Welcome to Noda-Hanada Lab's Home Page


論文(英文) | 論文(和文) | 国際会議プロシーディング | 解説・総説 | 著書 | 特許


169. S. Anantharaj*, M. Li, R. Arulraj, K. Eswaran, S. F. CM, R. Murugesan, A. Maruthapillai, and S. Noda,
"A tri-functional self-supported electrocatalyst featuring mostly NiTeO3 perovskite for H2 production via methanol-water co-electrolysis,"
Chem. Commun. 59, 12755-12758 (2023).

168. S. Anantharaj*, P.JJ. Sagayaraj, M.S. Yesupatham, R. Arulraj, K. Eswaran, K. Sekar, and S. Noda,
"The reference electrode dilemma in energy conversion electrocatalysis: "Right vs okay vs wrong","
J. Mater. Chem. A 11, 17699-17709 (2023).

167. S. Anantharaj* and S. Noda,
"Electrochemical dealloying-assisted activity enhancement: The next big thing in water electrosplitting!"
Nano Energy 114, 108624 (2023) (review).

166. Y. Kuwahara, F. Nasrin, M. Tabuchi, H. Kataura, R. Yuge, S. Noda, and T. Saito*,
"Prompt and effective purification for thin single wall carbon nanotubes by dry process using ferric chloride,"
Carbon 213, 118207 (2023).

165. H. Tanaka, T. Goto, K. Hamada, K. Ohashi, T. Osawa, H. Sugime, and S. Noda*,
"Safe and damage-less dry-purification of carbon nanotubes using FeCl3 vapor,"
Carbon 212, 118171 (2023).
DOI:10.1016/j.carbon.2023.118171 (Open Access)

164. T. Mae, K. Kaneko, M. Li, and S. Noda*,
"Stable and high-capacity SiO negative electrode held in reversibly deformable sponge-like matrix of carbon nanotubes,"
Carbon 209, 118014 (2023).
DOI:10.1016/j.carbon.2023.118014 (Open Access)

163. K. Kaneko, M. Li, and S. Noda*,
"Appropriate properties of carbon nanotubes for the three-dimensional current collector in lithium-ion batteries,"
Carbon Trends 10, 100245 (2023).
DOI:10.1016/j.cartre.2022.100245 (Open Access)

162. S. Anantharaj* and S. Noda,
"The importance of carefully choosing vertex potentials in hydrogen underpotential deposition,"
Mater. Today Energy 32, 101234 (2023).

161. S. Anantharaj*, P. E. Karthik, and S. Noda,
"Ambiguities and best practices in the determination of active sites and real surface area of monometallic electrocatalytic interfaces,"
J. Colloid Interface Sci., 634, 169-175 (2023).

160. K. Lee, M.J. Lee, J. Lim, K. Ryu, M. Li, S. Noda, S.J. Kwon*, and S.W. Lee*,
"Controlled Nitrogen Doping in Crumpled Graphene for Improved Alkali Metal-Ion Storage under Low-Temperature Conditions,"
Adv. Funct. Mater. 33 (2), 2209775 (2023).

159. S. Munakata, S. Kobayashi, H. Sugime, S. Konishi, J. Shiomi, and S. Noda*,
"Ag nanoparticle-based aerogel-like films for interfacial thermal management,"
ACS Appl. Nano Mater. 5 (10), 15755-15761 (2022).

158. S. Anantharaj* and S. Noda,
"How properly are we interpreting the Tafel lines in energy conversion electrocatalysis?"
Mater. Today Energy 29, 101123 (2022) (perspective).

157. S. Anantharaj* and S. Noda,
"Dos and don’ts in screening water splitting electrocatalysts,"
Energy Adv. 1 511-523 (2022) (perspective).

156. S. Anantharaj* and S. Noda,
"iR drop correction in electrocatalysis: Everything one needs to know!"
J. Mater. Chem. A 10 (17), 9348-9354 (2022).

155. S. Anantharaj* and S. Noda,
"Layered 2D PtX2 (X= S, Se, Te) for electrocatalytic HER in comparison with Mo/WX2 and Pt/C: Are we missing the bigger picture?"
Energy Environ. Sci. 15, 1461-1478 (2022) (perspective).

154. N. Akagi, K. Hori, H. Sugime, S. Noda, and N. Hanada*,
"Systematic investigation of anode catalysts for liquid ammonia electrolysis,"
J. Catal. 406, 222-230 (2022).

153. S. Anantharaj*, S. Kundu, and S. Noda,
"Worrisome exaggeration of activity of electrocatalysts destined for steady-state water electrolysis by polarization curves from transient techniques,"
J. Electrochem. Soc. 169, 014508 (2022).
Press releases in Japanese and in English

152. S. Anantharaj*, T. Nagamatsu, S. Yamaoka, M. Li, and S. Noda*,
"Efficient methanol electrooxidation catalyzed by potentiostatically grown Cu-O/OH(Ni) nanowires: Role of inherent Ni impurity,"
ACS Appl. Energy Mater. 5(1), 419-429 (2022).

151. S. Anantharaj*, H. Sugime, and S. Noda*,
"Why shouldn’t double-layer capacitance (Cdl) be always trusted to justify Faradaic electrocatalytic activity differences?"
J. Electroanal. Chem. 903, 115842 (2021).

150. K. Kajiwara, H. Sugime, S. Noda, N. Hanada*,
"Fast and stable hydrogen storage in the porous composite of MgH2 with Nb2O5 catalyst and carbon nanotube,"
J. Alloys Compd. 893, 162206 (2022).

149. M. Li*, K. Yasui, H. Sugime, and S. Noda*,
"Enhanced CO2-assisted growth of single-wall carbon nanotube arrays using Fe/AlOx catalyst annealed without CO2,"
Carbon 185, 264-271 (2021).
DOI:10.1016/j.carbon.2021.09.031 (open accecss)

148. S. Anantharaj*, P.E. Karthik, and S. Noda,
"The significances of properly reporting turnover frequency in electrocatalysis research,"
Angew. Chem. Int. Ed. 60, 2-19 (2021) (viewpoint).
DOI:10.1002/anie.202110352 (open accecss)

147. X. Huang, E. Hara, H. Sugime, and S. Noda*,
"Carbon nanotube/silicon heterojunction solar cell with an active area of 4 cm2 realized using a multifunctional molybdenum oxide layer,"
Carbon 185, 215-223 (2021).
DOI:10.1016/j.carbon.2021.08.056 (open access)

146. D.Y. Kim*, J.H. Kim, M. Li, S. Noda, J. Kim, K.-S. Kim, K.S. Kim, and C.-M. Yang*,
"Controllable pore structures of pure and sub-millimeter-long carbon nanotubes,"
Appl. Surf. Sci. 566, 150751 (2021).
DOI:10.1016/j.apsusc.2021.150751 (open access)

145. Y. Yoshie, K. Hori, T. Mae, and S. Noda*,
"High-energy-density Li-S battery with positive electrode of lithium polysulfides held by carbon nanotube sponge,"
Carbon 182, 32-41 (2021).
DOI:10.1016/j.carbon.2021.05.046 (open access)

144. M. Li*, S. Hachiya, Z. Chen, T. Osawa, H. Sugime, and S. Noda*,
"Fluidized-bed production of 0.3 mm-long single-wall carbon nanotubes at 28% carbon yield with 0.1 mass% catalyst impurities using ethylene and carbon dioxide,"
Carbon 182, 23-31 (2021).
DOI:10.1016/j.carbon.2021.05.035 (open access)

143. K. Yoshida, K. Kajiwara, H. Sugime, S. Noda*, and N. Hanada*,
"Numerical simulation of heat supply and hydrogen desorption by hydrogen flow to porous MgH2 sheet,"
Chem. Eng. J. 421 129648 (2021).
DOI:10.1016/j.cej.2021.129648 (open access)

142. S. Anantharaj*, S. Noda*, M. Driess, and P. Menezes*,
"The pitfall of using potentiodynamic polarization curves for Tafel analysis in electrocatalytic water splitting,"
ACS Energy Lett. 6 (4), 1607-1611 (viewpoint).
DOI:10.1021/acsenergylett.1c00608 (open access)

141. B. Lee*, K. Lee, M. Li, S. Noda, and S. W. Lee*,
"Two-dimensional polydopamine positive electrode for high-capacity alkali metal-ion storage,"
ChemElectroChem 8, 1070-1077 (2021).

