コンパクトな向き付け不可能曲面の Torelli 群の正規生 成系について

小林竜馬

石川工業高等専門学校

結び目の数理 2018年12月24日,早稲田大学

Definition

Definition

Definition

Definition

Definition

Definition

 N^b_g : a genus $g \mbox{ compact non-orientable surface with } b \mbox{ boundary components.}$

The mapping class group of N_g^b is defined as

$$\mathcal{M}(N_g^b) = \{ f : N_g^b \stackrel{\text{diffeo.}}{\longrightarrow} N_g^b \mid f|_{\partial N_g^b} = \mathrm{id} \}/\mathrm{isotopy.}$$

The Torelli group of N_q^b is defined as

$$\mathcal{I}(N_g^b) = \ker(\mathcal{M}(N_g^b) \to \operatorname{Aut}(H_1(N_g^b; \mathbb{Z}))).$$

- Σ_q^b : a genus g compact orientable surface with b boundary components.
 - A generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Powell (1978).
 - A finite generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Johnson (1983).
 - A generating set for $\mathcal{I}(\Sigma_q^b)$ was found by Putman (2007).

- Σ_q^b : a genus g compact orientable surface with b boundary components.
 - A generating set for $\mathcal{I}(\Sigma^0_q)$ was found by Powell (1978).
 - A finite generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Johnson (1983).
 - A generating set for $\mathcal{I}(\Sigma_g^b)$ was found by Putman (2007).

- Σ_q^b : a genus g compact orientable surface with b boundary components.
 - A generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Powell (1978).
 - A finite generating set for $\mathcal{I}(\Sigma_g^0)$ was found by Johnson (1983).
 - A generating set for $\mathcal{I}(\Sigma_g^b)$ was found by Putman (2007).

- Σ_q^b : a genus g compact orientable surface with b boundary components.
 - A generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Powell (1978).
 - A finite generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Johnson (1983).
 - A generating set for $\mathcal{I}(\Sigma_g^b)$ was found by Putman (2007).

 Σ_q^b : a genus g compact orientable surface with b boundary components.

- A generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Powell (1978).
- A finite generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Johnson (1983).
- A generating set for $\mathcal{I}(\Sigma_q^b)$ was found by Putman (2007).

Problem

- Find a generating set for $\mathcal{I}(N_q^b)$ for $b \ge 0$.
- ② Can $\mathcal{I}(N_a^b)$ be finitely generated for $b \ge 0$?

Remark

 $\mathcal{I}(N_g^0) \text{ is trivial for } g \leq 3.$

 Σ_q^b : a genus g compact orientable surface with b boundary components.

- A generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Powell (1978).
- A finite generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Johnson (1983).
- A generating set for $\mathcal{I}(\Sigma_q^b)$ was found by Putman (2007).

Problem

- Find a generating set for $\mathcal{I}(N_q^b)$ for $b \ge 0$.
- ② Can $\mathcal{I}(N_q^b)$ be finitely generated for $b \ge 0$?

Remark

 $\mathcal{I}(N_g^0) \text{ is trivial for } g \leq 3.$

Dehn twist

Figure: Two sided simple closed curves.

Figure: One sided simple closed curves.

Dehn twist

For a two sided simple closed curve c_r , the Dehn twist t_c is defined as

Theorem (Hirose-K. (b = 0), K. $(b \ge 1)$)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b - 1$),

•
$$t_{\sigma_{ij}}$$
, $t_{ar{\sigma}_{ij}}$ ($1 \leq i < j \leq b-1$) and

•
$$t_{\gamma}$$
 (only if $g=4$).

Theorem (Hirose-K. (b = 0), K. $(b \ge 1)$)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b - 1$),

•
$$t_{\sigma_{ij}}$$
, $t_{ar{\sigma}_{ij}}$ ($1 \leq i < j \leq b-1$) and

•
$$t_{\gamma}$$
 (only if $g=4$).

Theorem (Hirose-K. (b = 0), K. $(b \ge 1)$)

For $g \geq 4$ and $b \geq 0$, $\mathcal{I}(N_g^b)$ is normally generated by

• $t_{\alpha}, t_{\beta}t_{\beta\prime}^{-1},$

•
$$t_{\delta_i}, t_{\rho_i} \ (1 \le i \le b - 1),$$

•
$$t_{\sigma_{ij}}$$
, $t_{ar{\sigma}_{ij}}$ ($1 \leq i < j \leq b-1$) and

•
$$t_\gamma$$
 (only if $g=4$).

Theorem (Hirose-K. (b = 0), K. $(b \ge 1)$)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b - 1$),

•
$$t_{\sigma_{ij}}$$
, $t_{\bar{\sigma}_{ij}}$ ($1 \le i < j \le b - 1$) and

•
$$t_{\gamma}$$
 (only if $g=4$).

