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Definition

Ng : a genus g compact non-orientable surface with b boundary
components.
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Introduction

Definition

Ng : a genus g compact non-orientable surface with b boundary
components.
The mapping class group of Né’ is defined as

diffeo. . .
M(Ng) ={f: N;’ — Ng \ f]aNg = id}/isotopy.
The Torelli group of N? is defined as

I(N?) = ker(M(ND) — Aut(Hy (N} Z))).
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Background

Eg . a genus g compact orientable surface with b boundary components.

o A generating set for Z(X)) was found by Powell (1978).
@ A finite generating set for I(Eg) was found by Johnson (1983).

@ A generating set for I(Eg) was found by Putman (2007).
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Eg . a genus g compact orientable surface with b boundary components.

o A generating set for Z(X)) was found by Powell (1978).
@ A finite generating set for I(Eg) was found by Johnson (1983).

@ A generating set for I(Eg) was found by Putman (2007).

Problem
© Find a generating set for I(Ng) for b > 0.
@ Can I(NV)) be finitely generated for b > 07

| \

Remark
I(Ng) is trivial for g < 3.
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Dehn twist

Introduction

Figure: Two sided simple closed curves.

Figure: One sided simple closed curves.
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Introduction

Dehn twist

For a two sided simple closed curve ¢, the Dehn twist ¢, is defined as
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Main result

Theorem (Hirose-K. (b = 0), K. (b > 1))
Forg>4andb >0, I(Ng) is normally generated by

o t,, tﬁtg,l,

o t5, by (1<i<b—1),

® to, ts; (1<i<j<b-—1)and
et (only if g =4).
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Main result

Theorem (Hirose-K. (b = 0), K. (b > 1))
Forg>4andb >0, I(Ng) is normally generated by

o t,, tﬁtg,l,

o ts5,t, (1<i<b—1),

® to, ts; (1<i<j<b-—1)and
et (only if g =4).
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The case of a closed surface

The case of a closed surface

Theorem (Hirose-K.)
For g > 4, I(Ng) is normally generated by

o ta, tgty and
oty (only if g =4).
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The case of a closed surface

The level 2 mapping class group of Ng is defined as
I'y(N}) = ker(M(N2) — Aut(Hi(N2; Z/27))).
The level-2 principal congruence subgroup of GL(n;Z) is defined as
I'y(n) = ker(GL(n; Z) — GL(n; Z/27)).
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The case of a closed surface

The level 2 mapping class group of Ng is defined as
I'y(N}) = ker(M(N2) — Aut(Hi(N2; Z/27))).
The level-2 principal congruence subgroup of GL(n;Z) is defined as
I'y(n) = ker(GL(n; Z) — GL(n; Z/27)).

We have the short exact sequence

1 — I(NJ) = Dy(Ny) = Ta(g— 1) — 1.

In general, if there is a short exact sequence
155G = (X |Y) 3 (¢(X) | 2) > 1,

then G is normally generated by {Z | z € Z,¢(2) = z}.



The case of a closed surface

Crosscap slide

m : a one sided simple closed curve,

a : a two sided oriented simple closed curve,

(m and a intersect transversely at only one point)
M : a regular neighborhood of m.

The crosscap slide Yy, 4 is defined as
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The case of a closed surface

Generating sets for FZ(NO)

For1 <4y <ig <--- <1 <g, o, is defined as
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The case of a closed surface

Generating sets for I'y(/V,)

For1 <4y <ig <--- <1 <g, o, is defined as

Theorem (Szepietowski (2013))

For g > 4, T'o(NY) is finitely generated by
Q@ Yoo, forl<i<g—1,1<j<gandi#j
@1 forl<i<j<k<i<g.
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The case of a closed surface

Generating sets for I'y(/V,)

For1 <4y <ig <--- <1 <g, o, is defined as

Theorem (Hirose-Sato (2014))
For g > 4, T'o(NY)) is minimally generated by
Q Yoo, for1<i<g-—1,1<j<gandi#j,

Q 2

1,5,k,1

forl<j<k<l<g.
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The case of a closed surface

Presentations for I'y(g — 1)

