’ and a pointr € X, the
surjectionsF’ — k(x) induce extensions

k(x) — E[1] = F[1] — k(z)[1]

of objects in)M,,, (v) that areS-equivalent wiht respect t@,. Dimension counting shows that
they sweep out a divisor. O

Lemma 8.8. Let W be a potential wall. Assume that there exists an effectierigal class
s € H such that(v,s) = 0. Then)V induces a divisorial contraction.

Proof. LetS € M,,(s) be the unique-stable spherical object with Mukai vectarConsider
the vectora = v — s. Then we have

a’=(v—s)l=v>-2

(a,s) = —s* = 2.

If v2 > 2, thena? > 0. Sincew; = bs + wo, with b > 0, we have(w;,a) > (wo,a). If
(wo,a) > 2, then)V is not a totally semistable wall fer. Hence, giverA € M, (a), all the
extensions

S—-F—= A

give a divisorD C M, (v), which is aP!-fibration overM 3’ (a) and which gets contracted
by crossing the wallW. If (wg,a) = 1, then alsowg,s) = 1. Hence,—v has rank2. Then
W induces a divisorial contraction by Lemr8&.

Finally, assume that? = 2. Thena is an isotropic vector witla, v) = (a,s) = 2. But this
implies that(wg,v) = 1,2. The cas€wg,v) = 2 is again Lemma.7;, and if (wg,v) = 1,
then—wv has rankl, and we are in the case of the Hilbert-Chow wall. O

Lemma 8.9. Let)V be a potential wall. If there exists an isotropic clagsuch thatv, w) €
{1, 2}, thenW induces a divisorial contraction.

Proof. By Lemma8.1, the classw is automatically effective. By Lemnta7, the only remain-
ing case isw = wi, with w; = as + wg anda > 0. By Lemma8.8 we can assume that
(s,v) #0.

If (s,v) >0, then

(w1,v) =a(s,v) + (wg,v) € {1,2}.
Since(wg,v) > 0 anda > 0, this is possible only ifw, v) = 1, which corresponds to the
Hilbert-Chow contraction.

Hence, we can assuntg, v) < 0. By Proposition6.8, W is a totally semistable wall for
v, and}V induces a divisorial contraction with respectvdf and only if it induces one with
respect tov’ = ps(v). Butthen(v/, wy) = (v,w1) € {1,2}. Again, we can use Lemnta7
to finish the proof. a
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9. FLOPPING WALLS

This section deals with the remaining case of a potential Wal assuming thaV does
not correspond to a divisorial contraction, we describe lictv cases it is a flopping wall, a
fake wall, or not a wall. This is the content of Propositiéh&and9.4.

Proposition 9.1. Assume thatV does not induce a divisorial contraction. If either

(a) v can be written as the sumn= a; + as of two positive classes;,a; € Py N'H, or
(b) there exists a spherical classs W with 0 < (5,v) < "—22

then)V induces a small contraction.

Lemma 9.2. Let M be a lattice of rank two, an@' ¢ M ®R? be a convex cone not containing
a line. If a primitive lattice element € M N C can be written as the sum = a + b of
two classes im,b € M N C, then it can be written as a sum = a’ + b’ of two classes
a’,b’ € mN Cin such a way that the parallelogram with vertidgsa’, v, b’ does not contain
any other lattice point besides its vertices.

Proof. If the parallelogran®, a, v, b contains an additional lattice poiat, we may replace
by a’ andb by v — a’. This procedure terminates. O

Lemma 9.3. Leta,b,v € H N C)y be effective classes with = a + b. Assume that the
following conditions are satisfied:
e The phases df, b satisfy¢'(a) < ¢*(b).
e The objects4, B are o -stable withv(A) = a,v(B) = b.
e The parallegram ir{ @ R with vertices0, a, v, b does not contain any other lattice
point.
e The extensiod — E — B satisfiesHom(B, E) = 0.

ThenE is o -stable.

Proof. Let a; be the Mukai vector of a Harder-Narashimhan filtration facioE. By Propo-
sition 5.1 part ) and Remarls.3, we havea; € H. We haveE € P, ([¢"(a), o™ (b)]),
and hence; is contained in the cone generateddhyb. Since the same holds for— a; =
Z#i aj, a; is in fact contained in the parallelogram with verti¢ea, v, b. Since it is also a
lattice point, the assumption on the parallelogram implies {a, b, v}.

Assume thatZ is noto -stable, and led; C E be the first HN filtration factor. Since
¢t(a1) > ¢ (v), we must haven; = b. By the stability ofA, B we haveHom (A1, A) = 0,
andHom(A;, B) = 0 unless4; = B. Either of these is a contradiction. O

Proof of Propositior®.1 We first consider cas&), sov = a; + a; with a;,as € Py. Using
Lemma9.2, we may assume that the parallelogram with vertites , v, a, does not contain
an interior lattice point. In particulaa; , a, are primitive. We may also assume thdt(a;) <
¢t (az). By the signature of{ (see the proof of Lemma&.4), we have(ai,as) > 2. By
Theorem2.13 there existr-stable objectsd; of classv(A;) = a;. The inequality for the
Mukai pairing impliesext! (42, A1) > 2. By Lemma9.3, any extension

0—=A < F— A, —0

of A; by A; is o, -stable of class. As all these extensions are S-equivalent to each other
with respect tary, we obtain a projective space of dimension at least two tbe ¢pntracted
by 7+,
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Now consider caseyj. First assume thatis an effective class. Note that — )2 > —2.
Consider the paralleogram with vertides, v, v — 8. If it contains additional lattice poir,
then a simple computation show$ > —2, i.e.,a®> > 0; thusv can be written as the sum of
positive classes, and the claim follows from the previousgiaph. Otherwise, observe that
(3,v—8) = (5,v)+2 > 2. If S is theo -stable object of class andF" anyo . -stable object
of classv — §, then agairext!(S, F') = ext!(F,S) > 2. Thus, with the same arguments we
obtain a family ofo, -stable objects parametrized by a projective space thaicgetracted by
7T+.

We are left with the case whegeis not effective. Set = —§, which is an effective
class. With the same reasoning as above, we may assumedlptrtiilelogram with vertices
0,t,v,v — t contains no additional lattice points. Sét= p;(v) —t = v — ((§,v) + 1)t.
We havev’? > —2 and(t,v’) = (t,v) + 2 > 2. The lattice points in the parallelogram with
vertices0, ((t,v) + 1)t,v, v’ are given bykv andv’ + kv fork € Z, 0 < k < (t,v) + 1
(otherwise, already the parallelogram with verti¢es, v, v — t would contain additional
lattice points).

Let T and F' be o -stable objects of clagsandv’, respectively. Let us assungg (t) >
¢t (v), the other case being analogous. Any subspace Ext! (T, ') of dimension(t, v) +
1 defines an extension

0 F 3 E->TU—0

such that is of classv(E) = v, and satisfieslom(T', E) = 0. If E were noto, -stable, then
the class of the maximal destabilizing subobjdatvould have to be a lattice point in the par-
allelogram with vertices, ((t,v)+1)t, v, v'; thereforey(A) = kt. The onlyo. -semistable
object of this class i§°®*, and we get a contradiction. Thus, we have constructed dyfami
of o, -stable objects of class parametrized by the Grassmann@@n((t, v) + 1, ext' (T, F))
that become S-equivalent with respectto O

It remains to prove the converse of Propositifi

Proposition 9.4. Assume thalV does not induce a divisorial contraction. Assume that
can't be written as the sum of two positive classe®jn and that there is no spherical class
s€Hwith0 < (s,v) < "72 ThenW is either a fake wall, or not a wall.

Proof. First consider the case wheve= v is the minimal class in its orbit/y;.v. We will
prove that every , -stable objec of classvy is alsoo-stable Assume otherwise, thd is

o_-unstable. Lefy, ..., a; be the Mukai vectors of the HN filtration factors Bfwith respect
too_. If all classes; are positivea; € Py, then we have an immediate contradiction to the
assumptions.

Otherwise,EE must have a spherical destabilizing subobject, or a splediestabilizing
guotient. Lets be the class of this spherical object. If there is only egestable spherical
object, then it is easy to see thaj — s is in the positive cone; thereforés, vy) < V—Q% in
contradiction to our assumption.

