
On the Expressive Power of Regular Expressions
with Backreferences
Taisei Nogami �

Waseda University, Tokyo, Japan

Tachio Terauchi �Â

Waseda University, Tokyo, Japan

Abstract
A rewb is a regular expression extended with a feature called backreference. It is broadly known
that backreference is a practical extension of regular expressions, and is supported by most modern
regular expression engines, such as those in the standard libraries of Java, Python, and more.
Meanwhile, indexed languages are the languages generated by indexed grammars, a formal grammar
class proposed by A.V.Aho. We show that these two models’ expressive powers are related in the
following way: every language described by a rewb is an indexed language. As the smallest formal
grammar class previously known to contain rewbs is the class of context sensitive languages, our
result strictly improves the known upper-bound. Moreover, we prove the following two claims: there
exists a rewb whose language does not belong to the class of stack languages, which is a proper
subclass of indexed languages, and the language described by a rewb without a captured reference is
in the class of nonerasing stack languages, which is a proper subclass of stack languages. Finally, we
show that the hierarchy investigated in a prior study, which separates the expressive power of rewbs
by the notion of nested levels, is within the class of nonerasing stack languages.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory

Keywords and phrases Regular expressions, Backreferences, Expressive power

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.71

Funding This work was supported by JSPS KAKENHI Grant Numbers JP20H04162, JP20K20625,
and JP22H03570.

1 Introduction

A rewb is a regular expression empowered with a certain extension, called backreference, that
allows preceding substrings to be used later. It is closer to practical regular expressions
than the pure ones, and supported by the standard libraries of most modern programming
languages. A typical example of a rewb follows:

I Example 1. Let Σ be the alphabet {a, b}. The language L(α) described by the rewb
α = (1(a + b)∗)1 \1 is {ww | w ∈ Σ∗}. Intuitively, α first captures a preceding string w ∈
L((a + b)∗) by (1)1, and second references that w by following \1. Therefore, α matches
ww. Because this L(α) is a textbook example of a non-context-free language (and therefore
non-regular), the expressive power of rewbs exceeds that of the pure ones.

In 1968, A.V.Aho discovered indexed languages with characterizations by two equiv-
alent models: indexed grammars and (one-way1 nondeterministic, or 1N) nested stack
automata (NSA) [1, 2]. The class of indexed languages is a proper superclass of context free
languages (CFL), and a proper subclass of context sensitive languages (CSL) [1].

Berglund and van der Merwe [4], and Câmpeanu et al. [5] have shown that the class of
rewbs is incomparable with the class of CFLs and is a proper subclass of CSLs. As the

1 “One-way” means that the input cursor will not move back to left. The antonym is “two-way.”

© Taisei Nogami and Tachio Terauchi;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 71; pp. 71:1–71:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sora410@fuji.waseda.jp
mailto:terauchi@waseda.jp
https://www.f.waseda.jp/terauchi/
https://orcid.org/0000-0001-5305-4916
https://doi.org/10.4230/LIPIcs.MFCS.2023.71
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

71:2 On the Expressive Power of Regular Expressions with Backreferences

first main contribution of this paper, we prove that the language described by a rewb is an
indexed language. Since the class of CSLs was the previously known best upper-bound of
rewbs, our result gives a novel and strictly tighter upper-bound.

Meanwhile, there is a class of the languages called stack languages [8, 7]. This class
corresponds to the model (1N) stack automata (SA), a restriction of NSA. Hence, it trivially
follows that the class of stack languages is a subclass of indexed languages. Actually, this
containment is known to be proper [2]. Furthermore, a model called nonerasing stack
automata (NESA) has been studied in papers such as [8, 11, 13], and its language class is
known to be a proper subclass of stack languages [13].

In this paper, we show that every rewb without a captured reference (that is, one in which
no reference \i appears as a subexpression of an expression of the form (jα)j) describes a
nonerasing stack language. Given our result, the following question is natural: does every
rewb describe a (nonerasing) stack language? We show that the answer is no. Namely, we
show a rewb that describes a non-stack language. Finally, Larsen [12] has proposed a notion
called nested levels of a rewb and showed that they give rise to a concrete increasing hierarchy
of expressive powers of rewbs by exhibiting, for each nested level i ∈ N, a language Li that is
expressible by a rewb at level i but not at any levels below i. We show that this hierarchy is
within the class of nonerasing stack languages, that is, there exists an NESA Ai recognizing
Li for every nested level i. Below, we summarize the main contributions of the paper.
(a) Every rewb describes an indexed language. (Section 4, Corollary 16)
(b) Every rewb without a captured reference describes a nonerasing stack language.

(Section 4, Corollary 17)
(c) There exists a rewb that describes a non-stack language. (Section 5, Theorem 18)
(d) The hierarchy given by Larsen [12] is within the class of nonerasing stack languages.

(Section 6, Theorem 20)
Note that by (b) and (c), it follows that there is a rewb that needs capturing of references
(Section 5, Corollary 19). See also Figure 2 for a summary of the results.

