Gap between the alternation number and the dealternating number

María de los Angeles Guevara Hernández
Osaka City University Advanced Mathematical Institute
(CONACYT-Mexico fellow)
guevarahernandez.angeles@gmail.com

研究集会「結び目の数理」

Waseda University, Japan
December 25, 2018
A link is a disjoint union of circles embedded in S^3, a knot is a link with one component.
Introduction

Definition

A knot that possesses an alternating diagram is called an **alternating knot**, otherwise it is called a non-alternating knot.

![Alternating diagram](image1)

![Non-alternating diagram](image2)
Introduction

Definition

A knot that possesses an alternating diagram is called an alternating knot, otherwise it is called a non-alternating knot.

In 2015 Greene and Howie, independently, gave a characterization of alternating links.
Definition (Adams et al., 1992)

The dealternating number of a link diagram \(D \) is the minimum number of crossing changes necessary to transform \(D \) into an alternating diagram. The dealternating number of a link \(L \), denoted \(dalt(L) \), is the minimum dealternating number of any diagram of \(L \).

A link with dealternating number \(k \) is also called \(k \)-almost alternating. We say that a link is \textit{almost alternating} if it is 1-almost alternating.
Definition (Kawauchi, 2010)

The alternation number of a link diagram D is the minimum number of crossing changes necessary to transform D into some (possibly non-alternating) diagram of an alternating link.

The alternation number of a link L, denoted $\text{alt}(L)$, is the minimum alternation number of any diagram of L.
Adams et al. showed that an almost alternating knot is either a torus knot or a hyperbolic knot.

\[\text{alt}(L) = 1 \quad \text{dalt}(L) = 2 \]

\[\text{alt}(L) \leq \text{dalt}(L) \]
Adams et al. showed that an almost alternating knot is either a torus knot or a hyperbolic knot.
To a link diagram D, Turaev associated a closed orientable surface embedded in S^3, called the \textit{Turaev surface}.

\begin{definition}[Turaev, 1987]
The \textit{Turaev genus}, $g_T(L)$, of a link L is the minimal number of the genera of the Turaev surfaces of diagrams of L.
\end{definition}

\cite{Dasbach et al., 2008} $g_T(L) = 0$ if and only if L is alternating.
Let \(L \in S^3 \) be an oriented link. The Khovanov homology of \(L \), denoted \(Kh(L) \), is a bigraded \(\mathbb{Z} \)-module with homological grading \(i \) and polynomial (or Jones) grading \(j \) so that \(Kh(L) = \bigoplus_{i,j} Kh^{i,j}(L) \).

<table>
<thead>
<tr>
<th>(j) (\backslash) (i)</th>
<th>(-4)</th>
<th>(-3)</th>
<th>(-2)</th>
<th>(-1)</th>
<th>(0)</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(-3)</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The coefficients of the monomials \(t^i q^j \) are shown.

\(j - 2i = s + 1 \) or \(j - 2i = s - 1 \), where \(s = 2 \) is the signature of \(9_{42} \).
\[\delta = j - 2i \] so that \(Kh(L) = \bigoplus_{\delta} Kh^{\delta}(L) \).

Let \(\delta_{\text{min}} \) be the minimum \(\delta \)-grading where \(Kh(L) \) is nontrivial and \(\delta_{\text{max}} \) be the maximum \(\delta \)-grading where \(Kh(L) \) is nontrivial.

\(Kh(L) \) is said to be \([\delta_{\text{min}}, \delta_{\text{max}}]\)-thick, and the Khovanov width of \(L \) is defined as

\[w_{Kh}(L) = \frac{1}{2} (\delta_{\text{max}} - \delta_{\text{min}}) + 1. \]
\begin{align*}
 \text{alt}(K) & \leq \text{dalt}(K). \\
 g_T(K) & \leq \text{dalt}(K). \\
 w_{Kh}(K) - 2 & \leq g_T(K). \\
 \widehat{w}_{HF}(K) - 1 & \leq g_T(K).
\end{align*}