140. J.H. Cha, K. Hasegawa, J. Lee, I. Y. Stein, A. Miura, S. Noda, J. Shiomi, S. Chiashi*, B.L. Wardle*, and S. Maruyama*,
"Thermal properties of single-walled carbon nanotube forests with various volume fractions,"
Int. J. Heat and Mass Transfer 171, 121076 (2021).

139. S. Anantharaj*, S. Noda*, V. R. Jothi, S.C. Yi*, M. Driess*, and P. W. Menezes*,
"Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media,"
Angew. Chem. Int. Ed. 60, 18981-19006 (2021) (review).
DOI:10.1002/anie.202015738 (open access)

138. M. J. Lee, K. Lee, J. Lim, M. Li, S. Noda, S. J. Kwon, B. DeMattia, B. Lee,* and S. W. Lee,*
"Outstanding low-temperature performance of structure-controlled graphene anode based on surface-controlled charge storage mechanism,"
Adv. Funct. Mater. 31 (14), 2009397 (2021).

137. S. Anantharaj*, H. Sugime, S. Yamaoka, S. Noda*,
"Pushing the limits of rapid anodic growth of CuO/Cu(OH)2 nanoneedles on Cu for methanol oxidation reaction: Anodization pH is the game changer,"
ACS Appl. Energy Mater. 4 (1) 899-912 (2021).

136. R. Xie, H. Sugime, and S. Noda*,
"High-performance solution-based silicon heterojunction solar cells using carbon nanotube with polymeric acid doping,"
Carbon 175, 519-524 (2021).

135. X. Huang, R. Xie, H. Sugime, and S. Noda*,
"Performance enhancement of carbon nanotube/silicon solar cell by solution processable MoOx,"
Appl. Surf. Sci. 542, 148682 (2021).

134. S. Anantharaj*, S. Pitchaimuthu*, and S. Noda*,
"A review on recent developments in electrochemical hydrogen peroxide synthesis with a critical assessment of perspectives and strategies,"
Adv. Colloid Interface Sci. 287, 102331 (2021) (review).

133. S. Anantharaj*, H. Sugime, and S. Noda*,
"Chemical leaching of inactive Cr and subsequent electrochemical resurfacing of catalytically active sites in stainless steel for high-rate alkaline hydrogen evolution reaction,"
ACS Appl. Energy Mater. 3 (12), 12596-12606 (2020).

132. H. Sugime*, T. Sato, R. Nakagawa, T. Hayashi, Y. Inoue, S. Noda,
"Ultra-long carbon nanotube forest via in situ supplements of iron and aluminum vapor sources,"
Carbon 172, 772-780 (2021).

131. S. Anantharaj*, S. Kundu*, and S. Noda*,
""The Fe effect": A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts,"
Nano Energy 80, 105514 (2021) (review).
DOI:10.1016/j.nanoen.2020.105514 (open access)

130. S. Anantharaj*, H. Sugime, and S. Noda*,
"Surface amorphized nickel hydroxy sulphide for efficient hydrogen evolution reaction in alkaline medium,"
Chem. Eng. J. 408, 127275 (2021).
DOI:10.1016/j.cej.2020.127275 (open access)

129. S. Anantharaj*, H. Sugime, B. Chen, N. Akagi, and S. Noda*,
"Boosting the oxygen evolution activity of copper foam containing trace Ni by intentionally supplementing Fe and forming nanowires in anodization,"
Electrochim. Acta 364, 137170 (2020).

128. K. Kaneko, K. Hori, and S. Noda*,
"Nanotubes make battery lighter and safer,"
Carbon 167, 596-600 (2020).

127. M. Li*, M. Risa, T. Osawa, H. Sugime, and S. Noda*,
"Facile catalyst deposition using mist for fluidized-bed production of sub-millimeter-long carbon nanotubes,"
Carbon 167, 256-263 (2020).

126. S. Anantharaj*, H. Sugime, and S. Noda*,
"Ultrafast growth of Cu(OH)2-CuO nanoneedle array on Cu foil for methanol oxidation electrocatalysis,"
ACS Appl. Mater. Interfaces 12 (24), 27327-27338 (2020).

125. M. Kim, B. Lee, M. Li, S. Noda, C. Kim, J. Kim, W.-J. Song, S.W. Lee*, and O. Brand*,
"All-soft supercapacitors based on liquid metal electrodes with integrated functionalized carbon nanotubes,"
ACS Nano 14 (5), 5659-5667 (2020).

124. S. Anantharaj* and S. Noda,
"Appropriate use of electrochemical impedance spectroscopy in water splitting electrocatalysis,"
ChemElectroChem 7 (10), 2297-2308 (2020).
Top Cited Article 2020-2021

123. S. Anantharaj*, H. Sugime, B. Chen, N. Akagi, S. Noda*,
"Achieving increased electrochemical accessibility and lowered OER activation energy for Co2+ sites with a simple anion pre-oxidation,"
J. Phys. Chem. C 124 (18), 9673-9684 (2020).

122. S. Anantharaj* and S. Noda*,
"Nickel selenides as pre-catalysts for electrochemical oxygen evolution reaction: A review,"
Int. J. Hydrogen Energy 45, 15763-15784 (2020) (review).

121. T. Liu, K.-C. Kim, B. Lee, S. Jin, M. Lee, M. Li, S. Noda, S. S. Jang*, and S. W. Lee*,
"Enhanced lithium storage of an organic cathode via the bipolar mechanism,"
ACS Appl. Energy Mater. 3 (4), 3728-3735 (2020).

120. R. Xie, H. Sugime, and S. Noda*,
"Dispersing and doping carbon nanotubes by poly(p-styrene-sulfonic acid) for high-performance and stable transparent conductive films,"
Carbon 164, 150-156 (2020).

119. N. Hanada*, Y. Kohase, K. Hori, H. Sugime, and S. Noda,
"Electrolysis of ammonia in aqueous solution by platinum nanoparticles supported on carbon nanotube film electrode,"
Electrochim. Acta 341, 136027 (2020).

118. S. Anantharaj*, S. Kundu*, and S. Noda*,
"Progress in nickel chalcogenides electrocatalyzed hydrogen evolution reaction,"
J. Mater. Chem. A 8, 4174-4192 (2020) (review).
DOI:10.1039/C9TA14037A (open access)

117. K. Hori, Y. Yamada, T. Momma, and S. Noda*,
"High-energy density LixSi-S full cell based on 3D current collector of few-wall carbon nanotube sponge,"
Carbon 161, 612-621 (2020).

116. H.Y. Teah*, T. Sato, K. Namiki, M. Asaka, K. Feng, and S. Noda*,
"Life cycle greenhouse gas emissions of long and pure carbon nanotube synthesized via on-substrate and fluidized-bed chemical vapor deposition,"
ACS Sustainable Chem. Eng. 8 (4), 1730-1740 (2020).

