3 実交点の twisted knot の分類表

Kaori Okubo Nagoya City University

研究集会「結び目の数理」

2018/12/23-26

- Twisted knots
- 2 A classification of twisted knots with 3 classical crossings
- Problems

Twisted knots

Definition

A twisted link diagram \Leftrightarrow A virtual link diagram (possibly) with bars.

Definition

Twisted links \Leftrightarrow Equivalence classes of twisted link diagrams under extended R moves (R moves, VR moves and twisted R moves).

Extended R moves

Purpose

To construct a table of prime twisted knots with 3 classical crossings.

(Known result)

 A table of virtual knots with crossing number up to 6 was constructed by Jeremy Green.

[Jeremy Green, https://www.math.toronto.edu/drorbn/Students/GreenJ/

 A table of twisted knots with crossing number up to 2 was constructed by N.Kamada.

N. Kamada, $On\ twisted\ knots$, Contemporary Mathematics, Knot Theory and its Applications,670(2016), pp.328-341

A Gauss chord diagram of twisted knot

Definition

A Gauss chord diagram of virtual knot \Leftrightarrow The pre-image of the immersed loop of a knot diagram with oriented chords whose starting and end points are on a circle. The starting point (or end point) of a chord indicates an over arc (or an under arc). Each chord is labeled with + or -, which is the sign of a crossing corresponding the chord.

A twisted knot diagram is presented by a Gauss chord diagram with some bars on the arcs which correspond to edges of a twisted link diagram.

Example

4ロ > 4回 > 4亘 > 4亘 > 亘 夕へで

A classification of twisted knots with 3 classical crossings

1 List up to projections of Gauss chord diagrams with 3 classical crossings, where a projection of a Gauss chord diagram is a circle with chords.

Turtle type

- 2 Give directions, signs and bars to chords.
- 3 Remove equivalent Gauss chord diagrams under extended R moves.

4 Construct diagrams $D^\#$, -D, and $-D^\#$ for a twisted link diagram D in the table, where $D^\#$ is a mirror image of D, and -D is a diagram obtained by reversing the orientation of D. Calculate multivariable polynomial invariants (Arrow polynomial or Miyazawa polynomial) $X_D \in \mathbb{Z}[A,A^{-1},M,d_1,d_2,\ldots]$ of them.

Remark $D \sim D^{\#*}$ and $D^{\#} \sim D^*$ as a twisted link. $(D^*$ is the reflection of D)

(N.Kamada, S.Kamada, Virtual links which are equivalent as twisted links, preprint, https://arxiv.org/abs/1804.06198)

There are virtual links such that $D^{\#} \not\sim D^*$.

20 Wheel types and 21 Turtle types are determined by multivariable polynomial invariants.

- 5 Calculate WJKSS invariants (Sawollek invariant for double covering diagram) of 6 Wheel types and 40 Turtle types.
- 21 Turtle types are determined by WJKSS invariants.
 - 6 Apply extended R moves to each pair of twisted knot diagrams whose invariants (multivariable polynomial invariant and WJKSS invariant) are equal.
- 2 Wheel types and 3 Turtle types are determined by applying extended R moves.

Example: Deforming diagrams $(3_{21}$ in table)

multivariable polynomial invariant WJKSS invariant
$$D = \frac{(A^4+1)(A^8M^2+A^4(2M^2+1)-(2A^8+3A^4+1)M^2+M^2)}{A^{10}} = \frac{(y-1)(y+1)(x-y)(x+y)}{y^2}$$

$$D' = \frac{(A^4+1)(A^8M^2+A^4(2M^2+1)-(2A^8+3A^4+1)M^2+M^2)}{A^{10}} = \frac{(y-1)(y+1)(x-y)(x+y)}{y^2}$$

WJKSS invariant
$$\frac{(y-1)(y+1)(x-y)(x+y)}{y^2}$$
$$\frac{(y-1)(y+1)(x-y)(x+y)}{y^2}$$

Example : Deforming diagrams $(\mathbf{3_{21}}$ in table)

Example of wheel type

 $oldsymbol{D'}$ is equivalent to $-oldsymbol{D}$

A classification of twisted knots with 3 classical crossings

7 Calculate multivariable polynomial invariants for double covering diagrams of the remaining diagrams (15 Turtle types).

Double covering diagram

- (1) For a twisted link diagram D, put $D^{\#*}$ (reflection and mirror image) on right of D.
- (2) Deform these diagrams as in the following figure where a bar b of D correspond to a bar b' of $D^{\#*}$.

Theorem [N.Kamada, S.Kamada]

 $D \sim D' \Rightarrow \widetilde{D} \sim \widetilde{D'}$

 $X_{\widetilde{D}}$ is an invariant of D.

- 13 Turtle types are determined by this method.
- 2 Turtle types are still to be determined.

8 Calculate $\widetilde{\operatorname{col}}_3(D)$ for the remaining diagrams (2 Turtle types).

The quandle is a set \boldsymbol{X} with a binary operator *, which satisfies the following.

