On the minimal coloring number of the minimal diagram of torus links

Eri Matsudo

Nihon University
Graduate School of Integrated Basic Sciences

Joint work with
K. Ichihara (Nihon Univ.) & K. Ishikawa (RIMS, Kyoto Univ.)

Waseda University, December 24, 2018
Let L be a link, and D a diagram of L.

Z-coloring

A map $\gamma : \{\text{arcs of } D\} \rightarrow \mathbb{Z}$ is called a **Z-coloring** on D if it satisfies the condition $2\gamma(a) = \gamma(b) + \gamma(c)$ at each crossing of D with the over arc a and the under arcs b and c. A Z-coloring which assigns the same color to all the arcs of the diagram is called a **trivial Z-coloring**.

L is **Z-colorable** if \exists a diagram of L with a non-trivial Z-coloring.
Let L be a \mathbb{Z}-colorable link.

Minimal coloring number

[1] For a diagram D of L,

$$\text{mincol}_{\mathbb{Z}}(D) := \min\{\#\text{Im}(\gamma) \mid \gamma : \text{non-tri. } \mathbb{Z}\text{-coloring on } D\}$$

[2] $$\text{mincol}_{\mathbb{Z}}(L) := \min\{\text{mincol}_{\mathbb{Z}}(D) \mid D : \text{a diagram of } L\}$$
Simple \(\mathbb{Z} \)-coloring

\(\gamma : \) a \(\mathbb{Z} \)-coloring on a diagram \(D \) of a non-trivial \(\mathbb{Z} \)-colorable link \(L \)

If \(\exists d \in \mathbb{N} \) s.t. at each crossings in \(D \), the differences between the colors of the over arcs and the under arcs are \(d \) or 0, then we call \(\gamma \) a simple \(\mathbb{Z} \)-coloring.
Simple \mathbb{Z}-coloring

γ: a \mathbb{Z}-coloring on a diagram D of a non-trivial \mathbb{Z}-colorable link L. If $\exists d \in \mathbb{N}$ s.t. at each crossings in D, the differences between the colors of the over arcs and the under arcs are d or 0, then we call γ a simple \mathbb{Z}-coloring.

Theorem 1 [Ichihara-M., JKTR, 2017]

Let L be a non-splittable \mathbb{Z}-colorable link. If there exists a simple \mathbb{Z}-coloring on a diagram of L, then $\text{mincol}_{\mathbb{Z}}(L) = 4$.
Theorem 2 [M., to apper JKTR, Zhang-Jin-Deng]

Any \mathbb{Z}-colorable link has a diagram admitting a simple \mathbb{Z}-coloring.
Theorem 2 [M., to apper JKTR, Zhang-Jin-Deng]

Any \mathbb{Z}-colorable link has a diagram admitting a simple \mathbb{Z}-coloring.

Colorally

L : a \mathbb{Z}-colorable link

$$\text{mincol}_\mathbb{Z}(L) = \begin{cases} 2 & (L \text{ : splittable}) \\ 4 & (L \text{ : non-splittable}) \end{cases}$$
One of key moves of the proof

\[
\begin{align*}
&x \pm d_m \\
&x \mp d_m
\end{align*}
\]
One of key moves of the proof
One of key moves of the proof

→ The obtained diagrams are often complicated.
One of key moves of the proof

→ The obtained diagrams are often complicated.

Problem

\[\text{mincol}_\mathbb{Z}(D_m) = ? \] for a minimal diagram \(D_m \) of a \(\mathbb{Z} \)-colorable link.

[1] For an even integer $n \geq 2$, the pretzel link $P(n, -n, \cdots, n, -n)$ with at least 4 strands has a minimal diagram D_m s.t. $\text{mincol}_{\mathbb{Z}}(D_m) = n + 2$.

[2] For an integer $n \geq 2$, the pretzel link $P(-n, n+1, n(n+1))$ has a minimal diagram D_m s.t. $\text{mincol}_{\mathbb{Z}}(D_m) = n^2 + n + 3$.

[3] For even integer $n > 2$ and non-zero integer p, the torus link $T(pn, n)$ has a minimal diagram D_m s.t. $\text{mincol}_{\mathbb{Z}}(D_m) = 4$.
Theorem 4 [Ichihara-Ishikawa-M., In progress]

Let p, q and r be non-zero integers such that $|p| \geq q \geq 1$ and $r \geq 2$. If pr or qr are even, the torus link $T(pr, qr)$ has a minimal diagram D_m s.t.

$$\text{mincol}_{\mathbb{Z}}(D_m) = \begin{cases} 4 & (r : \text{even}) \\ "5" & (r : \text{odd}) \end{cases}$$

Remark

A torus link $T(pr, qr)$ is \mathbb{Z}-colorable if and only if pr or qr are even.
Proof of Theorem 4 (In the case r:even)]

Let D be the following minimal diagram of $T(pr, qr)$.
In the following, we will find a \(\mathbb{Z} \)-coloring \(\gamma \) on \(D \) by assigning colors on the arcs of \(D \). We devide such arcs into \(q \) subfamilies \(x_1, \cdots, x_q \).
We first find a local \mathbb{Z}-coloring γ. In the case r is even, we start with setting $\gamma(x_i) = (\gamma(x_{i,1}), \gamma(x_{i,2}), \cdots, \gamma(x_{i,r})) = (1, 0, \cdots, 0, 1)$ for any i.
We can extend γ on the arcs in the regions (1) and $(q + 1)$.
We can extend γ on the arcs in the regions $(2), (3), \ldots, (q)$.
Now, γ can be extended on all the arcs in the region depicted as follows.
Now, γ can be extended on all the arcs in the region depicted as follows.

Since D is composed of p copies of the local diagram, it concludes that D admits a \mathbb{Z}-coloring with only four colors 0, 1, 2 and 3.
Thank you for your attention.