115. S. Anantharaj* and S. Noda*,
"Amorphous catalysts and electrochemical water splitting: An untold story of harmony,"
Small 16, 1905779 (2020) (review).

114. H. Sugime*, T. Sato, R. Nakagawa, C. Cepek, and S. Noda,
"Gd-enhanced growth of multi-millimeter-tall forests of single-wall carbon nanotubes,"
ACS Nano 13 (11), 13208-13216 (2019).

113. Y. S. Lee, S.-Y. Lee, K. S. Kim, S. Noda, S. E. Shim*, and C.-M. Yang*,
"Effective heat transfer pathways of thermally conductive networks formed by one-dimensional carbon materials with different sizes,"
Polymers 11 (10), 1661 (2019).

112. R. Xie, N. Ishijima, H. Sugime, and S. Noda*,
"Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process,"
Sci. Rep. 9, 12051 (2019).

111. D. D. Tune, H. Shirae, V. Lami, R. Headrick, M. Pasquali, Y. Vaynzof, S. Noda, E. Hobbie*, and B. Flavel*,
"Stability of chemically doped nanotube-silicon heterojunction solar cells: Role of oxides at the carbon-silicon interface,"
ACS Appl. Energy Mater. 2 (8), 5925-5932 (2019).

110. D. Akagi, Y. Kageshima, Y. Hashizume, S. Aoi, Y. Sasaki, H. Kaneko, T. Higashi, T. Hisatomi, M. Katayama, T. Minegishi, S. Noda, and K. Domen*,
"A semi-transparent nitride photoanode responsive up to 600 nm based on a carbon nanotube thin film electrode,"
ChemPhotoChem 3, 521-524 (2019).

109. S. Akiba, M. Kosaka, K. Ohashi, K. Hasegawa, H. Sugime, and S. Noda*,
"Direct formation of continuous multilayer graphene films with controllable thickness on dielectric substrates,"
Thin Solid Films 675, 136-142 (2019).

108. Y. Nagai, H. Sugime, and S. Noda*,
"1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions,"
Chem. Eng. Sci. 201, 319-324 (2019) (Featured cover article).

107. K. Hori, K. Hasegawa, T. Momma, and S. Noda*,
"Volumetric discharge capacity 1 Ah cm-3 realized by sulfur in carbon nanotube sponge cathodes,"
J. Phys. Chem. C 123 (7), 3951-3958 (2019).

106. R. Rao,* C.L. Pint, A.E. Islam, R.S. Weatherup, S. Hofmann, E.R. Meshot, F. Wu, C. Zhou, N. Dee, P.B. Amama, J. Carpena-Nunez, W. Shi, D.L. Plata, E.S. Penev, B.I. Yakobson, P.B. Balbuena, C. Bichara, D.N. Futaba, S. Noda, H. Shin, K.S. Kim, B. Simard, F. Mirri, M. Pasquali, F. Fornasiero, E.I. Kauppinen, M. Arnold, B.A. Cola, P. Nikolaev, S. Arepalli , H.-M. Cheng, D.N. Zakharov, E.A. Stach, J. Zhang, F. Wei, M. Terrones, D.B. Geohegan, B. Maruyama, S. Maruyama, Y. Li, W.W. Adams, and A.J. Hart,
"Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis towards mainstream commercial applications,"
ACS Nano 12 (12), 11756-11784 (2018).

105. B. Liang, E. Yi, T. Sato, S. Noda*, K. Sun, D. Jia, Y. Zhou, and R. M. Laine,*
"Resettable heterogeneous catalyst: (re)generation and (re)adsorption of Ni nanoparticles for repeated synthesis of carbon nanotubes on Ni-Al-O thin films,"
ACS Appl. Nano Mater. 1, 5483-5492 (2018).

104. H. Sugime,* T. Ushiyama, K. Nishimura, Y. Ohno, and S. Noda,
"An interdigitated electrode with dense carbon nanotube forests on conductive supports for electrochemical biosensors,"
Analyst 143, 3635-3642 (2018).
DOI:10.1039/C8AN00528A (open access)

103. S. Okada, H. Sugime, K. Hasegawa, T. Osawa, S. Kataoka, H. Sugiura, and S. Noda*,
"Flame-assisted chemical vapor deposition for continuous gas-phase synthesis of 1-nm-diameter single-wall carbon nanotubes,"
Carbon 138, 1-7 (2018).
DOI:10.1016/j.carbon.2018.05.060 (open access)

102. T. Sato, H. Sugime, and S. Noda*,
"CO2-assisted growth of millimeter-tall single-wall carbon nanotube arrays and its advantage against H2O for large-scale and uniform synthesis,"
Carbon 136, 143-149 (2018).
DOI:10.1016/j.carbon.2018.04.060 (open access)

101. K. Hasegawa*, C. Takazawa, M. Fujita, S. Noda, and M. Ihara*,
"Critical effect of nanometer-size surface roughness of a porous Si seed layer on the defect density of epitaxial Si films for solar cells by rapid vapor deposition,"
CrystEngComm 20 (13), 1774-1778 (2018) (inside front cover).

100. T. Liu, B. Lee, M. J. Lee, J. Park, Z. Chen, S. Noda, and S. W. Lee*,
"Improved capacity of redox-active functional carbon cathodes by dimension reduction for hybrid supercapacitors,"
J. Mater. Chem. A 6 (8), 3367-3375 (2018).

99. S. Miura, Y. Yoshihara, M. Asaka, K. Hasegawa, H. Sugime, A. Ota, H. Oshima, and S. Noda*,
"Millimeter-tall carbon nanotube arrays grown on aluminum substrates,"
Carbon 130, 834-842 (2018).

98. Y. H. Kwon, J. J. Park, L. M. Housel, K. Minnici, G. Zhang, S. R. Lee, S. W. Lee, Z. Chen, S. Noda, E. S. Takeuchi, K. J. Takeuchi, A. C. Marschilok*, and E. Reichmanis*,
"Carbon nanotube web with carboxylated polythiophene “assist” for high-performance battery electrodes,"
ACS Nano 12 (4), 3126-3139 (2018).

97. L. Cui*, Y. Xue, S. Noda, and Z Chen*,
"Self-supporting S@GO-FWCNTs composite films as positive electrodes for high-performance lithium-sulfur batteries,"
RSC Adv. 8, 2260-2266 (2018).
DOI:10.1039/C7RA10498G (open access)

96. T. Kowase, K. Hori, K. Hasegawa, T. Momma, S. Noda*,
"A-few-second synthesis of silicon nanoparticles by gas-evaporation and their self-supporting electrodes based on carbon nanotube matrix for lithium secondary battery anodes,"
J. Power Sources 363, 450-459 (2017).

95. Y. Nagai, A. Okawa, T. Minamide, K. Hasegawa, H. Sugime, and S. Noda*,
"Ten-second epitaxy of Cu on repeatedly used sapphire for practical production of high-quality graphene,"
ACS Omega 2 (7), 3354-3362 (2017).
DOI:10.1021/acsomega.7b00509 (open access)

94. C. Takazawa, M. Fujita, K. Hasegawa, A. Lukianov, X. Zhang, S. Noda, and M. Ihara*,
"Nano-scale smoothing of double layer porous Si substrates for detaching and fabricating low cost, high efficiency monocrystalline thin film Si solar cell by zone heating recrystallization,"
ECS Trans. 75 (31), 11-23 (2017).

