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Addendum to last talk:

People pointed out last time that the argument we gave was very
special to D5.

This is absolutely true and I used it as a purely pedagogical way to
introduce holomorphic curves.

Seidel gave it for similar reasons in Example 1.13 his “Lectures on
4-dimensional Dehn twists”.

He also used Floer homology, his exact triangle and the structure of
quantum cohomology to prove (loc. cit. Theorem 0.5):

Theorem (Seidel)

Let X be a complete intersection surface other than CP2 or the quadric.
The squared Dehn twist is nontrivial in the symplectic mapping class
group.

You should read his lectures. They’re great.
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Lagrangian submanifolds

Remember that a symplectic form is nondegenerate, i.e. the biggest
isotropic subspaces of tangent spaces are n-dimensional.

Definition

An n-dimensional isotropic subspace is called a Lagrangian subspace.

A submanifold whose tangent spaces are Lagrangian is called a
Lagrangian submanifold.
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Lagrangians in projective varieties

Lagrangian submanifolds arise in complex projective geometry in two ways:

As real loci of complex varieties (fixed point sets of an antisymplectic
involution).

As vanishing cycles of nodal degenerations.

We will look at these in this order. The plan is:

prove that a smooth real Fano 3-fold cannot be a hyperbolic
3-manifold,

briefly discuss the classification of Lagrangian spheres (vanishing
cycles) in certain algebraic surfaces.
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Real projective varieties

Complex conjugation c : CPN → CPN is an antisymplectic involution.

In other words, c2 = 1 and c∗Ω = −Ω where Ω is the Fubini-Study
form.

The fixed locus RPN is a Lagrangian submanifold because
Ω|RPN = −Ω|RPN .

If a projective variety is cut out by real polynomials then it is
preserved by c and hence its intersection with RPN is a Lagrangian
submanifold.
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Kollar’s work

Kollar developed the minimal model program over R in dimension 3.

In particular he gave restrictions on the topology of a real projective
variety birational to P3.

However, to rule out certain cases (like hyperbolic or sol 3-manifolds)
one needs techniques from symplectic geometry.

These arguments were provided by Viterbo-Eliashberg and
Welschinger-Mangolte respectively.

We will prove:

Theorem (Viterbo-Eliashberg)

A real Fano 3-fold cannot be a hyperbolic 3-manifold.
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Remarks

The Viterbo-Eliashberg theorem uses a technique called
neck-stretching to construct an almost complex structure with desired
properties.

This idea originated in gauge theory and Riemannian geometry and
first came into symplectic geometry in the work of Hofer.

I will explain the idea of neck-stretching around a Lagrangian
submanifold.

I will also use neck-stretching in my third talk.

I hope this excuses a long technical section...
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Stretching the neck I

Theorem (Weinstein neighbourhood theorem)

Given a Lagrangian submanifold L ⊂ X of a symplectic manifold there is a
neighbourhood W ⊃ L which is symplectomorphic to a neighbourhood of
the zero-section in T ∗L.

Some words of explanation:

T ∗L is the cotangent bundle.

A point (x , η) ∈ T ∗x L is a 1-form η on the tangent space TL.

Given a vector v at (x , η) ∈ T ∗L you can project v to L and apply η
to get a number.

The result is called λ(v).

λ is the canonical 1-form on T ∗L.

−dλ is a symplectic form.
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Stretching the neck II

Let W be a Weinstein neighbourhood of L.

Let M = ∂W .

Let V = X \W .
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Stretching the neck III

M inherits some extra structure, namely a 1-form α pulled back from λ.

Definition (Contact distribution)

α is a contact form, i.e.

α ∧ (dα)n−1 is a volume form on M.

ξ = kerα is a 2n − 2-plane field called the contact distribution.

There is a vector field Rα transverse to ξ called the Reeb field such
that

α(Rα) = 1 and dα(Rα, ·) = 0.

Near M there is a vector field called the Liouville vector field v which
is transverse to M. This is the outward radial field in the cotangent
bundle.
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Stretching the neck IV

Use the flow of the Liouville field v to find a neighbourhood N of M,
identified with M × (−ε, ε). Pick a J0 ∈ Jω which is:

invariant under the flow of v ,

preserves ξ,

satisfies J0v = Rα.

We call such an almost complex structure adapted to L.
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An adapted almost complex structure

Figure : Our invariant almost complex structure J0 preserves the contact
distribution ξ on M and sends v (the Liouville field) to Rα (the Reeb field).
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Stretching the neck V

Neck-stretching takes an almost complex structure J0 adapted to L and
produces a 1-parameter family of degenerating almost complex structures
{JT}T∈[0,∞). Note that X = W ∪ N ∪ V where N ∼= M × (−ε, ε) and J0
is extended arbitrarily over W and V .

Since J0 is invariant on N under the Liouville flow, one can replace N
by NT = (−T − ε,T + ε).

