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Maŕıa de los Angeles Guevara Hernández
Osaka City University Advanced Mathematical Institute

(CONACYT-Mexico fellow)

guevarahernandez.angeles@gmail.com

Waseda University, Japan

December 25, 2018

Guevara Hernández (OCAMI) alt(K) and dalt(K) December 25, 2018 1 / 24



Introduction

Definition

A link is a disjoint union of circles embedded in S3, a knot is a link with
one component.
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Introduction

Definition

A knot that possesses an alternating diagram is called an alternating
knot, otherwise it is called a non-alternating knot.

Alternating diagram Non-alternating diagram

In 2015 Greene and Howie,independently, gave a characterization of
alternating links.
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Definition (Adams et al., 1992)

The dealternating number of a link diagram D is the minimum number of
crossing changes necessary to transform D into an alternating diagram.
The dealternating number of a link L, denoted dalt(L), is the minimum
dealternating number of any diagram of L.

A link with dealternating number k is also called k-almost alternating. We
say that a link is almost alternating if it is 1-almost alternating.
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Definition (Kawauchi, 2010)

The alternation number of a link diagram D is the minimum number of
crossing changes necessary to transform D into some (possibly
non-alternating) diagram of an alternating link.
The alternation number of a link L, denoted alt(L), is the minimum
alternation number of any diagram of L.
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alt(L) = 1 dalt(L) = 2

alt(L) ≤ dalt(L)

Adams et al. showed that an almost alternating knot is either a torus knot
or a hyperbolic knot.
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Turaev genus

To a link diagram D, Turaev associated a closed orientable surface
embedded in S3, called the Turaev surface.

Definition (Turaev, 1987)

The Turaev genus, gT (L), of a link L is the minimal number of the genera
of the Turaev surfaces of diagrams of L.

[Dasbach et al., 2008] gT (L) = 0 if and only if L is alternating.
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Khovanov homology [Khovanov, 2000]

Let L ∈ S3 be an oriented link. The Khovanov homology of L, denoted
Kh(L), is a bigraded Z-module with homological grading i and polynomial
(or Jones) grading j so that Kh(L) =

⊕
i ,j Kh

i ,j(L).

j�i −4 −3 −2 −1 0 1 2

7 1
5

3 1 1

1 1 1

−1 1 1

−3 1 1
−5

−7 1

The coefficients of the monomials t iqj are shown.
j − 2i = s + 1 or j − 2i = s − 1, where s = 2 is the signature of 942.
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wKh(K )

δ = j − 2i so that Kh(L) =
⊕

δ Kh
δ(L).

Let δmin be the minimum δ-grading where Kh(L) is nontrivial and
δmax be the maximum δ-grading where Kh(L) is nontrivial.

Kh(L) is said to be [δmin, δmax ]-thick, and the Khovanov width of L is
defined as

wKh(L) =
1

2
(δmax − δmin) + 1.
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alt(K ) ≤ dalt(K ). (1)

gT (K ) ≤ dalt(K ). (2)

wKh(K )− 2 ≤ gT (K ). (3)

ŵHF (K )− 1 ≤ gT (K ). (4)

(2) [Abe and Kishimoto, 2010];
(3)[Champanerkar et al., 2007] and [Champanerkar and Kofman, 2009];

(4)[M. Lowrance, 2008].
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|σ(K )− s(K )|
2

≤ alt(K ). (5)

|σ(K )− s(K )|
2

≤ gT (K ). (6)

Skein relation
0 ≤ σ(K+)− σ(K−) ≤ 2. (7)

0 ≤ s(K+)− s(K−) ≤ 2. (8)

where σ(K) and s(K) are the signature and Rasmussen s-invariant of a knot K ,

respectively, and both invariants are equal to 2 for the positive trefoil knot.

(5) [Abe, 2009];
(6)[Dasbach and Lowrance, 2011];
(7) [Cochran and Lickorish, 1986];

(8) [Rasmussen, 2010].
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alt(K ) and dalt(K )

[Abe and Kishimoto, 2010] Examples where the alternation number equals
the dealternating number.

[Lowrance, 2015] For all n ∈ N there exists a knot K , which is the
iteration of Whitehead doubles of eight figure-eight knot, such that
alt(K ) = 1 and n ≤ dalt(K ).

[Guevara-Hernández, 2017] For all n ∈ N there exist a knot family DSn
such that if K ∈ DSn then alt(K ) = 1 and dalt(K ) = n.
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Families of knots

N((σ2σ3)3(m+1)σl2σ
−1
3 (σ1σ2)3n · c)

where l ,m, n ∈ N.
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wKh(K )− 2 ≤ dalt(K )

Theorem (Khovanov, 2010)

There are long exact sequences

· · ·Khi−e−1,j−3e−2(Dh)→ Khi,j(D+)→ Khi,j−1(Dv )→ Khi−3,j−3e−2(Dh)→ · · ·
and
· · ·Khi,j+1(Dv )→ Khi,j(D−)→ Khi−e+1,j−3e+2(Dh)→ Khi+1,j+1(Dv )→ · · ·

When only the δ = j − 2i grading is considered, the long exact sequence become

· · ·Khδ−e(Dh)
f δ−e
+−−−→ Khδ(D+)

gδ
+−→ Khδ−1(Dv )

f δ−1
+−−−→ Khδ−e−2(Dh)→ · · ·

and

· · ·Khδ+1(Dv )
f δ+1
−−−→ Khδ(D−)

gδ
−−−→ Khδ−e(Dh)

hδ−e
−−−−→ Khδ−1(Dv )→ · · ·

e = neg(Dh)− neg(D+)