93. K. Funahashi, N. Tanaka, Y. Shoji*, N. Imazu, K. Nakayama, K. Kanahashi, H. Shirae, S. Noda, H. Ohta, T. Fukushima*, and T. Takenobu*,
"Highly air- and moisture-stable hole-doped carbon nanotube films achieved using a boron-based oxidant,"
Appl. Phys. Express 10, 035101-1-4 (2017).

92. H. Shirae, K. Hasegawa, H. Sugime, E. Yi, R. M. Laine, and S. Noda*,
"Catalyst nucleation and carbon nanotube growth from flame-synthesized Co-Al-O nanopowders at ten-second time scale,"
Carbon 114, 31-38 (2017).

91. T. Liu, K.C. Kim, B. Lee, Z. Chen, S. Noda, S.S. Jang, and S.W. Lee*,
"Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries,"
Energy Envron. Sci. 10, 205-215 (2017).
DOI:10.1039/C6EE02641A (open access)

90. E. Muramoto, Y. Yamasaki, F. Wang, K. Hasegawa, K. Matsuda, and S. Noda*,
"Carbon nanotube-silicon heterojunction solar cells with surface-textured Si and solution-processed carbon nanotube films,"
RSC Adv. 6 (96), 93575-93581 (2016).
DOI:10.1039/C6RA16132D (open access)

89. B. Lee, C. Lee, T. Liu, K. Eom, Z. Chen, S. Noda, T.F. Fuller, H.D. Jang,* and S.W. Lee*
"Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage,"
Nanoscale 8 (24), 12330-12338 (2016).
DOI:10.1039/C6NR02013E (open access)

88. K. Hasegawa and S. Noda*,
"Lithium ion batteries made of electrodes with 99 wt% active materials and 1 wt% carbon nanotubes without binder or metal foils,"
J. Power Sources 321, 155-162 (2016).

87. M. Narubayashi, Z. Chen, K. Hasegawa, and S. Noda*,
"50-100-μm-thick pseudocapacitive electrodes of MnO2 nanoparticles uniformly electrodeposited in carbon nanotube papers,"
RSC Adv. 6 (47), 41496-41505 (2016).
DOI:10.1039/C6RA06433G (open access)

86. Y. Yamasaki, K. Hasegawa, T. Osawa, and S. Noda*,
"Rapid vapour deposition and in situ melt crystallization for 1-min fabrication of 10-μm-thick crystalline silicon films with a lateral grain size of over 100 μm,"
CrystEngComm 18 (19), 3404-3410 (2016).
DOI:10.1039/C6CE00122J (open access)

85. T. Liu, R. Kavian, Z. Chen, S.S. Cruz, S. Noda, and S.W. Lee*,
"Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage,"
Nanoscale 8(6), 3671-3677 (2016).
DOI:10.1039/C5NR07064C (open access)

84. T. Tsujimura*, T. Hakii, and S. Noda,
"A color-tunable polychromatic organic-light-emitting-diode device with low resistive intermediate electrode for roll-to-roll manufacturing,"
IEEE Trans. Electron Devices 63 (1), 402-407 (2016).
Selected for 2016 EDS Paul Rappaport Award.

83. N. Na, K. Hasegawa, X. Zhou, M. Nihei, and S. Noda*,
"Denser and taller carbon nanotube arrays on Cu foils useable as thermal interface materials,"
Jpn. J. Appl. Phys. 54 (9), 095102-1-7 (2015).

82. J. C. Bachman, R. Kavian, D. J. Graham, D.Y. Kim, S. Noda, D. G. Nocera*, Y. Shao-Horn*, and S.W. Lee*,
"Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes,"
Nat. Commun. 6, 70401-9 (2015).
DOI:10.1038/ncomms8040 (open access)

81. H. Shirae, D.Y. Kim, K. Hasegawa, T. Takenobu, Y. Ohno, and S. Noda*,
"Overcoming the quality-quantity tradeoff in dispersion and printing of carbon nanotubes by a repetitive dispersion-extraction process,"
Carbon 91, 20-29 (2015).

80. J. Lee, K. Hasegawa, T. Momma, T. Osaka, S. Noda*,
"One-minute deposition of micrometre-thick porous Si-Cu anodes with compositional gradients on Cu current collectors for lithium secondary batteries,"
J. Power Sources 286, 540-550 (2015).

79. R. Quintero, D.Y. Kim, K. Hasegawa, Y. Yamada, A. Yamada, and S. Noda*,
"Important factors for effective use of carbon nanotube matrices in electrochemical capacitor hybrid electrodes without binding additives,"
RSC Adv. 5 (21), 16101-16111 (2015).
DOI:10.1039/C4RA16560H (open access)

78. J. Lee and S. Noda*,
"One-minute deposition of micrometre-thick porous Si anodes for lithium ion batteries,"
RSC Adv. 5 (4), 2938-2946 (2015).

77. M. Kosaka, S. Takano, K. Hasegawa, and S. Noda*,
"Direct synthesis of few- and multi-layer graphene films on dielectric substrates by "etching-precipitation" method,"
Carbon 82, 254-263 (2015).

76. N. Na, D.Y.Kim, Y.-G. So, Y. Ikuhara, and S. Noda*,
"Simple and engineered process yielding carbon nanotube arrays with 1.2×1013 cm-2 wall density on conductive underlayer at 400 °C,"
Carbon 81, 773-781 (2015).

75. Z. Chen, D.Y. Kim, K. Hasegawa, T. Osawa, and S. Noda*,
"Over 99.6 wt%-pure, sub-millimeter-long carbon nanotubes realized by fluidized-bed with careful control of the catalyst and carbon feeds,"
Carbon 80, 339-350 (2014).

74. N. Fukaya, D.Y. Kim, S. Kishimoto, S. Noda, and Y. Ohno*,
"One-step sub-10 μm patterning of carbon-nanotube thin films for transparent conductor applications,"
ACS Nano 8 (4), 3285-3293 (2014).

73. R. Quintero, D.Y. Kim, K. Hasegawa, Y. Yamada, A. Yamada, and S. Noda*,
"Carbon nanotube 3D current collectors for lightweight, high performance and low cost supercapacitor electrodes,"
RSC Adv. 4 (16), 8230-8237 (2014).
DOI:10.1039/C3RA47517D (open access)

72. Z. Chen, D.Y. Kim, K. Hasegawa, and S. Noda*,
"Methane-assisted chemical vapor deposition yielding millimeter-tall single-wall carbon nanotubes of smaller diameter,"
ACS Nano 7 (8),6719-6728 (2013).

71. T.W.H. Oates*, M. Losurdo, S. Noda, and K. Hinrichs,
"The effect of atmospheric tarnishing on the optical and structural properties of silver nanoparticles,"
J. Phys. D: Appl. Phys. 46 (14), 145308-1-6 (2013).

70. H. Sugime and S. Noda*,
"Cold-gas chemical vapor deposition to identify the key precursor for rapidly growing vertically-aligned single-wall and few-wall carbon nanotubes from pyrolyzed ethanol,"
Carbon 50 (8), 2953-2960 (2012).

69. K. Sekiguchi, K. Furuichi, Y. Shiratori, and S. Noda*,
"One second growth of carbon nanotube arrays on a glass substrate by pulsed-current heating,"
Carbon 50 (6), 2110-2118 (2012).

68. S.W. Lee, B. M. Gallant, Y. Lee, N. Yoshida, D.Y. Kim, Y. Yamada, S. Noda, A. Yamada, and Y. Shao-Horn*,
"Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries,"
Energy Environ. Sci. 5 (1), 5437-5444 (2012).

