Prime knots whose arc index is smaller than the crossing number

Gyo Taek Jin
(joint with Hwa Jeong Lee)
Korea Advanced Institute of Science and Technology

August 20, 2010
International Workshop on Spatial Graphs 2010
Waseda University, Tokyo
Arc presentation and arc index

An *arc presentation* of a knot or a link L is an ambient isotopic image of L contained in the union of finitely many half planes, called *pages*, with a common boundary line in such a way that each half plane contains a properly embedded single arc.

![Diagram of arc presentations](image)

Figure 1: An arc presentation of the figure eight knot

The minimal number of pages among all arc presentations of a link L is called the *arc index* of L and is denoted by $\alpha(L)$.
Methods of describing arc presentation

Figure 2: Representations of arc presentation
Brief History

• (Cromwell, 1995) Every link admits an arc presentation.

• (Nutt, 1999) All knots up to arc index 9 are identified.

• (Bae-Park, 2000)
 \[\alpha(L) = c(L) + 2 \text{ if and only if a non-split link } L \text{ is alternating.} \]
 (Knot-spoke diagrams are used for the proof.)

• (Beltrami, 2002) Arc index for prime knots up to 10 crossings are determined.

• (Jin et al., 2006) All prime knots up to arc index 10 are identified.

• (Ng, 2006) Arc index for prime knots up to 11 crossings are determined.

• (Jin-Park, 2007) All prime knots up to arc index 11 are identified.
 A prime link \(L \) is \textit{nonalternating} if and only if \(\alpha(L) \leq c(L) \).
A wheel diagram is a finite plane graph of straight edges which are incident to a single vertex. The projection of an arc presentation of a knot or a link into the xy-plane is of this shape.

![Wheel Diagram](image)

Figure 3: Wheel Diagrams of the figure-eight knot

For a wheel diagram with n edges to represent a knot or a link, each edge must be labeled with an unordered pair of distinct integers so that each of the integers, $1, 2, \ldots, n$ appear exactly twice in the wheel diagram. These numbers indicate the z-levels of the endpoints of the corresponding arcs.
A knot-spoke diagram D^* is a finite connected plane graph satisfying

1. There are three kinds of vertices in D^*: a distinguished vertex v_0 with valency at least four, 4-valent vertices, and 1-valent vertices.

2. Every edge incident to a 1-valent vertex is also incident to v_0. Such an edge is called a spoke.

Figure 4: Knot-spoke diagrams
Prime knot-spoke diagrams

A knot-spoke diagram \(D^* \) is said to be \emph{prime} if no simple closed curve meeting \(D^* \) in two interior points of edges separates multi-valent vertices into two parts.

Figure 5: Prime diagram and non-prime diagram
Cut-point

A multi-valent vertex \(v \) of a knot-spoke diagram \(D^* \) is said to be a cut-point if there is a simple closed curve \(S \) meeting \(D^* \) in \(v \) and separating non-spoke edges into two parts.

![Figure 6: Cut-point](image)

- A cut-point free knot-spoke diagram with more than one non-spoke edges cannot have a loop.
- If a prime knot-spoke diagram \(D^* \) has a cut-point, then the distinguished vertex \(v_0 \) must be the cut-point with valency bigger than four.
Contracting an edge incident to v_0

Let e be an edge of a cut-point free knot-spoke diagram D^* as in the figure. The knot-spoke diagram $(D^*)_e$ is obtained by

- contracting e and
- replacing any simple loop thus created by a spoke.

![Local diagram of D^* near e](image1)

![Local diagram of $(D^*)_e$ near v_0](image2)

Figure 7: Contraction of an edge in D^*

A loop in a knot-spoke diagram is said to be *simple* if the other non-spoke edges are in one side of it.
D^* and $(D^*)_e$

There are important facts to point out.

1. D^* and $(D^*)_e$ represent the same knot or link.

2. The sum of the number of regions divided by the non-spoke edges and the number of spokes is unchanged.

3. $(D^*)_e$ is prime if D^* is prime.
Wheel diagram with $c(D) + 2$ spoke

Starting from a knot diagram D, we end up with a knot-spoke diagram with $c(D)$ spokes and only one non-spoke edge which is a non-simple loop where $c(D)$ is the number of crossings in D.

Figure 8: Folding the last non-spoke edge

The last non-spoke edge, which is a loop, is being folded to create two extra spokes. This shows the inequality $\alpha(L) \leq c(L) + 2$.
A process converting 4_1 into a wheel diagram

- Choose a vertex v_0 and put labels on the two edges meeting at v_0, to assign vertical levels of the overpass and the underpass.

