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Overview



History

I M. Khovanov, A categorification of the Jones polynomial.
(2000)

I Homology constructed from a planar link diagram.
I Its graded Euler characteristic gives the Jones polynomial.

I E. S. Lee, An endomorphism of the Khovanov invariant.
(2002)

I A variant Khovanov-type homology.
I Introduced to prove the “Kight move conjecture” for the

Q-Khovanov homology of alternating knots.

I J. Rasmussen, Khovanov homology and the slice genus.
(2004)

I A knot invariant obtained from Q-Lee homology.
I Gives a lower bound of the slice genus, and also gives an

alternative (combinatorial) proof for the Milnor conjecture.



Lee homology and the s-invariant

For a knot diagram D, there are 2 distinct classes [α], [β] in
HLee(D;Q), that form a generator of the Q-Lee homology of D:

HLee(D;Q) = Q 〈[α], [β]〉 ∼= Q2.

Rasmussen proved that they are are invariant (up to unit) under
the Reidemeister moves. Thus are called the “canonical
generators” of HLee(K ;Q) for the corresponding knot K .

The difference of the q-degrees of two classes [α + β] and [α− β]
is exactly 2, and the s-invariant is defined as:

s(K ) :=
qdeg([α + β]) + qdeg([α− β])

2
.



Rasmussen’s theorems

Theorem ([1, Theorem 2])

s defines a homomorphism from the knot concordance group in S3

to 2Z,
s : Conc(S3)→ 2Z.

Theorem ([1, Theorem 1])

s gives a lower bound of the slice genus:

|s(K )| ≤ 2g∗(K ),

Corollary (The Milnor Conjecture)

The slice genus of the (p, q) torus knot is (p − 1)(q − 1)/2.



Our Questions

Now consider the Lee homology over Z.

Question
Does {[α(D, o)]}o generate HLee(D;Z)/(tors) ?

Answer
No.

Question
Is each [α(D, o)] invariant up to unit under the Reidemeister
moves?

Answer
No.



Observations

Computational results showed that the components of [α], [β] with
respect to a computed basis of HLee(D;Z)f ∼= Z2 were 2-powers.

The 2-divisibility of [α], [β] might give some important information.
This observation can be extended to a more generalized setting.



Main theorems

Definition
Let c ∈ R. For any link L, define a link invariant as:

s ′c(L;R) := 2kc(D;R)− r(D) + w(D) + 1.

Theorem (S.)

s ′c defines a link concordance invariant in S3.

Proposition (S.)

s ′c gives a lower bound of the slice genus:

|s ′c(K )| ≤ 2g∗(K ),

Corollary (The Milnor Conjecture)

The slice genus of the (p, q) torus knot is (p − 1)(q − 1)/2.



Main theorems

Theorem (S.)

Consider the polynomial ring R = Q[h]. The knot invariant s ′h
coincides with the Rasmussen’s s-invariant :

s(K ) = s ′h(K ;Q[h]).

More generally, for any field F of char F 6= 2 we have:

s(K ;F ) = s ′h(K ;F [h]).

Remark
We do not know (at the time of writing) whether there exists a
pair (R, c) such that s ′c is distinct from any of s(−;F ).



Review: Khovanov homology theory



Construction of the chain complex CA(D)

Let D be an (oriented) link diagram with n crossings. The 2n

possible resolutions of the crossings form a commutative cube of
cobordisms.

By applying a TQFT determined by a Frobenius algebra A, we
obtain a chain complex CA(D), and the homology HA(D).



Khovanov homology and its variants

Khovanov homology and some variants are given by the following
Frobenius algebras:

I A = R[X ]/(X 2) → Khovanov’s theory

I A = R[X ]/(X 2 − 1) → Lee’s theory

I A = R[X ]/(X 2 − hX )→ Bar-Natan’s theory

Khovanov unified these theories by considering the following
Frobenius algebra determined by two elements h, t ∈ R:

Ah,t = R[X ]/(X 2 − hX − t).

Denote the corresponding chain complex by Ch,t(D;R) and its
homology by Hh,t(D;R). The isomorphism class of Hh,t(D;R) is
invariant under Reidemeister moves, thus gives a link invariant.



Lee homology

Consider HLee(−;Q) = H0,1(−;Q). For an `-component link
diagram D, there are 2` distinct classes {[α(D, o)]}o , one
determined for each alternative orientation o of D:

These classes form a generator of the Q-Lee homology of D:

HLee(D;Q) = Q 〈[α(D, o)]〉o ∼= Q2`

Question
Does this construction generalize to Hh,t(D;R)?



Generalized Lee’s class



Generalized Lee’s classes (1/2)

We assume (R, h, t) satisfies:

Condition
There exists c ∈ R such that h2 + 4t = c2 and (h ± c)/2 ∈ R.

With c =
√
h2 + 4t (fix one such square root), let

u = (h − c)/2, v = (h + c)/2 ∈ R.

Then X 2 − hX − t factors as (X − u)(X − v) in R[X ].

The special case c = 2, (u, v) = (−1, 1) gives Lee’s theory.



Generalized Lee’s classes (2/2)

Let
a = X − u, b = X − v ∈ A.

We define the α-classes by the exact same procedure.

Proposition

If c =
√
h2 + 4t is invertible, then Hh,t(D;R) is freely generated

by {[α(D, o)]}o R.

Our main concern is when c is not invertible.



Correspondence under Reidemeister moves (1/2)

The following is a generalization of the invariance of [α] over Q
(which implies that [α] is not invariant when c is non-invertible)

Proposition (S.)

