On the Casson-Walker invariant for 3-manifolds admitting genus one open book decompositions

Atsushi MOCHIZUKI

RIMS, Kyoto University. D2

Intro

Casson-Walker inv $\lambda(M) \in \mathbb{Q}$

 \bullet for a ZHS M (Casson, 1980s)

$$H_*(M; \mathbb{Z}) \cong H_*(S^3; \mathbb{Z})$$

• for a QHS M (Walker, 1992)

$$H_*(M;\mathbb{Q}) \cong H_*(S^3;\mathbb{Q})$$

Examples of calculation

- For lens spaces, $\lambda(L(p,q)) = -\frac{1}{2}s(q,p)$ (s(q,p): Dedekind sum)
- For $\frac{p}{q}$ surgery along a knot in S^3 ,

$$\lambda(S_K^3(p/q)) = -\frac{1}{2}s(q,p) + \frac{q}{2p}\Delta''_K(1)$$
 (\Delta_K(t): Conway poly of K)

Construction in terms of mapping class groups (Morita, ..., 1980s, 90s)

An open book decompositions (genus 1, 1 boundary comp) of a 3-manifold ${\cal M}$

where φ : a homeo of $\Sigma_{1,1}$ s.t. $\varphi|_{\partial\Sigma_{1,1}}=\mathrm{id}_{\partial\Sigma_{1,1}}$

Fact : A 3-mfd with genus one open book decomp has the following surgery presentation.

surgery along
$$L_{n_1,\dots,n_N;m}$$

$$S^3 \longrightarrow M_{n_1,\dots,n_N;m}$$

 $M_{n_1,\cdots,n_N;m}$: 3-mfd with genus one open book decomp obtained by surgery along a link $L_{n_1,\cdots,n_N;m}$ Suppose that $M_{n_1,\cdots,n_N;m}$ is a $\mathbb{Q}HS$

Main theorem

$$\lambda(M_{n_1,\dots,n_N;m}) = -\frac{1}{24} (\sum_i n_i - 3\sigma)$$
$$-\frac{(-1)^m}{24|H_1|} (2\sum_i n_i + 6N - 12m)$$

where σ : signature of linking matrix of $L_{n_1,\cdots,n_N;m}$ $|H_1|$: order of $H_1(M_{n_1,\cdots,n_N;m};\mathbb{Z})$

Surgery

6/16

Surgery presentations and monodromies

Idea of Proof

$$\lambda(M) = \frac{\deg=1 \text{ LMO inv}}{Z_1^{\text{LMO}}(M)} \underbrace{\qquad \qquad \qquad }_{l} \text{ Kontsevich inv of } L$$

$$Z(L)$$
 Caluculate $Z\left(\bigvee \right)$ glue them
$$Z_1^{\text{LMO}}(M_{n_1,\cdots,n_N;m}) \underbrace{\qquad \qquad }_{l} Z(L_{n_1,\cdots,n_N;m})$$

Jacobi diagrams

A Jacobi diag on $\sqcup^\ell S^1$

 \deg of a Jacobi diag $=\frac{1}{2}\;\#$ vertices

$$\mathcal{A}(\sqcup^\ell S^1) = \operatorname{span}_{\mathbb{C}} \ \{\operatorname{Jacobi \ diags \ on \ } \sqcup^\ell S^1\}/\operatorname{AS, \ IHX, \ STU \ rel}$$

STU:
$$\longrightarrow$$
 = \longrightarrow - \longrightarrow

The Kontsevich inv is an inv of a link L

$$Z(L) = Z(T_1) \circ Z(T_2) \circ \cdots \circ Z(T_k) \in \mathcal{A}(\sqcup^{\ell} S^1)$$

 $(T_i : elementary q-tangle)$

For example,

$$Z(\left(\begin{array}{c} \downarrow \\ \downarrow \end{array}\right)^{\prime\prime}) = \Phi = \left(\begin{array}{c} \downarrow \\ \downarrow \end{array}\right) + \frac{1}{24} \left[\begin{array}{c} \downarrow \\ \downarrow \end{array}\right], \left(\begin{array}{c} \downarrow \\ \downarrow \end{array}\right) + \cdots$$

$$Z(\left(\begin{array}{c} \downarrow \\ \downarrow \end{array}\right)^{-\frac{1}{2}} = \left(\begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \end{array}\right)^{-\frac{1}{2}}$$

$$Z(()) = (+\frac{1}{2}) + \frac{1}{8}) + \frac{1}{48} + \cdots$$

The deg=1 part of LMO inv

$$Z_1^{LMO}(M) = \frac{\iota(Z(L))}{\iota(Z(\bigcirc\bigcirc))^{\sigma_+}\iota(Z(\bigcirc\bigcirc))^{\sigma_-}} \in \operatorname{span}_{\mathbb{C}}\{\emptyset, \bigcirc\}$$

$$\iota: \mathcal{A}(\sqcup^{\ell}S^1) \to \operatorname{span}_{\mathbb{C}}\{\emptyset, \bigcirc\}$$

where

The value of the deg=1 LMO invariant of 3-manifolds concerned

 $M_{n_1,\cdots,n_N;m}$: 3-mfd with genus one open book decomp obtained by surgery along a link $L_{n_1,\cdots,n_N;m}$

 A_N : linking matrix of $L_{n_1,\cdots,n_N;m}$

Suppose $\det A_N \neq 0$

$$Z_1^{\text{LMO}}(M) = c_0(M) + c_1(M)\theta$$

Prop

$$c_1(M_{n_1,\dots,n_N;m}) = -\frac{1}{48}(-1)^{N+\sigma_+} \det A_N(\operatorname{tr} A_N - 3\sigma) - \frac{1}{48}(-1)^{m+N+\sigma_+} (2\operatorname{tr} A_N + 6N - 12m)$$

The value of a clasp

Proof

Fact :
$$\lambda(M) = \frac{2c_1(M)}{|H_1|}$$
 when $b_1(M) = 0$

Jacobi diags which become $\begin{tabular}{l} \end{tabular}$ through ι

As for non circular case, it can be calculated as LMO inv of lens spaces.

As for circular case, we have only to claculate above three diags. \Box

The value of twist knots

(When m=2k, a Brieskorn homology sphere $\Sigma(2,5,6k+1)$)

$$\lambda(M_{n;m}) = \begin{cases} -\frac{1}{24} \frac{((n+2)-1)((n+2)-2)}{n+2} - \frac{m}{2(n+2)} & (m:\text{even}) \\ -\frac{1}{24} \frac{((n-2)-1)((n-2)-2)}{n-2} - \frac{m+1}{2(n-2)} & (m:\text{odd}) \end{cases}$$

Summary and Future directions

Summary

We calculated the Casson-Walker invariant of 3-manifolds with genus one open book decompositions through the calculation of the deg=1 part of the LMO invariant.

Future directions

- relation to MCG
- general cases