Ideal tetrahedral decomposition of hyperbolic chain link complement

Shunsuke Kojima

Nihon University, Graduate School of Integrated Basic Sciences

Joint work with Kazuhiro Ichihara (Nihon University)

"Musubime no Suuri", Waseda University, Dec. 24, 2018

Hyperbolic 3-space

Hyperbolic 3-space

Hyperbolic 3-space \mathbb{H}^3

$$(\{(x+yi,t) \in \mathbb{C} \times \mathbb{R} \mid t > 0\}, \frac{dx^2 + dy^2 + dt^2}{t^2})$$

The geodesics in \mathbb{H}^3 are vertical lines which meet the plane \mathbb{C} at a right angle, and semi-circles with center on \mathbb{C} . An ideal tetrahedron is a tetrahedron in \mathbb{H}^3 with all four vertices on $\partial \mathbb{H}^3$.

Geodesic and ideal tetrahedron

Introduction

☐ Hyperbolic 3-manifold

Hyperbolic 3-manifold

Definition

A 3-manifold, M is hyperbolic if M is locally modelled on \mathbb{H}^3 .

Fact [Epstein-Penner (1988)]

A hyperbolic 3-manifold M can be obtained by glueing hyperbolic ideal polyhedra P_1, \ldots, P_n such that

angle sum is 2π .

completeness.

Introduction

└Open Problem

Open problem

Question

Let M be a noncompact hyperbolic 3-manifold of finite volume. Can we decompose M into ideal tetrahedra?

Open Problem

Open problem

Question

Let M be a noncompact hyperbolic 3-manifold of finite volume. Can we decompose M into ideal tetrahedra?

Example [Difficulty]

Open Problem

Open problem

Question

Let M be a noncompact hyperbolic 3-manifold of finite volume. Can we decompose M into ideal tetrahedra?

Example [Difficulty]

L Theorem

Theorem

Theorem [Yoshida, Osaka J. Math., 1996]

Suppose that a noncompact hyperbolic 3-manifold M is obtained by glueing two convex ideal polyhedra P_1 and P_2 in such a way that every face of P_1 is pasted with a face of P_2 . Then, M can be decomposed into ideal tetrahedra.

☐ Hyperbolic link

Hyperbolic Link

Definiton

L is a hyperbolic link if $S^3 \setminus L$ is a hyperbolic manifold.

Fact (Thurston)

L is a hyperbolic link in S^3 if and only if L is neither a satellite link nor a Seifelt link.

∟n-chain link

n-chain link

Definition

n-chain link

n-chain link

Definition

We focus on alternating n-chain links. It is known that all alternating chain links are hyperbolic for $n \geq 3$.

L Theorem

Theorem

Theorem.

Let L_n be an alternating n-chain link and D_{L_n} the reduced alternating diagram of L_n . Let $P_1 \cup P_2$ denote the polyhedral decomposition of $S^3 \setminus L_n$ obtained from D_{L_n} . We consider the set

$$S_{P_1 \cup P_2} = \{(v_1, v_2) \mid v_1 \in V(P_1), v_2 \in V(P_2)\}$$

so that an ideal tetrahedral decomposition of $S^3 \setminus L_n$ can be obtained from the cone decompositions of P_1 and P_2 from v_1 and v_2 , respectively. Then, we have the following.

$$#S_{P_1 \cup P_2} = \begin{cases} 18 & \text{if } n = 3\\ 32 & \text{if } n = 4\\ 2n^2 - 2n & \text{if } n \ge 5 \end{cases}$$

Outline of Proof [n=4]

The cone decomposition

Cone decomposition

Cone decomposition of P from a vertex v

Devide the fases of the polyhedron P not containing v into triangles (in any way you like), and decompose P into the cone of these triangles from the vertex v.

Example

The cone decomposition

Cone decomposition

Cone decomposition of P from a vertex v

Devide the fases of the polyhedron P not containing v into triangles (in any way you like), and decompose P into the cone of these triangles from the vertex v.

Example

The cone decomposition

Cone decomposition

Cone decomposition of P from a vertex v

Devide the fases of the polyhedron P not containing v into triangles (in any way you like), and decompose P into the cone of these triangles from the vertex v.

Example

Tetrahedral decomposition

In Figure, we have $\#S_{P_1\cup P_2}=4$ for the vertex v_1 of P_1 . Since P_1 has eight vertices, $\#S_{P_1\cup P_2}=32$.

Tetrahedral decomposition

Thank you for your attention!