67. S. Isogai, R. Ohnishi, M. Katayama, J. Kubota, D.Y. Kim, S. Noda, D. Cha, K. Takanabe, and K. Domen*,
"Composite of TiN nanoparticles and few-walled carbon nanotubes and its application for electrocatalytic oxygen reduction reaction,"
Chem. Asian J. 7 (2), 286-289 (2012).

66. D.Y. Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda*,
"Fluidized-bed synthesis of sub-millimeter-long single walled carbon nanotube arrays,"
Carbon 50 (4), 1538-1545 (2012).

65. T. Moteki, Y. Murakami, S. Noda, S. Maruyama, and T. Okubo*,
"Zeolite surface as a catalyst support material for synthesis of single-walled carbon nanotubes,"
J. Phys. Chem. C 115 (49), 24231-24237 (2011).

64. Y. Shiratori, K. Furuichi, Y. Tsuji, H. Sugime, and S. Noda*,
"Tailoring the morphology of carbon nanotube assemblies using microgradients in the catalyst thickness,"
Jpn. J. Appl. Phys. 50 (9), 095101-1-7 (2011).

63. K. Hasegawa and S. Noda*,
"Moderating carbon supply and suppressing Ostwald ripening of catalyst particles to produce 4.5-mm-tall single-walled carbon nanotube forests,"
Carbon 49 (13), 4497-4504 (2011).

62. T. Yamamoto, S. Noda, and M. Kato*,
"A simple and fast method to disperse long single-walled carbon nanotubes introducing few defects,"
Carbon 49 (10), 3179-3183 (2011).

61. Y. Tsuji*, S. Noda, and S. Nakamura,
"Nanostructure and magnetic properties of c-axis oriented L10-FePt nanoparticles and nanocrystalline films on polycrystalline TiN underlayers,"
J. Vac. Sci. Technol. B 29 (3), 031801-1-10 (2011).

60. D.Y. Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda*,
"Sub-millimeter-long carbon nanotubes repeatedly grown on and separated from ceramic beads in a single fluidized bed reactor,"
Carbon 49(6), 1972-1979 (2011).

59. K. Hasegawa and S. Noda*,
"Millimeter-tall single-walled carbon nanotubes rapidly grown with and without water,"
ACS Nano 5(2), 975-984 (2011).

58. K. Hasegawa and S. Noda*,
"Real-time monitoring of millimeter-tall vertically aligned single-walled carbon nanotube growth on combinatorial catalyst library,"
Jpn. J. Appl. Phys. 49 (8), 085104-1-6 (2010).

57. Y. Shiratori* and S. Noda,
"Combinatorial evaluation for field emission properties of carbon nanotubes part II - high growth rate system,"
J. Phys. Chem. C 114 (30), 12938-12947 (2010).

56. Yukie Tsuji, Yoshiko Tsuji*, S. Nakamura, and S. Noda,
"Two routes to polycrystalline CoSi2 thin films by co-sputtering Co and Si,"
Appl. Surf. Sci. 256 (23), 7118-7124 (2010).

55. K. Hasegawa and S. Noda*,
"Diameter increase in millimeter-tall vertically aligned single-walled carbon nanotubes during growth,"
Appl. Phys. Express 3 (4), 045103-1-3 (2010).

54. H. Sugime and S. Noda*,
"Millimeter-tall single-walled carbon nanotube forests grown from ethanol,"
Carbon 48 (8), 2203-2211 (2010).

53. S. Noda*, H. Sugime, K. Hasegawa, K. Kakehi, and Y. Shiratori,
"A simple combinatorial method aiding research on single-walled carbon nanotube growth on substrates,"
Jpn. J. Appl. Phys. 49 (2), 02BA02-1-7 (2010).
JSAP Spotlights, Editors' Choice.

52. Y. Shiratori*, K. Furuichi, Y. Tsuji, H. Sugime, and S. Noda*,
"Efficient field emission from triode-type 1D arrays of carbon nanotubes,"
Nanotechnology 20 (47), 475707-1-7 (2009).

51. T.W.H. Oates*, Y. Shiratori, and S. Noda,
"Two-dimensional combinatorial investigation of Raman and fluorescence enhancement in silver and gold sandwich substrates,"
J. Phys. Chem. C 113 (22), 9588-9594 (2009).

50. T.W.H. Oates*, H. Sugime, and S. Noda,
"Combinatorial surface-enhanced Raman spectroscopy and spectroscopic ellipsometry of silver island films,"
J. Phys. Chem. C 113 (12), 4820-4828 (2009).

49. T.W.H. Oates* and S. Noda,
"Thickness-gradient dependent Raman enhancement in silver island films,"
Appl. Phys. Lett. 94 (5), 053106-1-3 (2009).

48. H. Sugime, S. Noda*, S. Maruyama, and Y. Yamaguchi,
"Multiple "optimum" conditions for Co-Mo catalyzed growth of vertically aligned single-walled carbon nanotube forests,"
Carbon 47 (1), 234-241 (2009).

47. Y. Yamaguchi*, S. Noda, and H. Komiyama,
"Chemical engineering for technology innovation,"
Chem. Eng. Commun. 196 (1), 267-276 (2009).

46. Y. Shiratori, H. Sugime, and S. Noda*,
"Combinatorial evaluation for field emission properties of carbon nanotubes,"
J. Phys. Chem. C 112 (46), 17974-17982 (2008).

45. K. Hasegawa, S. Noda*, H. Sugime, K. Kakehi, S. Maruyama, and Y. Yamaguchi,
"Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests,"
J. Nanosci. Nanotechnol. 8 (11), 6123-6128 (2008).

44. K. Kakehi, S. Noda*, S. Maruyama, and Y. Yamaguchi,
"Individuals, grasses, and forests of single- and multi-walled carbon nanotubes grown by supported Co catalysts of different nominal thicknesses,"
Appl. Surf. Sci. 254 (21), 6710-6714 (2008).

43. T.W.H. Oates*, A. Keller, S. Noda, and S. Facsko,
"Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates,"
Appl. Phys. Lett. 93 (6), 063106-1-3 (2008).

42. Shiratori, K. Furuichi, S. Noda*, H. Sugime, Y. Tsuji, Z. Zhang, S. Maruyama, and Y. Yamaguchi,
"Field emission properties of single-walled carbon nanotubes with a variety of emitter-morphologies,"
Jpn. J. Appl. Phys. 47 (6), 4780-4787 (2008).

41. K. Kakehi, S. Noda*, S. Maruyama, and Y. Yamaguchi,
"Growth valley dividing single- and multi-walled carbon nanotubes: combinatorial study of nominal thickness of Co catalyst,"
Jpn. J. Appl. Phys. 47 (4), 1961-1965 (2008).

40. Y. Tsuji, M. Mizukami, and S. Noda*,
"Growth mechanism of epitaxial CoSi2 on Si and reactive deposition epitaxy of double heteroepitaxial Si/CoSi2/Si,"
Thin Solid Films 516 (12), 3989-3995 (2008).

39. Y. Tsuji*, S. Noda, and Y. Yamaguchi,
"Structure and magnetic property of c-axis oriented L10-FePt nanoparticles on TiN/a-Si underlayers,"
J. Vac. Sci. Technol. B 25 (6), 1892-1895 (2007).

38. Y. Tsuji*, S. Nakamura, and S. Noda,
"Spontaneous formation of Si nanocones vertically aligned to Si wafers,"
J. Vac. Sci. Technol. B 25 (3), 808-812 (2007).

