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Main result

Joint work with Georgios Dimitroglou Rizell.

Theorem (Unknottedness A)

Let n ≥ 5 be odd. Suppose ι1, ι2 : L→ Cn are two monotone Lagrangian
embeddings of a torus into the standard symplectic vector space. Then
(after possibly reparametrising) there is an isotopy of smooth (not
necessarily Lagrangian) embeddings connecting ι1 and ι2.

By contrast there are knotted smooth tori, even knotted totally real tori.
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Definitions

Totally real means that iTpL ∩ TpL = {0} for all p ∈ L.

Lagrangian means ω|TpL = 0 for all p ∈ L and TpL is n-dimensional.

Lagrangian implies totally real because iTpL ⊥ TpL when L is
Lagrangian.

I To see this, note that if v ∈ TpL and w ∈ iTpL then

g(v ,w) = ω(v , iw) = 0

because v and iw are in TpL.
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H-principles

There is an h-principle for totally real embeddings and for Lagrangian
immersions. Note that a totally real embedding (or Lagrangian immersion)
ι gives a trivialisation of the complexified tangent bundle

TL⊗ C
∼=→ L× Cn

which sends (x , v + iw) ∈ TxL to (ι(x), ι∗v + iι∗w).

Theorem (H-principle (Gromov, Lees))

Isotopy classes of totally real embedding (respectively regular homotopy
classes of Lagrangian immersion) correspond 1-1 with homotopy classes of
trivialisation

TL⊗ C
∼=→ L× Cn

together with a smooth isotopy class of embeddings (respectively
immersions) L→ Cn.
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Rigidity phenomena
By contrast there is no h-principle for Lagrangian embeddings so various
kinds of rigidity phenomena can occur:

Figure : (a) There may be many isotopy classes of totally real embeddings, only a
few of which contain Lagrangian embeddings. (b) There may be several isotopy
classes of Lagrangian embeddings which are isotopic as totally real submanifolds.
Theorem A above concerns rigidity of type (a).
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More rigidity phenomena

Figure : Amongst all immersions there may be (a) homotopy classes of Lagrangian
immersion containing no Lagrangian embedding, (b) isotopy classes of Lagrangian
embedding which are isotopic as Lagrangian immersions but not as smooth
embeddings. Our second theorem will rule out (b) for monotone Lagrangians.
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Theorem (Unknottedness B)

Suppose n ≥ 4. Two monotone Lagrangian embeddings of a torus in Cn

are smoothly isotopic if they are homotopic as Lagrangian immersions.
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Summary

Theorem (Unknottedness Theorems)

Let n ≥ 5 be odd. Suppose ι1, ι2 : L→ Cn are two monotone
Lagrangian embeddings of a torus into the standard symplectic vector
space. Then (after possibly reparametrising) there is an isotopy of
smooth (not necessarily Lagrangian) embeddings connecting ι1 and
ι2.

Suppose n ≥ 4. Two monotone Lagrangian embeddings of a torus in
Cn are smoothly isotopic if they are isotopic as Lagrangian
immersions.

To prove these theorems, we must ask:

Question

How does one prove two n-dimensional submanifolds of Cn are smoothly
isotopic?
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Haefliger-Hirsch theory

Question

How does one prove two n-dimensional submanifolds of Cn are smoothly
isotopic?

The answer was given by Haefliger and Hirsch in 1963

Theorem (Haefliger-Hirsch)

Let n ≥ 4 and let L be a closed orientable n-manifold. Smooth isotopy
classes of embedding L→ Cn correspond (noncanonically) 1-1 with
elements of

H1(L;Z) when n is odd, H1(L;Z/2) when n is even.
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Haefliger-Hirsch theory

More precisely,

To any embedding ι there is a normal vector field (the
Haefliger-Hirsch field) η on L \ {pt} such that pushing ι(L) off itself
using η gives ιη(L) which is nullhomologous in Cn \ (L \ {pt}).
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The obstruction to constructing a smooth isotopy between
embeddings ι1 and ι2 is the obstruction to finding a homotopy of
normal vector fields over the n − 1-skeleton.
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Self-linking

So Haefliger-Hirsch theory reduces smooth isotopy problems to a study of
“self-linking”.

Definition (Linking of n-dimensional submanifolds)

L ⊂ X links M ⊂ X if [L] 6= 0 ∈ Hn(X \M;Z).
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Area and linking

Clearly for circles in C, if area(M) ≥ area(L) then L does not link M.

What is the “area” of a Lagrangian submanifold?

There is a homomorphism
∫
ω : π2(Cn, L)→ R defined by integrating

ω over a disc.

Since Cn is contractible, the homotopy long exact sequence of
L ⊂ Cn implies

π2(Cn, L) ∼= π1(L)
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Maslov class

There is another homomorphism µ : π1(L)→ Z defined as follows:

Definition

A Lagrangian is monotone if, for some K > 0,∫
A
ω = Kµ(A)
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We restrict attention to monotone Lagrangians because

the ω-area homomorphism is particularly simple for them and

more importantly, Floer theory is very much easier in the monotone
setting (Oh, Biran-Cornea).

Are we cheating?

We want to prove a rigidity theorem. We cannot say anything about
Lagrangian embeddings in general, only the monotone ones, so are we
cheating?

No

There is an h-principle for monotone Lagrangian immersions, so our
theorem is a rigidity result for that h-principle.
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Theorem (Unlinking)

Suppose ι1, ι2 : T n → Cn are monotone Lagrangian embeddings witha

K1 ≤ K2. Then ι1(T ) = L1 does not link ι2(T n) = L2.

aKi is the monotonicity constant of ιi .

