Gap between the alternation number and the dealternating number

María de los Angeles Guevara Hernández
Osaka City University Advanced Mathematical Institute
（CONACYT－Mexico fellow）
guevarahernandez．angeles＠gmail．com

研究集会「結び目の数理」

Waseda University，Japan
December 25， 2018

Introduction

Definition

A link is a disjoint union of circles embedded in S^{3}, a knot is a link with one component.

Introduction

Definition

A knot that possesses an alternating diagram is called an alternating knot, otherwise it is called a non-alternating knot.

Alternating diagram

Non-alternating diagram

Introduction

Definition

A knot that possesses an alternating diagram is called an alternating knot, otherwise it is called a non-alternating knot.

Alternating diagram

Non-alternating diagram

In 2015 Greene and Howie, independently, gave a characterization of alternating links.

Definition (Adams et al., 1992)

The dealternating number of a link diagram D is the minimum number of crossing changes necessary to transform D into an alternating diagram. The dealternating number of a link L, denoted dalt (L), is the minimum dealternating number of any diagram of L.

A link with dealternating number k is also called k-almost alternating. We say that a link is almost alternating if it is 1-almost alternating.

Definition (Kawauchi, 2010)

The alternation number of a link diagram D is the minimum number of crossing changes necessary to transform D into some (possibly non-alternating) diagram of an alternating link.
The alternation number of a link L, denoted alt (L), is the minimum alternation number of any diagram of L.

$$
a \operatorname{alt}(L)=1
$$

$$
\operatorname{dalt}(L)=2
$$

$$
\operatorname{alt}(L) \leq \operatorname{dalt}(L)
$$

$$
a \operatorname{alt}(L)=1
$$

$$
d a l t(L)=2
$$

$$
a l t(L) \leq \operatorname{dalt}(L)
$$

Adams et al. showed that an almost alternating knot is either a torus knot or a hyperbolic knot.

Turaev genus

To a link diagram D, Turaev associated a closed orientable surface embedded in S^{3}, called the Turaev surface.

Definition (Turaev, 1987)

The Turaev genus, $g_{T}(L)$, of a link L is the minimal number of the genera of the Turaev surfaces of diagrams of L.

[Dasbach et al., 2008] $g_{T}(L)=0$ if and only if L is alternating.

Khovanov homology [Khovanov, 2000]

Let $L \in S^{3}$ be an oriented link. The Khovanov homology of L, denoted $K h(L)$, is a bigraded \mathbb{Z}-module with homological grading i and polynomial (or Jones) grading j so that $K h(L)=\bigoplus_{i, j} K h^{i, j}(L)$.

$j \backslash i$	-4	-3	-2	-1	0	1	2
7							1
5							
3					1	1	
1				1	1		
-1				1	1		
-3		1	1				
-5							
-7	1						

The coefficients of the monomials $t^{i} q^{j}$ are shown.
$j-2 i=s+1$ or $j-2 i=s-1$, where $s=2$ is the signature of 9_{42}.

$w_{K h}(K)$

$\delta=j-2 i$ so that $K h(L)=\bigoplus_{\delta} K h^{\delta}(L)$.

Let $\delta_{\text {min }}$ be the minimum δ-grading where $K h(L)$ is nontrivial and $\delta_{\max }$ be the maximum δ-grading where $K h(L)$ is nontrivial.
$K h(L)$ is said to be $\left[\delta_{\text {min }}, \delta_{\text {max }}\right]$-thick, and the Khovanov width of L is defined as

$$
w_{K h}(L)=\frac{1}{2}\left(\delta_{\max }-\delta_{\min }\right)+1 .
$$

$$
\begin{gather*}
a l t(K) \leq \operatorname{dalt}(K) . \tag{1}\\
g_{T}(K) \leq \operatorname{dalt}(K) . \tag{2}\\
w_{K h}(K)-2 \leq g_{T}(K) . \tag{3}\\
\widehat{w_{H F}(K)}-1 \leq g_{T}(K) . \tag{4}
\end{gather*}
$$

(2) [Abe and Kishimoto, 2010];
(3)[Champanerkar et al., 2007] and [Champanerkar and Kofman, 2009];
(4)[M. Lowrance, 2008].

$$
\begin{align*}
& \frac{|\sigma(K)-s(K)|}{2} \leq a l t(K) . \tag{5}\\
& \frac{|\sigma(K)-s(K)|}{2} \leq g_{T}(K) . \tag{6}
\end{align*}
$$

Skein relation

$$
\begin{align*}
& 0 \leq \sigma\left(K_{+}\right)-\sigma\left(K_{-}\right) \leq 2 . \tag{7}\\
& 0 \leq s\left(K_{+}\right)-s\left(K_{-}\right) \leq 2 . \tag{8}
\end{align*}
$$

where $\sigma(K)$ and $s(K)$ are the signature and Rasmussen s-invariant of a knot K, respectively, and both invariants are equal to 2 for the positive trefoil knot.

