Symmetries of Graphs in Homology Spheres

Song Yu
Advisor: Erica Flapan

Department of Mathematics, Pomona College

August 4, 2016
Let M be an orientable 3-manifold and G be a graph.

Definition

An automorphism σ of G is said to be *realizable* in M if there is an embedding Γ of G into M and a homeomorphism $h : (M, \Gamma) \to (M, \Gamma)$ that induces σ on Γ. In this case, we say that h realizes σ in M.

Definition

We say that G is *intrinsically chiral* in M if for every embedding Γ of G in M, there is no orientation reversing homeomorphism of M that leaves Γ setwise invariant. An embedding Γ of G in M is *achiral* if there is an orientation reversing homeomorphism of M that setwise fixes Γ.
Motivating questions

How special is S^3 among orientable 3-manifolds?

Question

Is it true that an automorphism of a graph is realizable in S^3 if and only if it is realizable in every orientable 3-manifold?

Question

Is it true that a graph is intrinsically chiral in S^3 if and only if it is intrinsically chiral in every orientable 3-manifold?
The easy direction

Proposition (Y.)

An automorphism of a graph that is realizable in S^3 by an orientation preserving homeomorphism is realizable in every orientable 3-manifold. An automorphism of a graph that is realizable in S^3 by an orientation reversing homeomorphism is realizable in every orientable 3-manifold that possesses an orientation reversing homeomorphism.

Corollary (Y.)

If a graph G is intrinsically chiral in an orientable 3-manifold M that possesses an orientation reversing homeomorphism, then G is also intrinsically chiral in S^3.
The converse

The converses are not true!

Proposition (Y.)

For any automorphism σ of a graph G, there exists an orientable 3-manifold M, an embedding Γ of G in M, and an orientation preserving homeomorphism h of (M, Γ) such that h realizes σ.

Theorem (Flapan-Howards, 2015)

For any graph G, there are infinitely many orientable and irreducible 3-manifolds M such that some embedding of G is pointwise fixed by an orientation reversing involution of M.

No graph is intrinsically chiral in every 3-manifold.
Central objects: homology spheres

Need to restrict our attention
Natural generalization of S^3:

Homology sphere

An integral homology 3-sphere (abbreviated as a homology sphere) is a 3-manifold whose homology groups with \mathbb{Z} coefficients are the same as those of S^3.

There are homology spheres which have no orientation reversing homeomorphisms, such as Poincaré’s dodecahedron space.
Rigidity of symmetries in homology spheres

Rigidity Theorem (Flapan, 1995)

Let G be a 3-connected graph. Suppose σ is an automorphism of G that is realized in S^3 by a homeomorphism h. Then σ is realizable in S^3 by a homeomorphism f of finite order. Moreover, f can be chosen such that f is orientation reversing if and only if h is orientation reversing.

Rigidity Theorem (Y.)

Let G be a 3-connected graph and M be a homology sphere. Suppose σ is an automorphism of G that is realized in M by a homeomorphism h. Then σ is realizable in a homology sphere M' by a homeomorphism f of finite order. Moreover, f can be chosen such that f is orientation reversing if and only if h is orientation reversing.
Smith Theory

\text{fix}(h) - the fixed point set of a map } h

\textbf{Theorem (Smith, 1939)}

Let \(M \) be a homology sphere and \(h : M \to M \) be a homeomorphism of finite order. If \(h \) is orientation preserving, then \(\text{fix}(h) \) is homeomorphic to one of the following: \(M \) (in this case \(h \) is the identity map), \(S^1, \emptyset \); if \(h \) is orientation reversing, then \(\text{fix}(h) \) is homeomorphic to one of the following: \(S^2, S^0 \) (two points).
Realizable automorphisms of complete graphs

Proposition (Y.)

If an automorphism σ of the complete graph K_n is realizable in a homology sphere M by a homeomorphism h if and only if σ is also realizable in S^3 by a homeomorphism g. Moreover, g can be chosen so that g is orientation reversing if and only if h is orientation reversing.
Recall that a graph G is intrinsic chiral in an orientable 3-manifold M if no embedding of G is setwise fixed by an orientation reversing homeomorphism of M.

Observation

Let M be an orientable 3-manifold that does not possess an orientation reversing homeomorphism. Then every graph is intrinsically chiral in M.
Chirality and planarity

Observation (Y.)

In an orientable 3-manifold that possesses an orientation reversing homeomorphism, planar graphs are achiral.