- Choose an edge e to contract and assign the label of a new level at the edges crossing e at the other end which is the lowest if the crossing is an undercrossing and the highest otherwise.

- Contract the edge and replace each simple loop with a spoke and label it with the two labels of the loop.
Let D be a knot diagram. We may consider D as a connected 4-valent plane graph with $c(D)$ vertices and $2c(D)$ edges.

A spanning tree of D is a tree which contains all the vertices of D.

A filtered spanning tree of D is an increasing sequence

$$T_0 \subset T_1 \subset T_2 \subset \cdots \subset T_{c(D)-1}$$

The closure of T_i, denoted by \overline{T}_i, is the subgraph of D obtained from T_i by adding the edges which are incident T_i at both ends.
Edges not contained in the spanning tree

An edge e of $\overline{T_i} \setminus \overline{T_{i-1}} \subset D$ is said to be *good* if e meets the edge $T_i \setminus T_{i-1}$ transversely at the vertex not contained in T_{i-1}.

An edge e of $\overline{T_i} \setminus \overline{T_{i-1}} \subset D$ is said to be *bad* if e meets the edge $T_i \setminus T_{i-1}$ vertically at the vertex not contained in T_{i-1}.

Figure 9: Good edges and a bad edge
Good filtered tree and Good filtered spanning tree

Let $T_0 \subset T_1 \subset \cdots \subset T_m$ be a filtered tree in a diagram D which does not span D. If the knot-spoke diagram obtained by contraction of the edges $e_i = T_i \setminus T_{i-1}$, $i = 1, \ldots, m$ is cut-point free, we say that the filtered tree is good.

A filtered spanning tree $T_0 \subset T_1 \subset T_2 \subset \cdots \subset T_{c(D)-1}$ is said to be good if $T_0 \subset T_1 \subset \cdots \subset T_m$ is good filtered tree for each m, $1 \leq m \leq c(D) - 2$ and there is only one ‘bad’ edge in D which belongs to $D \setminus \overline{T}_{c(D)-1}$.

Theorem 1 (Bae-Park, 2000) A prime link diagram D admits a good filtered spanning tree and therefore we can obtain an arc presentation with $c(D) + 2$ arcs.
Good filtered tree (Cont.)

Proposition 2 Let $T_0 \subset T_1 \subset \cdots \subset T_m$ be a filtered tree in a diagram D which does not span D. Then the following are equivalent.

1. Every edge of $\overline{T_m} \setminus T_m$ is a good edge, and a sufficiently small neighborhood of $\overline{T_m}$ has connected exterior in D.

2. The filtered tree is good.

Corollary 3 Let $T_0 \subset T_1 \subset \cdots \subset T_m$ be a good filtered tree in a diagram D which does not span D. Let e be an edge in D such that $T_m \cap e$ is a single vertex, so that $T_m \cup e$ is a tree. If $T_0 \subset T_1 \subset \cdots \subset T_m \subset (T_m \cup e)$ is not a good filtered tree, then one of the following holds.

- $\overline{T_m \cup e}$ has a bad edge.
- A sufficiently small neighborhood of $\overline{T_m \cup e}$ has disconnected exterior in D.
Cutting arc

Let T be a filtered tree in D which does not span D. A simple arc Γ is called a *cutting arc* of T if it satisfies the following conditions.

1. $\Gamma \cap D$ consists of the endpoints of Γ which are two distinct vertices of T.
2. A proper subcollection of edges of $D \setminus \overline{T}$ is enclosed by the simple closed curve $\overline{\Gamma}$ constructed by Γ and the path in T joining the endpoints of Γ.

![Figure 10: Cutting arc of a filtered tree](image)

International Workshop on Spatial Graphs 2010
Waseda University, August 17-21, 2010
Doubly good edges

A good edge $e \subset \overline{T_i} \setminus \overline{T_{i-1}}$ is said to be \textit{doubly good} if the three edges e, $e_i = T_i \setminus T_{i-1}$, and $e_{i-1} = T_{i-1} \setminus T_{i-2}$ together bound a nonalternating triangular region in D/T_{i-2}.

![Doubly good edge on a nonalternating triangular region](image)

Figure 11: Doubly good edge on a nonalternating triangular region

The doubly good edge on the filtered tree corresponds to removable spoke in the knot-spoke diagram obtained by contraction of edges in T_i.
Doubly good edges (Cont.)

It is known that every prime nonalternating diagram admits a good filtered spanning tree having at least two doubly good edges.

Theorem 4 (Jin-Park, 2007) A prime link L is nonalternating if and only if $\alpha(L) \leq c(L)$.

