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.. Introduction

A 2-knot (S2-knot) is an smoothly embedded S2 in S4.

K = K′ def⇐=⇒ K′
is transformed into K via an ambient isotopy of S4.

2-knots

spun knots

branched twist spins

deformed spun knots

twist spun knots

(S4,K)⇝ (Σ(K),K′) : Gluck twist

.
Main theorem
..
.
. ..

.

.

We determine K′ when K is a branched twist spin.
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.. S1-actions on S4

τ, τ ′ : S1 × S4 → S4 : S1-actions

τ is called locally smooth
⇔ ∀ orbit ∃ nbd. s.t. each isotropy group acts ortho. on each slice disk.

τ and τ ′ are called weak equivalent
⇔ ∃H ∈ Diff(S4), ∃α ∈ Aut(S1) s.t. H(τ(θ, x)) = τ ′(α(θ), x).

.
Orbits of an S1-action
..

.

. ..

.

.

free orbit

exceptional orbit of Zm-type
def⇐=⇒ isotoropy group ∼= Zm

fixed point
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.. Classification of S1-actions

.
Theorem (Fintushel, Pao ’78)
..

.

. ..

.

.

{ S1 ↷ S4 : locally smooth effective} / weak equivalence

↕ ∃ bijection{
{D3}, {S3}, {S3,m}, {(S3,K),m, n}

}
,

where m,n are coprime positive integers．

D3, S3 : orbit space

m,n : type of exceptional orbit

K : union of exceptional orbits and fixed points
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.. Definition of branched twist spins

p : S4 → S3 : orbit map
Em, En : the sets of exceptional orbits
F : the fixed point set
p(Em) := E∗

m , p(En) := E∗
n, p(F ) := F ∗

.
Definition (Branched twist spin)
..

.

. ..

.

.

Let K be the 1-knot E∗
m ∪ E∗

n ∪ F ∗. The (m,n)-branched twist spin of
K is defined as Km,n := En ∪ F ⊂ S4.

.
Remark
..
.
. ..

.

.

We can take K as any 1-knot.

{D3} : spun knot · · · fibered (depend on K)
{S3} : 1-twist spun knot · · · fibered
{S3,m} : m-twist spun knot · · · fibered
{(S3,K),m, n} : branched twist spin · · · fibered
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.. Gluck twist

K ⊂ S4: 2-knot

Nbd(K) ∼= S2 ×D2 : a nbd. of K
The isotopy class of orientation preserving homeomorphisms on
S2 × S1 is isom. to Z2.
γ : non-trivial generator of Z2

.
Definition
..

.

. ..

.

.

The Gluck twist is an operation of removing intNbd(K) from S4 and
regluing S2 ×D2 by γ.

.
Remark
..
.
. ..

.

.

γ2 = identity.
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.. Known results

Σ(K) : manifold obtained from S4 by the Gluck twist along K.

By a Freedman’s work, it is known that Σ(K) is homeomorphic to S4.
However we do not know whether Σ(K) is diffeomorphic to S4 or not in
general.

.
Theorem (Gordon ’76)
..

.

. ..

.

.

Σ(Km,1) is diffeomorphic to S4.

.
Theorem (Pao ’76)
..

.

. ..

.

.

Σ(Km,n) is diffeomorphic to S4.
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K∗ : dual of K (i.e. 2-knot obtained from K by the Gluck twist.)

Question. Determine K and K∗ are equivalent or not.

.
Theorem (Gordon ’76)
..

.

. ..

.

.

If m is odd, then Km,1 ̸= Km,1∗.

.
Theorem (Plotnick ’86)
..
.
. ..

.

.

For a fibered 2-knot K with odd monodromy, K ̸= K∗.

.
Theorem (Hillman,Plotnick ’88)
..

.

. ..

.

.

Let K is a torus or hyperbolic 1-knot.
If m > n and m ≥ 3, then Km,n ̸= Km,n∗
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.. Main result

.
Main Theorem (F.)
..
.
. ..

.

.Km,n∗ = Km,m+n.

Sketch of Proof.
First step. Decompose S4 according to the S1-action into four pieces:

S4 = Nbd(fixed pts.) ∪ Nbd(En) ∪ Nbd(Em) ∪ Nbd(free orbits)

= (B4
1 ⊔B4

2) ∪ (Vn × E∗
n)

:::::::::::::::::::

nbd. of Km,n∗

∪ (Vm × E∗
m) ∪ ((S3 \ intNbd(K))× S1)

::::::::::::::::::::::::::::::::

knot complement of Km,n∗

Here Vn is the solid torus whose core is an exceptional orbit of Zn-type.
Second step. Replace the S1-action on (B4

1 ⊔B4
2)∪ (Vn×E∗

n) so that the

action is compatible with that on (Vm × E∗
m) ∪ ((S3 \ intNbd(K))× S1)

by the Gluck twist.
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.. Sketch of proof

Third step. Check that Km,n∗ consists of exceptional orbits of Zm-type
and Zm+n-type.
Due to Fintushel and Pao, it is sufficient to show that Km,n∗ contains an
exceptional orbit of Zm+n-type.

.
Theorem (Fintushel, Pao) [Recall]
..

.

. ..

.

.

{ S1 ↷ S4 : locally smooth effective} / weak equivalence

↕ ∃ bijection{
{D3}, {S3}, {S3,m}, {(S3,K),m, n}

}
,

where m,n are coprime and positive integers．

Gluck twist
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.. Application(On equiv. classes of b.t.s.)

Applying Main theorem to Plotnick’s theorem, the following corollary
holds.
.
Corollary (F.)
..
.
. ..

.

.

If m is odd, Km,n and Km,m+n are not equivalent.

If m is even, we have the following sufficient condition to distinguish
branched twist spins.

.
Theorem (F. ’16)
..

.

. ..

.

.

Let Km1,n1

1 and Km2,n2

2 be branched twist spins constructed from
1-knots K1 and K2. Suppose that m1 is even.
(1) If m2 is even and |∆K1(−1)| ̸= |∆K2(−1)|, then Km1,n1

1 and
Km2,n2

2 are not equivalent.
(2) If m2 is odd and |∆K2

(−1)| ̸= 1, then Km1,n1

1 and Km2,n2

2 are not
equivalent.
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.. Application(Montesinos twin)

.
Definition (Montesinos twin)
..
.
. ..

.

.

A Montesinos twin is a pair of 2-knots which meet transversely twice.

By definition, a pair of branched twist spins Km,n and Kn,m is a
Montesinos twin. From Main theorem, we see that there exist exceptional
orbits of Zn-type and Zm+n-type in Σ(Kn,m). Then we have the
following:

.
Theorem (F.)
..
.
. ..

.

.

Km+n,n is obtained from Km,n by Gluck twist along Kn,m.
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.. Summary

.
Main Theorem (F.)
..
.
. ..

.

.Km,n∗ = Km,m+n.

.
Corollary (F.)
..
.
. ..

.

.

If m is odd, Km,n and Km,m+n are not equivalent.

.
Theorem (F.)
..
.
. ..

.

.

Km+n,n is obtained from Km,n by Gluck twist along Kn,m.
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