Stable double point numbers of
 pairs of spherical curves

Sumika Kobayashi

Department of Mathmatics
Guraduate school of Humanities and Sciences
Nara Women's University

$$
2018 / 12 / 23
$$

Introduction

Spherical curve

A spherical curve is the image of a generic immersion of a circle into a 2 -sphere.

Deformations of type RI, RII, RIII

P, P^{\prime} : spherical curves

Definition 1

P^{\prime} is obtained from P by deformation of type RI if :

deformation of type RII if :

deformation of type RIII if :

Fact

\forall pair of spherical curves P, P^{\prime},
\exists a sequence of spherical curves

$$
P=P_{0} \rightarrow P_{1} \rightarrow \cdots \rightarrow P_{n}=P^{\prime}
$$

s.t. P_{i+1} is obtained from $P_{i}(i=0,1, \ldots, n-1)$ by a deformation of type RI, RII, RIII, or ambient isotopy.

> Conjecture (Östlund)
> $\forall P$: plane curve,
> Trivial plane curve is obtained from P by deformations of type RI, RIII.

Conjecture (Östlund)'
$\forall P$: spherical curve,
Trivial spherical curve is obtained from P by deformations of type RI, RIII.

Counterexample. (Hagge-Yazinski,2014 + Ito-Takimura)

T. Hagge and J. Yazinski, On the necessity of Reidemeister move 2 for simplifying immersed planner curves, Banach Center Publ. 103 (2014), 101-110.
N. Ito and Y. Takimura, Rll number of knot projections, preprint.

This result leads us :

Problem

Study the pairs of spherical curves that are (not) transformed from one to the other by deformations of type RI, RIII.
F.H.I.K.M propose a formulation for studying the problem.
Y. Funakoshi, M. Hashizume, N. Ito, T. Kobayashi, and H. Murai, A distance on the equivalence classes of spherical curves generated by deformations of type RI, J. Knot Theory Ramifications, Vol.27, No.12, 1850066, 2018.

Notation

\mathcal{C} : the set of the ambient isotopy classes of the spherical curves

Definition 2
$v, v^{\prime} \in \mathcal{C}$
$v \sim_{R I} v^{\prime}\left(v^{\prime}\right.$ is RI-equivalent to $\left.v\right)$
$\stackrel{\text { def }}{\Longleftrightarrow} \exists P, P^{\prime}$: representatives of v, v^{\prime} s.t.
P^{\prime} is obtained from P by a sequence of deformations of type RI and ambient isotopies.

Notation
$\tilde{\mathcal{C}}:=\mathcal{C} / \sim_{R I}$
$[P](\in \tilde{\mathcal{C}})$: the equivalence class containing P

The 1-complex $\tilde{\mathcal{K}}_{3}$

$\tilde{\mathcal{K}}_{3}$: the 1-complex s.t.
. $\left\{v \mid v:\right.$ vertex of $\left.\tilde{\mathcal{K}}_{3}\right\} \longleftrightarrow \tilde{\mathcal{C}}$

- $v, v^{\prime}(\in \tilde{\mathcal{C}})$ are joined by an edge
$\Leftrightarrow \exists P, P^{\prime}$: representatives of v, v^{\prime} s.t.
\exists a sequence

$$
P=P_{0} \rightarrow P_{1} \rightarrow \cdots \rightarrow P_{n}=P^{\prime}
$$

consisting of $\left\{\begin{array}{l}\cdot \text { exactly one deformation of type RIII, } \\ \cdot \text { deformations of type RI, and } \\ \cdot \text { ambient isotopies. }\end{array}\right.$
$\tilde{\mathcal{K}}_{3}$

$\tilde{\mathcal{K}}_{3}$ is not connected.

N. Ito and Y. Takimura, and K. Taniyama, Strong and weak (1, 3) homotopies on knot projections, Osaka J.Math, 52(2015), 617-646 .

Preliminaries

Double point number $d(v)$

$v \in \tilde{\mathcal{C}}\left(\right.$: the vertex of $\left.\tilde{\mathcal{K}}_{3}\right)$,
$d(v):=\min \{\sharp$ of double points of $P \mid P \in v\}$
We call $d(v)$ the double point number of v.

Double point number $d([P])$

P : spherical curve
P is RI-minimal $\stackrel{\text { def }}{\Longleftrightarrow}$ Each region of P is not a 1 -gon.
In general, P is not RI-minimal.
Fact $\forall P \xrightarrow{\mathrm{RI}^{-}} \cdots \xrightarrow{\mathrm{RI}^{-}}$RI-minimal spherical curve
reduced (P) denotes such spherical curve.
Then we have
Lemma 3

$$
d([P])=\sharp \text { of the double points of reduced }(P)
$$

Stable double point number $s d\left(P, P^{\prime}\right)$

$\left(P, P^{\prime}\right)$: a pair of spherical curves
Notation
$\overline{-\mathcal{L}\left(P, P^{\prime}\right)}$: the set of the paths in $\tilde{\mathcal{K}}_{3}$ connecting $[P]$ and $\left[P^{\prime}\right]$

- $V(L)$: the set of the vertices of $L \in \mathcal{L}\left(P, P^{\prime}\right)$

Definition 4

If $[P]$ and $\left[P^{\prime}\right]$ are contained in the same component of $\tilde{\mathcal{K}}_{3}$,

$$
\operatorname{sd}\left(P, P^{\prime}\right)=\min _{L \in \mathcal{L}\left(P, P^{\prime}\right)}\left\{\max _{v \in V(L)}\{d(v)\}\right\}
$$

If $[P]$ and $\left[P^{\prime}\right]$ are not contained in the same component of $\tilde{\mathcal{K}}_{3}$,

$$
\operatorname{sd}\left(P, P^{\prime}\right):=\infty
$$

N. Ito and Y. Takimura, and K. Taniyama, Strong and weak $(1,3)$ homotopies on knot projections, Osaka J.Math, 52(2015), 617-646 .