Proposition (Y.)

Any non-planar graph that has no order two automorphism is intrinsically chiral in any homology sphere.

With a slightly stronger requirement:

Proposition (Y.)

Let P be a connected simplicial complex embedded in a homology sphere M. If there is an orientation reversing homeomorphism h of M such that $P \subseteq \text{fix}(h)$, then P can be embedded into \mathbb{S}^2.

First established for \mathbb{S}^3 by Jiang and Wang in 2000
Intrinsic chirality of 3-connected graphs

Flapan-Weaver, 1996: Intrinsic chirality is related to not possessing certain types of automorphisms

Proposition (Y.)

An automorphism of a 3-connected graph is realizable in S^3 by an orientation reversing homeomorphism if and only if it is realizable in every homology sphere that possesses an orientation reversing homeomorphism by an orientation reversing homeomorphism.

Example

Let M be a homology sphere that possesses an orientation reversing homeomorphism. Then the complete graph K_n is intrinsically chiral in M if and only if $n \equiv 3 \mod 4$ and $n \neq 3$.

First established for S^3 by Flapan and Weaver in 1992
Intrinsic chirality of Möbius ladders

The Möbius ladder M_n consists of a loop of $2n$ vertices and n rungs connecting antipodal vertices on the loop.

Example

Let M be a homology sphere that possesses an orientation reversing homeomorphism. Then M_n is intrinsically chiral in M if and only if n is odd and $n > 3$. Moreover, no orientation reversing homeomorphism of M can setwise fix an embedded M_3 and its loop.

First established for S^3 by Flapan in 1989
Petersen graphs

\[
\begin{align*}
K_6 & \xrightarrow{\Delta Y} G_7 & \xrightarrow{\Delta Y} K^-_{4,4} \\
K_{3,3,1} & \xrightarrow{\Delta Y} G_8 & \xrightarrow{\Delta Y} G_9 & \xrightarrow{\Delta Y} PG
\end{align*}
\]
Linking of Petersen graphs

The only graphs that are intrinsically linked and minor minimal with respect to this property

\[\omega \] - modulo 2 sum of linking numbers of all disjoint pairs of loops of an embedded graph in a homology sphere

Theorem (Sachs, 1984; Flapan-Howards-Lawrence-Mellor, 2006; Nikkuni-Taniyama, 2012)

Let \(\Gamma \) be an embedding of a Petersen graph in \(\mathbb{S}^3 \). Then \(\omega(\Gamma) = 1 \).

Proposition (Y.)

Let \(\Gamma \) be an embedding of a graph in the Petersen family in a homology sphere \(M \). Then \(\omega(\Gamma) = 1 \).
Unrealizable automorphisms of K_6, G_8 and PG

Proposition (Y.)

The automorphism (1234) of K_6 is not realizable in any homology sphere.

First established for S^3 by Flapan in 1989

Orbits of pairs of loops under the action of (1234):

\[
\{156, 256, 356, 456\}, \{125, 235, 345, 145\}, \{135, 245\}
\]

Same method applies to find unrealizable automorphisms of G_8 and PG
Unrealizable automorphism of G_7, $K_{4,4}$ and $K_{3,3,1}$

\[\begin{align*}
1 & \rightarrow 4 \\
2 & \rightarrow 5 \\
3 & \rightarrow 6 \\
\end{align*}\]

G_7

\[\begin{align*}
1 & \rightarrow 4 \\
2 & \rightarrow 5 \\
3 & \rightarrow 6 \\
8 & \rightarrow 7 \\
\end{align*}\]

$K_{4,4}$

\[\begin{align*}
1 & \rightarrow 2 \\
2 & \rightarrow 5 \\
4 & \rightarrow 3 \\
5 & \rightarrow 6 \\
7 & \rightarrow 3 \\
\end{align*}\]

$K_{3,3,1}$

Proposition (Y.)

With the labeling above, the automorphism (123) of each of G_7, $K_{4,4}$ and $K_{3,3,1}$ is not realizable in any homology sphere.

Any homeomorphism h realizing (123) must fix edges $4\overrightarrow{7}, 5\overrightarrow{7}, 6\overrightarrow{7} \Rightarrow \text{fix}(h)$ is $\mathbb{S}^2 \Rightarrow h^2$ is the identity map
Proposition (Y.)

Every automorphism of G_9 is realizable in S^3.
ありがとうございます！
Thank you!