

Most graphs are knotted

Kazuhiro Ichihara

Nihon University, College of Humanities and Sciences

Joint work with Thomas Mattman (CSU, Chico)

"Musubime no Suuri", Waseda University, Dec. 25, 2018

Introduction

Results

Graph and Embedding

Graph

an ordered pair G = (V, E)comprising a set V of vertices together with a set E of edges.

We always assume that graphs are simple (no loops or multiple edges), and identify the combinatorial object with the associated 1-dim. cell complex.

Embedding of G into \mathbb{R}^3

0

Knotted Graph

Knotted Graph

Intrinsically Knotted

A graph is called intrinsically knotted (IK), if every tame embedding in \mathbb{R}^3 contains a non-trivially knotted cycle.

. . .

Knotted Graph

Knotted Graph

Intrinsically Knotted

A graph is called intrinsically knotted (IK), if every tame embedding in \mathbb{R}^3 contains a non-trivially knotted cycle.

We want to ask;

Are "random" graphs intrinsically knotted?

What's a "random" graph?

Random Graph

Let |V(G)| = n denote the order or number of vertices of a graph, $N = \binom{n}{2}$ the number of edges in the complete graph of order n.

Models 1 & 2

- 1 (Erdős-Rényi) Choose a graph G(n, M) uniformly at random from the set of labelled graphs with n vertices and M edges. There are $\binom{N}{M}$ such graphs and the probability of choosing a particular graph is $\binom{N}{M}^{-1}$.
- 2 (Gilbert) For each of the possible N edges, we select it as an edge of the graph G(n,p) independently with probability p.

Random Graph

ŏ

Random Graph (cont'd)

Models 2.5 & 3

- 2.5 If $p = \frac{1}{2}$ in Gilbert's model, then every one of the 2^N labelled graphs on n vertices is equally likely. The probability of choosing a particular labelled graph with |V(G)| = n is then 2^{-N} .
 - 3 (Unlabelled version of Model 2.5) Let Γ_n denote the number of unlabelled graphs on n vertices. Choose a graph from this set uniformly at random. The probability of choosing a particular unlabelled graph with |V(G)| = n is Γ_n^{-1} .

Introduction			
ŏo			
Question			

We want to ask;

Are random graphs intrinsically knotted?

and the set of	
I I I I I I I I I I I I I I I I I I I	пеноп

Question

We want to ask;

Are random graphs intrinsically knotted?

Answer 1.

In Model 2.5 or 3, there is a constant n_{IK} such that, when $n \ge n_{IK}$, MOST order n graphs are intrinsically knotted (i.e., at least half of such graphs are IK).

Question

Question

We want to ask:

Are random graphs intrinsically knotted?

Answer 1.

In Model 2.5 or 3, there is a constant n_{IK} such that, when $n \geq n_{IK}$, MOST order n graphs are intrinsically knotted (i.e., at least half of such graphs are IK).

Answer 2.

In all four models, the probability that a graph is intrinsically knotted goes to one as the number of vertices increases.

Result 1

Theorem 1.

In Model 2.5 or 3, there is a constant n_{IK} such that, when $n \ge n_{IK}$, MOST order n graphs are intrinsically knotted (i.e., at least half of such graphs are IK).

We can show that $13 \le n_{IK} \le 18$, but leave open the question of the exact value of n_{IK} .

0 00 0

Theorem 1

Key Fact

Proposition.

A graph G with $|V(G)|=n\geq 7$ and $|E(G)|\geq 5n-14$ is IK.

Proposition.

A graph G with $|V(G)| = n \ge 7$ and $|E(G)| \ge 5n - 14$ is IK.

[Mader, 1968] If $|V(G)| = n \ge 7$ and $|E(G)| \ge 5n - 14$, then G has a K_7 minor.

Since K_7 is IK [Conway-Gordon], any graph with a K_7 minor is IK.

Proof of Thm 1. (Model 2.5)

We show that, if $n \ge 18$, then most graphs of order n are IK.

Pair off each order n graph G with its complement \overline{G} .

At least one of these two has at least
$$\frac{1}{2}\binom{n}{2} = \frac{n(n-1)}{4}$$
 edges.

If $n \ge 18$, we see that n(n-1)/4 > 5n-14. By Proposition, G or \overline{G} is IK.

t۲		\sim	÷ :	\sim	

Result 2

Theorem 2.

In all four models, the probability that a graph is IK goes to 1 as the number of vertices increases.

Proof of Thm 2. (Model 2)

Assume 0 in Model 2.The probability that a graph is not IK is bounded bythe probability that it has at most <math>5n - 15 edges:

$$\begin{aligned} \mathsf{Prob}(G \text{ not IK}) &\leq & \mathsf{Prob}(\|G\| \leq 5n - 15) \\ &= & \sum_{k=0}^{5n-15} \binom{N}{k} p^k (1-p)^{N-k} \leq e^{-2t^2 N}. \end{aligned}$$

The last inequality is due to Hoeffding, with t = p - (5n - 15)/N, and shows that the probability approaches 0 as n goes to infinity.

Thank you for your attention!

I wish you a Merry Christmas and a Happy New Year !!