If there are twar-stable spherical objects of classes, consider the two vectorg, — s
andv, — t. The assumptions implfv, — s)? < —2 and(vq — t)? < —2; on the other hand,
v — s is effective; using Lemma@.2, this implies thatvg — s or v — t must be effective. We
claim that this leads to a simple numerical contradictiordeled,(vo — t)? < —2 constrains
v to lie below a concave down hyperbola, ang — s)? < —2 to lie above a concave up
hyperbola; the two hyperbolas intersect at the poinends + t. Therefore, if we write
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FIGURE 5. The three hyperbolas in the proof of Proposités

vy = xs + yt, we haver, y < 1. Thus, neithery — s horvg — t can be effective (see Figure
5).

In the case where& is not minimal,v # v, let ® be the sequence of spherical twists
given by Propositior6.8. Since the assumptions of our proposition are invarianeuntice
Gy-action, they are also satisfied k. By the previous case, we know that every-
stable objectdy, of classvy is alsoo,-stable Thus® induces a morphisn®,.: M, (vo) —
M, (v); since, is injective and the two spaces are smooth projective vesielf the same
dimension, it is an isomorphism. The S-equivalence clas® (@) is determined by that
of Ep; since S-equivalence is a trivial equivalence relationMén, (vp), the same holds for

M, (v), and thust™ is an isomorphism. O

Proposition9.4finishes the proof of Theorem 7.

10. MAIN THEOREMS

We will first complete the proof of Theorefnl

Proof of Theoreni..1, part (b). We consider a wally with nearby stability conditions_,
andoy € W. Sincel,, are K-trivial varieties, it is sufficient to find an open subset
U C M, (v) with complement of codimension two, and an (anti-)autoesjance®,, of
D?(X, ), such thatbyy(FE) is o_-stable for allE € U.

We will distinguish cases according to Theorbrii. First consider the case whe¥ corre-
sponds to a flopping contraction, or whign is a fake wall. 1f)V does not admit an effective
spherical class € #Hyy with (s,v) < 0 then we can choosE to be the open subset of-
stableobjects; its complement has codimension two, and theretisngpto prove. Otherwise,
there exists a spherical object destabilizing every olijedt/,, (v). Let vy € Hyy be the
minimal class of the&>4-orbit of v, in the sense of Definitiof.6. The subsel/ of o(-stable
objects inM,,(vo) has complement of codimension two. Then the sequence ofisphe
twists of Propositior5.8, applied foro. ando_, identifiesU with subsets of\/,, (v) and
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M,_(v) via derived equivalences™, ®—; then the compositio®~ o (®+) " has the desired
property.
Next assume thatV induces a divisorial contraction. We have three cases tsiden
Brill-Noether: Again, we first assume that there is no effective spherieaisslwith (s, v) <
0. The contracted divisor is described in Propositioy and the Harder-Narasimhan fil-
tration of the destabilized objects in Lemma. We may assume that we are in the case
where the Brill-Noether divisor i/, (v) is described byom(S, _) # 0. Now consider
the spherical twistT g at S, applied to objects € M, . (v). Note that byo -stability,
we haveExt?(S, E) = Hom(E,S)" = 0 for any suchF; since(v(S),v(E)) = 0, it
follows thathom(S, E) = ext!(S, E).
If E does not lie on the Brill-Noether divisor, th&Hom (S, E) = 0, and sBT(E) =
E. Also, for generic suctl’ (away from a codimension two subset), the objgdts also
o_-stable.
If Eis ageneric element of the Brill-Noether divisor, tHénm (S, E) = C = Ext!(S, E),
and hence we have an exact triangle

S® S[-1] » E — ST4(E).

Its long exact cohomology sequence with respect to thaittstre ofo induces two short
exact sequences

S—E-—»F and F < STzE)—>S.

By Lemma7.5, the former is the HN filtration oF with respec tar_; the latter is the dual
extension, which is a_-stable object byBM12, Lemma 5.9].

Thus, in both case$T z(E) is o_-stable, proving the claim.,

If instead there is an effective spherical clasgth (s, v) < 0, we reduce to the previous
case, similarly to the situation of flopping contractiongt &y again denote the minimal
class in the orbitZ4.v; note thatV also induces a divisorial contraction of Brill-Noether
type forvyg. In this case, Lemma.5states that the sequendef spherical twists identifies
an open subse/ ™ C M, (vo) (with complement of codimension two) with an open
subset ofM,, (v); similarly for U= C M,_(vo). Combined with the single spherical
twist identifying a common open subsetdf,, (v), this implies the claim.

Hilbert-Chow: As shown in Sectio8, we may assume that shift by one identifies., (v)
with the Gieseker-moduli spacel,,(—v) of stable sheaves of rank one on a twisted K3
surface(Y, o’). After tensoring with a line bundle, we may assume that abjec)/,, (v)
are exactly the shifté;[1] of ideal sheaves of 0-dimensional subschetdes Y.

In the setting of PropositioB..2, we have3 = 0. Since there are line bundles ¢ri, o),
the Brauer group element is trivial. By the last statement of the same Propositior, th
moduli spacell,,_(v) parametrizes the shifts of derived duals ideal sheaf. Theretis
a natural isomorphismd/,_(v) = M,_ (v) induced by the derived anti-autoequivalence
(L)V]2]

Li-Gieseker-Uhlenbeck: We will argue along similar lines as in the previous casepunf
nately, the details are more involved. The first differerccéhat we can't assumg = 0.
Instead, first observe thatl, (v) = M, g(—v) is parametrizing3-twisted Gieseker-
stable sheave$' of rank2 = (v, w), and of slopeu,(F) = w.5. If we assumev to
be generic, then Gieseker-stability is independent of thaice of 3; we can consider
M, (v) = M, (—v) to be the moduli space of shiffs[1] of w-Gieseker-stable sheaves

o+
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Since (Y, «/) admits rank two vector bundles, the ordercdfin the Brauer group is
one or two; in both cases, we can identily, o’) with (Y, —a/), and thus the derived dual
E — EY defines an anti-autoequivalencel®f(Y, o).

Write —v as—v = (2, ¢,d), and let be the unique line bundle with (L) = ¢. From
the previous discussion it follows th&{_ ) = (_ )Y ® £[2] is the desired functor:

Indeed, any object i/, (v) is of the form F'[1] for a w-Gieseker stable shedt of
classv. Then®(F[1]) = FY ® L[1] the derived dual of a Gieseker-stable sheaf, and has
classv. By Proposition8.2, this is an object of\/,_(v).

O

Consider two adjacent chamhet,C~ separated by a wallv; as always, we pick stability
conditionso € C*, and a stability conditior, € V. By the identification of Néron-Severi
groups induced by Theorefinl, we can think of the corresponding mafs of equation 9)
as maps

ly: CF — NS(M,, (v)).
They can be written as the following composition of maps

Stab(X, a) Z HA,(X,0,2) © C L vi "5 NS (M, (v))

whereZ is the map defined in Theoren8, I is given byl (Q2z) = %_(875\,) and wherd+
are the Mukai morphisms, as reviewed in Renmadd

Our next goal is to show that these two maps behave as nicelgeasould hope; we will
distinguish two cases according to the behaviour of theraotibn morphism

7wt My, (V) — M
induced byW via Theoren®2.16

Lemma 10.1. The mapg™*, £~ agree on the wallV (when extended by continuity).

(a) (Fake or flopping walls) When™ is an isomorphism, or a small contraction, then
the mapd_ , /_ are analytic continuations of each other.

(b) (Bouncing walls) When™ is a divisorial contraction, then the analytic continuatio
of ¢, ¢~ differ by the reflectiorpp in NS(M,, (v)) at the divisorD contracted by
Uiy

Here “reflection atD” denotes the linear involution leavin®-- fixed, and sending) to
—D. Markman proved inNar09 that such a reflection is an integral linear transformation
for any irreducible exceptional divisor on a hyperkahlerigty; of course in our situation, this
statement can easily be deduced from the classificatiorvisiotial contractions.

As a consequence, walls of the former typeare fake walls when™ is an isomorphism, or
induce a flop whem* is a divisorial contraction; for walls of the latter tyga (corresponding
to a divisorial contraction, the moduli spackes , (v), M,_ (v) for the two adjacent chambers
are isomorphic.