L2(N) 3 Yasas;otan 0+ Yigs Tight € P29 — 1),

0,0, 59 [T R

Proposition (cf. Fullarton (2014), K. (2015))
Ia(g — 1) is generated by Y;; and Ty, and has the relators
QY forl<i<g—land1<j<g,
Q [Yir,Yji] for 1 <i,j<g—Tland1<k<y,
Q Vi, YY) for1<i,j<g—-1landl1<k<yg,
Q [Yi;,Vig) for1 <ik<g—1landl<jl<yg,
Q@ (VijYiYu)? for 1<i<g—1andl<jkl<g,
Q (V;iYi;Yi;YjiYiuYi)? for 1 <i,j,k<g—1,
@ Tiji - (a product of Yij's),
where [X,Y] = X 'Y ~XY and i, j,k,I are all different.
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The case of a closed surface

For g > 4, T'y(NY) is generated by
Q Yoo, for1<i<g-1,1<j<gandi#j,
Q 2 forl<j<k<l<g.

1,5,k

I's(g — 1) is generated by Y;; and 7', and has the relators
Qo Yigforlgz'gg—landlgjgg,
Q [Yig, Vi for1<i,j<g-—land 1<k <y,
Q [Vi, YVl for 1 <i,j<g—-1land 1<k <y,
Q [V, Y] for1 <i,k<g—1land1<j 1<y,
Q@ (Vi;YiVu)* for 1<i<g-—1land1<j,kl<g,
Q (VY Vi YrYirYii)? for 1 <i,j,k < g—1,
@ Ty - (a product of Yj;'s).

1— I(Ng) — FQ(Ng) —Ta(g—1) =1



The case of a closed surface

N VA 2 — T .
Let Yahai,j - Yy and tai,j,k,l - TZ7J7k7l'

Corollary
For g >4, Z(Ny) is normally generated by followings in T'a(N{),
Q@ Yiforl<i<g—landl1<j<y,
Q[YM, k) for1<i,j<g—1landl1<k<g,
Q[Y;],Y G for1 <i<g—1land1<jk<yg,
Q [V, Yl for1<l yk<g—1land1<j 1<y,
9 (vi,;YiLY: ) forl1<i<g—1andl1<jklil<yg,
o (Yj;iYi;ij;J‘Yj;kn;kYk;i) forl<i,j,k<g-1
@ T, - (aproduct of Y.j's) for1 < j<k<l<g,

where i, 5, k, 1 are all different.

1 = I(N)) = To(NJ) = Ta(g—1) = 1
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The case of a closed surface

N VA 2 — T .
Let Yahai,j - Yy and tai,j,k,l - TZ7J7k7l'

Corollary
For g >4, Z(Ny) is normally generated by followings in 's(N]),
Q@ Yiforl<i<g—landl1<j<y,
Q[YM, k) for1<i,j<g—1landl1<k<g,
Q[Y;],Y G for1 <i<g—1land1<jk<yg,
Q [V, Yl for1<l yk<g—1land1<j 1<y,
9 (vi,;YiLY: ) forl1<i<g—1andl1<jklil<yg,
o (Yj;iYi;ij;J‘Yj;kn;kYk;i) forl<i,j,k<g-1
@ T, - (aproduct of Y.j's) for1 < j<k<l<g,

where i, 5, k, 1 are all different.

(Z(Ng) < M(Ng), Z(Ng) <T2(Ng), T2(Ng) < M(N).)
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The case of a closed surface

N VA 2 — T .
Let Yahai,j - Yy and tai,j,k,l - TZ7J7k7l'

Corollary
For g > 4, I(Ng) is normally generated by followings in M(Ng)
Q@ Yiforl<i<g—landl1<j<y,
Q[YM, k) for1<i,j<g—1landl1<k<g,
Q[Y;],Y G for1 <i<g—1land1<jk<yg,
Q [V, Yl for1<l yk<g—1land1<j 1<y,
9 (vi,;YiLY: ) forl1<i<g—1andl1<jklil<yg,
o (Yj;iYi;ij;J‘Yj;kn;kYk;i) forl<i,j,k<g-1
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where i, 5, k, 1 are all different.
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The case of a closed surface

N VA 2 — T .
Let Yahai,j - Yy and tai,j,k,l - TZ7J7k7l'

Corollary
For g >4, Z(Ny) is normally generated by followings in M(N}),
Q@ Yiforl<i<g—landl1<j<y,
Q[YM, k) for1<i,j<g—1landl1<k<g,
Q[Y;],Y G for1 <i<g—1land1<jk<yg,
Q [V, Yl for1<l yk<g—1land1<j 1<y,
9 (vi,;YiLY: ) forl1<i<g—1andl1<jklil<yg,
o (Yj;iYi;ij;J‘Yj;kY;;kYk;i) forl<i,j,k<g-1
@ T, - (aproduct of Y.j's) for1 < j<k<l<g,

where i, 5, k, 1 are all different.