Theorem (Hirose-K. (b = 0), K. $(b \ge 1)$)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b-1$),

•
$$t_{\sigma_{ij}}$$
, $t_{ar{\sigma}_{ij}}$ ($1 \leq i < j \leq b-1$) and

•
$$t_{\gamma}$$
 (only if $g=4$).

Theorem (Hirose-K. (b = 0), K. $(b \ge 1)$)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b - 1$),

•
$$t_{\sigma_{ij}}$$
, $t_{\bar{\sigma}_{ij}}$ $(1 \le i < j \le b - 1)$ and

•
$$t_{\gamma}$$
 (only if $g=4$).

Theorem (Hirose-K. (b = 0), K. $(b \ge 1)$)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b - 1$),

•
$$t_{\sigma_{ij}}$$
, $rac{t_{ar{\sigma}_{ij}}}{(1 \leq i < j \leq b-1)}$ and

•
$$t_{\gamma}$$
 (only if $g=4$).

Theorem (Hirose-K. (b = 0), K. $(b \ge 1)$)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b - 1$),

•
$$t_{\sigma_{ij}}$$
 , $t_{ar{\sigma}_{ij}}$ ($1 \leq i < j \leq b-1$) and

•
$$t_{\gamma}$$
 (only if $g = 4$).

Theorem (Hirose-K. (b = 0), K. $(b \ge 1)$)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b - 1$),

•
$$t_{\sigma_{ij}}$$
, $t_{\bar{\sigma}_{ij}}$ ($1 \le i < j \le b - 1$) and

•
$$t_{\gamma}$$
 (only if $g = 4$).

The case of a closed surface

Theorem (Hirose-K.)

- For $g \geq 4$, $\mathcal{I}(N_g^0)$ is normally generated by
 - t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$ and
 - t_{γ} (only if g = 4).

$$\Gamma_2(N_g^b) = \ker(\mathcal{M}(N_g^b) \to \operatorname{Aut}(H_1(N_g^b; \mathbb{Z}/2\mathbb{Z}))).$$

The level-2 principal congruence subgroup of $GL(n; \mathbb{Z})$ is defined as

$$\Gamma_2(n) = \ker(GL(n;\mathbb{Z}) \to GL(n;\mathbb{Z}/2\mathbb{Z})).$$

$$\Gamma_2(N_g^b) = \ker(\mathcal{M}(N_g^b) \to \operatorname{Aut}(H_1(N_g^b; \mathbb{Z}/2\mathbb{Z}))).$$

The level-2 principal congruence subgroup of $GL(n; \mathbb{Z})$ is defined as

$$\Gamma_2(n) = \ker(GL(n;\mathbb{Z}) \to GL(n;\mathbb{Z}/2\mathbb{Z})).$$

$$\Gamma_2(N_g^b) = \ker(\mathcal{M}(N_g^b) \to \operatorname{Aut}(H_1(N_g^b; \mathbb{Z}/2\mathbb{Z}))).$$

The level-2 principal congruence subgroup of $GL(n; \mathbb{Z})$ is defined as

$$\Gamma_{\mathbf{2}}(n) = \ker(GL(n;\mathbb{Z}) \to GL(n;\mathbb{Z}/2\mathbb{Z})).$$

$$\Gamma_2(N_g^b) = \ker(\mathcal{M}(N_g^b) \to \operatorname{Aut}(H_1(N_g^b; \mathbb{Z}/2\mathbb{Z}))).$$

The level-2 principal congruence subgroup of $GL(n; \mathbb{Z})$ is defined as

$$\Gamma_2(n) = \ker(GL(n;\mathbb{Z}) \to GL(n;\mathbb{Z}/2\mathbb{Z})).$$

Lemma

We have the short exact sequence

$$1 \to \mathcal{I}(N_g^0) \to \Gamma_2(N_g^0) \to \Gamma_2(g-1) \to 1.$$

In general, if there is a short exact sequence

$$1 \to G \to \langle X \mid Y \rangle \stackrel{\phi}{\to} \langle \phi(X) \mid Z \rangle \to 1,$$

then G is normally generated by $\{\tilde{z} \mid z \in Z, \phi(\tilde{z}) = z\}.$

Crosscap slide

- m : a one sided simple closed curve,
- a : a two sided oriented simple closed curve,
- (m and a intersect transversely at only one point)
- M : a regular neighborhood of m.
- The crosscap slide $Y_{m,a}$ is defined as

Generating sets for $\Gamma_2(N_q^0)$

For $1 \leq i_1 < i_2 < \dots < i_k \leq g$, α_{i_1,\dots,i_k} is defined as

Generating sets for $\Gamma_2(N_q^0)$

For $1 \leq i_1 < i_2 < \cdots < i_k \leq g$, α_{i_1,\dots,i_k} is defined as

Theorem (Szepietowski (2013))

For $g \ge 4$, $\Gamma_2(N_g^0)$ is finitely generated by • $Y_{\alpha_i,\alpha_{i,j}}$ for $1 \le i \le g-1$, $1 \le j \le g$ and $i \ne j$, • $t^2_{\alpha_{i,j,k,l}}$ for $1 \le i < j < k < l \le g$.

