Rasmussen invariant and normalization of the canonical classes

Taketo Sano

The University of Tokyo

2018-12-26
Outline

1. Overview

2. Review: Khovanov homology theory

3. Generalized Lee’s class

4. Divisibility of Lee’s class and the invariant s'_c

5. Variance of s'_c under cobordisms

6. Coincidence with the s-invariant

7. Appendix
Overview
History

- M. Khovanov, A categorification of the Jones polynomial. (2000)
 - Homology constructed from a planar link diagram.
 - Its graded Euler characteristic gives the Jones polynomial.

 - A variant Khovanov-type homology.
 - Introduced to prove the “Kight move conjecture” for the \(\mathbb{Q}\)-Khovanov homology of alternating knots.

- J. Rasmussen, Khovanov homology and the slice genus. (2004)
 - A knot invariant obtained from \(\mathbb{Q}\)-Lee homology.
 - Gives a lower bound of the slice genus, and also gives an alternative (combinatorial) proof for the Milnor conjecture.
Lee homology and the s-invariant

For a knot diagram D, there are 2 distinct classes $[\alpha], [\beta]$ in $H_{Lee}(D; \mathbb{Q})$, that form a generator of the \mathbb{Q}-Lee homology of D:

$$H_{Lee}(D; \mathbb{Q}) = \mathbb{Q} \langle [\alpha], [\beta] \rangle \cong \mathbb{Q}^2.$$

Rasmussen proved that they are are invariant (up to unit) under the Reidemeister moves. Thus are called the “canonical generators” of $H_{Lee}(K; \mathbb{Q})$ for the corresponding knot K.

The difference of the q-degrees of two classes $[\alpha + \beta]$ and $[\alpha - \beta]$ is exactly 2, and the s-invariant is defined as:

$$s(K) := \frac{q\deg([\alpha + \beta]) + q\deg([\alpha - \beta])}{2}.$$
Rasmussen’s theorems

Theorem ([1, Theorem 2])
s defines a homomorphism from the knot concordance group in S^3 to $2\mathbb{Z}$,

$$s: \text{Conc}(S^3) \rightarrow 2\mathbb{Z}.$$

Theorem ([1, Theorem 1])
s gives a lower bound of the slice genus:

$$|s(K)| \leq 2g_*(K),$$

Corollary (The Milnor Conjecture)
The slice genus of the (p, q) torus knot is $(p - 1)(q - 1)/2$.
Our Questions

Now consider the Lee homology over \mathbb{Z}.

Question

Does $\{[\alpha(D, o)]\}$ generate $H_{\text{Lee}}(D; \mathbb{Z})/(\text{tors})$?

Answer

No.

Question

Is each $[\alpha(D, o)]$ invariant up to unit under the Reidemeister moves?

Answer

No.
Observations

Computational results showed that the components of $[\alpha], [\beta]$ with respect to a computed basis of $H_{Lee}(D; \mathbb{Z})_f \cong \mathbb{Z}^2$ were 2-powers.

<table>
<thead>
<tr>
<th>3_1</th>
<th>4_1</th>
<th>5_1</th>
<th>5_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b \otimes a_{111}$</td>
<td>2, -2</td>
<td>$a \otimes b_{111}$</td>
<td>-2, -2</td>
</tr>
<tr>
<td>$a \otimes b_{111}$</td>
<td>-2, -2</td>
<td>$b \otimes a_{1011}$</td>
<td>2, -2</td>
</tr>
<tr>
<td>$b \otimes a_{1111}$</td>
<td>2, -2</td>
<td>$a \otimes b_{1111}$</td>
<td>-2, -2</td>
</tr>
<tr>
<td>$b \otimes a \otimes a_{1111}$</td>
<td>$[-8$, $8]$</td>
<td>$a \otimes b \otimes a_{1111}$</td>
<td>$[-8$, $-8]$</td>
</tr>
</tbody>
</table>

The 2-divisibility of $[\alpha], [\beta]$ might give some important information. This observation can be extended to a more generalized setting.
Main theorems

Definition
Let $c \in R$. For any link L, define a link invariant as:

$$s'_c(L; R) := 2k_c(D; R) - r(D) + w(D) + 1.$$

Theorem (S.)
s'_c defines a link concordance invariant in S^3.

Proposition (S.)
s'_c gives a lower bound of the slice genus:

$$|s'_c(K)| \leq 2g_*(K),$$

Corollary (The Milnor Conjecture)
The slice genus of the (p, q) torus knot is $(p - 1)(q - 1)/2$.
Main theorems

Theorem (S.)
Consider the polynomial ring $R = \mathbb{Q}[h]$. The knot invariant s'_h coincides with the Rasmussen’s s-invariant:

$$s(K) = s'_h(K; \mathbb{Q}[h]).$$

More generally, for any field F of char $F \neq 2$ we have:

$$s(K; F) = s'_h(K; F[h]).$$

Remark
We do not know (at the time of writing) whether there exists a pair (R, c) such that s'_c is distinct from any of $s(−; F)$.
Review: Khovanov homology theory
Construction of the chain complex $C_A(D)$

Let D be an (oriented) link diagram with n crossings. The 2^n possible resolutions of the crossings form a commutative cube of cobordisms.