(2) [Abe and Kishimoto, 2010];
(3) [Champanerkar et al., 2007] and [Champanerkar and Kofman, 2009];
(4) [M. Lowrance, 2008].
\[
|\sigma(K) - s(K)| \leq \frac{\text{alt}(K)}{2}.
\] (5)

\[
|\sigma(K) - s(K)| \leq g_T(K).
\] (6)

Skein relation

\[
0 \leq \sigma(K_+) - \sigma(K_-) \leq 2.
\] (7)

\[
0 \leq s(K_+) - s(K_-) \leq 2.
\] (8)

where \(\sigma(K)\) and \(s(K)\) are the signature and Rasmussen \(s\)-invariant of a knot \(K\), respectively, and both invariants are equal to 2 for the positive trefoil knot.

(5) [Abe, 2009];
(6)[Dasbach and Lowrance, 2011];
(7) [Cochran and Lickorish, 1986];
(8) [Rasmussen, 2010].
\(\text{alt}(K) \) and \(\text{dalt}(K) \)

[Abe and Kishimoto, 2010] Examples where the alternation number equals the dealternating number.

[Lowrance, 2015] For all \(n \in \mathbb{N} \) there exists a knot \(K \), which is the iteration of Whitehead doubles of eight figure-eight knot, such that \(\text{alt}(K) = 1 \) and \(n \leq \text{dalt}(K) \).

[Guevara-Hernández, 2017] For all \(n \in \mathbb{N} \) there exist a knot family \(DS_n \) such that if \(K \in DS_n \) then \(\text{alt}(K) = 1 \) and \(\text{dalt}(K) = n \).
Families of knots

\[N\left((\sigma_2\sigma_3)^{3(m+1)}\sigma_2\sigma_3^{-1}(\sigma_1\sigma_2)^{3n} \cdot c\right) \]

where \(l, m, n \in \mathbb{N} \).
Families of knots

\[
N((\sigma_2\sigma_3)^3(m+1)\sigma_2\sigma_3^{-1}(\sigma_1\sigma_2)^3n \cdot c)
\]

where \(l, m, n \in \mathbb{N} \).
\[N((\sigma_2\sigma_3)^{3(m+1)}\sigma_2\sigma_3^{-1}(\sigma_1\sigma_2)^{3n} \cdot c) \]

where \(l, m, n \in \mathbb{N} \).
Families of knots

\[N((\sigma_2\sigma_3)^3(m+1)\sigma_2\sigma_3^{-1}(\sigma_1\sigma_2)^3n \cdot c) \]

where \(l, m, n \in \mathbb{N} \).
Families of knots

$$N(((\sigma_2\sigma_3)^3(m+1)\sigma_2\sigma_3^{-1}(\sigma_1\sigma_2)^3n \cdot c)$$

where $l, m, n \in \mathbb{N}$.
\[N(\left(\sigma_2 \sigma_3\right)^{3(m+1)} \sigma_2^{-1} \sigma_3 \sigma_2^{-1} \left(\sigma_1 \sigma_2\right)^{3n} \cdot c) \]

where \(l, m, n \in \mathbb{N} \).
\(w_{Kh}(K) - 2 \leq dalt(K) \)

Theorem (Khovanov, 2010)

There are long exact sequences

\[\cdots Kh^{i-e-1,j-3e-2}(D_h) \to Kh^{i,j}(D_+) \to Kh^{i,j-1}(D_v) \to Kh^{i-3,j-3e-2}(D_h) \to \cdots \]

and

\[\cdots Kh^{i,j+1}(D_v) \to Kh^{i,j}(D_-) \to Kh^{i-e+1,j-3e+2}(D_h) \to Kh^{i+1,j+1}(D_v) \to \cdots \]

When only the \(\delta = j - 2i \) grading is considered, the long exact sequence become

\[\cdots Kh^{\delta-e}(D_h) \xrightarrow{f_+^{\delta-e}} Kh^\delta(D_+) \xrightarrow{g_+^\delta} Kh^{\delta-1}(D_v) \xrightarrow{f_+^{\delta-1}} Kh^{\delta-e-2}(D_h) \to \cdots \]

and

\[\cdots Kh^{\delta+1}(D_v) \xrightarrow{f_-^{\delta+1}} Kh^\delta(D_-) \xrightarrow{g_-^\delta} Kh^{\delta-e}(D_h) \xrightarrow{h_-^{\delta-e}} Kh^{\delta-1}(D_v) \to \cdots \]