Generating sets for $\Gamma_2(N_q^0)$

For $1 \leq i_1 < i_2 < \cdots < i_k \leq g$, α_{i_1,\dots,i_k} is defined as

Theorem (Hirose-Sato (2014))

For $g \ge 4$, $\Gamma_2(N_g^0)$ is minimally generated by • $Y_{\alpha_i,\alpha_{i,j}}$ for $1 \le i \le g-1$, $1 \le j \le g$ and $i \ne j$, • $t^2_{\alpha_{1,j,k,l}}$ for $1 < j < k < l \le g$.

Presentations for $\Gamma_2(g-1)$

$$\Gamma_2(N_g^0) \ni Y_{\alpha_i,\alpha_{i,j}}, t^2_{\alpha_{i,j,k,l}} \mapsto Y_{ij}, T_{ijkl} \in \Gamma_2(g-1).$$

Proposition (cf. Fullarton (2014), K. (2015))

 $\Gamma_2(g-1)$ is generated by Y_{ij} and T_{1jkl} , and has the relators

•
$$Y_{ij}^2$$
 for $1 \le i \le g-1$ and $1 \le j \le g$,

$${\it 2}{\it 3}$$
 $[Y_{ik},Y_{jk}]$ for $1\leq i,j\leq g-1$ and $1\leq k\leq g$,

3
$$[Y_{ij}, Y_{ik}Y_{jk}]$$
 for $1 \le i, j \le g-1$ and $1 \le k \le g$,

$$\ \, {\bf O} \ \, \left[Y_{ij},Y_{kl}\right] \ \, {\rm for} \ \, 1\leq i,k\leq g-1 \ \, {\rm and} \ \, 1\leq j,l\leq g,$$

$$(Y_{ij}Y_{ik}Y_{il})^2 \text{ for } 1 \leq i \leq g-1 \text{ and } 1 \leq j,k,l \leq g,$$

$$\ \ \, {\bf 0} \ \ \, (Y_{ji}Y_{ij}Y_{kj}Y_{jk}Y_{ik}Y_{ki})^2 \ \, {\rm for} \ \, 1\leq i,j,k\leq g-1,$$

•
$$T_{1jkl} \cdot (a \text{ product of } Y_{ij} 's),$$

where $[X, Y] = X^{-1}Y^{-1}XY$ and i, j, k, l are all different.

Remark

For
$$g \ge 4$$
, $\Gamma_2(N_g^0)$ is generated by
1 $Y_{\alpha_i,\alpha_{i,j}}$ for $1 \le i \le g - 1$, $1 \le j \le g$ and $i \ne j$,
2 $t_{\alpha_{1,j,k,l}}^2$ for $1 < j < k < l \le g$.
 $\Gamma_2(g-1)$ is generated by Y_{ij} and T_{1jkl} , and has the relators
1 Y_{ij}^2 for $1 \le i \le g - 1$ and $1 \le j \le g$,
2 $[Y_{ik}, Y_{jk}]$ for $1 \le i, j \le g - 1$ and $1 \le k \le g$,
3 $[Y_{ij}, Y_{ik}Y_{jk}]$ for $1 \le i, j \le g - 1$ and $1 \le k \le g$,
4 $[Y_{ij}, Y_{ik}Y_{jk}]$ for $1 \le i, k \le g - 1$ and $1 \le k \le g$,
5 $(Y_{ij}Y_{ik}Y_{il})^2$ for $1 \le i \le g - 1$ and $1 \le j, k, l \le g$,
5 $(Y_{ji}Y_{ij}Y_{kj}Y_{jk}Y_{ik}Y_{ki})^2$ for $1 \le i, j, k \le g - 1$,
6 $(T_{1jkl} \cdot (a \text{ product of } Y_{ij}'s)$.

$$1 \to \mathcal{I}(N_g^0) \to \Gamma_2(N_g^0) \to \Gamma_2(g-1) \to 1$$

Let
$$Y_{\alpha_i,\alpha_{i,j}} = Y_{i;j}$$
 and $t^2_{\alpha_{i,j,k,l}} = T_{i,j,k,l}$.

