数のいろいろ

自然数　1, 2, 3, …
整数（負の整数を含む） …, -3, -2, -1, 0, 1, 2, 3, …
有理数（分数・小数を含む） …, -2, -1, -0.5, …, 0, …, 1/2, 1, 2, 3, …
実数（小数・無理数を含む） …, -2, -1, -\(\sqrt{2}\), -1, -0.5, 0, 0.5, \(\sqrt{2}\), 1, 2, 3, …
複素数（虚数部のあるものも含む） …, -5, -2 - 3i, -\(\frac{1}{2}\), 0, i, \(\sqrt{3}\), \(-\sqrt{3}\), 5 - 2i, 6 + 8i, 5.897, …
超数 π（円周率）、e（自然対数の底）、π, e …

整数と分数はどっちが多い？

答？ 自然数 < 自然数 + 0 < 整数 < 有理数 < 実数
1,2,3,･･･の個数 <？ =？ >？ -1,-2,-3,･･･の個数

「個数」って，何？
「個数が等しい」 ⇔ 「1対1」かつ「ピッタリ上に」 の対応が付けられる

どちらも，1,2,3,･･･と「番号を振る」ことができる
◦ それが「1対1」かつ「ピッタリ上に」の対応である
◦ 0, 1, 2, 3,･･･, n, ･･･, -1, -2, -3,･･･, -n, ･･･

答：=（等しい）

自然数に 0 を足すと個数は増える？

1,2,3,･･･の個数 <？ =？ >？ 0,1,2,3,･･･の個数

どちらも，1,2,3,･･･と「番号を振る」ことができる
− それは「1対1」かつ「ピッタリ上に重なる」対応である
− 0, 1, 2, 3,･･･, n, ･･･
− 1, 2, 3,･･･, n+1,･･･

答：=（等しい）

自然数の個数と整数の個数は等しい？

1,2,3,･･･の個数 <？ =？ >？ -1,-2,-3,･･･, -1,0,1,2,3,･･･の個数

どちらも，1,2,3,･･･と「番号を振る」ことができる
− それは「1対1」かつ「ピッタリ上に」の対応である
− g 1, 2, 3, 4, 5, 6, 7,･･･, 2n, 2n+1,･･･

答：=（等しい）

自然数，自然数+0，整数，有理数の個数は同じ！
無限の世界と有限の世界を一緒にしてはいけない！

可算無限（＝数えることができる無限）の個数

・自然数，整数，偶数，奇数，有理数，整数2個の組，･･･
・などは，すべて可算無限個

・分数の個数は？
・実数の個数は？
可算無限の個数
自然数、整数、偶数、奇数、有理数、整数2個の組、・・・ などは、すべて可算無限個

分数の個数は？
分数とは
整数整数
という形の数のこと
ということは・・・ 整数のペア
(整数、整数)
と同じ
ということは ・・・ このように番号を振ることができる
ということは、自然数の個数と同じ（可算無限の個数）

整数の個数＝分数の個数
であることを証明しよう！

整数の個数は分数の個数
であることを証明しよう！

a. 整数すべてを並べよう
 0, 1, -1, 2, -2, 3, -3, ...

b. 正の分数すべてを並べよう
 1/1, 1/2, 2/1, 1/3, 2/3, 3/1, 1/4, 2/4, 3/4, 4/1, ...
 1/2, 2/2, 3/2, 4/2, 5/2, ...
 1/3, 2/3, 3/3, 4/3, 5/3, ...
 1/4, 2/4, 3/4, 4/4, 5/4, ...
 ... すでに出てくるものを同じで重複するものはどうする？
 例えば、2/2, 4/2, 3/3, 4/4 は1/1と重複するし、
 2/4は1/2と重複する

整数の個数=分数の個数 であることを証明しよう！

a. 整数すべてを並べよう
 0, 1, -1, 2, -2, 3, -3, ...

b. 正の分数すべてを並べよう
 1/1, 1/2, 2/1, 1/3, 2/3, 3/1, 1/4, 2/4, 3/4, 4/1, ...
 1/2, 2/2, 3/2, 4/2, 5/2, ...
 1/3, 2/3, 3/3, 4/3, 5/3, ...
 1/4, 2/4, 3/4, 4/4, 5/4, ...
 ... すでに出てくるものを同じで重複するものはどうする？
 例えば、2/2, 4/2, 3/3, 4/4 は1/1と重複するし、
 2/4は1/2と重複する

c. 負の分数すべてを並べよう
 分母も分子も負の整数であるものはどうする？
 例えば、-2/-2 は2/2 や1/1 と値が同じで重複する

d. aとsを1つずつ対応させよう

e. aとsを1つずつ対応させよう

すべての実数に番号を振って並べることができる？

整数部と小数部に分ける？
正の実数の小数部は・・・
0.1, 0.2, 0.3, ...
0.10, 0.11, 0.12, 0.13, ...
0.20, 0.21, 0.22, 0.23, ...
...
このあと、どう続ける？
実は、実数すべてに番号をふることはできない

実数は自然数よりもたくさんある！

対角線論法

\[x_1 = 0.x_{11} x_{12} x_{13} \cdots \]
\[x_2 = 0.x_{21} x_{22} x_{23} \cdots \]
\[\cdots \]
\[x_n = 0.x_{n1} x_{n2} x_{n3} \cdots x_{nm} \cdots \]
\[\cdots \]
\[y = 0.y_1 y_2 y_3 \cdots \]