Stable double point number $s d\left(P, P^{\prime}\right)$

Proposition 1

Let $\left(P, P^{\prime}\right)$ be a pair of spherical curves such that $[P] \neq\left[P^{\prime}\right], d\left(\left[P^{\prime}\right]\right) \leq d([P])$.
Suppose that each region of P is not a 1-gon or triangle. Then we have :

$$
\operatorname{sd}\left(P, P^{\prime}\right) \geq d([P])+1
$$

M. Hashizume and N. Ito, New deformations on spherical curves and Östlund conjecture, preprint.

Stable double point number $s d\left(P, P^{\prime}\right)$

Question

$\forall\left(P, P^{\prime}\right)$,

$$
\operatorname{sd}\left(P, P^{\prime}\right) \leq \max \left\{d([P]), d\left(\left[P^{\prime}\right]\right)\right\}+1 ?
$$

In particular,

$$
\operatorname{sd}(P, \bigcirc) \leq d([P])+1 ?
$$

Results

2-bridge spherical curve

$a_{1}, a_{2}, \ldots, a_{n}(n \geq 1)$: an n-tuple of positive integers

$C\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is called the 2-bridge spherical curve (of type $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$)

n: even

n : odd

2-bridge spherical curve

By Ito-Takimura it is shown that

$$
\operatorname{sd}\left(C\left(a_{1}, \ldots, a_{n}\right), \bigcirc\right)<\infty
$$

The first result of this talk is

Proposition 2

For each 2-bridge spherical curve $C\left(a_{1}, \ldots, a_{n}\right)$, we have

$$
\begin{array}{r}
\operatorname{sd}\left(C\left(a_{1}, \ldots, a_{n}\right), \bigcirc\right)= \\
d\left(\left[C\left(a_{1}, \ldots, a_{n}\right)\right]\right) \text {, or } \\
\\
\left.\left.d\left(a_{1}, \ldots, a_{n}\right)\right]\right)+1
\end{array}
$$

N. Ito and Y. Takimura, RIl number of knot projections, preprint .

Pretzel spherical curve

$a_{1}, a_{2}, \ldots, a_{m}(m \geq 3):$ an m-tuple of positive integers

$P\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is called the pretzel spherical curve (of type $\left.\left(a_{1}, a_{2}, \ldots, a_{m}\right)\right)$.

Pretzel spherical curve

By Ito-Takimura it is shown that

$$
\operatorname{sd}\left(P\left(a_{1}, \ldots, a_{n}\right), \bigcirc\right)<\infty
$$

The second result of this talk is
Theorem 5
$s d(P(5,5,5,5,5), \bigcirc)=27$
$(=d([P(5,5,5,5,5)])+2)$

N. Ito and Y. Takimura, RII number of knot projections, preprint .

Key Deformation

Deformation of type ξ_{p} :

Definition 6

p : a positive odd integer

Remark

In [I-T], Ito-Takimura introduced $T(2 k-1), T(2 k)$. We note that $T(2 k-1)$ is exactly $\xi_{2 k-1}$.

($2 k$)-double points

($2 k$)-double points
[I-T] N. Ito and Y. Takimura, RII number of knot projections, preprint.
P, P^{\prime} : spherical curves

Proposition 3 (Lemma 2 of I-T)

$\forall p=2 k+1(k \geq 1)$,

$$
P \xrightarrow[i n D]{\xi_{p}} P^{\prime} \Rightarrow P \xrightarrow[\text { in } D]{R l^{\prime \prime} s, R I I^{\prime} s} P^{\prime}
$$

[I-T] N. Ito and Y. Takimura, RII number of knot projections, preprint.

Remark of Proposition 3

The maximal number of double points in D of the spherical curves that appear in the sequence is $p+(p-1) / 2(=p+k)$.

Example $(p=3)$:

I have the impression that $p+(p-1) / 2$ is best possible.

I could show that the statement holds for the case $p=5$.
Fact : For the deformation

by RI, RIII the \sharp of double points must be raised at least 7 .

The proof of Fact is carried out by using exhaustion argument depictied as in the following.

Pretzel spherical curve

Theorem 7

$s d(P(5,5,5,5,5), \bigcirc)=27$
$(=d([P(5,5,5,5,5)])+2)$

Conjecture 1
$p(\geq 3)$: positive odd integer

$$
\operatorname{sd}(P(p, p, p, p, p), \bigcirc)=5 p+(p-1) / 2
$$