(5) [Abe, 2009];
(6) [Dasbach and Lowrance, 2011];
(7) [Cochran and Lickorish, 1986];
(8) [Rasmussen, 2010].

alt (K) and dalt (K)

[Abe and Kishimoto, 2010] Examples where the alternation number equals the dealternating number.
[Lowrance, 2015] For all $n \in \mathbb{N}$ there exists a knot K, which is the iteration of Whitehead doubles of eight figure-eight knot, such that $\operatorname{alt}(K)=1$ and $n \leq \operatorname{dalt}(K)$.
[Guevara-Hernández, 2017] For all $n \in \mathbb{N}$ there exist a knot family $\mathcal{D} \mathcal{S}_{n}$ such that if $K \in \mathcal{D} \mathcal{S}_{n}$ then $\operatorname{alt}(K)=1$ and $\operatorname{dalt}(K)=n$.

Families of knots

$$
N\left(\left(\sigma_{2} \sigma_{3}\right)^{3(m+1)} \sigma_{2}^{\prime} \sigma_{3}^{-1}\left(\sigma_{1} \sigma_{2}\right)^{3 n} \cdot c\right)
$$

where $I, m, n \in \mathbb{N}$.

Families of knots

$$
N\left(\left(\sigma_{2} \sigma_{3}\right)^{3(m+1)} \sigma_{2}^{\prime} \sigma_{3}^{-1}\left(\sigma_{1} \sigma_{2}\right)^{3 n} \cdot c\right)
$$

where $I, m, n \in \mathbb{N}$.

Families of knots

$$
N\left(\left(\sigma_{2} \sigma_{3}\right)^{3(m+1)} \sigma_{2}^{\prime} \sigma_{3}^{-1}\left(\sigma_{1} \sigma_{2}\right)^{3 n} \cdot c\right)
$$

where $I, m, n \in \mathbb{N}$.

Families of knots

$$
N\left(\left(\sigma_{2} \sigma_{3}\right)^{3(m+1)} \sigma_{2}^{\prime} \sigma_{3}^{-1}\left(\sigma_{1} \sigma_{2}\right)^{3 n} \cdot c\right)
$$

where $I, m, n \in \mathbb{N}$.

Families of knots

$$
N\left(\left(\sigma_{2} \sigma_{3}\right)^{3(m+1)} \sigma_{2}^{\prime} \sigma_{3}^{-1}\left(\sigma_{1} \sigma_{2}\right)^{3 n} \cdot c\right)
$$

where $I, m, n \in \mathbb{N}$.

Families of knots

$$
N\left(\left(\sigma_{2} \sigma_{3}\right)^{3(m+1)} \sigma_{2}^{\prime} \sigma_{3}^{-1}\left(\sigma_{1} \sigma_{2}\right)^{3 n} \cdot c\right)
$$

where $I, m, n \in \mathbb{N}$.

$w_{K h}(K)-2 \leq \operatorname{dalt}(K)$

Theorem (Khovanov, 2010)

There are long exact sequences
$\cdots K h^{i-e-1, j-3 e-2}\left(D_{h}\right) \rightarrow K h^{i, j}\left(D_{+}\right) \rightarrow K h^{i, j-1}\left(D_{v}\right) \rightarrow K h^{i-3, j-3 e-2}\left(D_{h}\right) \rightarrow \cdots$ and
$\cdots K h^{i, j+1}\left(D_{v}\right) \rightarrow K h^{i, j}\left(D_{-}\right) \rightarrow K h^{i-e+1, j-3 e+2}\left(D_{h}\right) \rightarrow K h^{i+1, j+1}\left(D_{v}\right) \rightarrow \cdots$
When only the $\delta=j-2 i$ grading is considered, the long exact sequence become $\cdots K h^{\delta-e}\left(D_{h}\right) \xrightarrow{f_{+}^{\delta-e}} K h^{\delta}\left(D_{+}\right) \xrightarrow{g_{+}^{\delta}} K h^{\delta-1}\left(D_{v}\right) \xrightarrow{f_{+}^{\delta-1}} K h^{\delta-e-2}\left(D_{h}\right) \rightarrow \cdots$ and
$\cdots K h^{\delta+1}\left(D_{v}\right) \xrightarrow{f_{-}^{\delta+1}} K h^{\delta}\left(D_{-}\right) \xrightarrow{g_{-}^{\delta}} K h^{\delta-e}\left(D_{h}\right) \xrightarrow{h_{-}^{\delta-e}} K h^{\delta-1}\left(D_{v}\right) \rightarrow \cdots$
$e=\operatorname{neg}\left(D_{h}\right)-\operatorname{neg}\left(D_{+}\right)$

The crossings $D_{+}, D_{-}, D_{v}, D_{h}$, respectively.