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3
defines preliminary notions used in the paper such as the syntax and semantics of rewb, SA,
NESA, and NSA. Sections 4, 5, and 6 formally state and prove the paper’s main contributions
listed above. Section 7 concludes the paper with a discussion on future work. For space, the
proofs are in Appendix.

2 Related Work

First, we discuss related work on rewbs. There are several variants of the syntax and
semantics of rewbs since they first appeared in the seminal work by Aho [3]. A recent study
by Berglund and van der Merwe [4] summarizes the variants and the relations between
them. In sum, there are two variants of the syntax, whether or not a same label may
appear as the index of more than one capture (“may repeat labels”, “no label repetitions”),
and two variants of the semantics, whether an unbound reference is interpreted as the
empty string or an undefined factor (ε-semantics, ∅-semantics). As shown in [4], there is
no difference in the expressive powers between these two semantics under the “may repeat
labels” syntax (therefore, there are three classes with different expressive powers, namely
“no label repetitions” with ∅-semantics, “no label repetitions” with ε-semantics, and “may
repeat labels”). In this paper, we focus on the “may repeat labels” formalization, which has
the highest expressive power of the three and is often studied in formal language theory. We
adopt the ε-semantics as the semantics of rewbs. Note that the pioneering formalization of

T. Nogami and T. Terauchi 71:3

rewbs given by Aho [3] has the equivalent expressive power as this class. The rewbs with
“may repeat labels” with ε-semantics was recently proposed by Schmid with the notion of
ref-words and dereferences [14]. Simultaneously, he proposed a class of automata called
memory automata (MFA), and showed that its expressive power is equivalent to that of
rewbs. Freydenberger and Schmid extended MFA to MFA with trap-state [6]. Berglund and
van der Merwe [4] showed that the class of Schmid’s rewbs is a proper subclass of CSLs,
and is incomparable with the class of CFLs. Note that there is a pumping lemma for the
formalization given by Câmpeanu et al. [5] but it is known not to work for Schmid’s rewbs.
As mentioned above, Larsen introduced the notion of nested levels and showed that increase
in the levels increases the expressive powers of rewbs [12].

Next, we discuss related work on the three automata used throughout the paper, namely
SA, NESA, and NSA. Ginsburg et al. introduced SA as a mathematical model that is more
powerful than pushdown automaton (PDA), and NESA as a restricted version of SA [8].
Hopcroft and Ullman discovered a type of Turing machine corresponding to the class of
two-way NESA [11]. Ogden proposed a pumping lemma for stack languages and nonerasing
stack languages [13]. Aho proposed NSA with a proof of the fact that (1N)NSA and indexed
grammars given by himself in [1] are equivalent in their expressive powers, and recognized
PDA and SA as special cases of NSA [2]. Aho also showed that the class of indexed languages
is a proper superclass of CFLs, and a proper subclass of CSLs [1]. Hayashi proposed a
pumping lemma for indexed languages [9].

3 Preliminaries

In this section, we formalize the syntax and the semantics of rewbs following the formalization
given in [6]. We begin with the syntax. Let Σε = Σ] {ε} and [k] = {1, 2, . . . , k}, where the
symbol] denotes a disjoint union.

I Definition 2. For each natural number k ≥ 1, the set of k-rewbs over Σ, written REWBk,
and the mapping var : REWBk → P([k]) are defined as follows, where a ∈ Σε and i ∈ [k]:

(α, var(α)) ::=(a, ∅) | (\i, {i}) | (α0α1, var(α0) ∪ var(α1)) | (α0 + α1, var(α0) ∪ var(α1))
| (α∗0, var(α0)) | ((jα0)j , var(α0)] {j}) where j ∈ [k]\ var(α0).

We also write REWB0 for the set REG of regular expressions over Σ, and REWB for the set
of all rewbs, namely

⋃
k≥0 REWBk.

I Example 3. For example, ε, a, \1, a∗\1, (1a
∗)1, ((1a

∗)1)∗, (2a
∗)2\2, (1a

∗)1(2b
∗)2(\1 + \2),

(2(1(a + b)∗)1\1)2 \2 (2\1)2
∗, ((1\4 a)1 (2\3)2 (3\2 a)3 (4\1\3)4)∗ are rewbs. On the other

hand, (1(1a
∗)1)1, (1a

∗ \1)1, (1(2(1a
∗)1)2)1 are not rewbs.

Note that this syntax allows multiple occurrences of captures with the same label, that
is, we adopt the “may repeat labels” convention. Next, we define the semantics.

I Definition 4. Let Bk = { [i,]i | i ∈ [k]}. The mapping Rk : REWBk → P((Σ]Bk] [k])∗)
is defined as follows, where a ∈ Σε and i ∈ [k]:

Rk(a) = {a} , Rk(\i) = {i} , Rk(α0α1) = Rk(α0)Rk(α1),
Rk(α0 + α1) = Rk(α0) ∪Rk(α1), Rk(α∗) = Rk(α)∗, Rk((iα)i) = {[i}Rk(α) {]i} .