Proof. We have to prové.- = 6+ in case §), andf.- = pp o .+ in case ). We
will always assume for simplicity that the two moduli spaeebnit universal families; the
arguments apply identically to quasi-universal families.

Consider cased. If the wall is not totally semistable, then the two modylases)M -+ (v)
share a common open subset, with complement of codimens@mron which the two univer-
sal families agree. By the projectivity of the moduli spadde mapd.+ are determined
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by their restriction to curves contained in this subsets thioves the claim. If the wall
is instead totally semistable, we additionally have to usgpésition6.8. Let & and &~
be the two sequences of spherical twists, sendiggtable objects of clasg, to o, - and
o_-stable objects of class, respectively. The autoequivalence inducing the birationap
M, (v) --» M,_(v) is given by®~ o (@T)~!. As the classes of the spherical objects occur-
ring in ® and®~ are identical, this does not change the class of the univiensély in the
K-group; therefore, the Mukai morphisrég: , 6. agree.

Now consider the case of a Brill-Noether divisorial conti@t, we first assume that there
is no effective spherical class € H,y with (s’,v) < 0. The contraction induced by a
spherical objecs with Mukai vectors := v(S) € v*. The class of the contracted divisor is
6(s). The universal families differ (up to a subset of codimendioo) by the spherical twist
STs(_). This induces the reflection atin Hy,, (X, o, Z); thus the Mukai morphisms differ
by reflection a¥(s), as claimed.

If in addition tos € v+, there does exist an effective spherical ckiss H,y with (s, v) <
0, we have to rely on the constructions of Lemihg, as in the proof of Theorerh.1L. We
have a common open subdétC M, (vo), such that the two universal familigs®|;; are
related by the spherical twist at a spherical objggbf classsg. Let ®* be the sequences of
spherical twists obtained from Lemnias, applied too or o_, respectively. Their induced
maps®=: H;lg(X,a,Z) — H},(X,a,Z) on the Mukai lattice are identical, as they are
obtained by twists of spherical objects of the same clagsssndsv, to v, and thuss, to +s.
Therefore, the compositioh~ o ST, o(®*)~! induces the reflection at as claimed.

It remains to consider divisorial contractions of Hilb@ftow and Li-Gieseker-Uhlenbeck
type. We may assume/,. (v) is the Hilbert scheme, or a moduli space of Giesker-stable
sheaves of rank two.

By the proof of Theoreni. 1, there is aline bundl€ on X such thaRHom, , xx (€, (px)*L[2])
is a universal family with respect to_ on M,,_ (v) = M, (v). We will compare.-+ by eval-
uating its degree on a test curgeC M, . Leti denote the inclusion: C' x X — M,, x X,
and byp the projectionp: C' x X — X. This yields the following chain of equalities for

aevtk:

(18) Oc-(a).C = < (p*z )) = (a,v(p* RHomexx(i"E,Oc K E[Z])))
(19) = (a, (p* RHomexx (1", we (2] &E)))
<a,v(R’HomX pei*E, E)))

<

(20) =

1) - (av - ch(L), v(p*z'*g)) = 0+ (2 - ch(L)).C

Here we used compatibility of duality with base changel®) (a € v+ in (19), and Grothendieck
duality in 20). In (21), we wrotea" for the class corresponding sounder duality(_ )V, i.e.,
the class that agrees withexcept for the sign of the component in the divisor p&s(X).

In the Hilbert-Chow case, witkk = —(1,0,1 — n), the class of the contracted divisbr
is proportional to(1,0,n — 1), and we havel = Ox; in the Li-Giesker-Uhlenbeck case, we
can writev = (2, ¢,d), the class of the contracted divisor as a multiplé Dt:, % —d), and
c1(L) = c. In both cases, a direct verification shows that the reflegtjp is compatible with
the above chain of equalitiegy (a) = a¥ - ch(L). O
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Proof of Theoren..2, (a), (b), (c). Lemmal0.1proves partd). Part €) follows directly from
the positivity /¢ (C) € AmpM¢(v) once we have established péas}.(

Consider a big class in the movable cone, givedda) for some clasa € v*,a? > 0;
we have to show that it is in the image 6f Recall the definition of?; (X, ) given in the
discussion preceding TheorelB. If we setQ’ = ia — 35 € H;g(X, 7Z) ® C, then clearly
Q' € P(X,a). In case there is a spherical class H;, (X, «a,Z) with (©',s) = 0, we
modify 2, by a small real multiple of to obtainQ2 € Py(X, «), otherwise we se®,, = ;
in either case, we have, € Py (X, «) with (Q,,v) = —1 and3Q, = a. In addition, the fact
thatd(a) is contained in the positive cone givese P, (X, a).

LetQ, € Py (X, ) be the central charge for the chosen baseppiatStab(X, «). Then
there is a pathy: [0,1] — P (X, «) starting atQ2, and ending at2, with the following
additional property: for alt € [0, 1], the class- GE’V(E‘:;Y(Vt))) is contained in the movable cone of
My (v).

By Theorem2.8, there is a lifto: [0,1] — Stab'(X,«) of v starting ato(0) = o. By
the above assumption oy this will never hit a wall of the movable cone corresponding
a divisorial contraction; by Lemm&0.1, the mapl extends analytically, witl, = 6, =
9(,(1). Therefore,

60(1) (0(1)) = 00(1) (a) = HO'(a)
as claimed. 0

In fact, following [Marll, Section 6], one can use a Weyl group action on the positive
cone to give a global description of the mépAs in [Marll, Definition 6.8], we denote by
Wexe C Aut(NS(M,(v))) the hyperbolic reflection group group generated by the rédles
pp at exceptional divisor® of divisorial contractions.

We consider its action on the coRes (M, (v)) of strictly positive divisors. Thexceptional
chamberof this Weyl group action is defined kyD, ) > 0 for all exceptional divisorsD.
As explained by Markman, the general theory of hyperbolitection groups shows that this
is a fundamental domain fdig,.. On the other hand, it coincides with the image/pby
Theoreml.2, the exceptional chamber is equal to the intersection ofrtbeable cone with
the big cone. This recoverMprll, Lemma 6.22].

The exceptional chamber of a hyperbolic reflection grouprsdcts everylg,.-orbit ex-
actly once. Thus there is a map

W: Pos(M,(v)) — Mov(My(v))

sending any class to the intersection oflitg,.-orbit with the fundamental domain. Then
Lemmal0.1land Theoreni.2immediately give the following:

Theorem 10.2. The map/ of Theoreml.2 can be given as the composition of the following
maps:

Stab'(X, a) Z, alg(X,0,Z) ® C Lyt Ly Pos(M,(v)) v, Mov (M, (v)).
To finish the proof of Theorerh.2, (d), we have the following observation:

Proposition 10.3. LetC C Stab'(X, ) be a chamber of the chamber decomposition with
respect tov. Then the image dofz(C) C NS(Mc¢(v)) of the chambeC is exactly the ample
cone of the corresponding moduli spatg (v).
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Proof. In light of Theorem=2.15and1.2, (a), (b), (c), the only potential problem is given by
walls W C oC that do not get mapped to walls of the nef cone of the modutiesp@hese are
totally semistable fake walls induced by an effective sjgia¢rclasss € Hyy with (s, v) < 0.
The idea is that there is always a potential wall, with the same latticé{,,» = H,y, for
which all effective spherical classes have positive pginith v. By Theoremb.7, W is not
awall, and it will have the same image in the nef condff(v) as the wally.

Letoy = (Zy, Py) € W be a very general stability condition on the given wall: timigans
we can assume that,y contains all integral classes € H), (X, a, Z) with $Zp(a) = 0.

If we write Zo(_) = (Q0,__) as in Theoren®?.8 we may assume tha&l, is normalized by
(Q0,v) = —1andQ3 = 0, i.e., (RQ0, Q) = 0 and(RNQ)? = (3Q)? (see Bri08, Section
10]). We will now replacer by a stability condition whose central charge has real pae g
by (—v,_ ), and identical imaginary part.