37. S. Noda*, K. Hasegawa, H. Sugime, K. Kakehi, Z. Zhang, S. Maruyama, and Y. Yamaguchi,
"Millimeter-thick single-walled carbon nanotube forests: hidden role of catalyst support,"
Jpn. J. Appl. Phys. 46 (17), L399-L401 (2007). (Express Letter)
Most Cited Articles 2010

36. Y. Kajikawa*, K. Abe, and S. Noda,
"Filling the gap between researchers studying different materials and different methods: a proposal of structured keywords,"
J. Inf. Sci. 32 (6), 511-524 (2006).

35. K. Kakehi, S. Noda*, S. Chiashi, and S. Maruyama,
"Supported Ni catalysts from nominal monolayer grow single-walled carbon nanotubes,"
Chem. Phys. Lett. 428 (4-6), 381-385 (2006).

34. S. Noda*, H. Sugime, T. Osawa, Y. Tsuji, S. Chiashi, Y. Murakami, and S. Maruyama,
"A simple combinatorial method to discover Co-Mo binary catalysts that grow vertically aligned single-walled carbon nanotubes,"
Carbon 44 (8), 1414-1419 (2006).

33. S. Inasawa*, M. Sugiyama, S. Noda, and Y. Yamaguchi,
"Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scales and longer,"
J. Phys. Chem. B 110 (7),3114-3119 (2006).

32. S. Noda*, Y. Tsuji, A. Sugiyama, A. Kikitsu, F. Okada, and H. Komiyama,
"c-Axis oriented face-centered-tetragonal-FePt nanoparticle monolayer formed on a polycrystalline TiN seed layer,"
Jpn. J. Appl. Phys. 44 (11), 7957-7961 (2005).

31. S. Noda*, Y. Tsuji, Y. Murakami, and S. Maruyama,
"Combinatorial method to prepare metal nanoparticles that catalyze the growth of single-walled carbon nanotubes,"
Appl. Phys. Lett. 86 (17), 173106-1-3 (2005).
Selected for the May 2, 2005 issue of Virtual Journal of Nanoscale Science & Technology.

30. Y. Kajikawa* and S. Noda,
"Growth mode during initial stage of chemical vapor deposition,"
Appl. Surf. Sci. 245 (1-4), 281-289 (2005).

29. H. Komiyama*, Y. Yamaguchi, and S. Noda,
"Structuring knowledge on nanomaterials processing,"
Chem. Eng. Sci. 59 (22-23), 5085-5090 (2004).

28. S. Noda*, T. Tsumura, J. Fukuhara, T. Yoda, H. Komiyama, and Y. Shimogaki,
"Stranski-Krastanov growth of tungsten during chemical vapor deposition revealed by micro-Auger electron spectroscopy,"
Jpn. J. Appl. Phys. 43 (10), 6974-6977 (2004).

27. S. Noda*, R. Hirai, H. Komiyama, and Y. Shimogaki,
"Selective silicidation of Co using silane or disilane for anti-oxidation barrier layer in Cu metallization,"
Jpn. J. Appl. Phys. 43 (9A), 6001-6007 (2004).

26. Y. Kajikawa*, S. Noda, and H. Komiyama,
"A simple index to restrain abnormal protrusions in films fabricated using CVD under diffusion-limited conditions,"
Chem. Vap. Deposition 10 (4), 221- 228 (2004).

25. Y. Kajikawa*, S. Noda, and H. Komiyama,
"Use of process indices for simplification of the description of vapor deposition systems,"
Mater. Sci. Eng. B 111 (2-3), 156-163 (2004).

24. Y. Kajikawa*, T. Tsumura, S. Noda, H. Komiyama, and Y. Shimogaki,
"Nucleation of W during chemical vapor deposition from WF6 and SiH4,"
Jpn. J. Appl. Phys. 43 (6B), 3945-3950 (2004).

23. Y. Kajikawa*, T. Tsuchiya, S. Noda, and H. Komiyama,
"Incubation time during the CVD of Si onto SiO2 from silane,"
Chem. Vap. Deposition 10 (3), 128-133 (2004).

22. M. Hu, S. Noda*, T. Okubo, and H. Komiyama,
"Wettability and crystalline orientation of Cu nanoislands on SiO2 with a Cr underlayer,"
Appl. Phys. A 79 (3), 625-628 (2004).

21. S. Noda*, K. Tanabe, T. Yahiro, T. Osawa, and H. Komiyama,
"Reaction of Si with HCl to form chlorosilanes: Time dependent nature and reaction model,"
J. Electrochem. Soc. 151 (6), C399-C404 (2004).

20. S. Noda*, Y. Kajikawa, and H. Komiyama,
"Combinatorial masked deposition: Simple method to control deposition flux and its spatial distribution,"
Appl. Surf. Sci. 225 (1-4), 372-379 (2004).

19. S. Noda*, K. Tepsanongsuk, Y. Tsuji, Y. Kajikawa, Y. Ogawa, and H. Komiyama,
"Preferred orientation and film structure of TaN films deposited by reactive magnetron sputtering,"
J. Vac. Sci. Technol. A 22 (2), 332-338 (2004).

18. T. Q. Li*, S. Noda*, F. Okada, and H. Komiyama,
"Effects of substrate heating and biasing on manostrcutural evolution of nonepitaxially growth TiN nanofilms,"
J. Vac. Sci. Technol. B 21 (6), 2512-2516 (2003).

17. Y. Kajikawa*, S. Noda, and H. Komiyama,
"Comprehensive perspective on the mechanism of preferred orientation in reactive-sputter-deposited nitrides,"
J. Vac. Sci. Technol. A 21 (6), 1943-1954 (2003).

16. T. Q. Li*, S. Noda*, H. Komiyama; T. Yamamoto, and Y. Ikuhara,
"Initial growth stage of nanoscaled TiN films: Formation of continuous amorphous layers and thickness-dependent crystal nucleation,"
J. Vac. Sci. Technol. A 21 (5), 1717-1723 (2003).

15. M. Hu*, S. Noda*, T. Okubo, Y. Yamaguchi, and H. Komiyama,
"Structural and morphological control of nanosized Cu islands on SiO2 using a Ti underlayer,"
J. Appl. Phys. 94 (5), 3492- 3497 (2003).

14. M. Hu*, S. Noda*, and H. Komiyama,
"Amorphous-to-crystalline transition during the early stages of thin film growth of Cr on SiO2,"
J. Appl. Phys. 93 (11), 9336- 9344 (2003).

13. Y. Kajikawa*, S. Noda, and H. Komiyama,
"Mechanisms controlling preferred orientation of chemical vapor deposited polycrystalline films,"
Solid St. Phenomena 93, 411- 416 (2003).

12. M. Hu*, S. Noda, and H. Komiyama,
"A new insight into the growth mode of metals on TiO2(110),"
Surf. Sci. 513 (3), 530-538 (2002).

11. Y. Kajikawa*, S. Noda, and H. Komiyama,
"Preferred orientation of chemical vapor deposited polycrystalline silicon carbide films,"
Chem. Vap. Deposition 8 (3), 99-104 (2002).

10. S. Noda*, Y. Kajikawa, and H. Komiyama,
"Cone structure formation by preferred growth of random nuclei in chemical vapor deposited epitaxial silicon films,"
Chem. Vap. Deposition 8 (3), 87-89 (2002).

9. M. Hu*, S. Noda, Y. Tsuji, T. Okubo, Y. Yamaguchi, and H. Komiyama,
"Effect of interfacial interactions on the initial growth of Cu on clean SiO2 and 3-mercaptopropyltrimethoxysilane-modified SiO2 substrates,"
J. Vac. Sci. Technol. A 20 (3), 589-596 (2002).