\(e = neg(D_h) - neg(D_+) \)

The crossings \(D_+, D_-, D_v, D_h \), respectively.
Let D_+, D_-, D_v and D_h be as above. Suppose $Kh(D_v)$ is $[v_{\text{min}}, v_{\text{max}}]$-thick and $Kh(D_h)$ is $[h_{\text{min}}, h_{\text{max}}]$-thick. Then $Kh(D_+)$ is $[\delta^+_{\text{min}}, \delta^+_{\text{max}}]$-thick, and $Kh(D_-)$ is $[\delta^-_{\text{min}}, \delta^-_{\text{max}}]$-thick, where

$$
\delta^+_{\text{min}} = \begin{cases}
\min\{v_{\text{min}} + 1, h_{\text{min}} + e\} & \text{if } v_{\text{min}} \neq h_{\text{min}} + e + 1 \\
v_{\text{min}} + 1 & \text{if } v_{\text{min}} = h_{\text{min}} + e + 1 \text{ and } h^v_{\min} \text{ is surjective} \\
v_{\text{min}} - 1 & \text{if } v_{\text{min}} = h_{\text{min}} + e + 1 \text{ and } h^v_{\min} \text{ is not surjective},
\end{cases}
$$

$$
\delta^+_{\text{max}} = \begin{cases}
\max\{v_{\text{max}} + 1, h_{\text{max}} + e\} & \text{if } v_{\text{max}} \neq h_{\text{max}} + e + 1 \\
v_{\text{max}} - 1 & \text{if } v_{\text{max}} = h_{\text{max}} + e + 1 \text{ and } h^v_{\max} \text{ is injective} \\
v_{\text{max}} + 1 & \text{if } v_{\text{max}} = h_{\text{max}} + e + 1 \text{ and } h^v_{\max} \text{ is not injective},
\end{cases}
$$

$$
\delta^-_{\text{min}} = \begin{cases}
\min\{v_{\text{min}} - 1, h_{\text{min}} + e\} & \text{if } v_{\text{min}} \neq h_{\text{min}} + e - 1 \\
v_{\text{min}} + 1 & \text{if } v_{\text{min}} = h_{\text{min}} + e - 1 \text{ and } h^v_{\min} \text{ is surjective} \\
v_{\text{min}} - 1 & \text{if } v_{\text{min}} = h_{\text{min}} + e - 1 \text{ and } h^v_{\min} \text{ is not surjective},
\end{cases}
$$

$$
\delta^-_{\text{max}} = \begin{cases}
\max\{v_{\text{max}} - 1, h_{\text{max}} + e\} & \text{if } v_{\text{max}} \neq h_{\text{max}} + e - 1 \\
v_{\text{max}} - 1 & \text{if } v_{\text{max}} = h_{\text{max}} + e - 1 \text{ and } h^v_{\max} \text{ is injective} \\
v_{\text{max}} + 1 & \text{if } v_{\text{max}} = h_{\text{max}} + e - 1 \text{ and } h^v_{\max} \text{ is not injective}.\end{cases}
$$
Lemma (G.)

If \(D = N((\sigma_2 \sigma_3)^{3(m+1)} \sigma_2^{-1} \sigma_3^{-1} (\sigma_1 \sigma_2)^{3n} \cdot c) \), then \(Kh(D) \) is \([4m + l + 2, 6m + 2n + l + 4]\)-thick. Hence, \(w_{kh}(D) = m + n + 2 \).

Proof. (outline)
Lemma (G.)

If \(D = N((\sigma_2 \sigma_3)^3(m+1)\sigma_2^l \sigma_3^{-1}(\sigma_1 \sigma_2)^3 n \cdot c) \), then \(Kh(D) \) is \([4m + l + 2, 6m + 2n + l + 4]\)-thick. Hence, \(w_{Kh}(D) = m + n + 2 \).

Proof. (outline)
Lemma (G.)