To this end, let; € C be a stability condition nearhy,, whose central charge is defined
by 1 = Qo + ie, wheree € H), (X, a, Z) ® Ris a sufficiently small vector witle, v) = 0;
we may also assume that multiplesvofire the only integral classese H;g(X, a, 7) with
with (3Q;,a) = 0. Let Qe = —v 4 i3Qy; then a straight-forward computation shows
that the straight path connectiddy with . lies completely withinP; (X, «). Finally, let
Q3 = —v + 3Qp; by Theorenb.7, there are no spherical classes H,y with (v,s) = 0,
implying that the straight path frof2, to Q23 is also contained iy (X, a).

By Theorem2.8, there is a lift of the patif)y — Q1 — Q9 — Q3 to Stab(X, «); let
o9 andog the stability conditions corresponding &, and (23, respectively. By choice of
€, we may assume that the pathg — o1 andoy — o3 do not cross any walls. Since
(Q1,v) = (Q2,v) = —1, and since the imaginary part on the p&h+— 5 is constant, the
same holds for the patty, — o5. Henceos is in the closure of the chambér In particular,
o3 lies on a potential wall of with hyperbolic lattice given byH,y; by construction, any
spherical class € H,y with (v,s) < 0 satisfiegQ23,s) > 0, and thuss is not effective.

By Theoremb5.7, o3 does not lie on a wall. Sincg; = 3Q, the images¢(op) = le(o3)
in the Néron-Severi group af/¢(v) agree. O

We conclude this section by proving Corollaky3.

Proof of Corollary1.3. We first prove the two implications.

“«<": Assume thatl : D’(X) = Db(X’)is aderived (anti-)equivalence such that(v) =
v’. Its associated Fourier-Mukai kernel induces a Hodge isonie. : H*(X,Z) — H*(X',Z),
sendingv to v’. By Verbitsky’s Torelli Theorem in thélilb™ (K3)-deformation type, the bira-
tional class of the moduli space is determined by the embgddt — H*(X), see Mar11,
Corollary 9.5 and Example 9.6].

“=". Now assume thaf\/y(v) is birational toMy(v'). Applying the Torelli Theorem
again, we obtain a Hodge isometyy H*(X,Z) = H*(X',Z). Sincev andv’ are prim-
itive, this givesy)(v) = +v’. Up to composing with the derived dual functor and the shift
functor, we can assume thafv) = v’ and is orientation-preserving By Mukai-Orlov’s
Derived Torelli Theorem (seeJrl97, HS06 HMS09) for K3 surfaces, there exists a derived
equivalencel : D*(X) = Db(X') such thatl, = ).

To prove the final claim, choose stability conditiong Stab(X), ¢’ € Stab(X’) such that
My(v) = My (v) andM, (v) = My (v). By the construction of the derived equivalenkge
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it is easy to see thak,o is in the same connected component-asThus we can apply Theo-
rem1.1to obtain an auto-equivalendeof D®(X) that sends a generic elementidt;, , (v')
to an element of\/,/(v’). Then the compositio® o ¥ has the desired property. O

11. APPLICATION 1: LAGRANGIAN FIBRATIONS

In this section, we will explain how birationality of walkassing implies Theorer.5,
verifying the Lagrangian fibration conjecture.

One implication in Theorem.5is immediate: iff: My (v) --» Z is a rational abelian
fibration, then the pull-back™ D of any ample divisotD on Z has volume zero; by equation
(6), the self-intersection of *D with respect to the Beauville-Bogomolov form must also
equal zero.

We will prove the converse for any moduli spatg; (v) of Bridgeland-stable objects on a
(possibly twisted) K3 surfaceX, ), under the assumptions thais primitive, ands generic
with respect tov. We will first restate carefully the argument establishimagt fa) of Conjec-
ture 1.4, which was already sketched in the introduction; then wéexilain how to extend
the argument to also obtain p&).

Assume that there is an integral divisbron M, (v) with ¢(D) = 0. Applying the inverse
of the Mukai morphisnd,, of Theorem3.5, we obtain a primitive vectow = 65(D) € v+
with w? = 0.

After a small deformation, we may assume thds also generic with respect 0. As in
Section8, we consider the moduli spadé:= M, (w) of o-stable objects, which is a smooth
K3 surface. There is a derived equivalence

(22) ®: DX, ) 5 DO(Y, )

for the appropriate choice of a Brauer classs Br(Y'); as before, we havé, (w) = (0,0, 1).
By definition, ® induces an isomorphism

(23) My(v) = Mg, (5)(2(v)),

where® (o) is generic with respect td(v).

Lemma 11.1. The Mukai vecto®,(v) has rank zero.

Proof. This follows directly from®,(w) = (0,0,1) and(®.(w), ®.(v)) = (w,v) =0. O
We write ®(v) = (0, C, s), with C' € Pic(Y) ands € Z. Sincev? > 0 we haveC? > 0.

Lemma 11.2. After replacing® by the composition o ®, where¥ ¢ Aut(D*(Y, o)), we
may assume that is ample, and that # 0.

Proof. Up to shift[1], we may assume tha&{’.C’ > 0, for a given ample clas&’ onY. In
particular,C is an effective class; it is ample unless there is a ratiertaturve D C Y with
C.D < 0. Applying the spherical twistT, at the structure shebbf D replaces” its image
C’ under the reflection ab, which satisfies”’.D > 0. This procedure terminates; indeed,
the nef cone is the fundamental exceptional chamber of thg §veup action generated by
reflections at-2-curves.
Since tensoring with an (untwisted) line bundleléinduces an autoequivalenceldf(Y, o),

we may also assume## 0. d

4Note that the restriction ofy to any curve vanishes, hence the structure skizafis a coherent sheaf on
(Y,a').
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Let H € Amp(Y') be a generic polarization with respectwo

Lemma 11.3. The moduli spacé/y:(®.(v)) is non-empty and admits a structure of La-
grangian fibration.

Of course, this is just a small (and well-known) generaitabf Beauville’s integrable
system Bea9].

Proof. The non-emptyness follows directly fronitds01, Theorem 8.1]. The structure of La-
grangian fibration is given as follows:

Consider the line bundl&’ on M’ := My (®(v)) given byé,((0,0, —1)). By an argument
of Faltings and Le Potier (sekP05, Section 1.3]), we can construct sectiond.6fs follows:
forall y € Y, we define a section, € H(M’, L') by its zero-locus

Z(sy):={E € M': Hom(E, k(y)) #0} .

Whenevery is not in the support ofz, thens, does not vanish ak/; hence the sections
{sy}yev generatel’. The image ofF is determined by its set-theoretic support; hence the
image of the map induced b¥ is the complete local system 6f; by Matsushita’s theorem
[Mat99, Mat01], the map must be a Lagrangian fibration. a

Lemma 11.4. The stability conditionb,o onD’(Y, /) is contained in the connected compo-
nentStab! (Y, o/) constructed irfBri08, HMSO0§.

Proof. By construction of the equivalence i3), skyscraper sheaves of points dgstable;
then the statement follows fror8fi08, Proposition 10.3]. In Lemma&l.2 we had to modifyd
by a composition of spherical twists at structure sheaveatiminal curves; byBri08, Section
12], this will not cause us to leave the connected component. d

By Remark2.12 there exists a generic stability conditishe Stab' (Y, o/) with the prop-
erty thatMy: (®(v)) = M, (®(v)). On the other hand, by the birationaliy of wall-crossing,
Theorem1.1, the moduli spaced/,:(®.(v)) and Mg, ) (P.(v)) are birational, combined
with the identification 23), this shows thaf\/,, (v) is birational to a Lagrangian fibration.

It remains to prove partb), so let us assume thd? is nef. Using the Fourier-Mukai
transform® as above, and after replacinmgby ®.0, we may also assume thathas rank
zero, and thawy = 6 1(D) is the class of skyscraper sheaf of points. Now consider the
autoequivalenc& < AutD’(Y, ') of Lemmall.2 Except for the possible shift], each
autoequivalence used in the constructiovdéaves the clasw invariant. Thus, in the moduli
spaceMy,,(¥,.v) = M,(v), the divisor clas9 is still given byD = 40y, (w), up to sign.

Let f: M,(v) --+ Mp(v) be the birational map to the Gieseker-moduli spatg(v) of
torsion sheaves induced by a sequence of wall-crossingscae.aThe Lagrangian fibration
My (v) — P™is induced by the divisof(—w). By Theorem10.2 the classed.D and
O (—w) are (up to sign) in the samiép,.-orbit. Since they are both nef on a smooth K-
trivial birational model, they are in the closure of the mimeacone (and in particular, their
orbits agree, not just up to sign).