Define
XT = W ∪ NT ∪ V

and JT to be the almost complex structure which agrees with J0 on
W and V and is invariant on NT .

Definition

The family JT is called the neck-stretching sequence for the adapted
almost complex structure J0.
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The key to understanding JT -holomorphic curves for large T is the
symplectic field theory compactness theorem:

Theorem (SFT compactness)

If {uT : CP1 → XT}T∈[0,∞) is a sequence of JT -holomorphic curves (in a
given homology class) then there is a subsequence uTi

, Ti →∞, and a
sequence of reparametrisations φi such that ui = uTi

◦ φi converges to a
holomorphic building in X∞.

I won’t talk about the nature of the convergence (Gromov-Hofer
convergence).

XT breaks up into noncompact pieces as T →∞:
I W̄ , the cotangent bundle of L
I S = M × (−∞,∞),
I V̄ , the complement X \ L. and

X∞ = W̄ ∪ S ∪ V̄ .
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Holomorphic buildings I

Holomorphic buildings are certain noncompact holomorphic curves. Before
defining them, let me give you an example of the kind of thing which is
allowed.

Example

On the subset S = M × R we have J∞v = Rα. Therefore a closed orbit of
the Reeb vector field Rα will trace out a holomorphic cylinder under the
flow of the Liouville vector field v.

The ends of our noncompact manifolds look like S × [0,∞) or
S × (−∞, 0].

Holomorphic buildings satisfy a condition called “finiteness of energy”
which ensures that they are asymptotic to holomorphic cylinders on
closed Reeb orbits.
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Holomorphic buildings II

Figure : A holomorphic building in X∞, asymptotic Reeb orbits drawn in red.
These orbits must match up.
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Now I want to use these ideas to prove the Viterbo-Eliashberg theorem:

Theorem (Viterbo-Eliashberg)

A real Fano 3-fold cannot be a hyperbolic 3-manifold.
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Proof of Viterbo-Eliashberg theorem I

Suppose that L is a hyperbolic 3-manifold embedded as a Lagrangian
submanifold of a Fano 3-fold.

Step 1: Hyperbolic geometry to Reeb dynamics

Recall that the contact hypersurface M essentially the unit cotangent
bundle of L.

In fact, the Reeb vector field is the (co)geodesic vector field and the
Reeb orbits are the geodesics.

On a hyperbolic manifold there is a unique closed geodesic in every
noncontractible free homotopy class of loops.
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Proof of Viterbo-Eliashberg theorem II

Step 2: Fano gives holomorphic curves

By Mori theory, a Fano 3-fold is uniruled (i.e. there is a homology
class A such that through every point there is a holomorphic sphere
homologous to A).

Kollar-Ruan proved that these uniruling curves persist as
J-holomorphic spheres for arbitrary compatible J.

In particular, one can take a neck-stretching sequence Jt for L.

For each point p ∈ L there is a uniruling Jt-sphere through p.

Using the SFT compactness, you extract a punctured holomorphic
curve in T ∗L passing through every point of L.
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Proof of Viterbo-Eliashberg theorem III

To summarise, in Step 2 we found punctured holomorphic curves passing
through every point of our Lagrangian L. By Step 1, these are asymptotic
to closed geodesics in the unit cotangent bundle of a hyperbolic manifold.
The punchline is the following:

Proposition (Holomorphic curves and Reeb dynamics)

Let L be a hyperbolic n-manifold, n ≥ 3. For generic J, the moduli space
of (simple) punctured holomorphic curves in T ∗L is discrete
(0-dimensional).

In particular, only a countable set of points in L can be hit by the limits of
the uniruling curves from Step 2, a contradiction.
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Proof of Viterbo-Eliashberg theorem IV

Proof of Proposition.

Without mentioning various transversality results about simple punctured
holomorphic curves, all we need to prove is that the expected dimension of
the moduli space is zero. The formula for the expected dimension of a
moduli space of punctured holomorphic curves in a cotangent bundle
where the geodesic flow is nondegenerate like this one is:

(n − 3)(2− s) +
s∑

i=1

ind(γi )

where the s punctures are asymptotic to geodesics γi and ind(γi ) denotes
the Morse index. ...
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Recall

Closed geodesics are critical points of the energy functional on loopspace.
The Morse index is the dimension of the negative eigenspaces of the
Hessian, i.e. the number of linearly independent directions in loopspace in
which the energy can decrease. Geodesics in hyperbolic manifolds are
action-minimisers, so ind(γi ) = 0. Moreover, they are noncontractible.

Proof of Proposition (continued).

Noncontractibility implies s ≥ 2. Otherwise the punctured curve
would project to L and give a nullhomotopy of its asymptotic orbit.

The condition n ≥ 3 implies that (n − 3)(2− s) ≤ 0.

Therefore the expected dimension

(n − 3)(2− s) +
s∑

i=1

ind(γi )

is at most zero.
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This completes the proof that there is no hyperbolic Lagrangian
submanifold in a Fano manifold.