（[y_i \neq x_{ii}]）

\[y = 0.y_1 y_2 y_3 \cdots \]

y は \(x_1, x_2, \cdots \) のどれとも等しくない！

整数と分数はどっちが多い？

実数は自然数よりもたくさんある！

対角線論法

\[x_1 = 0.x_{11} x_{12} x_{13} \cdots \]
\[x_2 = 0.x_{21} x_{22} x_{23} \cdots \]
\[\cdots \]
\[x_n = 0.x_{n1} x_{n2} x_{n3} \cdots x_{mn} \cdots \]
\[\cdots \]
\[y = 0.y_1 y_2 y_3 \cdots \]

（[y_i \neq x_{ii}]）

\[y = 0.y_1 y_2 y_3 \cdots \]

y は \(x_1, x_2, \cdots \) のどれとも等しくない！

整数と分数はどっちが多い？

0以上1以下の実数とすべての実数は同じ個数

AとBの個数が同じことを A~B で表す

みんなの常識

（群馬県某進学高3年生 約40名）
（数学科1年生 2015.1 68名）
（数学科1年生 2016.1 71名）

1, 2, 3, \cdots の個数と \cdots -2, -1, 0, 1, 2, \cdots の個数は？

回答 高校生 2015年 2016年

= 0 25人 40人

< 大多数意見 34人 21人

「濃度」に言及した者 2人 2人

整数と分数はどっちが多い？
数にもいろいろあって・・・

- ものの始まりは自然数 1, 2, 3, ・・・
- 自然数→整数→有理数→実数の順に定義される
 - Peanoの公理、自然数上の同値関係(基を定義)、
 - 整数上の同値関係(整数の比)、Dedekindの切断など
- 大学の数学では真っ先に登場します！

自然数、整数、有理数の個数(濃度)は同じ
- 実数は有理数よりもたくさんのある
 - 0以上1以下の実数とすべての実数とは同じ個数
- 実数よりもたくさんある「未知の数？」もある？
- こういったものとはまったく違う「数」だってある！

実数と小数の関係

- そもそも自然数とはどのようなものかを数学的に厳密に定義できるか？→できる(この講座で後ほど順次やる予定)
- 自然数を基にして整数が、整数を基にして有理数が、有理数を基にして実数が数学的に厳密に定義できる→この講座で今後順次述べる予定
- 実数は(10進)小数の形で表すことができる→したがって、小数の個数(正確には、濃度)の方が分数の個数(濃度)よりも多い

実数と小数の関係

- ものの始まりは自然数 1, 2, 3, ・・・
- 自然数→整数→有理数→実数の順に定義される
 - Peanoの公理、自然数上の同値関係(基を和定義)、
 - 整数上の同値関係(整数の比)、Dedekindの切断など
- 大学の数学では真っ先に登場します！

自然数、整数、有理数の個数(濃度)は同じ
- 実数は有理数よりもたくさんある
 - 0以上1以下の実数とすべての実数とは同じ個数
- 実数よりもたくさんある「未知の数？」もある？
- こういったものとはまったく違う「数」だってある！

実数と小数の関係

- そもそも自然数とはどのようなものかを数学的に厳密に定義できるか？→できる(この講座で後ほど順次やる予定)
- 自然数を基にして整数が、整数を基にして有理数が、有理数を基にして実数が数学的に厳密に定義できる→この講座で今後順次述べる予定
- 実数は(10進)小数の形で表すことができる→したがって、小数の個数(正確には、濃度)の方が分数の個数(濃度)よりも多い
整数と分数はどっちが多い？

折線をどんどん細かくしていくと、長さは2のまま辺BC（長さは1）へ近づいて、やがてピッタリ重なる
∴ 2 = 1

アキレスと亀（ゼノン（ギリシャ、紀元前5世紀）のパラドックス）

アキレスの速さは亀の速さの2倍
アキレスが1km進むと
亀は1/2 km進む

1km

亀は1/2 km進む

1/3 km

アキレスと亀の間の距離は・・・

1 → ½ → ¼ → 1/8 → 1/16 → ... 1/2^n → 0 (n → ∞)

いつまでも追いつかない！？
極限の定義
ある値に近づくことをどう定義したらよいか？

\[\lim_{n \to \infty} a_n = b \]

\(n \)を無限大にしたとき\(a_n \)は\(b \)に近づく
\((a_n)\)の極限値は\(b \)である）

\[\forall \varepsilon > 0 \exists n |a_n - b| < \varepsilon \]

どんなに小さい\(\varepsilon \)に対しても、\(n \)を十分大きくすれば\(|a_n - b| < \varepsilon \)とできる

であることをと定義する

無限をどう定義したらよいか？

集合の場合

集合とは（素朴には）ものの集まり

部分集合 元の集合の一部分

デデキンド無限

自分の真部分集合と「1対1」かつ「ピッタリ上に重なる」という対応

がつけられるような集合を無限集合という

整数の集合\(\mathbb{Z} \)

\(0, 1, -1, 2, -2, 3, -3, \cdots \)

自然数の集合\(\mathbb{N} \)

\(1, 2, 3, 4, 5, 6, 7, \cdots \)だから\(\mathbb{Z} \)は無限集合

0.9999999999... = 1.0000000000

公式（等比級数の和）

\[S_n = a + ar + ar^2 + ar^3 + \cdots + ar^n = \frac{a(1-r^n)}{1-r} \]

\(r < 1 \)のとき\(n \to \infty \)とすると\(S_n \to \frac{a}{1-r} \)

0.9999999999... = \frac{9}{10} + \frac{9}{100} + \frac{9}{1000} + \cdots

= 9 \left(\frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \cdots \right)

= 9 \left(0.1 + 0.01 + 0.001 + \cdots + (0.1)^n + \cdots \right)

= 9 \left(\frac{1-0.1^n}{1-0.1} \right) \to 9 \left(\frac{1}{0.9} \right) = 1 \ (n \to \infty)