We let Σ[∗]
k denote

⋃
α∈REWBk

Rk(α).

I Example 5. Rk((1(a+ b)∗)1\1) = {[1} {a, b}∗ {]1} {1} =
{

[1 w]1 1
∣∣ w ∈ {a, b}∗} .

MFCS 2023

71:4 On the Expressive Power of Regular Expressions with Backreferences

That is, we first regard a rewb α over Σ as a regular expression over Σ]Bk] [k], deducing
the language Rk(α). The second step, described next, is to apply the dereferencing (partial)
function Dk : (Σ]Bk] [k])∗ ⇀ Σ∗ to each of its element.

We give an intuitive description of Dk. First, Dk scans its input string from the beginning
toward the end, seeking i ∈ [k]. If such i is found, Dk replaces this i with the substring
obtained by removing the brackets in v that comes from the preceding [i v]i if [i exists (if
this [i has no corresponding]i, Dk becomes undefined). Otherwise, Dk replaces this i with ε.
The dereferencing function Dk repeats this procedure until all elements of [k] appearing in
the string are exhausted, then removes all remaining brackets. We let v[r] denote the string
which Dk scans at the rth number nr ∈ [k] at the rth loop (see Appendix A for the formal
definitions of Dk and v[r]).
1. [1a [2b]2 2]1 1. In this example, Dk encounters n1 = 2 first, and this 2 corresponds

the preceding [2b]2, therefore this 2 is replaced with v[1] = b. As a result, the input
string becomes [1a [2b]2 b]1 1. Dk repeats this process again. Now, Dk locates n2 = 1
corresponding the preceding [1a [2b]2 b]1, so this 1 is replaced with v[2] = a[2b]2b but with
the brackets erased. Therefore we gain [1a [2b]2 b]1 abb. Finally, Dk removes all remaining
brackets and produces abbabb. Here is the diagram: [1a [2b]2 2]1 1 → [1a [2b]2 b]1 1 →
[1a [2b]2 b]1 abb→ abbabb.

2. [1a]1 1 [1bb]1 1. In this example, n1 = n2 = 1, v[1] = a, v[2] = bb, and

[1a]1 1 [1bb]1 1→ [1a]1 a [1bb]1 1→ [1a]1 a [1bb]1 bb→ aabbbb.

3. abc 1 2. In this example, n1 = n2 = 1, v[1] = v[2] = ε, and abc 1 2→ abc 2→ abc.

Note that an unbound reference is replaced with the empty string ε, that is, we adopt
the ε-semantics. However, as mentioned in Section 2, this semantics’ expressive power is
equivalent to that of the ∅-semantics under the “may repeat labels” convention (see [4]
for the proof). We define the language L(α) denoted by a k-rewb α ∈ REWBk to be
Dk(Rk(α)) = {Dk(v) | v ∈ Rk(α)} (Lemmas 6 and 8 ensure that L(α) is well-defined).

Let g : (Σ]Bk)∗ → Σ∗ denote the free monoid homomorphism where g(x) is x for each
x ∈ Σ, and ε for each x ∈ Bk. Every v ∈ (Σ]Bk] [k])∗ can be written uniquely in the form
v = v0n1v1 · · ·nmvm, where m ≥ 0 (denoted by cnt v), and vr ∈ (Σ]Bk)∗ and nr ∈ [k] for
each r ∈ {0, . . . ,m}. Here, let y0 , v0 and for each r ∈ {1, . . . ,m}, yr , v0n1v1 · · ·nrvr. A
string v = v0n1v1 · · ·nmvm over Σ]Bk] [k] is said to be matching if

∀r ∈ {1, . . . ,m} .∀x1, x2. yr−1 = x1[nr
x2 =⇒ (∃x′2, x3.x2 = x′2]nr

x3 ∧ x′2 /3 [nr
,]nr

)

holds. Intuitively, a string v being matching means that for all nr ∈ [k] in v, if there exists
a left bracket [nr

in the string immediately before nr, then there is a right bracket]nr
in

between this [nr and nr. The following three lemmas follow.

I Lemma 6. Given a matching string v, Dk(v) = g(v0) g(v[1]) g(v1) · · · g(v[m]) g(vm).

I Lemma 7. A prefix of a matching string is matching. That is, if we decompose a string v
into v = xy, x is matching. Moreover, x[r] = v[r] holds for each r = 1, . . . , cntx (≤ cnt v).

I Lemma 8. Every v ∈ Σ[∗]
k is matching.

Next, we recall the notions of SA, NESA, and NSA. In this paper, we unify their definitions
based on [2, 7] to clarify the different capabilities of these models. First, we review NFA.
Here is the definition in the textbook by Hopcroft et al. [10]:

T. Nogami and T. Terauchi 71:5

IDefinition 9 ([10], p.57). A nondeterministic finite automaton N is a 5-tuple (Q,Σ, δ, q0, F),
where Q is a finite set of states, Σ a finite set of input symbols (also called alphabet), q0 ∈ Q
a start state, F ⊆ Q a set of final states, and δ : Q× Σ→ P(Q) a transition function.