Now recall from the discussion preceding Theorktn2that the exceptional chamber for
the action ofiW/g,. on the positive cone is a fundamental domain, which intéssmeryWWg, .-
orbit exactly once. The same holds for the closure of theia®al chamber and the action
on the closure of the positive cone. Therefore, the clagsBsandf (—w) have to be equal.

Since M, (v) and My (v) are isomorphic in codimension two, the section ringgoofnd
f«D agree. In particular is effective. The conclusion now follows, for example, Byajv85,
Fuj11]. This completes the proof of Theorehb.
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Remark 11.5. In fact, the above proof shows the following two additionaltsments:

(@) If D € NS(M,(v)) with ¢(D) = 0 lies in the closure of the movable cone, then there
is a birational Lagrangian fibration induced By (In particular,D is movable.)

(b) Any WEgy-orbit of divisors on/,, satisfyingg(D) = 0 contains exactly one mov-
able divisor, which induces a birational Lagrangian fitmati

12. APPLICATION 2: MORI CONE, NEF CONE, MOVABLE CONE, EFFECTIVE CONE

Let v be a primitive vector withv2 > 0, let ¢ be a generic stability condition with respect
to v, and letM := M, (v) be the moduli space ef-semistable objects. In this section, we
will completely describe the cones associated to the bimatigeometry of\/ in terms of the
Mukai lattice of X .

Recall thafPos(M) c NS(M )k denotes the (closed) cone of positive classes defined by the
Beauville-Bogomolov quadratic form. L&os(M)g C Pos(M) be the subcone generated by
all rational classes ifros(M); it is the union of the interioPos(M) with all rational rays in
the boundary) Pos(M ). We fix an ample divisor clasd on M (which can be obtained from
Theorenm2.15).

In the following theorems, we will say that a subconéof (M )q (or of its closure) is “cut
out” by a collection of linear subspaces if it is one of theseld chambers of the wall-and-
chamber decomposition ®fos()M ) whose walls are the given collection of subspaces. This
is easily translated into a more explicit statement as irffdhmulation of Theoreni2.1given
in the introduction.

Theorem 12.1. The nef cone of\/ is cut out inPos by all linear subspaces of the form

f(vt Nnat), forall classesa € H}, (X, o, Z) satisfyinga® > —2 and0 < (v,a) < v,

Via the Beauville-Bogomolov form we can identify the grotp(M ) of curves up to nu-
merical equivalences with a lattice in the Néron-Seveougr Ny (M)g = (N'(M)g) " =
N(M)g. In particular, we get an induced rational pairing Mn(1/); we then say that the
cone of positive curves the cone of classg€’] € Ni(M)r with (C,C) > 0andC.A > 0.

Also, we obtain a dual Mukai isomorphism

(24) A glg(X,a,Z)/V®@—>N1(M)Q.

As the dual statement to Theorel.1, we obtain:

Theorem 12.2. The Mori cone of curves iVl is generated by the cone of positive curves, and
by all curve classe8”(a), for all a € H;lg(X,oz,Z),aQ > —2 satisfying0d < (v,a) < "—22
andfY(a).A > 0.

Some of these classasnay not define a wall bordering the nef cone; in this céséa) is
in the interior of the Mori cone (as it intersects every neigbr positively).

Theorem 12.3. The movable cone dff is cut out inPos(M)g by the following two types of
walls:
(@) 6(s+ N vt) for every spherical class € v.

(b) 6(wt nv1) for every isotropic classv € H*

ag(X, . Z) with1 < (w,v) < 2.

Theorem 12.4. The effective cone df/ is generated byos(M)g along with the following
exceptional divisors:

(@) D := 6(s) for every spherical class € v+ with (D, A) > 0, and



48 AREND BAYER AND EMANUELE MACRI

(b) D = §(v?-w — (v,w) - v) for every isotropic classv € H,

aig (X o, Z) with
1 <(w,v) <2and(D,A) > 0.

Note that only those classé&swhose orthogonal complemeft* is a wall of the movable
cone will correspond to irreducible exceptional divisors.

The movable cone has essentially been described by Markonamy hyperkahler variety;
more precisely, flarll, Lemma 6.22] gives the intersection of the movable cone wieh
strictly positive conePos(M). While our methods give an alternative proof, the only new
statement of Theorerh2.3 concerns rational classd3 with D? = 0 in the closure of the
movable cone; such & is movable due to our proof of the Lagrangian fibration comjexin
Theoreml.5.

Using the divisorial Zariski decomposition d8$u04, one can show for any hyperkahler
variety that the pseudo-effective cone is dual to the clsfithe movable cone. In particular,
Theoreml2.4could also be deduced from Markman’s results and Thedrém

Proof of Theoremi2.1 LetC be the chamber ditab(X, ) containingo. By Theoreml.2,
the boundary of the ample cone inside the positive cone iald@quthe union of the images
¢(W), for all walls W in the boundary ot that induce a non-trivial contraction morphism.
(These are walls that are not “fake walls” in the sense of Mi&fm2.17) Theoremb.7 char-
acterizes hyperbolic lattices corresponding to such walls

For any such hyperbolic latticH, we get a clasa as in Theoreni2.1as follows:

¢ in the casesh) of divisorial contractions, we let be the corresponding spherical of
isotropic class;
¢ in the subcase obj of a flopping contraction induced by a spherical classe also
seta =s;
e and in the subcase db) of a flopping contraction induced by a sum= a + b, we
may assumév, a) < (v, b), which is equivalent tgv, a) < "—22
Stability conditionso = (Z, .A) in the corresponding waly satisfyS% = 0, or, equiva-
lently, (o) € (vt Nnat).
Conversely, givera, we obtain a rank two latticg/ := (v,a). If H is hyperbolic, then it
is straightforward to check that it conversely induces ohthe walls listed in Theorerb.7.
Otherwise} is positive-semidefinite. Then the orthogonal compleniént= v Nna* does

not contain any positive classes, and thus its image uhdeNS(M) does not intersect the
positive cone and can be ignored. O

Proof of Theoren12.3 As already discussed in Sectitf, the intersectiodov (M )NPos(M )
follows directly from Theoreni..2, the statement of Theoref®.3is just an explicit descrip-
tion of the exceptional chamber of the Weyl group action.

A movable clasgD in the boundary of the positive cone, witv, D) = 0, automatically
has to be rational. Conversely, by our proof of Theotef) if we have a rational divisor with
(D,D) = 0 that is in the closure of the movable cone, then there is adragan fibration
induced byD on a smooth birational model @ ; in particular,D is movable. O

Proof of Theoreni2.4 As indicated above, the pseude-effective cone is dual tonihnvable
cone; thus we just need to verify that the Theorem gives threcbdescription of the boundary.
For exceptional divisors, witfD, D) < 0, this follows from our classification and con-
struction of divisorial contractions. For classes with, D) = 0, this again follows from
Theoreml.5. O
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Relation to Hassett-Tschinkel's conjecture on the Mori coe. Hassett and Tschinkel gave a
conjectural description of the nef and Mori cones via irdertion numbers of extremaly rays
in [HT10. While their conjecture turned out to be incorrect (sB&[L2, Remark 9.4] and
[CK12, Remark 8.10]), we will now explain that it is in fact very sky related to Theorem
12.2

We first recall their conjecture. Via the identificatio, (M)g = N*(M)q explained
above, the Beauville-Bogomolov extends to a quadratic fonnVy (M) with values inQ; we
will also denote it byg(_ ). The following lemma follows immediately from this defimti,
and the definition od":

Lemma 12.5. Consider the isomorphismf@ =~ N;(M)q induced by the dual Mukai mor-
phism6dY of (24). This isomorphism respects the quadratic form on eithes.sid

Let 2n be the dimension al/, and as above let be an ample divisor. L&t C Ny (M)r
be the cone generated by all integral curve clagses N, (M )z that satisfyg(R) > —"TJF?’
andR.A > 0. In [HT10, Conjecture 1.2], the authors conjectured that for of argehiahler
variety M deformation equivalent to the Hilbert scheme of a K3 surféloe coneC is equal
to the Mori cone.