For $g \geq 4$, $\mathcal{I}(N_a^0)$ is normally generated by followings in $\Gamma_2(N_a^0)$, • $Y_{i:j}^2$ for $1 \le i \le g-1$ and $1 \le j \le g$, **2** $[Y_{i;k}, Y_{j;k}]$ for $1 \le i, j \le g - 1$ and $1 \le k \le g$, **3** $[Y_{i;i}, Y_{i;k}Y_{i;k}]$ for $1 \le i \le g - 1$ and $1 \le j, k \le g$, **(** $Y_{i:i}, Y_{k:l}$) for $1 \le i, k \le g - 1$ and $1 \le j, l \le g$, **(** $Y_{i \cdot i} Y_{i \cdot k} Y_{i \cdot l})^2$ for $1 \le i \le q - 1$ and $1 \le j, k, l \le q$. **(** $Y_{i:i}Y_{i:i}Y_{k:i}Y_{j:k}Y_{i:k}Y_{k:i})^2$ for $1 \le i, j, k \le g - 1$, • $T_{1,i,k,l}$ · (a product of $Y_{i;j}$'s) for $1 < j < k < l \leq q$, where i, j, k, l are all different.

$$1 \to \mathcal{I}(N_g^0) \to \Gamma_2(N_g^0) \to \Gamma_2(g-1) \to 1$$

Let
$$Y_{\alpha_i,\alpha_{i,j}} = Y_{i;j}$$
 and $t^2_{\alpha_{i,j,k,l}} = T_{i,j,k,l}$.

For $g \geq 4$, $\mathcal{I}(N_a^0)$ is normally generated by followings in $\Gamma_2(N_a^0)$, • $Y_{i:j}^2$ for $1 \le i \le g-1$ and $1 \le j \le g$, **2** $[Y_{i;k}, Y_{j;k}]$ for $1 \le i, j \le g - 1$ and $1 \le k \le g$, **3** $[Y_{i;i}, Y_{i;k}Y_{i;k}]$ for $1 \le i \le g - 1$ and $1 \le j, k \le g$, **(** $Y_{i:i}, Y_{k:l}$) for $1 \le i, k \le g - 1$ and $1 \le j, l \le g$, **(** $Y_{i \cdot i} Y_{i \cdot k} Y_{i \cdot l})^2$ for $1 \le i \le q - 1$ and $1 \le j, k, l \le q$. **(** $Y_{i:i}Y_{i:i}Y_{k:i}Y_{j:k}Y_{i:k}Y_{k:i})^2$ for $1 \le i, j, k \le g - 1$, • $T_{1,i,k,l}$ · (a product of $Y_{i;j}$'s) for $1 < j < k < l \leq q$, where i, j, k, l are all different.

$$1 \to \mathcal{I}(N_g^0) \to \Gamma_2(N_g^0) \to \Gamma_2(g-1) \to 1$$

Let
$$Y_{\alpha_i,\alpha_{i,j}} = Y_{i;j}$$
 and $t^2_{\alpha_{i,j,k,l}} = T_{i,j,k,l}$.

For $g \geq 4$, $\mathcal{I}(N_a^0)$ is normally generated by followings in $\Gamma_2(N_a^0)$, • $Y_{i \cdot i}^2$ for $1 \le i \le g-1$ and $1 \le j \le g$, **2** $[Y_{i:k}, Y_{j:k}]$ for $1 \le i, j \le g - 1$ and $1 \le k \le g$, **3** $[Y_{i;j}, Y_{i;k}Y_{j;k}]$ for $1 \le i \le g - 1$ and $1 \le j, k \le g$, **(** $Y_{i:i}, Y_{k:l}$) for $1 \le i, k \le g - 1$ and $1 \le j, l \le g$, **6** $(Y_{i:i}Y_{i:k}Y_{i:l})^2$ for $1 \le i \le g-1$ and $1 \le j, k, l \le g$, • $(Y_{i;i}Y_{i;j}Y_{k;j}Y_{j;k}Y_{i;k}Y_{k;i})^2$ for $1 \le i, j, k \le q-1$, • $T_{1,j,k,l}$ · (a product of $Y_{i;j}$'s) for $1 < j < k < l \leq q$, where i, j, k, l are all different.

 $(\mathcal{I}(N_g^0) \lhd \mathcal{M}(N_g^0), \mathcal{I}(N_g^0) \lhd \Gamma_2(N_g^0), \Gamma_2(N_g^0) < \mathcal{M}(N_g^0).)$

Let
$$Y_{\alpha_i,\alpha_{i,j}} = Y_{i;j}$$
 and $t^2_{\alpha_{i,j,k,l}} = T_{i,j,k,l}$.