8. T. Q. Li*, S. Noda, Y. Tsuji, T. Osawa, and H. Komiyama,
"Initial growth and texture formation during reactive magnetron sputtering of TiN on Si(111),"
J. Vac. Sci. Technol. A 20 (3), 583-588 (2002).

7. Y. Kajikawa*, H. Ono, S. Noda, and H. Komiyama,
"Growth of trumpet-like protrusions during the CVD of silicon carbide films,"
Chem. Vap. Deposition 8 (2), 52-55 (2002).

6. X.-D. Liu*, H. Funakubo, S. Noda, and H. Komiyama,
"Internal microstructure and formation mechanism of surface protrusions in Pb-Ti-Nb-O thin film prepared by MOCVD,"
Chem. Vap. Deposition 7 (6), 253-259 (2001).

5. M. Hu*, S. Noda, T. Okubo, Y. Yamaguchi, and H. Komiyama,
"Structure and morphology of self-assembled 3-mercaptopropyltrimethoxysilane layers on silicon oxide,"
Appl. Surf. Sci. 181 (3-4), 307-316 (2001).

4. M. Yamamoto*, S. Ona, S. Noda, and M. Sadakata,
"NO reduction under the excess O2 condition by porous VYCOR catalyst,"
J. Chem. Eng. Jpn. 34 (6), 834-839, (2001).

3. X.-D. Liu*, H. Funakubo, S. Noda, and H. Komiyama,
"Influence of deposition temperature on the microstructure of Pb-Ti-Nb-O thin films by metallorganic chemical vapor deposition,"
J. Electrochem. Soc. 148 (3), C227-C230 (2001).

2. S. Noda*, M. Nishioka, and M. Sadakata,
"Gas-phase hydroxyl radical emission in the thermal decomposition of lithium hydroxide,"
J. Phys. Chem. B 103 (11), 1954-1959 (1999).

1. S. Noda*, M. Nishioka, A. Harano, and M. Sadakata,
"Gas-phase hydroxyl radical generation by the surface reactions over basic metal oxides,"
J. Phys. Chem. B 102 (17), 3185-3191 (1998).


4. 笹倉英史,野田優,山口由岐夫
「TEM-CT と3次元トポロジー解析を用いたポリマーナノコンポジット中のナノ粒子分散性に関する新しい評価法」
日本セラミック協会学術論文誌114 (1331), 638-642 (2006).

3. 稲葉敦,近藤康彦,小林光雄,喜多浩之,高橋伸英,野田優,松本真太郎,森田英基,小宮山宏
エネルギー・資源16 (5),532-537 (1995).

2. 稲葉敦,近藤康彦,小林光雄,喜多浩之,高橋伸英,野田優,松本真太郎,森田英基,小宮山宏
エネルギー・資源16 (5),525-531 (1995).

1. 稲葉敦,近藤康彦,小林光雄,喜多浩之,高橋伸英,野田優,松本真太郎,森田英基,小宮山宏
資源と環境,4 (4),321-334 (1995).


13. K. Furuichi, Y. Shiratori, K. Sekiguchi, H. Sugime, and S. Noda,
"A 1-sec Implementation of CNT-Emitter Arrays on Glasses for BLUs,"
Digest of Technical Papers - Society for Information Display International Symposium, 40(Bk. 1), 139-141 (2009).

12. M. Hu, S. Noda, H. Komiyama,
"Nanostructural evolution in non-epitaxial growth of thin films,"
Materials Research Society Symposium Proceedings, 2006-961E, O05-04 (2007).

11. S. Noda,
"Structuring knowledge on materials technology: general understanding of phenomena occurring in materials and its practical applications,"
The Third International Conference on Nanotechnology (JAPAN NANO 2005), P3-15, Tokyo, Japan, Feb. 2005.

10. S. Noda and H. Komiyama,
"Nanostructural evolution by non-epitaxial growth,"
Proc. 10th Asian Pacific Confederation of Chemical Engineering, 4C-07, Kitakyushu, Japan, Oct. 2004.

9. Y. Tsuji, S. Noda, and H. Komiyama,
"Epitaxial lift-off technology for solar cell application,"
Proc. 10th Asian Pacific Confederation of Chemical Engineering, 3D-11, Kitakyushu, Japan, Oct. 2004.

8. K. Kakehi, S. Noda, and F. Okada,
"Phase transition from semiconductor to insulator observed in rare gas- and halogen-doped SiOx thin films,"
Proc. 10th Asian Pacific Confederation of Chemical Engineering, 3D-10, Kitakyushu, Japan, Oct. 2004.

7. Y. Shimogaki, M. Sugiyama, S. Noda, and H. Komiyama,
"Initial nucleation and growth in fabrication of metal thin films by chemical vapor deposition,"
Proc. 10th Asian Pacific Confederation of Chemical Engineering, 3P-08-051, Kitakyushu, Japan, Oct. 2004.

6. Y. Shimogaki, T. Iino, M. Sugiyama, T. Momose, Y. S. Kim, T. Tsumura, Y. Kajikawa, S. Noda, and H. Komiyama,
"The initial nucleation behavior during Al, Cu, W-CVD on barrier metal layers,"
Proceedings of Material Research Society 2004 Spring Meeting, F8.10, San Francisco, April 12-16, 2004.

5. R. Hirai, S. Noda, H. Komiyama, and Y. Shimogaki,
"Selective silicidation of cobalt using SiH4 and Si2H6 for Cu metallization,"
Proceedings of the Advanced Metallization Conference 2002 (AMC 2002), San Diego, October 1-3, 2002, Materials Research Society, Conf. Proc. ULSI XVIII, 427-431 (2003).

4. S. Noda, K. Hagiwara, O. Ichikawa, K. Tanabe, T. Yahiro, H. Ohkawa, T. Osawa, and H. Komiyama,
"Closed recycle CVD process for mass production of SOG-Si from MG-Si,"
Conf. Rec. IEEE Photovoltaic Specialists Conf. 2002, 29th, 308-311.

3. Y. Tsuji, S. Noda, M. Mizukami, and H. Komiyama,
"Epitaxial technology of Si/CoSi2/Si layers for solar cell application,"
Conf. Rec. IEEE Photovoltaic Specialists Conf. 2002, 29th, 289-292.

2. M. Hu, S. Noda, Y. Ogawa, Y. Tsuji, T. Okubo, Y. Yamaguchi, and H. Komiyama,
"Study of initial growth of Cu on SiO2 and 3-mercaptopropyltrimethoxysilane-coated SiO2,"
Proc. Electrochem. Soc. 2001-13 (Fundamental Gas-Phase and Surface Chemistry of Vapor-Phase Deposition II), 41-46 (2001).

1. K. Tepsanongsuk, S. Noda, Y. Tsuji, and H. Komiyama,
"The structure control of sputtered TaN films on SiO2 through the study of evolutionary selection growth,"
Proc. Adv. Metall. Conf. 2000, 409-412 (2000).


4. 野田優
高分子,68 (6),307-308 (2019).

3. 野田優
化学工学,74 (11),629-631 (2010).

2. 野田優
NEW DIAMOND,89-24 (2),32-33 (2008).

1. 野田優
ケミカル・エンジニヤリング,51 (8),32-37 (2006).


11. 大政謙次,阿尻雅文,北川尚美,青野光子編「学術会議叢書27 持続可能な社会への道 ―環境科学から目指すゴール―」公益財団法人日本学術協力財団(2020),
 阿尻雅文,平尾雅彦,野田優,藤岡沙都子「第6章 環境課題解決のための生産技術と社会実装 科学技術、Efficiency(効率性)からSufficiency(充足性)へ」pp.183-198.