Ouir first observation shows that the Mori cone is containett in

Proposition 12.6. Let R be the generator of an extremal ray of the Mori coneléf Then
(R7 R) > _nT—’—B'

Proof. Note that it is enough to prove the inequality for some effecturve on the extremal
ray. LetW be a wall inducing the extremal contraction correspondmghe ray generated
by R, andH,y C H;‘lg(X ,7Z) its associated hyperbolic lattice. Let be a nearby stability
condition in the chamber of, andoy € W. Leta € H,y be a corresponding class satisfying
the assumptions in Theoret?2.2 a? > —2 and0 < (v,a) < V;

We first claim that there exists a contracted curve whos@iiatelass is given byV(a).
For simplicity we assume that/ is not a totally semistable wall for any class#y; the
general case can be reduced to this one with the same methaotdtha previous sections. By
assumptions, we have baaff > —2 and(v — a)2 > —2; therefore, we can choosg-stable
objectsA and B of classa andv — a, respectively. Sincé{,y is hyperbolic, the assumptions
also imply(a, v) < a2. Thereforeext!(B, A) = ext!(4, B) = (a,v —a) > 0; in fact, in all
the cases of Theoret7we have(a,v —a) > 2.

Assume thaty*(a) < ¢™(v) < ¢ (v — a); the opposite case follows similarly. Varying
the extension class iBxt' (B, A) produces curves of objects M, (v) that are S-equivalent
with respect targ; in order to compute its class, we have to make the consbruetiplicit. Let
P(Ext!(B, A)) be the projective space of one-dimensional subspacEstd{ B, A). Choose
a parametrized lin®' — P(Ext!(B, A)), corresponding to a sectianof

H°(PY,0(1) @ Ext!(B, A)) = Extpi, (Op X B, Op1 (1) K A).

LetE € DY(P! x X) be the extensio®p X B — £ — Op1(1) K A given byv. By Lemma
6.9, every fiber of€ is o -stable. Thus we have produced a rational cutve M, (v) of
S-equivalent objects.

To compute its class, it is sufficient to compute the inteisacproductd(D).R with a
divisor (D), for any D € v*. We have

9(D).R = (D,v(®(ORr)) = (D,v(B) +2v(4)) = (D,v +a) = (D,a) = §(D).0"(a),
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where®: D?(M,+ (v)) — D?(X) denotes the Fourier-Mukai transform, and where we used
D € v in the second-to-last equality.

Letag € H;‘lg(X,Z) denote the projection of to the orthogonal complement of By
Lemmal2.5 we have(R, R) = a3, and for the latter we obtain:
(Vva) (V7a) 2 (Vva)2 V2 n+3
(ag,ap) = <a— 2 v,a— o v] =a— o2 2—2—1:— 5

O

Remark 12.7. When M is the Hilbert scheme of points ofi, we can make the comparison to
Hassett-Tschinkel's conjecture even more precise: inckse, it is easy to see tht induces
an isomorphism

16X 2)(X. Z) /v — Ni(M)
of lattices, respecting the integral structures. Giveraas®k € N; (M) satisfying the inequal-
ity (R, R) > —"43 of [HT10], let ag € vy be the (rational) class with” (ag) = R. Letk be
any integer satisfying < n —1 andk? > (2n —2)(—2 — a3); by the assumptiong, = n — 1
is always an example satisfying both inequalities. Thes- ag + %L_Zv is a rational class
in the algebraic Mukai lattice that satisfies the assumpt@ppearing in Theorerd2.2 In
addition, it has has integral pairing with both and with every integral class wn*; thus, it is
potentially an integral class. The Hassett-Tschinkel ectojre holds if and only if for every
extremal ray o, there is a choice of such that is an integral class.

If we are given the lattice’*, then the algebraic Mukai lattice ot can be any lattice in
vé @& Q - v containing bothv: andv, as long asv is primitive. In general, the Hassett-
Tschinkel conjecture will hold for some of these latticest bot for others. The question
is thus closely related to the fact that a strong global Tiostement needs the embedding
H?(M) < H*(X), rather than just{?(M).

13. EXAMPLES OF NEF CONES AND MOVABLE CONES
In this section we examine examples of cones of divisors.

K3 surfaces with Picard number 1... Let X be a K3 surface such th&ic(X) = Z - H,
with H? = 2d. We letM := Hilb"(X), forn > 2, andv = (1,0,1 — n). In this case,
everything is determined by certain Pell's equations. Waaliehat a basis oNS(M) is
given by}NI = 0(0,—H,0), the big and nef divisor given by the symmetric powerrbfand
B =6(—1,0,1 — n); the exceptional divisor of the Hilbert-Chow morphism hksss2B.

By Theoremb.7, divisorial contractions can be divided in three cases:

Brill-Noether: If there exists a spherical classvith (s, v) = 0.
Hilbert-Chow: If there exists an isotropic clase with (w,v) = 1.
Li-Gieseker-Uhlenbeck: If there exists an isotropic clase with (w,v) = 2.

The case of BN-contraction depends on the following Petjisagion
(25) (n—1)X?—-dy?=1,

wheres = (r,cH,(n — 1)r), X = randY =c.
The case of HC-contractions is governed by the Pell's egnati

(26) X2 —dn-1)Y?=1,
wherew = (r,cH,(n —1)r — 1), X =2(n — 1)r — 1 andY = 2c.
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Finally, for the case of LGU-contractions, the Pell's equmatis again £6), but noww =
(r,cH,(n —1)r —2), X = (n — 1)r — 1 andY = c. This already gives the structure of the
movable cone:

Proposition 13.1. AssumePic(X) = Z - H. The movable cone of the Hilbert scheffe=
Hilb"(X) has the following form:

@) Ifd = (n—1),withk,h > 1, (k,h) = 1, then
Mov(M) = (H,hH — kB),

whereq(hfl — kB) = 0, and it induces a (rational) Lagrangian fibration av.
(b) If d(n — 1) is not a perfect square, an@5) has a solution, then
I Y1
Mov(M)=(H,H —d———B
ov (M) = (H, H - d_— 25 5),
where(z1,y;) is the non-trivial solution tq25) with smallest possible; > 0 and

y1 > 0.
(c) Ifd(n — 1) is not a perfect square, an@5) has no solution, then

/
Mov(M) = (H,H — d21 By,
1
where(z, y}) is the non-trivial solution tq26) with smallest possible} > 0 and
/
yp > 0.

Proof. Part @) follows directly from Theoreml.5. To prove partlf) and part €), we first
notice that 26) has always solutions. 1£6) has a solution, by takingr;, y1) the non-trivial
solution with the smallest; > 0 andy; > 0, then an easy computation shows that the divisor
on M associated is

D=H-d—% B
zi(n—1)

Hence, the fact that; is the smallest possible, guarantees thdtas the smallest slope, with
respect to the divisors associated to the other solutiof@50

Since we know that a wall for the movable coneis which is of Hilbert-Chow type and
that D is associated to some divisorial contractions (on a celimational model ofAM), D
must be the other wall.

The case in which2b) has no solution follows similarly. a

Example 13.2.1f d = n — 2, then

. p-2
Mov(M) = (H,H — =

B).

n—1
To fully understand the structure of the nef cone, we staitt thie easy case = 2. Con-
sider the Pell's equation

(27) X% —dy? =5.
The associated spherical class is (r,cH,r — 1), X = 2r — 1l andY = 2c.
Lemma 13.3. Let M = Hilb?(X). The nef cone ai/ has the following form:
(a) If (27) has no solutions, then
Nef(M) = Mov(M).
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(b) If (27) has solutions, we letzq,y1) be a solution with the smallest; > 0 and
y1 > 0 even. Then

Nef(M) = (H,H — d22 B).
r1
Proof. The only possibility in which the movable cone is not equat® nef cone is if there
is a flop induced by a spherical class. By Theo®m this happens if and only i2(7) has a
solution. O

Example 13.4.Letd = 31. Then the nef cone fab/ = Hilb?(X) is

~ ~ 3658
Nef(M)=(H,H — ——B).
ef(M) = (H,H ~ =B)
In particular, this gives a negative answer @K[12, Question 8.4].
Indeed, 27) has a the smallest solution given by = 657 andy; = 118. This gives a
(—2)-classs = (329, —59 - H, 328), which induces a flop, by Lemmi8.3

For highern > 2 the situation is more complicated, since the number of$etjuations to
consider is higher. But, in any case, everything is completetermined.