For $g \geq 4$, $\mathcal{I}(N_a^0)$ is normally generated by followings in $\mathcal{M}(N_a^0)$, • $Y_{i \cdot i}^2$ for $1 \le i \le g-1$ and $1 \le j \le g$, **2** $[Y_{i:k}, Y_{j:k}]$ for $1 \le i, j \le g - 1$ and $1 \le k \le g$, **3** $[Y_{i;j}, Y_{i;k}Y_{j;k}]$ for $1 \le i \le g - 1$ and $1 \le j, k \le g$, **(** $Y_{i:i}, Y_{k:l}$) for $1 \le i, k \le g - 1$ and $1 \le j, l \le g$, **6** $(Y_{i:i}Y_{i:k}Y_{i:l})^2$ for $1 \le i \le g-1$ and $1 \le j, k, l \le g$, • $(Y_{i;i}Y_{i;j}Y_{k;j}Y_{j;k}Y_{i;k}Y_{k;i})^2$ for $1 \le i, j, k \le q-1$, • $T_{1,j,k,l}$ · (a product of $Y_{i;j}$'s) for $1 < j < k < l \leq q$, where i, j, k, l are all different.

 $(\mathcal{I}(N_g^0) \lhd \mathcal{M}(N_g^0), \mathcal{I}(N_g^0) \lhd \Gamma_2(N_g^0), \Gamma_2(N_g^0) < \mathcal{M}(N_g^0).)$

Let
$$Y_{\alpha_i,\alpha_{i,j}} = Y_{i;j}$$
 and $t^2_{\alpha_{i,j,k,l}} = T_{i,j,k,l}$.

For $g \geq 4$, $\mathcal{I}(N_a^0)$ is normally generated by followings in $\mathcal{M}(N_a^0)$, • $Y_{i:i}^2$ for $1 \le i \le g-1$ and $1 \le j \le g$, ② $[Y_{i;k}, Y_{j;k}]$ for $1 \le i, j \le g - 1$ and $1 \le k \le g$, **3** $[Y_{i;i}, Y_{i;k}Y_{i;k}]$ for $1 \le i \le g - 1$ and $1 \le j, k \le g$, **(** $Y_{i:i}, Y_{k:l}$) for $1 \le i, k \le g - 1$ and $1 \le j, l \le g$. **(** $Y_{i:i}Y_{i:k}Y_{i:l}$)² for $1 \le i \le q - 1$ and $1 \le j, k, l \le q$, **(** $Y_{i:i}Y_{i:i}Y_{k:i}Y_{j:k}Y_{i:k}Y_{k:i})^2$ for $1 \le i, j, k \le g - 1$, • $T_{1,j,k,l}$ · (a product of $Y_{i;j}$'s) for $1 < j < k < l \leq q$, where i, j, k, l are all different.

We checked that these are products of conjugations of t_{α} , $t_{\beta}t_{\beta'}^{-1}$ and t_{γ} .

We have

Theorem (Hirose-K. (2016))

For $g \geq 4$, $\mathcal{I}(N_g^0)$ is normally generated by

- t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$ and
- t_{γ} (only if g = 4).

The case of a surface with boundary

Theorem (K.)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}, t_{\rho_i} \ (1 \le i \le b - 1),$$

•
$$t_{\sigma_{ij}}$$
, $t_{\bar{\sigma}_{ij}}$ ($1 \le i < j \le b - 1$) and

•
$$t_{\gamma}$$
 (only if $g = 4$).

$$* \in N_g^{b-1}$$
: a point in the interior of N_g^{b-1} .
$$\mathcal{M}(N_g^{b-1},*) = \{f: N_g^{b-1} \stackrel{\text{diffeo.}}{\longrightarrow} N_g^{b-1} \mid f|_{\partial N_g^{b-1} \cup \{*\}} = \mathrm{id}\}/\mathrm{isotopy}$$
We can regard N_g^b as a subsurface of N_g^{b-1} not containing *, by the natural embedding $N_g^b \hookrightarrow N_g^{b-1}$.

$$* \in N_g^{b-1}$$
: a point in the interior of N_g^{b-1} .
$$\mathcal{M}(N_g^{b-1},*) = \{f: N_g^{b-1} \stackrel{\text{diffeo.}}{\longrightarrow} N_g^{b-1} \mid f|_{\partial N_g^{b-1} \cup \{*\}} = \mathrm{id}\}/\mathrm{isotopy}$$
We can regard N_g^b as a subsurface of N_g^{b-1} not containing *, by the natural embedding $N_g^b \hookrightarrow N_g^{b-1}$.

$$* \in N_g^{b-1}$$
: a point in the interior of N_g^{b-1} .
$$\mathcal{M}(N_g^{b-1},*) = \{f: N_g^{b-1} \stackrel{\text{diffeo.}}{\longrightarrow} N_g^{b-1} \mid f|_{\partial N_g^{b-1} \cup \{*\}} = \mathrm{id}\}/\mathrm{isotopy}$$
We can regard N_g^b as a subsurface of N_g^{b-1} not containing *, by the natural embedding $N_g^b \hookrightarrow N_g^{b-1}$.