By applying a TQFT determined by a Frobenius algebra A, we obtain a chain complex $C_A(D)$, and the homology $H_A(D)$.
Khovanov homology and its variants

Khovanov homology and some variants are given by the following Frobenius algebras:

- $A = R[X]/(X^2) \rightarrow$ Khovanov’s theory
- $A = R[X]/(X^2 - 1) \rightarrow$ Lee’s theory
- $A = R[X]/(X^2 - hX) \rightarrow$ Bar-Natan’s theory

Khovanov unified these theories by considering the following Frobenius algebra determined by two elements $h, t \in R$:

$$A_{h,t} = R[X]/(X^2 - hX - t).$$

Denote the corresponding chain complex by $C_{h,t}(D; R)$ and its homology by $H_{h,t}(D; R)$. The isomorphism class of $H_{h,t}(D; R)$ is invariant under Reidemeister moves, thus gives a link invariant.
Lee homology

Consider $H_{\text{Lee}}(-; \mathbb{Q}) = H_{0,1}(-; \mathbb{Q})$. For an ℓ-component link diagram D, there are 2^ℓ distinct classes $\{[\alpha(D, o)]\}_o$, one determined for each alternative orientation o of D:

These classes form a generator of the \mathbb{Q}-Lee homology of D:

$$H_{\text{Lee}}(D; \mathbb{Q}) = \mathbb{Q} \langle [\alpha(D, o)] \rangle_o \cong \mathbb{Q}^{2^\ell}$$

Question

Does this construction generalize to $H_{h,t}(D; R)$?
Generalized Lee’s class
Generalized Lee’s classes (1/2)

We assume \((R, h, t)\) satisfies:

Condition
There exists \(c \in R\) *such that* \(h^2 + 4t = c^2\) *and* \((h \pm c)/2 \in R\).*

With \(c = \sqrt{h^2 + 4t}\) (fix one such square root), let

\[
 u = (h - c)/2, \quad v = (h + c)/2 \in R.
\]

Then \(X^2 - hX - t\) factors as \((X - u)(X - v)\) in \(R[X]\).

The special case \(c = 2, \ (u, v) = (-1, 1)\) gives Lee’s theory.
Generalized Lee’s classes (2/2)

Let
\[a = X - u, \quad b = X - v \in A. \]

We define the \(\alpha \)-classes by the exact same procedure.

Proposition

If \(c = \sqrt{h^2 + 4t} \) is invertible, then \(H_{h,t}(D; R) \) is freely generated by \(\{ [\alpha(D, o)] \} \circ R \).

Our main concern is when \(c \) is not invertible.
Correspondence under Reidemeister moves (1/2)

The following is a generalization of the invariance of $[\alpha]$ over \mathbb{Q} (which implies that $[\alpha]$ is not invariant when c is non-invertible)

Proposition (S.)

Suppose D, D' are two diagrams related by a single Reidemeister move. Under the isomorphism corresponding to the move:

$$\rho : H_{h,t}(D; R) \rightarrow H_{h,t}(D'; R)$$

there exists some $j \in \{0, \pm 1\}$ such that $[\alpha(D)]$ in $H_{h,t}(D; R)$ and $[\alpha(D')]$ in $H_{h,t}(D'; R)$ are related as:

$$[\alpha(D')] = \pm c^j \rho[\alpha(D)].$$

(Here c is not necessarily invertible, so when $j < 0$ the equation $z = c^j w$ is to be understood as $c^{-j} z = w$.)
Proposition (continued)

Moreover \(j \) is determined as in the following table:

<table>
<thead>
<tr>
<th>Type</th>
<th>(\Delta r)</th>
<th>(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(RM1_L)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(RM1_R)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(RM2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(RM3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>-1</td>
</tr>
</tbody>
</table>

where \(\Delta r \) is the difference of the numbers of Seifert circles. Alternatively, \(j \) can be written as:

\[
j = \frac{\Delta r - \Delta w}{2},
\]

where \(\Delta w \) is the difference of the writhes.
Divisibility of Lee’s class and the invariant s'_c
Let R be an integral domain, and $c \in R$ be a non-zero non-invertible element. Denote $H_{h,t}(D; R)_f = H_{h,t}(D; R)/(\text{tor})$.

Definition
For any link diagram D, define:

$$k_c(D) = \max_{k \geq 0} \{ [\alpha(D)] \in c^k H_{h,t}(D; R)_f \}.$$
Proposition

Let D, D' be two diagrams a same link L. Then

$$\Delta k_c = \frac{\Delta r - \Delta w}{2}.$$

Proof.

Follows from the previous proposition, by taking any sequence of Reidemeister moves that transforms D to D'.