Theorem 5 A prime diagram D of a nonalternating knot has a good filtered spanning tree which has at least two doubly good edges. Furthermore, if there are d doubly good edges, then one can obtain an arc presentation with $c(D) + 2 - d$ arcs.
Goal

<table>
<thead>
<tr>
<th>Arc presentation</th>
<th>Wheel diagram</th>
<th>Good filtered spanning tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>properly simple arc</td>
<td>spoke</td>
<td>good edge</td>
</tr>
<tr>
<td>removable arc</td>
<td>removable spoke</td>
<td>doubly good edge</td>
</tr>
</tbody>
</table>

Goal: To construct a good filtered tree to find as many doubly good edges as possible.
Supporting arc and String \(\overrightarrow{ve} \)

For two regions \(R \) and \(S \) in a diagram, an arc \(\Delta \) is said to be a *supporting arc* of \(R \) and \(S \) if \(\Delta \) consists of at least 3 edges and one of the end edges of \(\Delta \) is one of the boundary edges of \(R \) and the other is one of the boundary edges of \(S \).

A string from a vertex \(v \) extending \(e \) in a knot diagram \(D \) is a portion of \(D \) that goes from \(v \) passing through \(e \) along \(D \) and is denoted by \(\overrightarrow{ve} \).

![Supporting arc and String](image)

Figure 12: Supporting arc and String \(\overrightarrow{ve} \)
Three types of nonalternating diagram

Let $n \geq 2$. A nonalternating knot diagram D is said to be \textit{$(n, 1)$-nonalternating} if it can be decomposed of two alternating tangles one of which is an $(n, 1)$-tangle.

Let $n \geq 1$. A nonalternating knot diagram D is said to be \textit{n-nonalternating} if it can be decomposed of two alternating tangles one of which is an n-tangle.

A 1-nonalternating diagram is also called an \textit{almost alternating diagram}.

(a) The $(n, 1)$-tangle \hspace{1cm} (b) The n-tangle \hspace{1cm} (c) The 1-tangle

Figure 13: Tangles
Theorem A

Let D be a prime $(n, 1)$-nonalternating minimal crossing knot diagram having a nonalternating triangular region with some edges and regions labeled as in Figure 14 for some integer $n \geq 2$. Then $\alpha(D) < c(D)$ if D satisfies the two conditions below:

![Diagram](image)

Figure 14: $(2, 1)$-nonalternating diagram
Theorem A (Cont.)

1. The string $\overrightarrow{q_1e_4}$ and at least one of the two strings $\overrightarrow{q_1e_{51}}, \overrightarrow{q_2e_{52}}$ meet at a crossing before they become incident to the region R_2, or there is a supporting arc of R_4 and R_5 which does not contain any edge of ∂R_2 and ∂R_3.

2. At least one of the three strings $\overrightarrow{q_1e_4}, \overrightarrow{q_1e_{51}}, \overrightarrow{q_2e_{52}}$ is incident to R_2 before or at the same time to R_1, or there is a supporting arc of R_4 and R_5, not incident to R_3, whose extension is incident to R_2 before or at the same time to R_1.
Diagrams on which Theorem A can be applied

13n3256
13n1404
13n1042

13n1974
13n1974
Theorem B

Let D be a prime, (n)-nonalternating and minimal crossing knot diagram having a nonalternating triangular region. If D satisfies the condition 1, 2, and 3 where the regions and edges near the nonalternating triangular region are labeled as in Figure 15. Then $\alpha(D) < c(D)$.

Figure 15: 2-nonalternating diagram
1. String $\overrightarrow{q_1e_4}$ and at least one of the two strings $\overrightarrow{q_1e_5_1}$, $\overrightarrow{q_2e_5_2}$ meet at a crossing before they become incident to the regions R_1 or R_2, or there is a supporting arc of R_4 and R_5 which does not contain any edge of R_1, R_2 and R_3.

2. At least one of the three strings $\overrightarrow{q_1e_4}$, $\overrightarrow{q_1e_5_1}$, $\overrightarrow{q_2e_5_2}$ is incident to R_2 before or at the same time to R_1, or there is a supporting arc of R_4 and R_5, not incident to R_3, whose extension is incident to R_2 before or at the same time to R_1.

3. R_2 is bounded by at least $n + 3$ edges.
Diagrams on which Theorem B can be applied
Theorem C

Let D be a prime, almost alternating, and minimal crossing knot diagram having a nonalternating triangular region. If D satisfies the condition 1, 2, 3 where the regions and edges near the nonalternating triangular region are labeled as in Figure 16. Then $\alpha(D) < c(D)$

![Almost alternating diagram](image)

Figure 16: Almost alternating diagram
Theorem C (Cont.)