Example 13.5. Consider the case in whiech= 1 andn = 7, M = Hilb"(X). This example
exhibits a flop of “higher degree”, in the following senseisiinduced by a decomposition
v = a+ b, with a?, b> > 0, and it is not induced by a spherical or isotropic class. éade
v =(1,0,-6),a= (1,—H,0) andb = (0, H, —6) give the wanted example. We also notice
that the rank two hyperbolic lattice associated to this waiitains no spherical or isotropic
classes. The full list of walls in the movable cone is as feioWe consider the divisor class

H —TB,forT" € Q-¢. The walls in the movable cone &f are given by the following table:

r a (v,a) Type

0 (0,0,—1) 1 HC divisorial contraction
3 (1,—H,2) 4 BN flop

% (1,—H,1) 5 LGU flop

% (1,—H,0) 6 higher degree flop

L | (2,-3H,5) 7 fake wall

i | (1,—2H,5) 1 BN flop

3 1-(1,-3H,10) | 4 BN flop

2| (1,-2H,4) 2 | LGU divisorial contraction

...and higher Picard number. Let X be a K3 surface such thBic(X) X Z - & @ Z - &.
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Example 13.6. We let M := Hilb?(X), andv = (1,0, —1). We assume that the intersection
form (with respect to the basfs, &) is given by

28 0
= (5 1)
Such a K3 surface exists, sédqr84, Kov94]. We have:
NS(M) =7Z-s ® NS(X),
wheres = (1,0,1). Our first claim is
(28) Nef (M) = Mov(M).

Indeed, by Theoren.7, a flopping contraction would have to come from a claswith
a’? > —2and(v,a) = 1; also, the corresponding lattidé¢ = (v,a) has to be hyperbolic,
which impliesa? < 0. In addition,a? = 0 would correspond to the Hilbert-Chow divisorial
contraction, and thus? = —2 is the only possibility. If we writea = (r, D,r + 1) with
D = a& + b&s, this gives

—2r(r +1) + 28a® — 4b* = 2.
This equation has no solutions modulo 4.

The structure of the nef cone is thus determined by divisodatractions. These are con-
trolled by the quadratic equation

(29) X% - 2(7a* - V) =1,

whereX = r,a = (r, D,r). For example, the Hilbert-Chow contraction correspondshéo
solutiona = b = 0 and X = 1 to (29). Other contractions arise, for examplegat 4, b = 2,
X =15,0ra=2,b=2,X =17, etc. The nef cone will be a non-round non-finitely generated
cone. Its walls have infinitely many accumulations pointhatboundary of the positive cone:
these come from solutions of

X2 —2(7a*> - bv*) =0,
corresponding to Lagrangian fibrations.

To simplify the computations and obtain examples of a rouefd(or movable) cone, we
consider a twist by a Brauer classc Br(X). Given X as before, we can assume that
admits aB-field lift B with the properties that

BNS(X)=0 and B*=0.

(See HMSO0§ for more details; in particular, the fact that such K3 soe&xists follows as in
[HMSO08 Lemma 3.22].)

Example 13.7. We assume that the (twisted) intersection form on
;lg(Xa aaZ) = NS(X) ®ZL- (2a 2Ba0) ®ZL- (O’Oa —1)
takes the form

4 0 00
o -4 00
=10 0 0 2
0 0 20

Consider the primitive vectov = (0,&;,0), and letM := Mpy(v) be the moduli space of
a-twisted H-Gieseker semistable sheavesXnfor H a generic polarization o . Then:

(a) Nef(M) = Mov(M);
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(b) Nef(M) is a rational circular cone.

To prove the above statements, observetfat 4and(v,a) € 4Zforalla € HY (X, a,Z).
According to Theoren.7, the only possible wall in this situation would be given by @B
Noether divisorial contraction, coming from a sphericalsss € v-. But the above lattice
admits no spherical classes, and thus there are no walls.

Thus the nef cone and the closure of the movable cone are Qo#i ® the positive cone.
Since M obviously admits Lagrangian fibrations, the cone is rationa

Modifying slightly the previous example, we obtain a modigace with circular movable
cone and locally polyhedral nef cone:

Example 13.8. We assume that the (twisted) intersection form on
ag(X,0,Z) =NS(X) @ Z- (3,3B,0) @ Z- (0,0, -1)
takes the form

6 0 0 0
o =6 0 0
1o 0o o0 3
0 0 3 0

Consider the primitive vector = (0,¢;,1), and letM := Mg (v). Then:

(a) Nef (M) is a rational locally-polyhedral cone;
(b) Mov(M) is a rational circular cone.

Indeed, b) follows exactly as in Exampl&3.7 there are no spherical classes, and, for all
a € H),(X,a,Z), (a,v) € 3Z. However, flopping contractions are induced by solutions to
the quadratic equation

a? —b? —2as+s=0,

where we seD = a; + b2, anda = (3(2a — 1),a&1 + b&2 + 3(2a — 1)B,s). This has
infinitely many solutions. It is an easy exercise to dedadr¢m this.

14. THE GEOMETRY OF FLOPPING CONTRACTIONS

One can also refine the analysis leading to Thedsefito give a precise description of the
geometry of the flopping contraction associated to a floppialy WV .

As in Section5, we letoy € W be a stability condition on the wall, and, ¢ W be
sufficiently close tary. For simplicity, let us assume throughout this sectionttmahyperbolic
lattice H,y associated tdV via Definition 5.2 does not admit spherical or isotropic classes;
in particular,V is not a totally semistable wall for any claasc #, and does not induce a
divisorial contraction.

Let 3 be the set of unordered partitiod = [a;]; of v into a sumv = a; + --- + a,,
of positive classesa; € #H. We say that a partitiorP is a refinement of another partition
Q@ = [b,]; if it can be obtained by choosing partitions of edgh This defines a natural partial
order ortl3, with P < @ if P is arefinement of). The trivial partition as the maximal element
of .

Given P = [a;]; € B, we letMp C M, (v) be the subset of objects such that the
Mukai vectors of the Jordan-Holder factals of £ with respect tar, are given bya; for all
1. Using openness of stability and closedness of semidtalilfamilies, one easily proves:
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Lemma 14.1. The disjoint unionM,, (v) = [[pey Mp defines a stratification of/,, (v)
into locally closed subsets, such thafp is contained in the closure a¥/q if and only if
P =<Q.

In addition, our simplifying assumptions 6, give the following:

Lemma 14.2. Assume thal® = [a;, a,| is a two-element partion of. ThenMp C M, (v)
is non-empty, and of codimensi6a, , az) — 1.

Proof. Sincev is primitive, we may assume that has smaller phase than with repsect

to o4. By assumption or#)y and by Theoren®.13 the generic elememd; € M, (a;)

is op-stablefor ¢ = 1,2. In particular,Hom(A;, A3) = Hom(A2, A1) = 0, and therefore
dimExtl(AQ,Al) = (aj,a2). By [BM11l, Lemma 5.9], any non-trivial extensioA; —

E — A, is o -stable. Using Theorerd.13again, one computes the dimension of the space
of such extensions as

al+2+a2+2+(aj,a)) —1=v>+2—((aj,ap) — 1).
0

For P as above, the flopping contractiari contracts)M p to the product of moduli spaces
Mgt(ay) x Mt (az) of op-stableobjects. The contracted locus of" is the union ofMp
for all non-trivial partitionsMp. In particular, when there is more than one way to wyite
as a sum of two positive classes, our stratification is onlyially ordered; this leads to a
generalization of Markman’s notion atratified Mukai flopsgntroduced in Mar01] (where
the stratification is indexed by a totally ordered set).

