Gluck twists on branched twist spins

Mizuki Fukuda

Tohoku University/JSPS DC2

2018/12/25

Introduction

A 2-knot (S^2 -knot) is an *smoothly* embedded S^2 in S^4 . $\mathcal{K} = \mathcal{K}' \stackrel{\text{def}}{\Longleftrightarrow} \mathcal{K}'$ is transformed into \mathcal{K} via an ambient isotopy of S^4 .

$$(S^4, \mathcal{K}) \leadsto (\Sigma(\mathcal{K}), \mathcal{K}')$$
: Gluck twist

Main theorem

We determine \mathcal{K}' when \mathcal{K} is a branched twist spin.

Introduction

A 2-knot (S^2 -knot) is an *smoothly* embedded S^2 in S^4 . $\mathcal{K} = \mathcal{K}' \stackrel{\mathrm{def}}{\Longleftrightarrow} \mathcal{K}'$ is transformed into \mathcal{K} via an ambient isotopy of S^4 .

$$(S^4,\mathcal{K}) \leadsto (\Sigma(\mathcal{K}),\mathcal{K}')$$
 : Gluck twist

Main theorem

We determine K' when K is a branched twist spin.

Contents

- Branched twist spin
- 2 Gluck twist
- Main result
- 4 Application

S^1 -actions on S^4

$$\tau,\tau':S^1\times S^4\to S^4:\,S^1\text{-actions}$$

au is called locally smooth

 $\Leftrightarrow \forall$ orbit \exists nbd. s.t. each isotropy group acts ortho. on each slice disk.

au and au' are called weak equivalent

$$\Leftrightarrow \exists H \in \mathrm{Diff}(S^4), \ \exists \alpha \in \mathrm{Aut}(S^1) \ \mathrm{s.t.} \ H(\tau(\theta,x)) = \tau'(\alpha(\theta),x).$$

Orbits of an S^1 -action

- free orbit
- ullet exceptional orbit of \mathbb{Z}_m -type $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ isotoropy group $\cong \mathbb{Z}_m$
- fixed point

Classification of S^1 -actions

Theorem (Fintushel, Pao '78)

```
\left\{\begin{array}{l}S^1 \curvearrowright S^4: \text{ locally smooth effective}\right\} / \text{ weak equivalence}\\ \updownarrow\,\exists\,\, \text{bijection}\\ \left\{\{D^3\}, \{S^3\}, \{S^3, m\}, \{(S^3, K), m, n\}\right\},\\ \text{where } m, n \text{ are coprime positive integers.}\end{array}\right.
```

- D^3, S^3 : orbit space
- ullet m,n: type of exceptional orbit
- K: union of exceptional orbits and fixed points

Definition of branched twist spins

- $p: S^4 \to S^3$: orbit map
- \bullet E_m, E_n : the sets of exceptional orbits
- \bullet F : the fixed point set $p(E_m) := E_m^* \ , \ p(E_n) := E_n^* , \ p(F) := F^*$

Definition (Branched twist spin)

Let K be the 1-knot $E_m^* \cup E_n^* \cup F^*$. The (m,n)-branched twist spin of K is defined as $K^{m,n} := E_n \cup F \subset S^4$.

Remark

We can take K as any 1-knot.

- $\{D^3\}$: spun knot \cdots fibered (depend on K)
- $\{S^3\}$: 1-twist spun knot \cdots fibered
- $\{S^3, m\}$: m-twist spun knot \cdots fibered
- $\{(S^3, K), m, n\}$: branched twist spin \cdots fibered

Gluck twist

- $\mathcal{K} \subset S^4$: 2-knot
- $\operatorname{Nbd}(\mathcal{K})\cong S^2\times D^2$: a nbd. of \mathcal{K} The isotopy class of orientation preserving homeomorphisms on $S^2\times S^1$ is isom. to \mathbb{Z}_2 .
- ullet γ : non-trivial generator of \mathbb{Z}_2

Definition

The Gluck twist is an operation of removing intNbd(\mathcal{K}) from S^4 and regluing $S^2 \times D^2$ by γ .

Remark

$$\gamma^2 = \text{identity}.$$

Known results

 $\Sigma(\mathcal{K})$: manifold obtained from S^4 by the Gluck twist along \mathcal{K} .

By a Freedman's work, it is known that $\Sigma(\mathcal{K})$ is homeomorphic to S^4 . However we do not know whether $\Sigma(\mathcal{K})$ is diffeomorphic to S^4 or not in general.

Theorem (Gordon '76)

 $\Sigma(K^{m,1})$ is diffeomorphic to S^4 .

Theorem (Pao '76)

 $\Sigma(K^{m,n})$ is diffeomorphic to S^4 .