$w_{K h}(K)$

Corollary

Let D_{+}, D_{-}, D_{v} and D_{h} be as above. Suppose $K h\left(D_{v}\right)$ is $\left[v_{\min }, v_{\max }\right]$-thick and $K h\left(D_{h}\right)$ is [$\left.h_{\text {min }}, h_{\text {max }}\right]$-thick. Then $K h\left(D_{+}\right)$is $\left[\delta_{\text {min }}^{+}, \delta_{\text {max }}^{+}\right]$-thick, and $K h\left(D_{-}\right)$is $\left[\delta_{\text {min }}^{-}, \delta_{\text {max }}^{-}\right]$-thick, where

$$
\begin{aligned}
& \delta_{\text {min }}^{+}= \begin{cases}\min \left\{v_{\text {min }}+1, h_{\text {min }}+e\right\} & \text { if } v_{\text {min }} \neq h_{\text {min }}+e+1 \\
v_{\text {min }}+1 & \text { if } v_{\text {min }}=h_{\text {min }}+e+1 \text { and } h_{\text {min }}^{v_{\text {min }} \text { is surjective }}\end{cases} \\
& \text { if } v_{\text {min }}=h_{\text {min }}+e+1 \text { and } h_{+}^{v_{\text {min }}} \text { is not surjective, } \\
& \delta_{\text {max }}^{+}= \begin{cases}\max \left\{v_{\text {max }}+1, h_{\text {max }}+e\right\} & \text { if } v_{\text {max }} \neq h_{\text {max }}+e+1 \\
v_{\text {max }}-1 & \text { if } v_{\text {max }}=h_{\text {max }}+e+1 \text { and } h_{+ \text {max }}^{v_{\text {max }}} \text { is injective }\end{cases} \\
& \text { if } v_{\text {max }}=h_{\text {max }}+e+1 \text { and } h_{+}^{\stackrel{v_{\text {max }}}{ }} \text { is not injective } \\
& \delta_{\min }^{-}= \begin{cases}\min \left\{v_{\min }-1, h_{\text {min }}+e\right\} & \text { if } v_{\text {min }} \neq h_{\text {min }}+e-1 \\
v_{\text {min }}+1 & \text { if } v_{\text {min }}=h_{\text {min }}+e-1 \text { and } h_{-}^{v_{\text {min }}} \text { is surjective } \\
v_{\text {min }}\end{cases} \\
& \text { if } v_{\text {min }}=h_{\text {min }}+e-1 \text { and } h_{-}^{v_{\text {min }}} \text { is not surjective, } \\
& \delta_{\max }^{-}= \begin{cases}\max \left\{v_{\max }-1, h_{\max }+e\right\} & \text { if } v_{\text {max }} \neq h_{\text {max }}+e-1 \\
v_{\text {max }}-1 & \text { if } v_{\text {max }}=h_{\text {max }}+e-1 \text { and } h_{\text {max }} \text { is injective } \\
v_{\text {max }}+1 & \text { if } v_{\max }=h_{\max }+e-1 \text { and } h_{-}^{h_{\text {max }}} \text { is not injective. }\end{cases}
\end{aligned}
$$

Lemma (G.)

If $D=N\left(\left(\sigma_{2} \sigma_{3}\right)^{3(m+1)} \sigma_{2}^{\prime} \sigma_{3}^{-1}\left(\sigma_{1} \sigma_{2}\right)^{3 n} \cdot c\right)$, then $K h(D)$ is
$[4 m+I+2,6 m+2 n+I+4]$-thick. Hence, $w_{K h}(D)=m+n+2$.
Proof. (outline)

Lemma (G.)

If $D=N\left(\left(\sigma_{2} \sigma_{3}\right)^{3(m+1)} \sigma_{2}^{\prime} \sigma_{3}^{-1}\left(\sigma_{1} \sigma_{2}\right)^{3 n} \cdot c\right)$, then $K h(D)$ is $[4 m+I+2,6 m+2 n+I+4]$-thick. Hence, $w_{K h}(D)=m+n+2$.

Proof. (outline)

Lemma (G.)