If \(D = N((\sigma_2 \sigma_3)^{3(m+1)} \sigma_2^l \sigma_3^{-1}(\sigma_1 \sigma_2)^{3n} \cdot c) \), then \(Kh(D) \) is \([4m + l + 2, 6m + 2n + l + 4]\)-thick. Hence, \(w_{Kh}(D) = m + n + 2 \).

Proof. (outline)
Lemma (G.)

Let D be the closure of the 3-braid $(\sigma_2\sigma_3)^{3k}\sigma_2^r\sigma_3^{-1}(\sigma_1\sigma_2)^{3n}$ with $k, r, m \in \mathbb{N}$ and $k \geq 2$, then $Kh(D)$ is $[4(k + n) + r - 3, 6(k + n) + r - 3]$-thick.

Proof. Induction over n by using the braid $\sigma_2^r\sigma_3^{-1}(\sigma_2\sigma_3)^{3k}(\sigma_1\sigma_2)^{3n}$. □
Lemma (G.)

Let D be the closure of the 3-braid $(\sigma_2 \sigma_3)^{3k} \sigma_2^r \sigma_3^{-1} (\sigma_1 \sigma_2)^{3n}$ with $k, r, m \in \mathbb{N}$ and $k \geq 2$, then $\text{Kh}(D)$ is $[4(k + n) + r - 3, 6(k + n) + r - 3]$-thick.

Proof. Induction over n by using the braid $\sigma_2^r \sigma_3^{-1} (\sigma_2 \sigma_3)^{3k} (\sigma_1 \sigma_2)^{3n}$. □

Proposition (Lowrance, 2009)

Let D be the closure of the braid $(\sigma_1 \sigma_2)^{3k} \sigma_1^a \sigma_2^{-1} \sigma_2$ where a and k are positive integers. Then $\text{Kh}(D)$ is $[4k + a - 2, 6k + a - 2]$-thick.
Kh(D^*_v) is $[4(m + n) + l + 1, 6(m + n) + l + 3]$-thick

$\neg(D_v) = 4n + 1$ and $\neg(D^*_v) = 1$ $Kh^\delta(D_v) \cong Kh^{\delta+s}(D^*_v)$.

Therefore $Kh(D_v)$ is $[4m + l + 1, 6m + l + 3]$-thick.

Note that $D_{hv} = D^*_v$ and $Kh(D_{hh})$ is $[4m + l + 2, 6m + l + 4]$-thick.

$\neg(D_{hh}) - \neg(D_h) = 4n + 1 - 1$.

Then, $Kh(D_h)$ is $[4(m + n) + l + 2, 6(m + n) + l + 4]$-thick.

$e = \neg(D_h) - \neg(D_+) = -4n$,

since $4m + l + 1 \neq (4(m + n) + l + 2) + e + 1$ and

$6m + l + 3 \neq (6(m + n) + l + 4) + e + 1$.

It implies that $Kh(D_+)$ is $[4m + l + 2, 6m + 2n + l + 4]$-thick. Hence,

$w_{Kh}(N(D)) = m + n + 2$.

\[\square \]
Theorem (G.)

For all pair m, n of positive integers there exists a family of knots

$$\mathcal{F}^{m,n} = \{ N((\sigma_2\sigma_3)^{3(m+1)}\sigma_2\sigma_3^{-1}(\sigma_1\sigma_2)^{3n} \cdot c) \mid l \in \mathbb{N}, l \text{ is odd.} \}$$

such that, if $K \in \mathcal{F}^{m,n}$ then

$$dalt(K) = m + n \quad \text{and} \quad m - 1 \leq alt(K) \leq m + 1.$$

Proof.