This is the key result which lets us deduce our unknottedness results via
Haefliger-Hirsch theory.
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Proof of unlinking theorem I

The idea is the use J-holomorphic discs with boundary on L1 to
construct a chain C with ∂C = kL1 for some k 6= 0 ∈ Z.

We need to pick J such that these discs are disjoint from L2.

This will show k[L1] = 0 ∈ Hn(Cn \ L2;Z) ∼= Hn−1(L;Z) = Zn and
hence

[L1] = 0 ∈ Hn(Cn \ L2;Z).
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Step 1: Finding holomorphic discs

Theorem (Buhovksy)

If L ⊂ Cn is a monotone Lagrangian torus then there exists a Maslov 2
homology classa β ∈ H1(L;Z) such that for generic J,

ev : M0,1(L, J;β)→ L

has non-zero degree.

ai.e. µ(β) = 2.

Here M0,1(L, J;β) is the moduli space of pairs (u, z) where

u : D2 → Cn, ∂u : S1 → L

[∂u] = β and u is J-holomorphic,

z ∈ ∂D2,

divided by the action of P SL(2,R), where φ ∈ P SL(2,R) acts by

(u, z) 7→ (u ◦ φ−1, φ(z))
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Step I: Finding holomorphic discs

The map ev : M0,1(L, J;β)→ L is the evaluation map:

ev(u, z) = u(z)

If there are k marked points then the moduli space (generically) has
dimension

n + µ(β) + k − 3

in our case
n + 3− 3 = n

Moreover, the Maslov 2 discs form a compact moduli space by
monotonicity, so the evaluation map has a degree.
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Aside: Buhovsky’s theorem

How do we find such discs?

There is an invariant of monotone Lagrangian submanifolds called
Floer homology.

This invariant is a ring HF(L).

If L can be displaced from itself (e.g. in Cn by translation) then

HF(L) = 0.

There is a spectral sequence starting from H∗(L;Z[q, q−1])
converging to HF(L).

The differentials in this sequence are defined as degrees of evaluation
maps on moduli spaces of holomorphic discs, so HF(L) = 0 means
many differentials are nonzero, hence many discs.

By considering the product structure on the ring one can actually
deduce that the spectral sequence collapses at E2, and this is the
differential which counts Maslov 2 discs.
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Reminder

We want to show that, for some J, these discs are disjoint from L2. We’ll
use neck-stretching.
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Step 2: Stretching the neck

Assume (for contradiction) that for all J there is a J-disc with boundary
on L1 representing the class β which intersects L2. Stretch the neck
around L2.
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Step 2: Stretching the neck
In the limit our discs become holomorphic buildings with asymptotic Reeb
orbits.

Because the disc always hits L2, the limit building has a component u
in the Weinstein neigbourhood W̄ .

The boundary of the Weinstein neighbourhood W is the unit sphere
bundle of the cotangent bundle of L2 and the Reeb flow is the
geodesic flow on the torus.
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The torus has no contractible geodesics, so the domain of u has at
least two punctures.

In particular, one of the punctures of u must be capped off1 by a disc
v in V̄ = Cn \ L2.

There is also a component v0 containing the boundary of the
holomorphic building on L1.

1It cannot be capped off by a holomorphic disc in the symplectisation by a maximum
principle.
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Step 2: Stretching the neck

Now we can interpret v : D2 → Cn \ L2 as a holomorphic disc with
boundary on L2.

In particular it represents an element of π2(Cn, L2) with positive area
(at least 2K2 by monotonicity).
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But the minimal positive area of a disc on L2 is 2K2.

The sum of the areas of all components of the limit building is equal
to the area of the original (Maslov 2) disc which was 2K1. Since these
areas are all positive by holomorphicity

2K1 ≥ area(v) + area(v0) > 2K2

which contradicts the assumption K1 < K2.
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Self-linking corollary

Our unknottedness results follow from the following:

Corollary

Let ι : T n → Cn be a monotone Lagrangian torus. Let σ : T n → S1 be a
circle-valued function such that [dσ/2π] = µ and let ∇σ be its gradient.
Then V = J∇σ is the Haefliger-Hirsch field of ι.

Proof.

The small pushoff of ι(T n) along V is a monotone Lagrangian torus with
smaller monotonicity constant, hence is nullhomologous in the
complement of ι(T n).
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We don’t need L to be diffeomorphic to a torus. For the unlinking
theorem we just need

I A non-zero degree of evaluation map for L1,
I For instance, we could take an orientable, spin manifold L1 such that

the universal cover has no odd-degree cohomology (discs come from
Damian’s lifted Floer homology).

I A metric with no contractible geodesics on L2.
I L1 orientable (for a fundamental class) and H1(L2;Z) torsionfree

(otherwise we only deduce that [L1] is torsion in Hn(Cn \ L2;Z)).

and L1 need not be diffeomorphic to L2.
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For Unknottedness B (isotopic as Lagrangian immersions means
isotopic through smooth embeddings) we just need L

I to be spin and orientable,
I to have a metric with no contractible geodesics2,
I to have H1(L;Z) torsionfree and
I to admit a circle-valued function σ : L→ S1 with no critical points

such that [dσ/2π] = µ.

2which implies that the universal cover is contractible.
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Conclusion

We have proved unlinking and unknottedness results for certain monotone
Lagrangian submanifolds in Cn. The natural open question is:

Can one prove an unlinking result for general Lagrangian
embeddings?

I There may exist Maslov zero Lagrangians in Cn - these would not have
as many holomorphic discs as we need to run our argument...

...so can one find counterexamples?
I Possibly, using forthcoming work of Eliashberg-Ekholm-Murphy-Smith

on flexibility for loose Legendrian submanifolds?

Thank you for listening.
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