If $D=N\left(\left(\sigma_{2} \sigma_{3}\right)^{3(m+1)} \sigma_{2}^{\prime} \sigma_{3}^{-1}\left(\sigma_{1} \sigma_{2}\right)^{3 n} \cdot c\right)$, then $K h(D)$ is
$[4 m+I+2,6 m+2 n+I+4]$-thick. Hence, $w_{K h}(D)=m+n+2$.
Proof. (outline)

Lemma (G.)

Let D be the closure of the 3-braid $\left(\sigma_{2} \sigma_{3}\right)^{3 k} \sigma_{2}^{r} \sigma_{3}^{-1}\left(\sigma_{1} \sigma_{2}\right)^{3 n}$ with $k, r, m \in \mathbb{N}$ and $k \geq 2$, then $\operatorname{Kh}(D)$ is $[4(k+n)+r-3,6(k+n)+r-3]$-thick.

Proof. Induction over n by using the braid $\sigma_{2}^{r} \sigma_{3}^{-1}\left(\sigma_{2} \sigma_{3}\right)^{3 k}\left(\sigma_{1} \sigma_{2}\right)^{3 n}$.

Lemma (G.)

Let D be the closure of the 3-braid $\left(\sigma_{2} \sigma_{3}\right)^{3 k} \sigma_{2}^{r} \sigma_{3}^{-1}\left(\sigma_{1} \sigma_{2}\right)^{3 n}$ with $k, r, m \in \mathbb{N}$ and $k \geq 2$, then $K h(D)$ is $[4(k+n)+r-3,6(k+n)+r-3]$-thick.

Proof. Induction over n by using the braid $\sigma_{2}^{r} \sigma_{3}^{-1}\left(\sigma_{2} \sigma_{3}\right)^{3 k}\left(\sigma_{1} \sigma_{2}\right)^{3 n}$.

Proposition (Lowrance, 2009)

Let D be the closure of the braid $\left(\sigma_{1} \sigma_{2}\right)^{3 k} \sigma_{1}^{a} \sigma_{2}^{-1}$ where a and k are positive integers. Then $K h(D)$ is $[4 k+a-2,6 k+a-2]$-thick.

$K h\left(D_{v}^{*}\right)$ is $[4(m+n)+I+1,6(m+n)+I+3]$-thick $n e g\left(D_{v}\right)=4 n+1$ and $n e g\left(D_{v}^{*}\right)=1 K h^{\delta}\left(D_{v}\right) \cong K h^{\delta+s}\left(D_{v}^{*}\right)$.
Therefore $K h\left(D_{v}\right)$ is $[4 m+I+1,6 m+I+3]$-thick.

Note that $D_{h_{v}}=D_{v}^{*}$ and $K h\left(D_{h_{h}}\right)$ is $[4 m+I+2,6 m+I+4]$-thick. $\operatorname{neg}\left(D_{h_{h}}\right)-\operatorname{neg}\left(D_{h}\right)=4 n+1-1$.
Then, $K h\left(D_{h}\right)$ is $[4(m+n)+I+2,6(m+n)+I+4]$-thick.
$e=\operatorname{neg}\left(D_{h}\right)-\operatorname{neg}\left(D_{+}\right)=-4 n$,
since $4 m+I+1 \neq(4(m+n)+I+2)+e+1$ and
$6 m+I+3 \neq(6(m+n)+I+4)+e+1$
It implies that $K h\left(D_{+}\right)$is $[4 m+I+2,6 m+2 n+I+4]$-thick. Hence, $w_{K h}(N(D))=m+n+2$.

Theorem (G.)

For all pair m, n of positive integers there exists a family of knots

$$
\mathcal{F}^{m, n}=\left\{N\left(\left(\sigma_{2} \sigma_{3}\right)^{3(m+1)} \sigma_{2}^{\prime} \sigma_{3}^{-1}\left(\sigma_{1} \sigma_{2}\right)^{3 n} \cdot c\right) \mid I \in \mathbb{N}, l \text { is odd. }\right\}
$$

such that, if $K \in \mathcal{F}^{m, n}$ then

$$
\operatorname{dalt}(K)=m+n \quad \text { and } \quad m-1 \leq \operatorname{alt}(K) \leq m+1 .
$$

Proof.
Due to the previous lemma we have that

$$
w_{K h}(K)=m+n+2 .
$$

Beside,

$$
w_{K h}(K)-2 \leq g_{T}(K) \leq \operatorname{dalt}(K)
$$

It follows that

$$
m+n \leq \operatorname{dalt}(K)
$$

$\operatorname{alt}(K) \leq m+n$

$a l t(K) \leq m+n$

$a l t(K) \leq m+n$

$$
\operatorname{alt}(K) \leq m+n
$$

After $m+n$ crossings changes we have an alternating diagram. Therefore, $\operatorname{dalt}(K)=m+n$.