For any givenm € Z~(, one can easily construct examples where the locus coedidgt
71 hasm irreducible components: by Lemni4.2 this is equivalent to constructing a lattice
‘H such thatv can be written as a sum= a; + as in exactlym different ways:

Example 14.3.ChooseM > m for whichz? + Mxy + 32> = —1 does not admit an integral
solution. We define the symmetric pairing &h = Z? via the matrix <j\2/[ AQ/‘[> and let

v = . The positive cone is the open cone containing the upper gigddrant that is

—1
bordered by the lines of slopes approximatel% and—M. SinceM > m (infact, M > 2m
is enough), any partition of into positive classes is in fact a partition?@o. Therefore, the

two-element partitions are given ky= <;> + <m _01 B k> for0 < k <m —1. Thereis
a unigue minimal partitior), given byv = (1) +(m—1) <[1)> The corresponding stratum
Mg, is contained in the closure of any other stratum.

Similarly, one can construct flopping contractions withitagily many connecteccompo-
nents:

Example 14.4.Let m be an odd positive integer. Choos€ > m and define the latticé{

by the matrix( —4 2M

oM 4 ) The positive cone lies between the lines of slope appraeipna

m

2
with x > 0 andy > 0, and therefore; = 1. Besides the trivial element, the only partitions

+-1 and—M. We letv = . Any summand in a partition of must be of the for Z;
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occurring in3 are therefore of the forml, = [(f) , <m1—k>] for0 < k < . Each

corresponding stratd/ 4, is one connected component of the exceptional locus'of

Remark 14.5. To show that the lattice®{ as above occur as lattice associated to some wall
Hyy on some K3 surface, we only have to find a K3 surfacsuch that{ embeds into its
Mukai lattice H ), (X, Z). In particular, we may chooseic(.X') = #, and the class to be of

the formv = (0, ¢, 0) for a corresponding curve classin particular, Examplé4.3occurs in

a relative Jacobian of curves on special double covers: P2, and Examplel4.4in special
quarticsX c P3. This wall-crossing already occurs for Giesker stabilifyrwespect to a non-
generic polarizationd. The morphismr™ contracts sheaves supported on reducible curves
C = C1 U4 in the corresponding linear system; it forgets the gluinta @ the intersection
pointsC; N Cs. The flopping transformation preserves the Lagrangiantidrayiven by the
Beauville integrable system.

15. LE POTIER'S STRANGE DUALITY FOR ISOTROPIC CLASSES

In this section, we will explain a relation of Theorehb to Le Paotier's Strange Duality
Conjecture for K3 surfaces. We thank Dragos Oprea for pugntis to this application.
We first recall the basic construction frorhH05 MOO0S8]. Let (X, «) be a twisted K3

surface and let € Stab(X, «) be a generic stability condition. Let w € H;lg(X,a,Z)

be primitive Mukai vectors withv2, w? > 0. We denote byL,, (resp.,L,) the line bundle
O, (v)(—0v(W)) (resp.,Onr, (w) (—0w(V))). We assume:

e (v,w)=0,and

e forall E € M,(v)andallF € M,(w), Hom?(E, F) = 0.
Then the locus

©={(E,F) € M,(v) x My(w) : Hom(E, F) # 0}
gives rise to a section of the line bundlg v, := Ly X Ly on M, (v) x M, (w) (which may
or may not vanish). We then obtain a morphism, well-definetbigzalars,
SD: H(M,(v), Lyw)Y — H°(M,(w), Ly).

The two basic questions are:

e When ish® (M, (v), Ly) = h%(M,(w), Ly)?

e If equality holds, is the mapD an isomorphism?

We answer the two previous questions in the case where ohe df/b vectors is isotropic:

Proposition 15.1. Let (X, «) be a twisted K3 surface and let € Stab(X, «) be a generic
stability condition. Letv,w € H (X, o, Z) be primitive Mukai vectors witlv, w) = 0,
vZ > 2andw? = 0.
We assume that 6y, (w) € Mov(M,(v)) and —60yw(v) € Nef(M,(w)). Then

€Y hO(MO'(V)7LW) - hO(MO'(W)7LV)’ and

(b) the morphisnsD is either zero or an isomorphism.
Proof. Let Y := M,(w). By [Muk873 Cal02 Yos0q, there exist an elemert € Br(Y")
and a derived equivalenag: D°(X, o) = DY(Y, 3). Replacing(X,«) by (Y, 3), we may
assume thatv = (0,0,1) andv = (0, D, s), for somes € Z and D € NS(X), and that
X = M,(w) is the moduli space of skyscraper sheaves. Moredvet, —6,,(v) € Nef(X)
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is effective, by assumption. By stability and Serre duafiy all £ € M, (v) and allz € X,
Hom?(E, k(x)) = Hom(k(z), E)" = 0, and the locu® gives a section of., X L.

By Remarkl1.5 there exists a chambgr,, in the interior of the movable condov (M, (v))
whose boundary containsf, (w). Moreover, there exist a polarizatidiéi on X and a cham-
berCs C Stab(X,a) such that/(C) = Lo, Mu(v) = M (v), and the Lagrangian
fibration induced byw is the Beauville integrable system otz (v).

The argument inN1O08, Example 8] shows that’ (My (v), L) = h°(X, O(D)) and the
morphismSD is an isomorphism. Sinck/y; (v) is connected td/, (v) by a sequence of flops,
which do not change the dimension of the spaces of sectiolig, pfve obtain immediately
(3.

To prove p), we need to study the behavior of the morphiSt under wall-crossing. We
pick a stability conditiorr, € C. Botho ando, belong to the open subset( X, «) of
Theorem2.7. By Theorem10.2 we can find a path i/ (X, «) connectings ando, which
crosses only fake or flopping walls with respecttalf it crosses no totally semistable walls,
then the morphisn$D is compatible with the wall-crossing; since it induces ammsrphism
ato.., it induces an isomorphism at

Assume instead that there is a totally semistable wall. Wewr= o, 5. The straight path
from o, to oy, g, for t > 0, corresponds to a change of polarization for Gieseker |gtabi
and thus does not cross any totally semistable wall. Thexefee may replace., with o, 3,
fort > 0.

We claim that all objects? in M, (v) must be actual complexes, witk(H°(E)) > 0.
Indeed, if there exists a she&fin M, (v), then the generic element is a sheaf. Moreover,
sinceD is nef and big, it is globally generated, and we can assundhfaupport off is a
smooth integral curve. Stability it (X, ) for torsion sheaves implies, in particular, that the
sheaf is actually stable on the curve. But tHemvould be stable fot — oo. This shows that
we crossed no totally semistable wall.

Hence, sincd” is an actual compleXlom(E, k(z)) # 0, for all z € X. This shows that
© is nothing but the zero-section &f, , and the induced mapD is the zero map. d

By applying the previous proposition to stability condit®onear the large volume limit, we
deduce the corresponding strange duality statement foulinofdstable sheaves (with respect
to a generic polarization o).

Example 15.2. Let X be a K3 surface such thdtic(X) = Z - H, with H?> = 2. Let
v = (1,0,—1) andw = —(1,—H,1). Consider a stability conditior,, = o¢x,—2x, for
t > 0. Then, as observed iBpa99 Proposition 1.3]Hilb?(X) = M,_(v) admits a flop
to a Lagrangian fibration induced by the vector The assumptions of Propositid®.1 are
satisfied. In this case, for alf[1] € M,_(w), E = I,,(—H), and for alll’ € Hilb?(X), we

haveHom(Ir, E[1]) # 0. Hence, the magD is the zero map.
The following example shows that the assumption in Projpwosit5.1is necessary:
Example 15.3. Let X be a K3 surface wWitiNS(X) = Z - C; & Z - Cy and intersection form

(7 4).

We assume the two rational curv€s andCy generate the cone of effective divisors &n
Letv = (0,3C; + Cs, 1) andw = (0,0, 1). Thenv? = 4. Pick a generic ample divisdi on
X. We have

HY(Mg(v),0y(w)) = C*4.
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Indeed, for example, one can argue by flopping at the sphesécor (0, Cq,0). Then we
have a birational map/y(v) --» Mg(v'), wherev’ = (0,C; + Cs,1) and a chain of
isomorphisms

HO(Mpy(v), 0y (W) & HO(My (v'), 0y (w)) = HO(P?, Opa (1)) = C1.
On the other side, we have
HO(Mpy(w), 0w (v)) = H(X,0x (3C] + Cs)) = CP,
The last isomorphism follows from the exact sequence
0— Ox(2C, + C3) = Ox(3C1 + C3) = Op1(—2) — 0,
sinceOx (2C + Cs) is big and nef and thus has no higher cohomology.
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