The two hypotheses (hyperbolic versus Fano) are very different in
flavour (Riemannian geometric versus algebro-geometric).

The technology of punctured holomorphic curves and neck-stretching
allows us to translate between these two worlds and prove a theorem.

Observe...

...while most of our theorems have been applications of ideas from
algebraic geometry to symplectic problems, this theorem is a result in
(real) algebraic geometry which seems to need a symplectic proof.
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Vanishing cycles

Symplectic parallel transport

Recall from yesterday’s lecture that if (Xt , ωt) is a 1-parameter family of
smooth complex projective varieties then we can define a symplectic
parallel transport map φs,t : Xs → Xt such that φ∗s,tωt = ωs .

Now suppose that X0 is actually a variety with a node N.

Let Vt ⊂ Xt be the subset of points such that limε→0 φt,ε(v) = N.

Vt is a Lagrangian sphere called the vanishing cycle.
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Vanishing cycles

Question

Which Lagrangian spheres arise as vanishing cycles of an algebraic nodal
degeneration?

There are examples due to Corti and Smith of nullhomologous Lagrangian
3-spheres in E × CP1 (where E is an Enriques surface) which do not arise
as vanishing cycles. However, if we restrict to surfaces...

Theorem (Hind)

The space of Lagrangian spheres in a quadric surface is connected.
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Recall that a quadric surface is symplectomorphic to the product of two
spheres

Q ∼= S2 × S2

and there is an easy-to-spot antidiagonal Lagrangian sphere:

∆̄ = {(x ,−x) ∈ S2 × S2 : x ∈ S2}

where x 7→ −x is the antipodal map on S2.

This is the vanishing cycle of a nodal degeneration.

It is preserved by the switching symplectomorphism (x , y) 7→ (y , x).
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Hind’s theorem is proved using J-holomorphic curves. Let me give you an
outline of the proof.

Step 1: Prove that the group of symplectomorphisms of a quadric
acts transitively on the space of Lagrangian spheres.

Step 2: Use Gromov’s theorem from last time that the group of
symplectomorphisms of a quadric has two connected components, one
containing the identity and one containing the switching map. We’ve
already said that this latter component actually preserves ∆̄.

Hence the space of Lagrangian spheres is connected.
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State of the art

Theorem

(E. 2010) The space of Lagrangian spheres in a given homology class
in D2,D3,D4 is connected.

(Borman-Li-Wu 2012) The group of symplectomorphisms acting
trivially on homology acts transitively on Lagrangian spheres in a
given homology class in any symplectic blow-up of CP2.

(Corollary of Borman-Li-Wu and E. 2011) The Lagrangian spheres in
D5 are precisely the vanishing cycles of algebraic nodal degenerations.
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Hind’s theorem

To show that Symp(Q) acts transitively on Lagrangian spheres...

Recall that a quadric surface Q has two rulings by holomorphic
spheres.

There are J-holomorphic rulings for any compatible almost complex
structure J.

Given a Lagrangian sphere L, construct a J such that any sphere
from one of the J-holomorphic rulings intersects L transversely in a
single point.

(Symplectic tinkering:) Use this to define a symplectomorphism of
the quadric taking the J-holomorphic rulings to the standard rulings
and L to ∆̄.

The key step is the construction of J. This is achieved by neck-stretching!
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The other theorems classifying vanishing cycles also use neck-stretching.
The idea is to show that there are certain JT -holomorphic curves which,
for very large T , are disjoint from L, then use this to reduce the problem
to Hind’s theorem. The state of the art in that respect is the following
theorem of Li and Wu:

Theorem (Li-Wu 2012)

Let L be a Lagrangian sphere in a symplectic 4-manifold (M, ω), and
A ∈ H2(M;Z) with A2 ≥ −1. Suppose A is represented by a symplectic
sphere C . Then C can be isotoped symplectically to another representative
of A which intersects L minimally (i.e. transversely at |[C ] · [L]| points).

There are related results for Lagrangian tori and higher genus surfaces due
to Welschinger.
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Summary

We have seen that for Fano surfaces there is a close correlation
between symplectic topology and algebraic geometry, both in terms of
the symplectomorphism group and in terms of the space of
Lagrangian spheres.

We have seen more generally that symplectic topology has real
consequences for real algebraic geometry and allows us to translate
between different worlds (Riemannian/dynamical and
algebro-geometric).

We have encountered the idea of J-holomorphic curves (of central
importance).

We introduced neck-stretching, a technique which allows us to adapt
out pseudoholomorphic curves to a Lagrangian submanifold.
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This concludes the minicourse “Symplectic topology and algebraic
geometry”. My next talk will be a research-level talk which will use
neck-stretching and holomorphic discs to prove a smooth unknottedness
theorem for Lagrangian tori in the simplest (and yet most enigmatic) of all
symplectic manifolds, Cn.
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