As well known, the transition function δ can be extended to δ̂ : Q× Σ∗ → P(Q) where
δ̂(q, w) represents the set of all states reachable from q via w. Let q a−→

N
q′ denote q′ ∈ δ(q, a),

and q
w=⇒
N

q′ denote q′ ∈ δ̂(q, w). With this notation, the language of an NFA N can be

written as follows: L(N) =
{
w ∈ Σ∗

∣∣∣ ∃qf ∈ F. q0
w=⇒
N

qf

}
.

A pushdown automaton (PDA) is an NFA equipped with a stack such that the PDA may
write and read its stack top with a transition. A stack automaton (SA) is “an extended PDA”,
which can reference not only the top but inner content of the stack. That is, while the stack
pointer of a PDA is fixed to the top, an SA allows its pointer to move left and right and read
a stack symbol pointed to by the pointer. However, the only place on the stack that can be
rewritten is the top, as in PDA. Formally, a (1N) SA A is a 9-tuple (Q,Σ,Γ, δ, q0, Z0,#,$, F)
satisfying the following conditions: the components Q, Σ, q0 and F are the same as those of
NFA. Γ (6= ∅) is a finite set of stack symbols, and Z0 ∈ Γ is an initial stack symbol. The stack
symbol # /∈ Σ ∪ Γ (resp. $ /∈ Σ ∪ Γ) is always and only written at the leftmost (bottom)
(resp. the right most (top)) of the stack.2 The transition function δ has the following two
modes, where L,S,R /∈ (Σ ∪ Γ)] {#,$}, ∆i , {S,R}, and ∆s , {L,S,R}:
(i) (pushdown mode) Q× Σ× Γ$→ P(Q×∆i × Γ∗$),
(ii) (stack reading mode) (a) Q×Σ×Γ$→ P(Q×∆i×{L}), (b) Q×Σ×Γ→ P(Q×∆i×∆s),

(c) Q× Σ× {#} → P(Q×∆i × {R}).

Intuitively, δ works as follows (Definition 10 provides the formal semantics). (i) The
statement (q′, d, w$) ∈ δ(q, a, Z$) says that whenever the current state is q, the input symbol
is a, and the pointer references the top symbol Z, the machine can move to the state q′,
move the input cursor along d, and replace Z with the string w. (ii) The statement (b)
(q′, d, e) ∈ δ(q, a, Z) says that whenever the current state is q, the input symbol is a, and
the pointer references the symbol Z, the machine can move to the state q′, move the input
cursor along d, and move the pointer along e. The statements (a) and (c) are similar to (b)
except that the direction in which the pointer can move is restricted lest the pointer go out
of the stack. In particular, an SA that cannot erase a symbol once written on the stack is
called a nonerasing stack automaton (NESA). That is, a (1N) nonerasing stack automaton
is an SA whose transition function δ satisfies the condition that, in (i) (pushdown mode),
(q′, d, w$) ∈ δ(q, a, Z$) implies w ∈ ZΓ∗. To formally describe how SA works, we define a
tuple called instantaneous description (ID), which consists of a state, an input string, and a
string representation of the stack, and define the binary relation `A over the set of these
tuples. Let L = −1, S = 0, and R = 1.

I Definition 10. Let A be an SA (Q,Σ,Γ, δ, q0,#,$, F). An element of the set I =
Q × Σ∗ × {#} (Γ] {�})∗ {$} is called instantaneous description, where the stack symbol
� /∈ Γ stands for the position of stack pointer. Moreover, let `A (or ` when A is clear) be the
smallest binary relation over I satisfying the following conditions:

2 These special symbols #,$ representing “bottom” and “top” of the stack respectively do not appear in
[7] and are introduced anew in this paper to define NESA and NSA, which will be defined later, in the
style of [2]. In fact, SA defined in [7] is not capable of directly discerning whether the stack pointer is
at the top or not. Although it is not difficult to see that directly adding the ability does not increase
the expressive power of SA, the ability is directly in NESA as seen in [11, 13]. Therefore, to make it
easy to see that NESA is a restriction of SA, we define SA to also directly have the ability.

MFCS 2023

71:6 On the Expressive Power of Regular Expressions with Backreferences

(i) (q, ai · · · ak,#yZ �$) `A (q′, ai+d · · · ak,#yw �$) if (q′, d, w$) ∈ δ(q, ai, Z$).3
(ii) (a) (q, ai · · · ak,#yZ �$) `A (q′, ai+d · · · ak,#y �Z$) if (q′, d,L) ∈ δ(q, ai, Z$).