Alternation number

One crossing change.

Alternation number

One crossing change.

Alternation number

One crossing change.

Alternation number

One crossing change.

Alternation number

One crossing change.

Alternation number

One crossing change.

Alternation number

One crossing change.

Alternation number

One crossing change.

Alternation number

One crossing change.

Alternation number

One crossing change.

We obtain

$$
\left(\sigma_{1} \sigma_{2}\right)^{3(m+1)} \sigma_{1}^{\prime} \sigma_{2}^{-1}
$$

Alternation number

One crossing change.

We obtain

$$
\left(\sigma_{1} \sigma_{2}\right)^{3(m+1)} \sigma_{1}^{\prime} \sigma_{2}^{-1}
$$

which is conjugate to

$$
\left(\sigma_{1} \sigma_{2}\right)^{3 m} \sigma_{1}^{I+4} \sigma_{2}
$$

Theorem (Kanenobu, 2010)

For positive integers m, r with r odd and $r \geq 5$, we have that the closure of the 3-braid $\left(\sigma_{1} \sigma_{2}\right)^{3 m} \sigma_{1}^{r} \sigma_{2}$, denoted by $K_{m, r}$, has alternation number equal to m.

It was used the following inequality.

$$
\begin{equation*}
\left|\sigma\left(K_{m, r}\right)-s\left(K_{m, r}\right)\right| / 2 \leq \operatorname{alt}\left(K_{m, r}\right) . \tag{9}
\end{equation*}
$$

Theorem (Kanenobu, 2010)

For positive integers m, r with r odd and $r \geq 5$, we have that the closure of the 3-braid $\left(\sigma_{1} \sigma_{2}\right)^{3 m} \sigma_{1}^{r} \sigma_{2}$, denoted by $K_{m, r}$, has alternation number equal to m.

It was used the following inequality.

$$
\begin{equation*}
\left|\sigma\left(K_{m, r}\right)-s\left(K_{m, r}\right)\right| / 2 \leq \operatorname{alt}\left(K_{m, r}\right) . \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\left|\sigma\left(K_{m, r}\right)-s\left(K_{m, r}\right)\right| / 2=\operatorname{alt}\left(K_{m, r}\right) . \tag{10}
\end{equation*}
$$

Then, $\operatorname{alt}(K) \leq m+1$.

Skein relation

$$
\begin{align*}
& 0 \leq \sigma\left(D_{+}\right)-\sigma\left(D_{-}\right) \leq 2 \tag{11}\\
& 0 \leq s\left(D_{+}\right)-s\left(D_{-}\right) \leq 2 \tag{12}
\end{align*}
$$

D_{+}is a diagram of $K, D_{-}=K_{m, r}$

$$
\begin{equation*}
m-1 \leq|\sigma(K)-s(K)| / 2 \leq m+1 \tag{13}
\end{equation*}
$$

Then, $\operatorname{alt}(K) \geq m-1$.

Therefore,

$$
m-1 \leq \operatorname{alt}(K) \leq m+1
$$

Theorem (G.)

For all pair m, n of positive integers there exists a family of knots

$$
\mathcal{F}^{m, n}=\left\{N\left(\left(\sigma_{2} \sigma_{3}\right)^{3(m+1)} \sigma_{2}^{\prime} \sigma_{3}^{-1}\left(\sigma_{1} \sigma_{2}\right)^{3 n} \cdot c\right) \mid I \in \mathbb{N}, I \text { is odd. }\right\}
$$

such that, if $K \in \mathcal{F}^{m, n}$ then

$$
\operatorname{dalt}(K)=m+n \quad \text { and } \quad m-1 \leq \operatorname{alt}(K) \leq m+1 .
$$

Theorem (G.)

For all pair m, n of positive integers there exists a family of knots

$$
\mathcal{F}^{m, n}=\left\{N\left(\left(\sigma_{2} \sigma_{3}\right)^{3(m+1)} \sigma_{2}^{\prime} \sigma_{3}^{-1}\left(\sigma_{1} \sigma_{2}\right)^{3 n} \cdot c\right) \mid I \in \mathbb{N}, I \text { is odd. }\right\}
$$

such that, if $K \in \mathcal{F}^{m, n}$ then

$$
\operatorname{dalt}(K)=m+n \quad \text { and } \quad m-1 \leq \operatorname{alt}(K) \leq m+1 .
$$

Thank you for your attention