1. $\overrightarrow{q_1e_4}$ and at least one of $\overrightarrow{q_1e_{51}}$, $\overrightarrow{q_2e_{52}}$ meet at a crossing before they become incident to the regions R_1 or R_2, or there is a supporting arc of R_4 and R_5 which does not contain any edge of R_1, R_2 and R_3.

2. At least one of the three strings $\overrightarrow{q_1e_4}$, $\overrightarrow{q_1e_{51}}$, $\overrightarrow{q_2e_{52}}$ is incident to R_2 before or at the same time to R_1, or there is a supporting arc of R_4 and R_5, not incident to R_3, whose extension is incident to R_2 before or at the same time to R_1.

3. At least one of $\overrightarrow{q_1e_4}$, $\overrightarrow{q_1e_{51}}$ is incident to R_1 at v_0 for the first time without being incident to R_2.
A diagram on which Theorem C can be applied
A sketch of proof of Theorem A

Let D' be the diagram obtained from D by a type 3 Reidemeister move over the region R_3 as in Figure 17.

Figure 17: $(2, 1)$-nonalternating diagram after a type 3 Reidemeister move

We construct a good filtered tree whose closures gradually contain $\partial R'_1, \partial R'_2$ and $\partial R'_3$. Let $\overline{v_i v_j}$ denote the edge joining v_i and v_j. The edges $\overline{v_2 v_3}$, $\overline{v_4 v_5}$ and $\overline{v_6 v_7}$ will become doubly good edges.
A sketch of proof of Theorem B

Let \(D' \) be the diagram obtained from \(D \) by a type 3 Reidemeister move over the region \(R_3 \) as in Figure 18.

![Figure 18: 2-nonalternating diagram after a type 3 Reidemeister move](image)

We construct a good filtered tree whose closures gradually contain \(\partial R'_1, \partial R'_2 \) and \(\partial R'_3 \). The edges \(v_1v_2, v_3v_4 \) and \(v_5v_6 \) will become doubly good edges.
A sketch of proof of Theorem C

Let D' be the diagram obtained from D by a type 3 Reidemeister move over the region R_3 as in Figure 19.

![Almost alternating diagram after a type 3 Reidemeister move](image)

Figure 19: Almost alternating diagram after a type 3 Reidemeister move

We construct a good filtered tree whose closures gradually contain $\partial R'_1, \partial R'_2$ and $\partial R'_3$. The edges v_1v_2, v_3v_4 and v_4v_5 will become doubly good edges.
An Example of Theorem A

Figure 20: (2, 1)-nonalternating diagram: 13n2004
Examples of Theorem A (knots with arc index 12)

13n563 13n572 13n651 13n652 13n689

13n690 13n789 13n790 13n820 13n926
13n2778 13n2783 13n2786 13n2791 13n2797
13n2800 13n2803 13n2806 13n2807 13n2809
Examples related to Theorem A (knots with arc index 12)

\begin{itemize}
\item 13n2204
\item 13n3051
\item 13n3070
\item 13n3401
\item 13n3680
\item 13n3701
\end{itemize}
An Example Theorem B

Figure 21: 2-nonalternating diagram: 13n2942
Examples of Theorem B
(knots with arc index 12)

13n1221
13n1252
13n1558
13n1943
13n2053

13n2174
13n2433
13n2473
13n2942
13n3180
13n4588 13n4797 13n4800 13n4858 13n4894

13n4895 13n4897 13n5095
Examples related to Theorem B (knots with arc index 12)

13n1824 13n1933 13n3047 13n3475 13n4308

13n4386 13n4467 13n4580
An Example of Theorem C

Figure 22: Almost alternating diagram : 13n0635
Examples of Theorem C (knots with arc index 12)

13n613 13n635 13n649 13n714 13n4031
Knots whose arc index equals crossing number (1)

Figure 23: $\alpha(9n8) = 9$, $\alpha(10n41) = 10$
Knots whose arc index equals crossing number (2)

Figure 24: $\alpha(10n42) = 10$, $\alpha(11n163) = 11$
Knots whose arc index equals crossing number (3)

Figure 25: $\alpha(10n24) = 10$, $\alpha(11n85) = 11$
Knots whose arc index equals crossing number (4)

Figure 26: $\alpha(11n113) = 11, \alpha(11n169) = 11$
Knots whose arc index equals crossing number (5)

Figure 27: $\alpha(11n93) = 11$, $\alpha(11n124) = 11$
Knots whose arc index equals crossing number (6)

Figure 28: $\alpha(11n121) = 11, \alpha(11n127) = 11$
Thank you very much.