Finite-type invariants detecting the mutant knots

Jun Murakami
Department of Mathematics
Graduate School of Science
Osaka University
Toyonaka, Osaka 560-0043, Japan
e-mail: jun@@math.sci.osaka-u.ac.jp

INTRODUCTION

The notion of finite-type invariants was introduced by Gusarov [2] and then appeared in the work of Vassiliev [8] concerning to certain 0-homology of the space of knots approximated by polynomial mappings. Kontsevich [3] gives a universal description for all the finite-type invariants by using chord diagrams and iterated integral.

In this paper, we show that there is no finite-type invariant of degree less than 11 which distinguishes mutant knots. A finite-type invariant of degree 11 which can distinguish some mutant knots is constructed as follows. Let $Q_K(q)$ be the quantum invariant of a knot K corresponding to the representation of the partition $(2,1)$ of the quantum enveloping algebra $\mathcal{U}_q(sl_4)$. Let K_C be the Conway’s 11-crossing knot, K_{KT} be the Kinoshita-Terasaka knot, and \bigcirc be the trivial knot. Then, by using the computer software “KnotTheoryByComputer” by M. Ochiai [7], we have

$$\frac{Q_{K_C}(q) - Q_{K_{KT}}(q)}{Q_{\bigcirc}(q)} = q^8 \left(1 + q^4\right) \left(-1 + q^2\right)^6 \left(-1 + q^6\right)^2 \left(-1 + q^{12}\right) \left(-1 + q^{28}\right)^2.$$

This is divisible by $(q - 1)^{11}$ and is not divisible by $(q - 1)^{12}$. This means that there is a finite-type invariant of degree actually 11 which has different values for K_C and K_{KT}.
The aim of this paper is to show that all the finite-type invariants of degree less than or equal to 10 cannot distinguish mutant knots. This fact is shown by using the Kontsevich invariant and by investigating the symmetry of web diagrams corresponding to 2-tangles.

1. Finite-type invariants of 2-tangles

1.1. Web diagrams. Let I be an oriented 1-manifold. A web diagram W on I is a uni-trivalent graph whose univalent vertices are attached to I and edges attached to a trivalent vertex are cyclically ordered as in Figure 2. In the diagram, I is denoted by solid lines and the graph is denoted by dashed lines. The total degree of a web diagram W is the number of all vertices of W, which is an even number. The inner degree of W is the number of the trivalent vertices of W. Let $W(I)$ be the spaces of web diagrams on I subjected to the STU relation and the IHX relation as in Figure 3.

\[W(I) = \mathbb{C}\{\text{web diagram on } I}\)/STU, IHX. \]
These relations are homogeneous with respect to the total degree and so $W(I)$ is graded by the total degree. The STU relation is not homogeneous with respect to the inner degree and there is a filtration of $W(I)$ coming from the inner degree. Let $W^{(t)}(I)$ denote the subspace of $W(I)$ spanned by the web diagrams of the total degree t, and $W^{(t,i)}(I)$ denote the subspace of $W(I)$ spanned by the web diagrams of the total degree t and the inner degree greater than or equal to i.

1.2. **Symmetrized web diagrams.** Let I be an oriented 1-manifold consist of connected components I_1, I_2, \ldots, I_k. Let W be a web diagram on I and let $p_1^{(l)}, p_2^{(l)}, \ldots, p_{q_l}^{(l)}$ be the univalent vertices of W attached to the l-th component I_l. Let S_n denote the symmetric group of n letters. For $\sigma \in S_{q_1} \times \cdots \times S_{q_k}$, let σW be the web diagram on I whose univalent vertices are exchanged according to σ. Let

$$W^S = \frac{1}{q_1! q_2! \cdots q_k!} \sum_{\sigma \in S_{q_1} \times \cdots \times S_{q_k}} \sigma W,$$

and we call W^S the symmetrized web diagram of W.

Let

$$W^S(I) = \{ W^S \mid W \in W(I) \},$$

and we call $W^S(I)$ the space of symmetrized web diagrams. We represent W^S by the graph of W whose univalent vertex is labeled according to the attached component of I. For example, let W be the web diagram given in Figure 2, then W^S is expressed as in Figure 4.

Proposition. $W^S(I) = W(I)$.

![STU and IHX relation](image-url)
Figure 4. An example of a symmetrized web diagram

The proof of this proposition is similar to the proof of Theorem 8 in [1], and we omit it.

1.3. Primitive diagrams. The coproduct Δ of $\mathcal{W}(I)$ is a linear mapping from $\mathcal{W}(I)$ to $\mathcal{W}(I) \otimes \mathcal{W}(I)$ distributing the connected component of the graph of a web diagram as in [1]. An element x of $\mathcal{W}(I)$ is called primitive if

$$\Delta(x) = x \otimes 1 + 1 \otimes x.$$

Let W be a web diagram on I which is primitive in $\mathcal{W}(I)$, then the graph of W is connected and the symmetrized diagram W^S is also primitive.