$$* \in N_g^{b-1}$$
: a point in the interior of N_g^{b-1} .
$$\mathcal{M}(N_g^{b-1},*) = \{f: N_g^{b-1} \stackrel{\text{diffeo.}}{\longrightarrow} N_g^{b-1} \mid f|_{\partial N_g^{b-1} \cup \{*\}} = \mathrm{id}\}/\mathrm{isotopy}$$
We can regard N_g^b as a subsurface of N_g^{b-1} not containing *, by the natural embedding $N_g^b \hookrightarrow N_g^{b-1}$.

$$* \in N_g^{b-1}$$
: a point in the interior of N_g^{b-1} .
$$\mathcal{M}(N_g^{b-1},*) = \{f: N_g^{b-1} \stackrel{\text{diffeo.}}{\longrightarrow} N_g^{b-1} \mid f|_{\partial N_g^{b-1} \cup \{*\}} = \mathrm{id}\}/\mathrm{isotopy}$$
We can regard N_g^b as a subsurface of N_g^{b-1} not containing *, by the natural embedding $N_g^b \hookrightarrow N_g^{b-1}$. The capping map $\mathcal{C}_g^b: \mathcal{M}(N_g^b) \to \mathcal{M}(N_g^{b-1},*)$ is the homomorphism induced by $N_g^b \hookrightarrow N_g^{b-1}$.

Capping map and Forgetful maps

$$* \in N_g^{b-1}$$
: a point in the interior of N_g^{b-1} .
 $\mathcal{M}(N_g^{b-1}, *) = \{f : N_g^{b-1} \stackrel{\text{diffeo.}}{\longrightarrow} N_g^{b-1} \mid f|_{\partial N_g^{b-1} \cup \{*\}} = \mathrm{id}\}/\mathrm{isotopy}$
We can regard N_g^b as a subsurface of N_g^{b-1} not containing $*$, by the natural embedding $N_g^b \hookrightarrow N_g^{b-1}$.
The capping map $\mathcal{C}^b : \mathcal{M}(N^b) \to \mathcal{M}(N^{b-1}, *)$ is the homomorphism

natural embedding $N_g^b \hookrightarrow N_g^{b-1}$. The capping map $\mathcal{C}_g^b: \mathcal{M}(N_g^b) \to \mathcal{M}(N_g^{b-1}, *)$ is the homomorphism induced by $N_g^b \hookrightarrow N_g^{b-1}$. The forgetful map $\mathcal{F}_g^{b-1}: \mathcal{M}(N_g^{b-1}, *) \to \mathcal{M}(N_g^{b-1})$ is the homomorphism induced by

$$\begin{split} \{f: N_g^{b-1} \stackrel{\text{diffeo.}}{\longrightarrow} N_g^{b-1} \mid f|_{\partial N_g^{b-1} \cup \{*\}} = \mathrm{id}\} \\ & \longrightarrow \{f: N_g^{b-1} \stackrel{\text{diffeo.}}{\longrightarrow} N_g^{b-1} \mid f|_{\partial N_q^{b-1}} = \mathrm{id}\} \end{split}$$

$$1 \to \ker \mathcal{C}_g^b|_{\mathcal{I}(N_g^b)} \to \mathcal{I}(N_g^b) \xrightarrow{\mathcal{C}_g^b} \mathcal{C}_g^b(\mathcal{I}(N_g^b)) \to 1$$

$$1 \to \ker \mathcal{F}_g^{b-1}|_{\mathcal{C}_g^b(\mathcal{I}(N_g^b))} \to \mathcal{C}_g^b(\mathcal{I}(N_g^b)) \xrightarrow{\mathcal{F}_g^{b-1}} \mathcal{I}(N_g^{b-1}) \to 1$$

- $\ker \mathcal{C}^b_g|_{\mathcal{I}(N^b_g)}$ and
- lifts by \mathcal{C}^b_g of normal generators of $\mathcal{C}^b_g(\mathcal{I}(N^b_g)).$

$$1 \to \ker \mathcal{C}_g^b|_{\mathcal{I}(N_g^b)} \to \mathcal{I}(N_g^b) \xrightarrow{\mathcal{C}_g^b} \mathcal{C}_g^b(\mathcal{I}(N_g^b)) \to 1$$

$$1 \to \ker \mathcal{F}_g^{b-1}|_{\mathcal{C}_g^b(\mathcal{I}(N_g^b))} \to \mathcal{C}_g^b(\mathcal{I}(N_g^b)) \xrightarrow{\mathcal{F}_g^{b-1}} \mathcal{I}(N_g^{b-1}) \to 1$$