(b) if (q′, d, e) ∈ δ(q, ai, Z) and Z = Zj , 1 ≤ j < n, then
(q, ai · · · ak,#Z1 · · ·Zj � · · ·Zn$) `A (q′, ai+d · · · ak,#Z1 · · ·Zj+e � · · ·Zn$).

(c) (q, ai · · · ak,#�Zy $) `A (q′, ai+d · · · ak,#Z �y $) if (q′, d,R) ∈ δ(q, ai,#).

Note that L /∈ ∆i, which means the input cursor will not move back to left. We say
that A accepts w ∈ Σ∗ if there exist y1, y2 ∈ Γ∗, and qf ∈ F such that (q0, w,#Z0 �$) `∗A
(qf , ε,#y1 �y2 $). Let L(A) denote the set of all strings accepted by A.

We next define nested stack automaton (NSA) which is SA extended with the capability
to create and remove substacks. For instance, suppose that the stack is #a1a2 �a3$ and we
are to create a new substack containing b1b2:

#a1¢ b1b2 �$ a2a3$. (1)

Note that the new substack ¢ b1b2 $ is embedded below the symbol a2 indicated by the
stack pointer, and the pointer moves to the top of the created substack. The creation of the
inner substack narrows the range within which the stack pointer can move as indicated by
the underlined part #a1¢ b1b2 �$. While the bottom of the entire stack is always fixed by
the leftmost symbol #, the top of the embedded substack is regarded as the top of the entire
stack. The inner substacks are allowed to be embedded endlessly and everywhere, whereas
the writing in the pushdown mode is still restricted to the top of the stack:

#a1¢ b1b2 �$ a2a3$ L→ #a1¢ b1 �b2 $ a2a3$ create−→ #a1¢ ¢ c1c2 �$ b1b2$ a2a3$, (2)

#a1¢�b1b2 $ a2a3$ L→ #a1 �¢ b1b2 $ a2a3$ create−→ #¢ c1c2 �$ a1¢ b1b2 $ a2a3$. (3)

We must empty the inner substack and then remove itself in advance whenever we want to
reference the right side of the inner substack such as a2, a3. For example, let us empty the
inner substack by popping twice from (1) and then removing it:

#a1¢ b1b2 �$ a2a3$ pop→ #a1¢ b1 �$ a2a3$ pop→ #a1¢�$ a2a3$ destruct−→ #a1a2 �a3$. (4)

Notice that the stack pointer moves to the right after removing the inner substack. We now de-
fine NSA formally. A (1N) nested stack automaton A is a 10-tuple (Q,Σ,Γ, δ, q0, Z0,#, ¢,$, F)
satisfying the following conditions: the components Q, Σ, Γ, q0, Z0, #, $ and F are the
same as those of SA. The stack symbol ¢ /∈ Σ ∪ Γ represents the bottom of a substack.4 The
transition function δ has the following four modes, where Γ′ , Γ] {¢}:
(i) (pushdown mode) Q× Σ× Γ$→ P(Q×∆i × Γ∗$).
(ii) (stack reading mode) (a)Q×Σ×Γ′$→ P(Q×∆i×{L}), (b)Q×Σ×Γ′ → P(Q×∆i×∆s),

(c) Q× Σ× {#} → P(Q×∆i × {R}).
(iii) (stack creation mode) Q× Σ× (Γ′] Γ′$)→ P(Q×∆i × {¢}Γ∗$).
(iv) (stack destruction mode) Q× Σ× {¢}$→ P(Q×∆i).

Moreover, we define how NSA works with ID and ` in the same manner as SA. Given
an NSA A = (Q,Σ,Γ, δ, q0, Z0,#, ¢,$, F), we define ID, `A, and L(A) in the same way as
Definition 10 (however, we let I be Q× Σ∗ × {#} (Γ] {¢,$, �})∗ {$}). Here, we only give
the rules corresponding to (iii) and (iv) in the definition of δ (the others are essentially the
same as those of SA):

3 We regard ak+1 · · · ak as ε.
4 Note that the bottom of the entire stack is always represented by # and not ¢, as mentioned above.

T. Nogami and T. Terauchi 71:7

(iii) if (q′, d, ¢w$) ∈ δ(q, ai, Z) and Z = Zj , 1 ≤ j < n, then
(q, ai · · · ak,#Z1 · · ·Zj � · · ·Zn$) `A (q′, ai+d · · · ak,#Z1 · · · ¢w �$Zj · · ·Zn$),

and (q, ai · · · ak,#yZ �$) `A (q′, ai+d · · · ak,#y ¢w �Z) if (q′, d, ¢w$) ∈ δ(q, ai, Z$).
(iv) (q, ai · · · ak,#y1¢�$Zy2$) `A (q′, ai+d · · · ak,#y1Z �y2$) if (q′, d) ∈ δ(q, ai, ¢$).

4 Every rewb describes an indexed language

As described above, to obtain the language L(α) described by a k-rewb α, we derive the
regular language Rk(α) over the alphabet Σ]Bk] [k] first, then apply the dereferencing
function Dk to every element of Rk(α). Using this observation, we construct an NSA Aα
recognizing the language L(α) as follows.