We checked that these are products of conjugations of ¢, tgtg,l and t,.
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The case of a closed surface

We have
Theorem (Hirose-K. (2016))

For g >4, Z(NY) is normally generated by
@ t,, t/gtgll and
oty (only if g =4).
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The case of a surface with boundary

The case of a surface with boundary

Theorem (K.)
For g >4 and b > 1, Z(N?) is normally generated by
® ta, tgty,
o ts, by, (1<i<b-—1),
® to, ts; (1<i<j<b-—1)and
o ty (only if g =4).

oooo On a normal generating set for I(Nf’)



The case of a surface with boundary

Capping map and Forgetful maps

* € Né’_l : a point in the interior of Né’_l.

- _1 diffeo. _ . .
M(Ng 1,*) = {f . Ng 1 ﬁ)) Ng 1 ‘ f|8Ng_1U{*} = ld}/ISOtOpy

We can regard Né’ as a subsurface of Ng_l not containing *, by the
natural embedding N < N})=1.

oooo On a normal generating set for I(Nf’)



The case of a surface with boundary

Capping map and Forgetful maps

* € Ng_l : a point in the interior of N;’_l.

- _1 diffeo. _ . .
M(Ng 1,*) = {f . Ng 1 ﬁ)) Ng 1 ‘ f|8Ng_1U{*} = ld}/ISOtOpy

We can regard Né’ as a subsurface of Ng_l not containing *, by the
natural embedding N < N})=1.

oooo On a normal generating set for I(Nf’)



The case of a surface with boundary

Capping map and Forgetful maps

* € Ng_l : a point in the interior of N;’_l.

- _1 diffeo. _ . .
M(Ng 1,*) = {f . Ng 1 ﬁ)) Ng 1 ‘ f|8Ng_1U{*} = ld}/ISOtOpy

We can regard Né’ as a subsurface of Ng_l not containing *, by the
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The case of a surface with boundary

Capping map and Forgetful maps

* € Né’_l : a point in the interior of Né’_l.

- _1 diffeo. _ . .
M(Ng 1,*) = {f . Ng 1 ﬁ)) Ng 1 ‘ f|8Ng_1U{*} = ld}/ISOtOpy

We can regard Né’ as a subsurface of Ng_l not containing *, by the
natural embedding N < N})=1.

The capping map Cg : M(N;’) — M(Ng_l, *) is the homomorphism
induced by N} < Np=1.
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The case of a surface with boundary

Capping map and Forgetful maps

* € Ng_l : a point in the interior of N;’_l.
b—1 . . p—1 diffeo. b—1 . .
M(Ny %) ={f: N, — N, | f|8N_§‘1u{*} = id}/isotopy

We can regard Né’ as a subsurface of Ng_l not containing *, by the
natural embedding N < N})=1.

The capping map Cg : M(N;’) — M(Ng_l, *) is the homomorphism
induced by N} < Np=1.

The forgetful map Fo=! : M(N.™L %) — M(NE™1) is the homomorphism
induced by

1 dlffeo

{f: Ny Ny ™| Flont-1opey = 1d}

_1 diffeo. _ .
= {f: NJTVE N 1|f\aN3_1 =id}

oooo On a normal generating set for I(Nf’)



The case of a surface with boundary

cb

_ Fo _
1= ker Fy~Hepzavey — Co(Z(Ng)) "= Z(Ng™') =1
Z(NY) is normally generated by
° kerC;’|I(N5) and

o lifts by Cg of normal generators of CS(I(N;’)).

oooo On a normal generating set for I(Nf’)



The case of a surface with boundary

cb

B Fot _
1— kerfg 1‘@3(1(1\7};)) — CZ(I(NZ;))) = I(Ng 1) —1

Z(NY) is normally generated by
° kerC;’|I(N5) and
o lifts by Cg of

° kerfé’*l\cg(z(Ng)) and
o lifts by 7.~! of normal generators of Z(N)™1).

oooo On a normal generating set for I(Nf’)



The case of a surface with boundary

ct

1 — ker Fy~evzavey — Co(Z(Ng)) éN I(N) ) =1
Z(NY) is normally generated by
@ 15, and
o lifts by Cg of
° ker]—"g‘l\cg(z(Ng)) and
o lifts by 75~ of normal generators of Z(N)™1).