Due to the previous lemma we have that

$$w_{Kh}(K) = m + n + 2.$$

Beside,

$$w_{Kh}(K) - 2 \leq g_T(K) \leq dalt(K).$$

It follows that

$$m + n \leq dalt(K).$$
\(alt(K) \leq m + n \)
\(\text{alt}(K) \leq m + n\)
\[\text{alt}(K) \leq m + n \]

After \(m + n \) crossings changes we have an alternating diagram. Therefore,
\[\text{dalt}(K) = m + n. \]
After $m + n$ crossings changes we have an alternating diagram. Therefore, $d_{alt}(K) = m + n$.
One crossing change.
One crossing change.
Alternation number

One crossing change.

\[(\sigma_1 \sigma_2)^3(m + 1)\sigma_l \sigma_2\]

which is conjugate to

\[(\sigma_1 \sigma_2)^3m\sigma_l + 4\sigma_2\]
Alternation number

One crossing change.
Alternation number

One crossing change.
Alternation number

One crossing change.
One crossing change.
Alternation number

One crossing change.
Alternation number

One crossing change.
One crossing change.
Alternation number

One crossing change.
One crossing change.
Alternation number

One crossing change.

\[(\sigma_1 \sigma_2)^{3(m+1)} \sigma_1 \sigma_{-1}^2\]

which is conjugate to

\[(\sigma_1 \sigma_2)^{3m} \sigma_l^4 \sigma_2\]
Alternation number

One crossing change.

We obtain

\[(\sigma_1 \sigma_2)^{3(m+1)} \sigma_1 \sigma_2^{-1}\]
One crossing change.

We obtain

\[(\sigma_1 \sigma_2)^{3(m+1)} \sigma_1 \sigma_2^{-1}\]

which is conjugate to

\[(\sigma_1 \sigma_2)^{3m} \sigma_1^{l+4} \sigma_2\]
Theorem (Kanenobu, 2010)

For positive integers m, r with r odd and $r \geq 5$, we have that the closure of the 3-braid $(\sigma_1 \sigma_2)^{3m} \sigma_1' \sigma_2$, denoted by $K_{m,r}$, has alternation number equal to m.

It was used the following inequality.

$$\left|\sigma(K_{m,r}) - s(K_{m,r})\right| / 2 \leq \text{alt}(K_{m,r}).$$

(9)
Theorem (Kanenobu, 2010)

For positive integers m, r with r odd and $r \geq 5$, we have that the closure of the 3-braid $(\sigma_1\sigma_2)^3m\sigma_1\sigma_2$, denoted by $K_{m,r}$, has alternation number equal to m.

It was used the following inequality.

$$\frac{|\sigma(K_{m,r}) - s(K_{m,r})|}{2} \leq alt(K_{m,r}).$$ \hspace{2cm} (9)

$$\frac{|\sigma(K_{m,r}) - s(K_{m,r})|}{2} = alt(K_{m,r}).$$ \hspace{2cm} (10)

Then, $alt(K) \leq m + 1$.

Skein relation

\[0 \leq \sigma(D_+) - \sigma(D_-) \leq 2. \quad (11) \]
\[0 \leq s(D_+) - s(D_-) \leq 2. \quad (12) \]

\(D_+ \) is a diagram of \(K \), \(D_- = K_{m,r} \)

\[m - 1 \leq |\sigma(K) - s(K)|/2 \leq m + 1. \quad (13) \]

Then, \(alt(K) \geq m - 1 \).

Therefore,

\[m - 1 \leq alt(K) \leq m + 1. \]
Theorem (G.)

For all pair \(m, n \) of positive integers there exists a family of knots

\[
\mathcal{F}^{m,n} = \{ N((\sigma_2\sigma_3)^{3(m+1)}\sigma_2^{-1}\sigma_1\sigma_2^{3n} \cdot c) \mid l \in \mathbb{N}, l \text{ is odd.} \}
\]

such that, if \(K \in \mathcal{F}^{m,n} \) then

\[
dalt(K) = m + n \quad \text{and} \quad m - 1 \leq alt(K) \leq m + 1.
\]
Theorem (G.)

For all pair \(m, n \) of positive integers there exists a family of knots

\[
\mathcal{F}^{m,n} = \{ N((\sigma_2\sigma_3)^{3(m+1)}\sigma_2\sigma_3^{-1}(\sigma_1\sigma_2)^{3n} \cdot c) \mid l \in \mathbb{N}, l \text{ is odd} \}
\]

such that, if \(K \in \mathcal{F}^{m,n} \) then

\[
dalt(K) = m + n \quad \text{and} \quad m - 1 \leq \text{alt}(K) \leq m + 1.
\]

Thank you for your attention