10. 吾郷浩樹,齋藤理一郎監修「グラフェンから広がる二次元物質の新技術と応用」エヌ・ティー・エス (2020),
 野田優「第6章 第3節 グラフェンの実用的合成技術」pp. 365-373.

9. 丸山茂夫監修「カーボンナノチューブ・グラフェンの応用研究最前線」エヌ・ティー・エス (2016),
 野田優「 流動層CVD」pp. 20-26.

8. 石原直,加藤千幸,光石衛,渡邉聡編「ナノ・マイクロスケール機械工学」東京大学出版会 (2014),
 野田優「4.2.2 ナノ・マイクロ材料の気相合成技術」pp. 171-174.

7. 田中一義,東原秀和,篠原久典編「炭素学」化学同人 (2011),
 野田優「16-3 透明柔軟性電極」pp. 505-511.

6. フラーレン・ナノチューブ学会編「カーボンナノチューブ・グラフェンハンドブック」コロナ社 (2011),
 野田優「11-4-3 透明電極」pp. 248-250.

5. フラーレン・ナノチューブ学会編「カーボンナノチューブ・グラフェンハンドブック」コロナ社 (2011),
 野田優「1-1-1 熱CVD - 単層CNTの垂直配向成長」pp. 10-14.

4. 内藤牧男 編著「究極のかたちをつくる」日刊工業新聞社 (2009),
 野田優「カーボンナノチューブのカスタム合成」pp. 56-67.

3. 松本洋一郎, 小宮山宏 監修,藤原毅夫,丸山茂夫,伊東乾編「知識・構造化ミッション 大学は表現する」日経BP社 (2005),
 野田優「知を活かす 薄膜成長を例として」pp. 113-127.

2. 細川益男 監修,野城清 編著「ナノパーティクル・テクノロジー」日刊工業新聞社 (2003),
 野田優「ナノ粒子の物性,機能」pp. 223- 228.

1. 動け!日本タスクフォース編「動け!日本」日経BP社 (2003),
 野田優,小宮山宏「太陽電池の大規模一貫製造プロセス」pp. 280- 284.


1. 野田優,白鳥洋介,関口康太郎,古市考次,杉山正和
NanotechJapan Bulletin「フォーカス26」企画特集,第27回,157-160 (2012).
Web pdf


37. 発明者:野田優,増田竜也,岡部隆志

36. 発明者:野田優,金東榮,今佑介,陳忠明,羽場英介,上田俊輔
 PCT/JP2013/073050,国際出願日2013年8月28日. WO/2014/034739,国際公開日2013年8月28日.

35. 発明者:野田優,金東榮,大野雄高,深谷徳宏

34. 発明者:野田優,陳忠明,金東榮,上田俊輔,羽場英介
 PCT/JP2013/066971,国際出願日2013年6月20日. WO/2013/191253,国際公開日2013年12月27日.

33. 発明者:野田優,陳忠明,金東榮,上田俊輔,羽場英介
 PCT/JP2013/066953,国際出願日2013年6月20日. WO/2013/191247,国際公開日2013年12月27日.

32. 発明者:野田優,李重昊,山本武継,松本慎吾
 PCT/JP2012/064825,国際出願日2012年6月8日. WO/2012/169625,国際公開日2012年12月13日.

31. 発明者:野田優,辻佳子,石橋健一

30. 発明者:野田優,高野宗一郎
 PCT/JP2012/054810,国際出願日2012年2月27日. WO/2012/118023, 国際公開日2012年9月7日.
 国内移行 特願2012-525791,出願日2012年6月4日.日本国特許第5152945号,2012年12月14日登録.

29. 発明者:古市考次,野田優

28. 発明者:羽場英介,野田優,長谷川馨
 PCT/JP2011/074720,国際出願日2011年10月26日. WO/2012/057229, 国際公開日2012年3月5日.

27. 発明者:野田優,朴相c,伊藤龍平,長谷川馨,杉目恒志

26. 発明者:野田優,白鳥洋介

25. 発明者:野田優,大沢利男,金東榮,羽場英介,上田俊輔
 PCT/JP2011/053420,国際出願日2011年2月17日. WO 2011/102433 A1, 国際公開日2011年8月25日.

24. 発明者:野田優,諸隈慎吾,山本武継
 PCT/JP2010/072255,国際出願日2010年10月10日. WO 2011/071154 A1, 国際公開日2011年6月16日.

23. 発明者:野田優,金東榮,大沢利男,杉目恒志,長谷川馨,羽場英介
 PCT/JP2010/065514,国際出願日2009年9月9日. WO 2011/030821 A1, 国際公開日2011年3月17日.

22. 発明者:野田優,古市考次

21. 発明者:野田優,古市考次,白鳥洋介

20. 発明者:野田優,古市考次
 PCT/JP2009/068516,国際出願日2009年10月28日. WO 2010/050517 A1, 国際公開日2010年5月6日.
 米国特許第8,435,601 B2号,2013年5月7日登録.

19. 発明者:野田優,古市考次,白鳥洋介,辻佳子,杉目恒志
 韓国特許出願 第10-2009-0026915号,出願日:2009年3月30日. 登録番号 第10-1060382号,登録日:2011年8月23日.
 中国特許出願 200910132528.3号,出願日2009年3月31日. 登録番号 ZL200910132528.3,登録日2012年5月30日.

18. 発明者:野田優,杉目恒志,山口由岐夫,大沢利男,筧和憲,長谷川馨,金東榮
 PCT/JP2009/054284,国際出願日2009年3月6日. WO 2009/110591 A1, 国際公開日2009年9月11日.

17. 発明者:野田優,高嶋智史
 PCT/JP2009/052543,国際出願日2009年2月16日. WO 2009/102056 A1, 国際公開日2009年8月20日.

16. 発明者:野田優,杉目恒志,山口由岐夫
 PCT/JP2007/067539,国際出願日2007年9月7日. WO 2008/029927 A1, 国際公開日2008年3月13日.

15. 発明者:全基栄,坂本仁志,野田優

14. 発明者:野田優

13. 発明者:野田優
 PCT/JP2005/13629,国際出願日2005年7月26日. WO 2006/011468 A1, 国際公開日2006年2月2日.

12. 発明者:野田優,丸山茂夫

11. 発明者:坂本仁志,野田優

10. 発明者:末富栄一,深沢孝二,霜垣幸浩,杉山正和,野田優

9. 発明者:野田優
 PCT/JP2004/019195,国際出願日2004年12月22日. WO 2005/069356 A1, 国際公開日2005年7月28日.
 米国特許願:USP7887632, 2011年2月15日登録.

8. 発明者:坂本仁志,野田優

7. 発明者:野田優
 PCT/JP2004/012261,国際出願日2004年8月26日. WO 2005/022565 A1, 国際公開日2005年3月10日.

6. 発明者:辻佳子,野田優

5. 発明者:小宮山宏,山口由岐夫,野田優

4. 発明者:小宮山宏,野田優,岩間政明

3. 発明者:小宮山宏,野田優,出願人:小宮山宏,野田優
 PCT/JP2001/010111,国際公開日:2001年11月20日. WO 2002/040751 A1, 国際公開日:2002年5月23日.

2. 発明者:小宮山 宏,奥山 喜久夫,松方 正彦,江頭 靖幸,野田 優
 出願人:小宮山 宏,奥山 喜久夫,松方 正彦,江頭 靖幸,野田 優

1. 発明者:野田 優,定方 正毅

早稲田大学 先進理工学部
応用化学科 野田・花田研究室