The NSA Aα is based on an NFA N recognizing the language Rk(α), in the sense that
each transition in Aα comes from a corresponding transition of N . The NFA N has the
alphabet Σ]Bk] [k], and so handles three types of characters. For each transition q a−→

N
q′

with a ∈ Σ, i.e., moving from q to q′ by an input symbol a, Aα also has the same transition
except pushing a to the stack, denoted by q a/$→a$−→ q′. For each transition q b−→

N
q′ with

b ∈ Bk, i.e., moving by a bracket b, Aα has the transition pushing b without consuming
input symbols, denoted by q ε/$→b$−→ q′.5 For each transition q i−→

N
q′ with i ∈ [k], Aα has a

large “transition” that consists of several transitions. In this “transition,” Aα first seeks the
left bracket [i of the bracketed string [i v]i within the stack, and checks if the input from
the cursor position matches v character by character while consuming the input, and finally
moves to q′ if all characters of v matched.

A difficult yet interesting point is that NSA cannot check v against the stack and push v
onto the stack at the same time, that is, after checking a character c of v, if Aα wants to
push c to the stack, Aα must leave from v, climb up the stack toward the top, and write c.
However, after the push, Aα becomes lost by not knowing where to go back to. How about
marking the place where Aα should return in advance? Unfortunately, that does not work;
NSA can insert such marks anywhere by creating substacks, but due to the restriction of
NSA, it cannot go above the position of the mark, much less climb up to the top. Therefore,
NSA cannot directly push the result of a dereference onto the stack.

We cope with this problem as follows. We allow j ∈ [k] to appear in v, and for each
appearance of j in the checking of v, Aα pauses the checking and puts a substack containing
the current state as a marker at the stack pointer position. Then, Aα searches down the
stack for the corresponding bracketed string [jv′]j , and begins checking v′ if it is found. By
repeating this process, Aα eventually reaches a string v′′ ∈ (Σ]Bk)∗ containing no characters
of [k]. Once done with the check of v′′, Aα climbs up toward the stack top, finds a marker p
denoting the state to return to, and resumes from p after deleting the substack containing
the marker. By repeating this, if Aα returns to the position where it initially found j, it has
successfully consumed the substring of the input string corresponding to the dereference of j.
The following lemma is immediate.

I Lemma 11. Let k ≥ 1 and α ∈ REWBk. There exists an NFA (Q,Σ]Bk] [k], δ, q0, F)
over Σ]Bk] [k] recognizing Rk(α) all of whose states can reach some final state, that is,

5 Strictly speaking, our NFA (cf. Definition 9) does not allow consuming the empty string ε. However, we
can realize the transition q ε/$→b$−→ q′ alternatively by adding q c/$→b$,S−→ q′ for each c ∈ Σ, i.e., moving
by c with the input cursor fixed.

MFCS 2023

71:8 On the Expressive Power of Regular Expressions with Backreferences

∀q ∈ Q.∃w ∈ (Σ]Bk] [k])∗.∃qf ∈ F. q
w=⇒
N

qf .

I Corollary 12. Let N be the NFA in Lemma 11. For all q ∈ Q and for all w ∈ (Σ]Bk][k])∗,
if q0

w=⇒
N

q then w is matching (see Appendix B for the proof).

We show the main theorem (the proof sketch is coming later):

I Theorem 13. For every rewb α ∈ REWB, there exists an NSA that recognizes L(α).

The claim obviously holds when α is a pure regular expression (i.e., α ∈ REWB0).
Suppose that α ∈ REWBk with k ≥ 1. By Lemma 11, there is an NFA N = (QN ,Σ]
Bk] [k], δN , q0, F) that recognizes Rk(α) and satisfies Corollary 12. We construct an
NSA Aα = (Q,Σ,Γ, δ, q0, Z0,#, ¢,$, F) as follows. Let Q , QN] {ci, ei, ri | i ∈ [k]}]
{Wq | q ∈ QN}] {Ep,i, Lp,i | p ∈ QN] {ei | i ∈ [k]} , i ∈ [k]}, Γ , Σ] Bk] [k]]Q] {Z0},
and let δ be the smallest relation that, for all a ∈ Σ, b ∈ Bk, c ∈ Σ, i, j ∈ [k], q, q′ ∈ QN ,
Z ∈ Γ and p ∈ QN] {ei | i ∈ [k]}, satisfies the following conditions:

(1) δN (q, a) 3 q′ =⇒ δ(q, a, Z$) 3 (q′,R, Za$)
(2) δN (q, b) 3 q′ =⇒ δ(q, c, Z$) 3 (q′,S, Zb$)
(3) δN (q, i) 3 q′ =⇒ δ(q, c, Z$) 3 (Wq′ ,S, Zi$)
(4) δ(Wq, c, i$) = {(ci,S, ¢q$)}
(5) δ(ci, c, p$) = {(ci,S,L)}
(6) δ(ci, c, Z) = {(ci,S,L)} where Z 6= [i, Z0
(7) δ(ci, c, Z0) = {(ri,S,R)}
(8) δ(ci, c, [i) = {(ei,S,R)}
(9) δ(ei, a, a) = {(ei,R,R)}