 \mathcal{K}^* : dual of \mathcal{K} (i.e. 2-knot obtained from \mathcal{K} by the Gluck twist.) Question. Determine \mathcal{K} and \mathcal{K}^* are equivalent or not.

Theorem (Gordon '76)

If m is odd, then $K^{m,1} \neq K^{m,1*}$.

Theorem (Plotnick '86)

For a fibered 2-knot $\mathcal K$ with odd monodromy, $\mathcal K \neq \mathcal K^*$.

Theorem (Hillman, Plotnick '88)

Let K is a torus or hyperbolic 1-knot.

If m > n and $m \ge 3$, then $K^{m,n} \ne K^{m,n*}$

Main result

Main Theorem (F.)

$$K^{m,n*} = K^{m,m+n}$$

Sketch of Proof.

First step. Decompose S^4 according to the S^1 -action into four pieces:

$$\begin{split} S^4 = & \ \mathsf{Nbd}(\mathsf{fixed pts.}) \cup \ \mathsf{Nbd}(E_n) \cup \ \mathsf{Nbd}(E_m) \cup \ \mathsf{Nbd}(\mathsf{free orbits}) \\ = & \underbrace{(B_1^4 \sqcup B_2^4) \cup (V_n \times E_n^*)}_{\mathsf{nbd. of } K^{m,n*}} \cup \underbrace{(V_m \times E_m^*) \cup ((S^3 \setminus \mathsf{intNbd}(K)) \times S^1)}_{\mathsf{knot complement of } K^{m,n*}} \end{split}$$

Here V_n is the solid torus whose core is an exceptional orbit of \mathbb{Z}_n -type. $\underline{ \text{Second step.} } \text{ Replace the } S^1\text{-action on } (B_1^4 \sqcup B_2^4) \cup (V_n \times E_n^*) \text{ so that the action is compatible with that on } (V_m \times E_m^*) \cup ((S^3 \setminus \text{intNbd}(K)) \times S^1) \text{ by the Gluck twist.}$

Sketch of proof

Third step. Check that $K^{m,n*}$ consists of exceptional orbits of \mathbb{Z}_m -type and \mathbb{Z}_{m+n} -type.

Due to Fintushel and Pao, it is sufficient to show that $K^{m,n*}$ contains an exceptional orbit of \mathbb{Z}_{m+n} -type.

Theorem (Fintushel, Pao) [Recall]

 $\left\{ \begin{array}{c} S^1 \curvearrowright S^4 : \text{ locally smooth effective} \right\} / \text{ weak equivalence} \\ \updownarrow \ \exists \ \text{bijection} \\ \left\{ \{D^3\}, \{S^3\}, \{S^3, m\}, \{(S^3, K), m, n\} \right\}, \end{array}$

where m, n are coprime and positive integers.

Application(On equiv. classes of b.t.s.)

Applying Main theorem to Plotnick's theorem, the following corollary holds.

Corollary (F.)

If m is odd, $K^{m,n}$ and $K^{m,m+n}$ are not equivalent.

If m is even, we have the following sufficient condition to distinguish branched twist spins.

Theorem (F. '16)

Let $K_1^{m_1,n_1}$ and $K_2^{m_2,n_2}$ be branched twist spins constructed from 1-knots K_1 and K_2 . Suppose that m_1 is even.

- (1) If m_2 is even and $|\Delta_{K_1}(-1)| \neq |\Delta_{K_2}(-1)|$, then $K_1^{m_1,n_1}$ and $K_2^{m_2,n_2}$ are not equivalent.
- (2) If m_2 is odd and $|\Delta_{K_2}(-1)| \neq 1$, then $K_1^{m_1,n_1}$ and $K_2^{m_2,n_2}$ are not equivalent.

Application(Montesinos twin)

Definition (Montesinos twin)

A Montesinos twin is a pair of 2-knots which meet transversely twice.

By definition, a pair of branched twist spins $K^{m,n}$ and $K^{n,m}$ is a Montesinos twin. From Main theorem, we see that there exist exceptional orbits of \mathbb{Z}_n -type and \mathbb{Z}_{m+n} -type in $\Sigma(K^{n,m})$. Then we have the following:

Theorem (F.)

 $K^{m+n,n}$ is obtained from $K^{m,n}$ by Gluck twist along $K^{n,m}$.

Summary

Main Theorem (F.)

$$K^{m,n*} = K^{m,m+n}.$$

Corollary (F.)

If m is odd, $K^{m,n}$ and $K^{m,m+n}$ are not equivalent.

Theorem (F.)

 $K^{m+n,n}$ is obtained from $K^{m,n}$ by Gluck twist along $K^{n,m}$.