oooo On a normal generating set for I(Nf’)



The case of a surface with boundary

Cb

B Fot -

Z(NY) is normally generated by
o t5,, tp,, Lo, to,, and
o lifts by Cg of

b—1
o kerF —ferrzveyyand

9 g
o lifts by F)~' of normal generators of Z(N2™1).

oooo On a normal generating set for Z’(Nf’)



The case of a surface with boundary

Cb

]__b,1
1 — ker Fy~Henzavey — Co(Z(Ng)) "= Z(Ng ') =1
Z(NY) is normally generated by
o 15, tpy toy, tay, and

o lifts by Cg o }—5—1 of normal generators of I(Ng_l).

oooo On a normal generating set for Z’(Nf’)



The case of a surface with boundary

1— kercg\I(Ng) — I(ND) % CHI(ND)) — 1
]_—bfl
1= ker Fy~Hepzavey — Co(Z(Ng)) "= Z(Ng™') =1
Z(NY) is normally generated by
® 15, oy, toy, tsy, and
o lifts by Cg o ]-'é’_l of normal generators of I(Ng_l).

and

A normal generating set of Z(N?) is obtained by adding ts,, t,,, t
ts,, to that of I(Ng_l).

O’jb

oooo On a normal generating set for Z’(Nf’)



The case of a surface with boundary

Theorem (Hirose-K.)

For g > 4, Z(NJ) is normally generated by to, tgtg,l (and t,).
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Theorem (Hirose-K.)
For g > 4, Z(NJ) is normally generated by to, tgtg,l (and t,).
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I(Ng) is normally generated by ta, tgty,', ts,, tpr, sy, Ly, oy Loy, (and
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The case of a surface with boundary

Theorem (Hirose-K.)
For g > 4, Z(NJ) is normally generated by to, tgtg,l (and t,).

Z(Ny) is normally generated by tq, tgtgll, ts,, tp, (and to).

I(Ng) is normally generated by ta, tgtg,', ts,, tpr, sy, tpy: tors tay, (and

oooo On a normal generating set for Z’(Nf’)



The case of a surface with boundary

Theorem (Hirose-K.)

For g > 4, Z(NJ) is normally generated by to, tgt/g,l (and t,).

Z(Ny) is normally generated by tq, tgt/;,l, ts,, tp, (and to).

I(NZ) is normally generated by ta, taty,', ts,, tp, toss tpss tors tar, (and
t).

Theorem (K.)
Forg>4andb>1, Z(Ng) is normally generated by

o t,, tﬁtg,l,

o t5, by, (1<i<b)

o, tsy; (1<i<j<b)and
et (only if g =4).

o
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The case of a surface with boundary

Theorem (Hirose-K.)

For g > 4, Z(NJ) is normally generated by to, tgt/g,l (and t,).

Z(Ny) is normally generated by tq, tgt/;,l, ts,, tp, (and to).

I(NZ) is normally generated by ta, taty,', ts,, tp, toss tpss tors tar, (and
t).

Theorem (K.)
Forg>4andb>1, Z(Ng) is normally generated by

o t,, tﬁtg,l,

o ts, by, (1<i<b—1),

° to,, ts,; (1<i<j<b-1)and
et (only if g =4).

o

oooo On a normal generating set for I(Nf’)




Can I(Né’) be finitely generated?

oooo On a normal generating set for Z’(Nf’)



Problem
Can I(Né’) be finitely generated?

There is the Z-module homomorphism

J 1 I(Ny) = N*Hi(S,,Z).

Theorem (Tsuji)
dim(Q ® ImJ) = (9*1)(982)(9*3) 4 9(951)2.

2

dim(Q ®_’[(Ngl)ab) > (9—1)(gg2)(g_3) i g(g;”

oooo On a normal generating set for I(Nf’)



Problem
Can I(Né’) be finitely generated?

There is the Z-module homomorphism

J 1 I(Ny) = N*Hi(S,,Z).

Theorem (Tsuji)
dim(Q ® ImJ) = (9*1)(982)(9*3) 4 9(951)2.

2

dim(Q ®_’[(Ngl)ab) > (9—1)(gg2)(g_3) i g(g;”

Thus the number of generators of I(Ngl) is at least
(9—1)(9g2)(g—3) 4 9(951)2.

oooo On a normal generating set for I(Nf’)




Thank you for your attention!
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