\square
Definition of s'_c

Thus the following definition is justified:

Definition
For any link L, define

$$s'_c(L; R) := 2k_c(D; R) - r(D) + w(D) + 1.$$

where D is any diagram of L, and

- $k_c(D)$ – the c-divisibility of Lee’s class $[\alpha] \in H_c(D; R)_f$,
- $r(D)$ – the number of Seifert circles of D, and
- $w(D)$ – the writhe of D.
Variance of s'_c under cobordisms
Proposition (S.)

If S is a oriented cobordism between links L, L' such that every component of S has a boundary in L, then

$$s'_c(L') - s'_c(L) \geq \chi(S).$$

If also every component of S has a boundary in both L and L', then

$$|s'_c(L') - s'_c(L)| \leq -\chi(S).$$
Behaviour under cobordisms (2/2)

Proof sketch.

Figure 1: The cobordism map

Decompose S into elementary cobordisms such that each corresponds to a Reidemeister move or a Morse move. Inspect the successive images of the α-class at each level.
Consequences

The previous proposition implies many properties of s'_c that are common to the s-invariant:

Theorem
s'_c is a link concordance invariant in S^3.

Proposition
For any knot K,

$$|s'_c(K)| \leq 2g_*(K),$$

Corollary (The Milnor Conjecture)
The slice genus of the (p, q) torus knot is $(p - 1)(q - 1)/2.$
Coincidence with the s-invariant
Normalizing Lee’s classes

Now we focus on knots, and

\[(R, c) = (F[h], h)\]

with \(F\) a field of char \(F \neq 2\) and \(\deg h = -2\).

We normalize Lee’s classes and obtain a basis \{ \([\zeta], [X\zeta]\) \} of \(H_{h,0}(D; F[h])_f\) such that

\[
[\alpha] = h^k([X\zeta] + (h/2)[\zeta]) \\
[\beta] = (-h)^k([X\zeta] - (h/2)[\zeta])
\]

where \(k = k_h(D; F[h])\).

Proposition

\{ \([\zeta], [X\zeta]\) \} are invariant under the Reidemeister moves. Moreover they are invariant under concordance.
The homomorphism property of s'_h

Using the normalized generators, we obtain the following:

Theorem (S.)

s'_h defines a homomorphism from the concordance group of knots in S^3 to $2\mathbb{Z}$,

$$s'_h: Conc(S^3) \to 2\mathbb{Z}.$$
Coincidence with the Rasmussen’s invariant (1/2)

Theorem (S.)
For any knot K,

$$s(K; F) = s'_h(K; F[h]).$$

Proof.
It suffices to prove:

$$s(K; F) \geq s'_h(K; F[h]).$$

The ring homomorphism $\pi : F[h] \to F$, $h \mapsto 2$ gives

$$\text{qdeg}([\alpha]) = \text{qdeg}(\pi_* [\alpha_h])$$

$$= \text{qdeg}(\pi_* [\alpha'_h])$$

$$\geq \text{qdeg}([\alpha'_h])$$

$$= 2k_h(D) + w(D) - r(D).$$
Corollary

\[s(K; F) = \text{qdeg}[\zeta] - 1. \]
The normalization of Lee’s class also works for \((R, c) = (\mathbb{Z}, 2)\), the integral Lee theory.

Computational results show that \(s'_2(K; \mathbb{Z})\) coincide with \(s(K; \mathbb{Q})\) for knots of crossing number up to 11.

Question

Is \(s'_2(K; \mathbb{Z})\) distinct from any of \(s(K; F)\)?

arXiv preprint coming soon...
Appendix
Let R be a commutative ring with unity. A Frobenius algebra over R is a quintuple $(A, m, \iota, \Delta, \varepsilon)$ satisfying:

1. (A, m, ι) is an associative R-algebra with multiplication $m : A \otimes A \to A$ and unit $\iota : R \to A$,

2. (A, Δ, ε) is a coassociative R-coalgebra with comultiplication $\Delta : A \to A \otimes A$ and counit $\varepsilon : A \to R$, and

3. the Frobenius relation holds:

$$\Delta \circ m = (id \otimes m) \circ (\Delta \otimes id) = (m \otimes id) \circ (id \otimes \Delta).$$
A (co)commutative Frobenius algebra A determines a $1+1$ TQFT

$$\mathcal{F}_A : \text{Cob}_2 \longrightarrow \text{Mod}_R,$$

by mapping:

- **Objects:**
 $$\bigcirc \sqcup \cdots \sqcup \bigcirc \longrightarrow A \otimes \cdots \otimes A$$

- **Morphisms:**
 $$\begin{array}{ccc}
 \cdots & \longrightarrow & \begin{array}{c}
 A \\
 \scriptstyle{\iota} \\
 \scriptstyle{\epsilon} \\
 \scriptstyle{\Delta}
 \end{array} \\
 \begin{array}{c}
 R \\
 A \\
 A \\
 A \otimes A
 \end{array} & \longrightarrow & \begin{array}{c}
 R \\
 A
 \end{array}
 \end{array}$$
Jacob Rasmussen.
Khovanov homology and the slice genus.