(10) δ(ei, c, [j) = {(ei,S,R)} where i 6= j

(11) δ(ei, c,]j) =
{
{(ri,S,R)} (i = j)
{(ei,S,R)} (i 6= j)

(12) δ(ei, c, j) = {(cj ,S, ¢ei$)} where i 6= j

(13) δ(ri, c, Z) = {(ri,S,R)}
(14) δ(ri, c, p$) = {(Ep,i,S,$)}
(15) δ(Ep,i, c, ¢$) = {(Lp,i,S)}
(16) δ(Lej ,i, c, i) = {(ej ,S,R)}
(17) δ(Lq,i, c, i$) = {(q,S,S)}

Rule (1) translates q a−→
N

q′ into q a/$→a$−→ q′, (2) translates q b−→
N

q′ into q ε/$→b$−→ q′,

and rules (3)–(17) translate q i−→
N

q′ into a large “transition” to consume the string that
corresponds to the dereference of i. The details of the “transition” are as follows. By looking
at the underlying N with rule (3), Aα finds a state q′ that it should go back to after going
throughout the “transition,” and goes to the state Wq′ by pushing i to the stack. At Wq′ , by
rule (4), Aα inserts ¢q′$ just below i, and goes to the state ci. The state ci represents the
call mode in which Aα looks for the left-nearest [i by rules (5) and (6) and proceeds to the
state ei (execution mode) by (8) if it finds [i. Otherwise (i.e., the case when Aα arrives at
the bottom of the stack), it proceeds to the state ri (return mode) by rule (7). At ei, Aα
consumes input symbols by checking them against the symbols on the stack (rules (9)–(12)).
In particular, rule (9) handles the case when the symbols match. Rules (10) and (11) handle
the cases when brackets are read from the stack. The first case of (11) handles the case
when the right bracket]i is read, and the rules handle the other brackets (i.e., [j or]j with
i 6= j) by simply skipping them (note that [j= [i cannot happen since we started from the
left-nearest [i). Reading j ∈ [k], by rule (12), Aα inserts ¢ei$ just below j and goes to cj
to locate the corresponding [j (here, j 6= i holds by the definition of the syntax). At ri, Aα
proceeds to return to the state p that passed the control to ci (rules (13)–(17)). Since this p
was pushed at the stack top, Aα first climbs up to the stack top by rule (13), transits to the
state Ep,i popping p by (14), then goes to Lp,i removing the embedded substack by (15),
and finally goes back to p by (16) and (17). A subtle point in the last step is that where the
stack pointer should be placed depends on whether p is a state ej (for some j ∈ [k]) or in
QN . In the former case, after (15) removes the embedded substack ¢ej$ that was created

T. Nogami and T. Terauchi 71:9

just below the call to i, the stack pointer points to i. However, the stack pointer should shift
one more to the right, lest Aα begins to repeat the call reading i again by (12). Therefore,
(16) correctly handles the case by doing the shift. In the latter case, as stipulated by (17),
the stack pointer should point to the stack top symbol i since p is the state stored at (3).

We state two lemmas used to prove Theorem 13. Let `(n) denote the subrelation of `
derived from the rule (n). The following lemma is immediate from the definition of `(n).

I Lemma 14. For all q, q′ ∈ QN , w,w′ ∈ Σ∗, γ, γ′ ∈ Γ∗,
(a) 1. for each a ∈ Σ, (q, aw,#Z0γ �$) `(1) (q′, w,#Z0γa�$) if q a−→

N
q′,

2. ∃a ∈ Σ. q a−→
N

q′ ∧ w = aw′ ∧ β = Z0γa� if (q, w,#Z0γ �$) `(1) (q′, w′,#β$),

(b) 1. for each b ∈ Bk, (q, w,#Z0γ �$) `(2) (q′, w,#Z0γb�$) if q b−→
N

q′,

2. ∃b ∈ Bk. q
b−→
N

q′ ∧ w = w′ ∧ β = Z0γb� if (q, w,#Z0γ �$) `(2) (q′, w′,#β$).
In particular, letting `(1),(2) = `(1)] `(2), we obtain the following statement by repeating
(a)1 and (b)1 zero or more times: For all v ∈ (Σ] Bk)∗, (q, g(v)w,#Z0γ � $) `∗(1),(2)

(q′, w,#Z0γv �$) if q v=⇒
N

q′.

