Perfectly contractile graphs and quadratic toric rings

Akiyoshi Tsuchiya (University of Tokyo)

joint work with Hidefumi Ohsugi and Kazuki Shibata
Perfect graph

G : a finite simple graph
(no loops and no multiple edges)
with vertex set $[d] = \{1, 2, \ldots, d\}$ and edge set E

A **clique** in G is a set of pairwise adjacent vertices in G.

$\omega(G) :=$ the clique number of G

\[\omega(G) = \max\{|C| : C \text{ is a clique of } G\} \]

$\chi(G) :=$ the chromatic number of G

In general,

\[\omega(G) \leq \chi(G) \]

Definition

We say that G is perfect if for any induced subgraph H of G,

\[\omega(H) = \chi(H) \]

e.g., bipartite graph, chordal graph
Example 1

\[\omega(G) = 2 \ < \ \chi(G) = 3 \]
Example II

G:

$\omega(G) = \chi(G) = 3$

But G is NOT perfect.
Perfect Graph Theorem

\overline{G} := the complement graph of G

Theorem (Weak Perfect Graph Theorem, Lovász)

G is perfect if and only if \overline{G} is perfect.

An odd hole is an induced odd cycle of length ≥ 5.
An odd antihole is the complement graph of an odd hole.

Theorem (Strong Perfect Graph Theorem, Chudnovsky–Robertson–Seymour–Thomas)

G is perfect if and only if G contains no odd holes and no odd antiholes as induced subgraphs.
Stable set

$S \subset [d]$ is a stable set or an independent set of G
if for $\forall i, j \in S$, $\{i, j\} \notin E$.

$S(G) :=$ the set of stable sets of G.

$S(G) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1, 3\}, \{1, 4\}, \{2, 4\}, \{2, 5\}\}$

$\{1, 3\}$ is stable. $\{2, 4, 5\}$ is NOT stable.
Algebraic Characterization of Perfect Graph I

\(K : \text{field.} \)

\[K[t_{\pm}^{\pm \pm 1}, s] := K[t_{1}^{\pm 1}, \ldots, t_{d}^{\pm 1}, s]. \]

\[K[G] := K[(\prod_{i \in S} t_{i}) s : S \in S(G)] \subset K[t_{\pm}^{\pm 1}, s]. \]

\[R[G] := K[x_{S} : S \in S(G)] \text{ with } \deg x_{S} = 1. \]

\[\pi : R(G) \rightarrow K[G] \text{ defined by } x_{S} \mapsto (\prod_{i \in S} t_{i}) s. \]

\(I_{G} = \ker \pi. \)

Theorem (Ohsugi–Hibi)

TFAE:

1. \(G \) is perfect;
2. The initial ideal of \(I_{G} \) with respect to any reverse lexicographic order is squarefree;
3. The initial ideal of \(I_{G} \) with respect to a reverse lexicographic order such that \(x_\emptyset \) is the smallest variable is squarefree.
Algebraic Characterization of Perfect Graph II

\[K[\Gamma(G)] := K[(\prod_{i \in S} t_i) s, (\prod_{i \in S} t_i^{-1}) s : S \in S(G)]. \]
\[K[\Omega(G)] := K[(\prod_{i \in S} t_i) u s, (\prod_{i \in S} t_i^{-1}) u^{-1} s, s : S \in S(G)]. \]

Theorem (Ohsugi–Hibi, Hibi–T)

TFAE:

1. \(G \) is perfect;
2. \(K[\Gamma(G)] \) is (normal) Gorenstein;
3. \(K[\Gamma(G)] \) is normal Gorenstein;
4. \(K[\Omega(G)] \) is normal;
5. \(K[\Omega(G)] \) is normal Gorenstein.
Quadratic toric rings

G : a perfect graph.

Question

When is I_G generated by quadratic binomials? When does I_G possess a quadratic initial ideal?

e.g.,

- comparability graphs;
- almost bipartite graphs;
- chordal graphs;
- ring graphs;
- the complement graphs of chordal bipartite graphs.
Even antihole

An even hole is an induced even cycle of length ≥ 6. An even antihole is the complement graph of an even hole.