- ullet For any $x\in X$, x*x=x
- ullet For any $y\in X$, the map $S_y:X\longrightarrow X$ defined by $x\mapsto x*y$ is a bijection.
- ullet For any $x,y,z\in X, (xst y)st z=(xst z)st (yst z).$

Q(D) : twisted quandle of D.

 $X_n = \{1, 2, \dots, n\}$ a dihedral quandle x * y = 2y - x $\operatorname{col}_n(D)$: the number of homomorphisms from Q(D) to X_n (coloring)

2 Turtle types are determined by this method.

Conclusion

Theorem 1

82 prime twisted knots with 3 classical crossings are determined.

Theorem 2

- (i) 3_1 , 3_4 , 3_5 , 3_7 , 3_8 , 3_9 , 3_{10} , 3_{11} , 3_{12} , 3_{13} , 3_{14} , 3_{15} , 3_{16} , 3_{17} , 3_{18} , 3_{19} , 3_{20} , 3_{31} , 3_{40} , 3_{42} , 3_{44} , 3_{46} , 3_{47} , 3_{50} , 3_{58} , 3_{60} , 3_{62} , 3_{65} , 3_{66} , 3_{67} , 3_{68} , 3_{69} , 3_{70} , 3_{72} , 3_{74} , 3_{79} , and 3_{80} are invertible.
- (ii) 3_{24} , 3_{25} , 3_{26} , 3_{28} , 3_{29} , 3_{30} , 3_{33} , 3_{34} , 3_{35} , 3_{36} , 3_{37} , 3_{38} , 3_{43} , 3_{45} , 3_{48} , 3_{49} , 3_{51} , 3_{52} , 3_{53} , 3_{54} , 3_{56} , 3_{57} , 3_{59} , 3_{61} , 3_{63} , 3_{64} , 3_{73} , 3_{75} , 3_{77} , and 3_{78} are non invertible.

Proof : (i) $oldsymbol{D}$ is deformed to $-oldsymbol{D}$ by extended R moves.

(ii) The value of WJKSS invariant of D is different from that of -D.

◀◻▶◀♬▶◀┋▶◀┋▶ ┋ 쒸٩ଙ

Conclusion

Proposition 3

All diagrams in our table are chiral .

Proof : It is proved by showing that the multivariable polynomial invariant X_D of D is not equal to that of mirror image of D .

Proposition 4

 $3_{44},\ 3_{58},\ 3_{67},\ 3_{70},\ 3_{81},\ 3_{82}$ are checkerboard colorable, and other diagrams in our table are not checkerboard colorable.

 $oldsymbol{D}$: a twisted link diagram

A(D) : an abstract link diagram associated with D

D : checkerboard colorable $\Leftrightarrow A(D)$ admits checkerboard coloring

Conclusion

Proof of Theorem 4: There are checkerboard colorable diagrams of 3_{44} , 3_{58} , 3_{67} , 3_{70} , 3_{81} , 3_{82} in the table.

For the rest of them, in their multivariable invariants there are terms which include $oldsymbol{M}$.

$$X_D = -\frac{(A^4+1)(A^{12}+A^4-1)M}{A^{18}}$$

Theorem [N.Kamada]

If D is a twisted link diagram of a checkerboard colorable twisted link, then X_D is in $\mathbb{Z}[A,A^{-1},d_1,d_2,\ldots]$.

Conclusion

Proposition 5

- (i) The minimum numbers of bars of the following twisted knots are 1.
- 3_1 , 3_2 , 3_3 , 3_4 , 3_5 , 3_6 , 3_{24} , 3_{25} , 3_{26} , 3_{27} , 3_{28} , 3_{29} , 3_{30} , 3_{31} , 3_{32} , 3_{33} , 3_{34} , 3_{35} , $3_$
- 3_{34} , 3_{35} , 3_{36} , 3_{37} , 3_{38} , 3_{39} , 3_{40} , 3_{41} , 3_{42}
- (ii) The minimum numbers of bars of the following twisted knots are 2.
- $3_7,\ 3_8,\ 3_9,\ 3_{10},\ 3_{11},\ 3_{12},\ 3_{13},\ 3_{14},\ 3_{15},\ 3_{16},\ 3_{43},\ 3_{45},\ 3_{46},\ 3_{47},\ 3_{48},$
- $3_{49},\ 3_{50},\ 3_{51},\ 3_{52},\ 3_{53},\ 3_{54},\ 3_{55},\ 3_{56},\ 3_{57},\ 3_{59},\ 3_{60},\ 3_{61},\ 3_{62},\ 3_{63},$
- 3_{64} , 3_{65} , 3_{66} , 3_{68} , 3_{69} , 3_{71} , 3_{72}

Proof: The number of bars increase (or decrease) always even number by any twisted Reidemeister moves.

- (i) There are diagrams with 1 bar.
- (ii) If the value of multivariable polynomial invariant of the twisted link diagram D has terms which include M, D has some bars. There are diagrams with 2 bars and their multivariable polynomial invariants have such terms.

Problems

- 1 To construct the table of composite twisted knot diagrams with 3 classical crossings.
- 2 To determine invertibility of following diagrams.

Thank you!