Let $I^{(n)}$ be a union of intervals and we define a multiplication of elements of $\mathcal{W}(I^{(n)})$ by connecting corresponding intervals. For two web diagrams W_1, W_2 in $\mathcal{W}(I^{(n)})$, we define symmetrized product $W_1 \ast W_2$ by

$$W_1 \ast W_2 = (W_1 W_2)^S.$$

This definition implies that

$$W_1^S \ast W_2^S = (W_1 W_2)^S.$$

This symmetrized product is commutative and so $\mathcal{W}(I^{(n)})$ has a commutative algebra structure with this product. As in the case of web diagrams on S^1 discussed in [1], we have the following.

Proposition. $\mathcal{W}(I^{(n)})$ is isomorphic to the symmetric tensor algebra of $\mathcal{W}(I^{(n)})^{\text{prim}}$, where $\mathcal{W}(I^{(n)})^{\text{prim}}$ is the subspace of $\mathcal{W}(I^{(n)})$ spanned by the primitive elements.

Moreover, we have the following.
Proposition. Let $\hat{Z}_f(T)$ be the Kontsevich invariant of a framed n-tangle T [5]. Then $\hat{Z}_f(T)$ is a group-like element i.e.

$$\Delta(\hat{Z}_f(T)) = \hat{Z}_f(T) \otimes \hat{Z}_f(T),$$

and there is $x \in W(I^{(n)})^{\text{prim}}$ such that

$$\hat{Z}_f(T) = \exp(x) = 1 + x + \frac{x \ast x}{2!} + \frac{x \ast x \ast x}{3!} + \cdots.$$

1.4. Generators. We give a generator set of $W^{(2t)}(I^{(2)})^{\text{prim}}$. Here we use that $W^{(2t)}(I^{(2)})^{\text{prim}}$ is spanned by symmetrized diagrams.

$t = 0$ The space $W^{(0)}(I^{(2)})^{\text{prim}}$ is spanned by the empty graph ϕ.

$t = 1$ The space $W^{(2)}(I^{(2)})^{\text{prim}}$ is spanned by 3 elements. These are all consists of a single line and the endpoints of the line are labeled by (1,1), (1,2), (2,2) respectively.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig5.png}
\caption{Generators of $W^{(1)}(I^{(2)})^{\text{prim}}$}
\end{figure}

$t = 2$ The space $W^{(4)}(I^{(2)})^{\text{prim}}$ is spanned by the 3 elements in Figure 6.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig6.png}
\caption{Generators of $W^{(2)}(I^{(2)})^{\text{prim}}$}
\end{figure}

$t = 3$ The space $W^{(6)}(I^{(2)})^{\text{prim}}$ is spanned by the 4 elements in Figure 7.

$t = 4$ The space $W^{(8)}(I^{(2)})^{\text{prim}}$ is spanned by the 9 elements in Figure 8.

$t = 5$ The space $W^{(10)}(I^{(2)})^{\text{prim}}$ is spanned by the 10 elements in Figure 9.

We can show the above by using the following relations coming from the STU and the IHX relations.
\[i \quad \begin{array}{c} \includegraphics{image1} \end{array} \quad j \quad (i, j) = (1, 1), (1, 2), (2, 2), \]
\[\begin{array}{c} 1 \quad \includegraphics{image2} \quad 2 \\
1 \quad \includegraphics{image3} \quad 2 \end{array} \]

Figure 7. Generators of \(W^{(6)}(I^{(2)})^{\text{prim}} \)

\[i \quad \begin{array}{c} \includegraphics{image4} \end{array} \quad j \quad (i, j) = (1, 1), (1, 2), (2, 2), \]
\[\begin{array}{c} i \quad \includegraphics{image5} \quad k \\
i \quad \includegraphics{image6} \quad j \end{array} \]
\[(i, j, k) = (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 2), \]
\[\begin{array}{c} 1 \quad \includegraphics{image7} \quad 2 \\
1 \quad \includegraphics{image8} \quad 2 \end{array} \]

Figure 8. Generators of \(W^{(8)}(I^{(2)})^{\text{prim}} \)

Lemma. In \(W(I) \), symmetrized diagrams satisfy the relations in Figure 10.

2. **Symmetry of web diagrams**

For a web diagram \(W \) in \(W(I^{(2)}) \), let \(f(W) \) denote the flipped diagram of \(W \) exchanging the two lines of \(I^{(2)} \). For example, \(f(P_1) = P_2 \).