$\overline{C_6}$:

Proposition

Let G be a perfect graph. If I_G is generated by quadratic binomials, then G contains no even antiholes.
Odd stretcher

An odd stretcher $G_{s,t,u}$ is a graph on the vertex set

$$\{i_1, i_2, \ldots, i_{2s}, j_1, j_2, \ldots, j_{2t}, k_1, k_2, \ldots, k_{2u}\}$$

with edges

$$\{i_1, j_1\}, \{i_1, k_1\}, \{j_1, k_1\}, \{i_{2s}, j_{2t}\}, \{i_{2s}, k_{2t}\}, \{j_{2t}, k_{2s}\},$$

$$\{i_1, i_2\}, \{i_2, i_3\}, \ldots, \{i_{2s-1}, i_{2s}\},$$

$$\{j_1, j_2\}, \{j_2, j_3\}, \ldots, \{j_{2t-1}, j_{2t}\},$$

$$\{k_1, k_2\}, \{k_2, k_3\}, \ldots, \{k_{2u-1}, k_{2u}\}.$$
Perfectly contractile graph

An even pair in a graph G is a pair of non-adjacent vertices of G such that the length of all chordless paths between them is even.

Contracting a pair of vertices $\{x, y\}$ an in a graph G means removing x and y and adding a new vertex z with edges to every neighbor of x or y.

A graph G is called even contractile if there is a sequence G_0, \ldots, G_k of graphs such that $G = G_0$, each G_i is obtained from G_{i-1} by contracting an even pair of G_{i-1}, and G_k is a complete graph.

Definition (Bertschi)

We say that G is perfectly contractile if any induced subgraphs of G are even contractile.

Theorem (Bertschi)

Every perfectly contractile graph is perfect.
Example 1

\[G: \]

\[G \] is even contractile.

In fact, \(G \) is perfectly contractile.
Example II

C_5:

C_6:

C_5 and $\overline{C_6}$ have no even pairs, hence, they are NOT even contractile.
Example III

\[G: \]

\[G \] is even contractile.

But \[G \] is NOT perfectly contractile.
Combinatorial characterization of perfectly contractile graph (conjecture)

Conjecture (Everett–Reed)

\[G \text{ is perfectly contractile if and only if } G \text{ contains no odd holes, no antiholes and no odd stretchers as induced subgraphs.} \]

Proposition

\[\text{If } G \text{ is perfectly contractile, then } G \text{ contains no odd holes, no antiholes and no odd stretchers as induced subgraphs.} \]
Algebraic characterization of perfectly contractile graph (conjecture)

Proposition

Let G be a perfect graph. If I_G is generated by quadratic binomials, then G contains no even antiholes and no odd stretchers as induced subgraphs.

Conjecture

Let G be a perfect graph. TFAE:

1. G is perfectly contractile;
2. I_G is generated by quadratic binomials;
3. G contains no even antiholes and no odd stretchers as induced subgraphs.
Meyniel graph

Definition
A graph is called Meyniel or very strongly perfect if any odd cycle of length ≥ 5 has at least two chords.

Theorem (Bertschi)
Every Meyniel graph is perfectly contractile.

Theorem (Ohsugi–Shibata–T)
For each Meyniel graph G, I_G is generated by quadratic binomials.
Perfectly orderable graph

\(G \) : a graph on the vertex set \(\{v_1, \ldots, v_n\} \).

An ordering \(v_1 < \cdots < v_n \) of the vertex set of \(G \) is called perfect if \(G \) contains no \(P_4 \ abcd \) such that \(a < b \) and \(d < c \).

\[
P_4 \ abcd: \hspace{1cm} a \quad b \quad c \quad d
\]

Definition

We say that \(G \) is **perfect orderable** if it has a perfect ordering \(v_1 < \cdots < v_n \) of the vertex set.

Theorem (Bertschi)

Every perfectly orderable graph is perfectly contractile.
Perfectly orderable graph

Theorem (Ohsugi–Shibata–T)
For any perfectly orderable graph G, the initial ideal of I_G with respect to a reverse lexicographic order is squarefree and quadratic.

Remark
The following graphs are perfectly orderable:
- comparability graphs;
- chordal graphs;
- the complement graphs of chordal graphs.

Hence this theorem is a generalization of results on several toric ideals.
Clique separable graph

Definition
We say that a graph is **clique separable** if it is obtained by successive gluing along cliques starting with graphs of Type 1 or 2:

1. The join of a bipartite graph with more than 3 vertices with a complete graph;
2. A complete multipartite graph.

Theorem (Bertschi)

Every clique separable graph is perfectly contractile.

Theorem (Ohsugi–Shibata–T)

For any clique separable graph G, the initial ideal of I_G with respect to a reverse lexicographic order is squarefree and quadratic.