- $\ker \mathcal{C}^b_g|_{\mathcal{I}(N^b_g)}$ and
- $\bullet~{\rm lifts}$ by ${\cal C}^b_g$ of
 - $\ker \mathcal{F}_g^{b-1}|_{\mathcal{C}_g^b(\mathcal{I}(N_g^b))}$ and
 - lifts by \mathcal{F}_g^{b-1} of normal generators of $\mathcal{I}(N_g^{b-1}).$

$$1 \to \ker \mathcal{C}_g^b|_{\mathcal{I}(N_g^b)} \to \mathcal{I}(N_g^b) \stackrel{\mathcal{C}_g^b}{\to} \mathcal{C}_g^b(\mathcal{I}(N_g^b)) \to 1$$

$$1 \to \ker \mathcal{F}_g^{b-1}|_{\mathcal{C}_g^b(\mathcal{I}(N_g^b))} \to \mathcal{C}_g^b(\mathcal{I}(N_g^b)) \xrightarrow{\mathcal{F}_g^{b-1}} \mathcal{I}(N_g^{b-1}) \to 1$$

- t_{δ_b} and
- lifts by \mathcal{C}^b_g of
 - $\ker \mathcal{F}_g^{b-1}|_{\mathcal{C}_g^b(\mathcal{I}(N_g^b))}$ and • lifts by \mathcal{F}_g^{b-1} of normal generators of $\mathcal{I}(N_g^{b-1})$.

$$1 \to \ker \mathcal{C}_g^b|_{\mathcal{I}(N_g^b)} \to \mathcal{I}(N_g^b) \stackrel{\mathcal{C}_g^b}{\to} \mathcal{C}_g^b(\mathcal{I}(N_g^b)) \to 1$$

$$1 \to \ker \mathcal{F}_g^{b-1}|_{\mathcal{C}_g^b(\mathcal{I}(N_g^b))} \to \mathcal{C}_g^b(\mathcal{I}(N_g^b)) \xrightarrow{\mathcal{F}_g^{b-1}} \mathcal{I}(N_g^{b-1}) \to 1$$

- t_{δ_b} , t_{ρ_b} , $t_{\sigma_{jb}}$, $t_{\bar{\sigma}_{jb}}$ and
- lifts by \mathcal{C}^b_g of
 - $\frac{\ker \mathcal{F}_g^{b-1}|_{\mathcal{C}_g^b(\mathcal{I}(N_g^b))} \text{ and }}{\text{ lifts by } \mathcal{F}_g^{b-1} \text{ of normal generators of } \mathcal{I}(N_g^{b-1}).$

$$1 \to \ker \mathcal{C}_g^b|_{\mathcal{I}(N_g^b)} \to \mathcal{I}(N_g^b) \stackrel{\mathcal{C}_g^b}{\to} \mathcal{C}_g^b(\mathcal{I}(N_g^b)) \to 1$$

$$1 \to \ker \mathcal{F}_g^{b-1}|_{\mathcal{C}_g^b(\mathcal{I}(N_g^b))} \to \mathcal{C}_g^b(\mathcal{I}(N_g^b)) \xrightarrow{\mathcal{F}_g^{b-1}} \mathcal{I}(N_g^{b-1}) \to 1$$

- t_{δ_b} , t_{ρ_b} , $t_{\sigma_{jb}}$, $t_{\bar{\sigma}_{jb}}$ and
- lifts by $\mathcal{C}^b_g \circ \mathcal{F}^{b-1}_g$ of normal generators of $\mathcal{I}(N^{b-1}_g).$

$$1 \to \ker \mathcal{C}_g^b|_{\mathcal{I}(N_g^b)} \to \mathcal{I}(N_g^b) \stackrel{\mathcal{C}_g^b}{\to} \mathcal{C}_g^b(\mathcal{I}(N_g^b)) \to 1$$

$$1 \to \ker \mathcal{F}_g^{b-1}|_{\mathcal{C}_g^b(\mathcal{I}(N_g^b))} \to \mathcal{C}_g^b(\mathcal{I}(N_g^b)) \xrightarrow{\mathcal{F}_g^{b-1}} \mathcal{I}(N_g^{b-1}) \to 1$$

 $\mathcal{I}(N_g^b)$ is normally generated by

•
$$t_{\delta_b}$$
, t_{ρ_b} , $t_{\sigma_{jb}}$, $t_{\bar{\sigma}_{jb}}$ and

• lifts by
$$\mathcal{C}^b_g \circ \mathcal{F}^{b-1}_g$$
 of normal generators of $\mathcal{I}(N^{b-1}_g)$

Remark

A normal generating set of $\mathcal{I}(N_g^b)$ is obtained by adding t_{δ_b} , t_{ρ_b} , $t_{\sigma_{jb}}$ and $t_{\bar{\sigma}_{jb}}$ to that of $\mathcal{I}(N_g^{b-1})$.