Lemma. For the symmetrized web diagram \(W^S \), we have

\[f(W^S) = f(W)^S \]
$$(i, j) = (1, 1), (1, 2), (2, 2),$$

$$(i, j, k) = (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 2),$$

$$P_1 = \begin{array}{c}
1 \\
1
\end{array} \begin{array}{c}
\bigcirc \\
\bigcirc
\end{array} 2, \quad P_2 = \begin{array}{c}
1 \\
1
\end{array} \begin{array}{c}
\bigcirc \\
\bigcirc
\end{array} 2.$$
Proof. Let \(x \) be one of the generators other than \(P_1, P_2 \), \(x = f(x) \) because the shape of \(x \) and the lemma in the previous section. For \(P_1 \) and \(P_2 \), we have \(f(P_1) = P_2 \) and \(f(P_2) = P_1 \). \(\square \)

3. Mutation

Let \(K \) be a knot consisting of two 2-tangles \(T_1 \) and \(T_2 \). Then the Kontsevich invariant \(\hat{Z}_f(K) \) of \(K \) is a composition of the Kontsevich invariants \(\hat{Z}_f(T_1) \) and \(\hat{Z}_f(T_2) \) of \(T_1 \) and \(T_2 \) as the knot \(K \) is constructed from \(T_1 \) and \(T_2 \) as in Figure 11. We denote this composition

\[
\hat{Z}_f(T_1) \natural \hat{Z}_f(T_2) =
\]

\begin{center}
\begin{tikzpicture}
 \node (T1) at (0,0) {$\hat{Z}_f(T_1)$};
 \node (T2) at (0,-2) {$\hat{Z}_f(T_2)$};
 \draw[->] (T1) -- (T2);
 \draw[->] (T2) -- (T1);
\end{tikzpicture}
\end{center}

Figure 11. Composition of the Kontsevich invariant of tangles

by \(\hat{Z}_f(T_1) \natural \hat{Z}_f(T_2) \) and so

\[
\hat{Z}_f(K) = \hat{Z}_f(T_1) \natural \hat{Z}_f(T_2).
\]

Let \(f(T_1) \) denote the flipped tangle as in Figure 12 and let \(K' \) be the knot constructed by \(f(T_1) \) and \(T_2 \). These two knots \(K \) and \(K' \) are called *mutant*.

Figure 11 implies the following.

Lemma. We have

\[
\hat{Z}_f(K) - \hat{Z}_f(K') = \left(\hat{Z}_f(T_1) - f(\hat{Z}_f(T_1)) \right) \natural \hat{Z}_f(T_2)
\]

\[
= \hat{Z}_f(T_1) \natural \left(\hat{Z}_f(T_2) - f(\hat{Z}_f(T_2)) \right).
\]
Let $\hat{Z}_f^{(d)}$ denote the degree d part of the Kontsevich invariant. Then the above lemma and the previous proposition imply the following.

Lemma. Let T be a 2-tangle. Then, for $d \leq 4$,

$$\hat{Z}_f^{(d)}(T) - f(\hat{Z}_f^{(d)}(T)) = 0.$$

If $d \leq 9$, then each term of $\hat{Z}_f^{(d)}(K) - \hat{Z}_f^{(d)}(K')$ is a composition of terms of $\hat{Z}_f^{(d_1)}(T_1)$ or $f(\hat{Z}_f^{(d_1)}(T_1))$, and, $\hat{Z}_f^{(d_2)}(T_2)$ or $f(\hat{Z}_f^{(d_2)}(T_2))$, where one of d_1 and d_2 is less than or equal to 4. Therefore, the above lemma and the previous proposition imply the following.

Proposition. $\hat{Z}_f^{(d)}(K) - \hat{Z}_f^{(d)}(K') = 0$ if $d \leq 9$.

Next, we consider about the degree 10 part. The web diagram we have to consider is the non-symmetric generators P_1 and P_2. From Figure 11, we have

$$P_1 \natural P_1 = P_1 \natural P_2 = P_2 \natural P_2 = P_2 \natural P_1.$$

Let

$$\hat{Z}_f^{(5)}(T_1) = c_1 (P_1 - P_2) + \text{symmetric part},$$

$$\hat{Z}_f^{(5)}(T_2) = c_2 (P_1 - P_2) + \text{symmetric part}.$$

Then, we have

$$\hat{Z}_f^{(10)}(K) - \hat{Z}_f^{(10)}(K') = 2 c_1 c_2 (P_1 - P_2) \natural (P_1 - P_2) = 0.$$

Hence the following theorem holds.
Theorem. For \(d \leq 10 \),
\[
\hat{Z}_f^{(d)}(K) - \hat{Z}_f^{(d)}(K') = 0.
\]

References