Suppose D,D ′ are two diagrams related by a single Reidemeister
move. Under the isomorphism corresponding to the move:

ρ : Hh,t(D;R)→ Hh,t(D
′;R)

there exists some j ∈ {0,±1} such that [α(D)] in Hh,t(D;R) and
[α(D ′)] in Hh,t(D

′;R) are related as:

[α(D ′)] = ±c jρ[α(D)].

(Here c is not necessarily invertible, so when j < 0 the equation
z = c jw is to be understood as c−jz = w.)



Correspondence under Reidemeister moves (2/2)

Proposition (continued)

Moreover j is determined as in the following table:

Type ∆r j
RM1L 1 0
RM1R 1 1
RM2 0 0

2 1
RM3 0 0

2 1
-2 -1

where ∆r is the difference of the numbers of Seifert circles.
Alternatively, j can be written as:

j =
∆r −∆w

2
,

where ∆w is the difference of the writhes.



Divisibility of Lee’s class and the invariant s ′c



c-divisibility of the α-class

Let R be an integral domain, and c ∈ R be a non-zero
non-invertible element. Denote Hh,t(D;R)f = Hh,t(D;R)/(tor).

Definition
For any link diagram D, define:

kc(D) = max
k≥0
{ [α(D)] ∈ ckHh,t(D;R)f }.



Variance of kc under Reidemeister moves

Proposition

Let D,D ′ be two diagrams a same link L. Then

∆kc =
∆r −∆w

2
.

Proof.
Follows from the previous proposition, by taking any sequence of
Reidemeister moves that transforms D to D ′.



Definition of s ′c

Thus the following definition is justified:

Definition
For any link L, define

s ′c(L;R) := 2kc(D;R)− r(D) + w(D) + 1.

where D is any diagram of L, and

I kc(D) – the c-divisibility of Lee’s class [α] ∈ Hc(D;R)f ,

I r(D) – the number of Seifert circles of D, and

I w(D) – the writhe of D.



Variance of s ′c under cobordisms



Behaviour under cobordisms (1/2)

Proposition (S.)

If S is a oriented cobordism between links L, L′ such that every
component of S has a boundary in L, then

s ′c(L′)− s ′c(L) ≥ χ(S).

If also every component of S has a boundary in both L and L′, then

|s ′c(L′)− s ′c(L)| ≤ −χ(S).



Behaviour under cobordisms (2/2)

Proof sketch.

Figure 1: The cobordism map

Decompose S into elementary cobordisms such that each
corresponds to a Reidemeister move or a Morse move. Inspect the
successive images of the α-class at each level.



Consequences

The previous proposition implies many properties of s ′c that are
common to the s-invariant:

Theorem
s ′c is a link concordance invariant in S3.

Proposition

For any knot K,
|s ′c(K )| ≤ 2g∗(K ),

Corollary (The Milnor Conjecture)

The slice genus of the (p, q) torus knot is (p − 1)(q − 1)/2.



Coincidence with the s-invariant



Normalizing Lee’s classes

Now we focus on knots, and

(R, c) = (F [h], h)

with F a field of char F 6= 2 and deg h = −2.

We normalize Lee’s classes and obtain a basis { [ζ], [X ζ] } of
Hh,0(D;F [h])f such that

[α] = hk( [X ζ] + (h/2)[ζ] )

[β] = (−h)k( [X ζ]− (h/2)[ζ] )

where k = kh(D;F [h]).

Proposition

{ [ζ], [X ζ] } are invariant under the Reidemeister moves. Moreover
they are invariant under concordance.



The homomorphism property of s ′h

Using the normalized generators, we obtain the following:

Theorem (S.)

s ′h defines a homomorphism from the concordance group of knots
in S3 to 2Z,

s ′h : Conc(S3)→ 2Z.



Coincidence with the Rasmussen’s invariant (1/2)

Theorem (S.)

For any knot K,
s(K ;F ) = s ′h(K ;F [h]).

Proof.
It suffices to prove:

s(K ;F ) ≥ s ′h(K ;F [h]).

The ring homomorphism π : F [h]→ F , h 7→ 2 gives

qdeg([α]) = qdeg(π∗[αh])

= qdeg(π∗[α
′
h])

≥ qdeg([α′h])

= 2kh(D) + w(D)− r(D).



Coincidence with the Rasmussen’s invariant (2/2)

Corollary

s(K ;F ) = qdeg[ζ]− 1.



Final remark

The normalization of Lee’s class also works for (R, c) = (Z, 2), the
integral Lee theory.

Computational results show that s ′2(K ;Z) coincide with s(K ;Q)
for knots of crossing number up to 11.

Question
Is s ′2(K ;Z) distinct from any of s(K ;F )?

arXiv preprint coming soon...



Appendix



Frobenius algebra

Let R be a commutative ring with unity. A Frobenius algebra over
R is a quintuple (A,m, ι,∆, ε) satisfying:

1. (A,m, ι) is an associative R-algebra with multiplication
m : A⊗ A→ A and unit ι : R → A,

2. (A,∆, ε) is a coassociative R-coalgebra with comultiplication
∆ : A→ A⊗ A and counit ε : A→ R, and

3. the Frobenius relation holds:

∆ ◦m = (id ⊗m) ◦ (∆⊗ id) = (m ⊗ id) ◦ (id ⊗∆).



1+1 TQFT

A (co)commutative Frobenius algebra A determines a 1+1 TQFT

FA : Cob2 −→ ModR ,

by mapping:

I Objects:
©t · · · t©︸ ︷︷ ︸

r

−→ A⊗ · · · ⊗ A︸ ︷︷ ︸
r

I Morphisms:
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