On the minimal coloring number of the minimal diagram of torus links

Eri Matsudo

Nihon University
Graduate School of Integrated Basic Sciences

Joint work with
K. Ichihara (Nihon Univ.) \& K. Ishikawa (RIMS, Kyoto Univ.)

Waseda University, December 24, 2018

\mathbb{Z}-coloring

Let L be a link, and D a diagram of L.

\mathbb{Z}-coloring

A map $\gamma:\{\operatorname{arcs}$ of $D\} \rightarrow \mathbb{Z}$ is called a \mathbb{Z}-coloring on D if it satisfies the condition $2 \gamma(a)=\gamma(b)+\gamma(c)$ at each crossing of D with the over arc a and the under arcs b and c.
A \mathbb{Z}-coloring which assigns the same color to all the arcs of the diagram is called a trivial \mathbb{Z}-coloring.
L is \mathbb{Z}-colorable if \exists a diagram of L with a non-trivial \mathbb{Z}-coloring.

Let L be a \mathbb{Z}-colorable link.

Minimal coloring number

[1] For a diagram D of L, $\operatorname{mincol}_{\mathbb{Z}}(D):=\min \{\# \operatorname{Im}(\gamma) \mid \gamma$: non-tri. \mathbb{Z}-coloring on $D\}$
[2] $\operatorname{mincol}_{\mathbb{Z}}(L):=\min \left\{\operatorname{mincol}_{\mathbb{Z}}(D) \mid D:\right.$ a diagram of $\left.L\right\}$

Simple \mathbb{Z}-coloring

γ : a \mathbb{Z}-coloring on a diagram D of a non-trivial \mathbb{Z}-colorable link L If $\exists d \in \mathbb{N}$ s.t. at each crossings in D, the differences between the colors of the over arcs and the under arcs are d or 0 , then we call γ a simple \mathbb{Z}-coloring.

Simple \mathbb{Z}-coloring

γ : a \mathbb{Z}-coloring on a diagram D of a non-trivial \mathbb{Z}-colorable link L If $\exists d \in \mathbb{N}$ s.t. at each crossings in D, the differences between the colors of the over arcs and the under arcs are d or 0 , then we call γ a simple \mathbb{Z}-coloring.

Theorem 1 [Ichihara-M., JKTR, 2017]

Let L be a non-splittable \mathbb{Z}-colorable link. If there exists a simple \mathbb{Z}-coloring on a diagram of L, then $\operatorname{mincol}_{\mathbb{Z}}(L)=4$.

Theorem 2 [M., to apper JKTR, Zhang-Jin-Deng]

Any \mathbb{Z}-colorable link has a diagram admitting a simple \mathbb{Z}-coloring.

Theorem 2 [M., to apper JKTR, Zhang-Jin-Deng]

Any \mathbb{Z}-colorable link has a diagram admitting a simple \mathbb{Z}-coloring.
Colorally
L : a \mathbb{Z}-colorable link

$$
\operatorname{mincol}_{\mathbb{Z}}(L)=\left\{\begin{array}{l}
2(L: \text { splittable }) \\
4(L: \text { non-splittable })
\end{array}\right.
$$

One of key moves of the proof

One of key moves of the proof

One of key moves of the proof

\rightarrow The obtained diagrams are often complicated.

One of key moves of the proof

\rightarrow The obtained diagrams are often complicated.

Problem

$\operatorname{mincol}_{\mathbb{Z}}\left(D_{m}\right)=$? for a minimal diagram D_{m} of a \mathbb{Z}-colorable link.

Theorem 3 [Ichihara-M., Proc.Inst.Nat.Sci., Nihon Univ., 2018]

[1] For an even integer $n \geq 2$, the pretzel link $P(n,-n, \cdots, n,-n)$ with at least 4 strands has a minimal diagram D_{m} s.t. $\operatorname{mincol}_{\mathbb{Z}}\left(D_{m}\right)=n+2$.
[2] For an integer $n \geq 2$, the pretzel link $P(-n, n+1, n(n+1))$ has a minimal diagram D_{m} s.t. $\operatorname{mincol}_{\mathbb{Z}}\left(D_{m}\right)=n^{2}+n+3$.
[3] For even integer $n>2$ and non-zero integer p, the torus link $T(p n, n)$ has a minimal diagram D_{m} s.t. $\operatorname{mincol}_{\mathbb{Z}}\left(D_{m}\right)=4$.

Theorem 4 [Ichihara-Ishikawa-M., In progress]

Let p, q and r be non-zero integers such that $|p| \geq q \geq 1$ and $r \geq 2$. If $p r$ or $q r$ are even, the torus link $T(p r, q r)$ has a minimal diagram D_{m} s.t.

$$
\operatorname{mincol}_{\mathbb{Z}}\left(D_{m}\right)=\left\{\begin{array}{c}
4(r: \text { even }) \\
" 5 \prime(r: \text { odd })
\end{array}\right.
$$

Remark

A torus link $T(p r, q r)$ is \mathbb{Z}-colorable if and only if $p r$ or $q r$ are even.
[Proof of Theorem 4 (In the case r :even)]
Let D be the following minimal diagram of $T(p r, q r)$.

In the following, we will find a \mathbb{Z}-coloring γ on D by assigning colors on the arcs of D.
We devide such arcs into q subfamilies $\mathbf{x}_{1}, \cdots, \mathbf{x}_{q}$.

We first find a local \mathbb{Z}-coloring γ. In the case r is even, we start with setting $\gamma\left(\mathbf{x}_{i}\right)=\left(\gamma\left(x_{i, 1}\right), \gamma\left(x_{i, 2}\right), \cdots, \gamma\left(x_{i, r}\right)\right)$
$=(1,0, \cdots, 0,1)$ for any i.

We can extend γ on the arcs in the regions (1) and ($q+1$).

We can extend γ on the arcs in the regions (2), (3), $\cdots,(q)$.

Now, γ can be extended on all the arcs in the region depicted as follows.

Now, γ can be extended on all the arcs in the region depicted as follows.

Since D is composed of p copies of the local diagram, it concludes that D admits a \mathbb{Z}-coloring with only four colors $0,1,2$ and 3 .

Thank you

for your attention.