The crossings D+,D−,Dv ,Dh, respectively.
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wKh(K )

Corollary

Let D+,D−,Dv and Dh be as above. Suppose Kh(Dv ) is [vmin, vmax ]-thick and Kh(Dh) is

[hmin, hmax ]-thick. Then Kh(D+) is [δ
+
min, δ

+
max ]-thick, and Kh(D−) is [δ

−
min, δ

−
max ]-thick,

where

δ+
min =


min{vmin + 1, hmin + e} if vmin 6= hmin + e + 1
vmin + 1 if vmin = hmin + e + 1 and h

vmin
+ is surjective

vmin − 1 if vmin = hmin + e + 1 and h
vmin
+ is not surjective,

δ+
max =

 max{vmax + 1, hmax + e} if vmax 6= hmax + e + 1
vmax − 1 if vmax = hmax + e + 1 and hvmax

+ is injective
vmax + 1 if vmax = hmax + e + 1 and hvmax

+ is not injective,

δ−min =


min{vmin − 1, hmin + e} if vmin 6= hmin + e − 1
vmin + 1 if vmin = hmin + e − 1 and h

vmin
− is surjective

vmin − 1 if vmin = hmin + e − 1 and h
vmin
− is not surjective,

δ−max =


max{vmax − 1, hmax + e} if vmax 6= hmax + e − 1
vmax − 1 if vmax = hmax + e − 1 and hvmax

− is injective
vmax + 1 if vmax = hmax + e − 1 and hvmax

− is not injective.
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Lemma (G.)

If D = N((σ2σ3)3(m+1)σl2σ
−1
3 (σ1σ2)3n · c), then Kh(D) is

[4m + l + 2, 6m + 2n + l + 4]-thick. Hence, wKh(D) = m + n + 2.

Proof. (outline)

D+

Dv Dh

Dhv Dhh
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Lemma (G. )

Let D be the closure of the 3-braid (σ2σ3)3kσr2σ
−1
3 (σ1σ2)3n with

k , r ,m ∈ N and k ≥ 2, then Kh(D) is
[4(k + n) + r − 3, 6(k + n) + r − 3]-thick.

Proof. Induction over n by using the braid σr2σ
−1
3 (σ2σ3)3k(σ1σ2)3n. �

Proposition (Lowrance, 2009)

Let D be the closure of the braid (σ1σ2)3kσa1σ
−1
2 where a and k are

positive integers. Then Kh(D) is [4k + a− 2, 6k + a− 2]-thick.
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Kh(D∗v ) is [4(m + n) + l + 1, 6(m + n) + l + 3]-thick
neg(Dv ) = 4n + 1 and neg(D∗v ) = 1 Khδ(Dv ) ∼= Khδ+s(D∗v ).
Therefore Kh(Dv ) is [4m + l + 1, 6m + l + 3]-thick.

Note that Dhv = D∗v and Kh(Dhh) is [4m + l + 2, 6m + l + 4]-thick.
neg(Dhh)− neg(Dh) = 4n + 1− 1.
Then, Kh(Dh) is [4(m + n) + l + 2, 6(m + n) + l + 4]-thick.

e = neg(Dh)− neg(D+) = −4n,
since 4m + l + 1 6= (4(m + n) + l + 2) + e + 1 and
6m + l + 3 6= (6(m + n) + l + 4) + e + 1
It implies that Kh(D+) is [4m + l + 2, 6m + 2n + l + 4]-thick. Hence,
wKh(N(D)) = m + n + 2.

�
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Theorem (G.)

For all pair m, n of positive integers there exists a family of knots

Fm,n = {N((σ2σ3)3(m+1)σl2σ
−1
3 (σ1σ2)3n · c) |l ∈ N, l is odd.}

such that, if K ∈ Fm,n then
dalt(K ) = m + n and m − 1 ≤ alt(K ) ≤ m + 1.

Proof.
Due to the previous lemma we have that

wKh(K ) = m + n + 2.

Beside,
wKh(K )− 2 ≤ gT (K ) ≤ dalt(K ).

It follows that
m + n ≤ dalt(K ).
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alt(K ) ≤ m + n

After m + n crossings changes we have an alternating diagram. Therefore,
dalt(K ) = m + n.
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Alternation number

One crossing change.

We obtain
(σ1σ2)3(m+1)σl1σ

−1
2

which is conjugate to
(σ1σ2)3mσl+4

1 σ2
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Theorem (Kanenobu, 2010)

For positive integers m, r with r odd and r ≥ 5, we have that the closure
of the 3-braid (σ1σ2)3mσr1σ2, denoted by Km,r , has alternation number
equal to m.

It was used the following inequality.

|σ(Km,r )− s(Km,r )| /2 ≤ alt(Km,r ). (9)

|σ(Km,r )− s(Km,r )| /2 = alt(Km,r ). (10)

Then, alt(K ) ≤ m + 1.
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Skein relation
0 ≤ σ(D+)− σ(D−) ≤ 2. (11)

0 ≤ s(D+)− s(D−) ≤ 2. (12)

D+ is a diagram of K , D− = Km,r

m − 1 ≤ |σ(K )− s(K )| /2 ≤ m + 1. (13)

Then, alt(K ) ≥ m − 1.

Therefore,
m − 1 ≤ alt(K ) ≤ m + 1.
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Theorem (G.)

For all pair m, n of positive integers there exists a family of knots

Fm,n = {N((σ2σ3)3(m+1)σl2σ
−1
3 (σ1σ2)3n · c) |l ∈ N, l is odd.}

such that, if K ∈ Fm,n then
dalt(K ) = m + n and m − 1 ≤ alt(K ) ≤ m + 1.

Thank you for your attention
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