For $g \ge 4$, $\mathcal{I}(N_g^0)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$ (and t_{γ}).

For $g \ge 4$, $\mathcal{I}(N_g^0)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$ (and t_{γ}).

 $\mathcal{I}(N_g^1)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$, t_{δ_1} , t_{ρ_1} (and t_{γ}).

For $g \ge 4$, $\mathcal{I}(N_g^0)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$ (and t_{γ}).

 $\mathcal{I}(N_g^1)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$, t_{δ_1} , t_{ρ_1} (and t_{γ}). $\mathcal{I}(N_g^2)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$, t_{δ_1} , t_{ρ_1} , t_{δ_2} , t_{ρ_2} , $t_{\sigma_{12}}$, $t_{\bar{\sigma}_{12}}$ (and t_{γ}).

For $g \ge 4$, $\mathcal{I}(N_g^0)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$ (and t_{γ}).

 $\mathcal{I}(N_g^1)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$, t_{δ_1} , t_{ρ_1} (and t_{γ}). $\mathcal{I}(N_g^2)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$, t_{δ_1} , t_{ρ_1} , t_{δ_2} , t_{ρ_2} , $t_{\sigma_{12}}$, $t_{\bar{\sigma}_{12}}$ (and t_{γ}).

For $g \ge 4$, $\mathcal{I}(N_g^0)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$ (and t_{γ}).

 $\mathcal{I}(N_g^1)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$, t_{δ_1} , t_{ρ_1} (and t_{γ}). $\mathcal{I}(N_g^2)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$, t_{δ_1} , t_{ρ_1} , t_{δ_2} , t_{ρ_2} , $t_{\sigma_{12}}$, $t_{\bar{\sigma}_{12}}$ (and t_{γ}).

Theorem (K.)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b$),

•
$$t_{\sigma_{ij}}$$
, $t_{\bar{\sigma}_{ij}}$ ($1 \le i < j \le b$) and

•
$$t_{\gamma}$$
 (only if $g = 4$).

For $g \ge 4$, $\mathcal{I}(N_g^0)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$ (and t_{γ}).

 $\mathcal{I}(N_g^1)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$, t_{δ_1} , t_{ρ_1} (and t_{γ}). $\mathcal{I}(N_g^2)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$, t_{δ_1} , t_{ρ_1} , t_{δ_2} , t_{ρ_2} , $t_{\sigma_{12}}$, $t_{\bar{\sigma}_{12}}$ (and t_{γ}).

Theorem (K.)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b - 1$),

•
$$t_{\sigma_{ij}}$$
, $t_{\bar{\sigma}_{ij}}$ ($1 \le i < j \le b - 1$) and

•
$$t_{\gamma}$$
 (only if $g = 4$).

Problem

Can $\mathcal{I}(N_g^b)$ be finitely generated?

Problem

Can $\mathcal{I}(N_q^b)$ be finitely generated?

There is the $\ensuremath{\mathbb{Z}}\xspace$ homomorphism

$$J: \mathcal{I}(N_g^1) \to \wedge^3 H_1(\Sigma_g^1, \mathbb{Z}).$$

Theorem (Tsuji)

$$\dim(\mathbb{Q} \otimes \mathrm{Im}J) = \frac{(g-1)(g-2)(g-3)}{6} + \frac{g(g-1)^2}{2}.$$

Corollary

$$\dim(\mathbb{Q} \otimes \mathcal{I}(N_g^1)^{\rm ab}) \ge \frac{(g-1)(g-2)(g-3)}{6} + \frac{g(g-1)^2}{2}.$$

Problem

Can $\mathcal{I}(N_q^b)$ be finitely generated?

There is the $\mathbb{Z}\text{-}module$ homomorphism

$$J: \mathcal{I}(N_g^1) \to \wedge^3 H_1(\Sigma_g^1, \mathbb{Z}).$$

Theorem (Tsuji)

$$\dim(\mathbb{Q} \otimes \mathrm{Im}J) = \frac{(g-1)(g-2)(g-3)}{6} + \frac{g(g-1)^2}{2}.$$

Corollary

$$\dim(\mathbb{Q}\otimes\mathcal{I}(N_g^1)^{\mathrm{ab}}) \ge \frac{(g-1)(g-2)(g-3)}{6} + \frac{g(g-1)^2}{2}.$$

Thus the number of generators of $\mathcal{I}(N_g^1)$ is at least $\frac{(g-1)(g-2)(g-3)}{6} + \frac{g(g-1)^2}{2}.$

Thank you for your attention!

小林竜馬 On a normal generating set for $\mathcal{I}(N_a^b)$