I Lemma 15. Suppose that q i−→
N

q′, and γi is matching. Let m = cnt (γi). For all p ∈ QN ,
w,w′ ∈ Σ∗ and β ∈ (Γ] {¢,$, �})∗, the following (a) and (b) are equivalent (see Appendix C
for the proof):
(a) p = q′, w = g((γi)[m])w′, and β = Z0γi�.
(b) (q, w,#Z0γ �$) `(3) (Wq′ , w,#Z0γi �$) ` · · · ` (p, w′,#β$), where no ID with a state

in QN appears in the calculation · · · .

Proof of Theorem 13 (sketch). For proving L(α) ⊆ L(Aα), we take w ∈ L(α) and v ∈
Rk(α) such that w = Dk(v). Decomposing v into v0n1v1 · · ·nmvm (where m = cnt v),
we obtain a transition sequence in the underlying NFA N , denoted by q0

v0=⇒
N

q(0)
n1v1=⇒
N

q(1)
n2v2=⇒
N
· · · nmvm=⇒

N
q(m) ∈ F . We prove by induction on r = 0, . . . ,m that Aα can reach

q(r) while consuming zr = g(v0) g(v[1]) g(v1) · · · g(v[r]) g(vr) from the input and pushing
yr = v0n1v1 · · ·nrvr to the stack. Conversely, we suppose a calculation in Aα, denoted
by C(1) = (q0, w,#Z0 � $) ` · · · ` C(r) ` · · · ` C(m) = (pm, ε,#βm$), where pm ∈ F

and C(r) = (pr, wr,#βr$) for each r ∈ {1, . . . ,m}. By induction on r = 1, . . . ,m, we
extract an underlying transition q0

γr=⇒
N

pr step by step while maintaining the invariants
γr ∈ (Σ]Bk] [k])∗ and w = Dk(γr)wr, as long as pr ∈ QN (the formal proof is available in
Appendix D). J

I Corollary 16. Every rewb describes an indexed language, but not vice versa.

Proof. The first half follows by Theorem 13 since 1N NSA and indexed grammars are
equivalent [2]. The second half also follows since the class of CFLs is a subclass of indexed
languages [1], and the class of rewbs and that of CFLs are incomparable [4]. J

In the case of a rewb α without a captured reference (that is, one in which no reference \i
appears as a subexpression of an expression of the form (j . . .)j), we can transform Aα into
an NESA A′′α recognizing L(α), i.e., one that neither uses substacks nor pops its stack. First,
we transform Aα to an NSA without substacks (i.e., SA) A′α. Inspecting how substacks are
used in Aα, we can drop rules (12) and (16) in A′α because there is no captured reference in
α. We also remove the uses of substacks from rules (3) and (4), which correspond to calling,

MFCS 2023

71:10 On the Expressive Power of Regular Expressions with Backreferences

and rules (14), (15) and (17), which correspond to returning. Namely, while Aα, upon a call,
stores the substack ¢q′$ that consists of just the state q′ where the control should return,
A′α simply pushes q′ to the stack top. That is, we remove (4), (15) and (17), and change (3)
and (14) to the following (3’) and (14’), respectively:

(3’) δN (q, i) 3 q′ =⇒ δ(q, c, Z$) 3 (ci,S, Ziq′$), (14’) δ(ri, c, q$) = {(q,S,$)} .

Furthermore, we transform A′α to an SA without stack popping (i.e., NESA) A′′α. Observe
that A′α pops only when returning via (14’) and popping a state that was pushed in a
preceding call. Thus, A′′α, rather than popping q′, leaves it on the stack, and has the modes
ci, ei and ri skip all state symbols on the stack except the ones at the top. Here, we only
need to modify ei since Aα already skips them at ci and ri (rules (6) and (13)). In short, we
add the new rule (9*) and change (14’) to (14”), as follows:

(9*) δ(ei, c, q) = {(ei,S,R)} , (14”) δ(ri, c, q$) = {(q,S, q$)} .

This NESA A′′α whose transition function consists of the rules (1),(2),(3’),(5)–(9),(9*),(10),
(11), (13) and (14”) recognizes L(α). Therefore,

I Corollary 17. Every rewb without a captured reference describes a nonerasing stack language,
but not vice versa.6

Note that the converse of Corollary 17 fails to hold. In other words, there is a rewb with
a captured reference that describes a nonerasing stack language. The rewb (1a)1(2\1)2\2
is a simple counterexample. In addition, as shown later in Section 6, NESA can recognize
nontrivial language (hierarchy) with a captured reference such as Larsen’s hierarchy [12].

5 A rewb that describes a non-stack language

We just showed that every rewb describes an indexed language and in particular every rewb
without a captured reference describes a nonerasing stack language. So, a natural question is
whether every rewb describes a (nonerasing) stack language. We show that the answer is no.
That is, there is a rewb that describes a non-stack language.

Ogden has proposed a pumping lemma for stack languages and shown that the language{
an

3
∣∣∣ n ∈ N

}
is a non-stack language as an application (see [13], Theorem 2). A key point

in the proof is that the exponential n3 of a is a cubic polynomial, and we can show that for
every cubic polynomial f : N→ N, the language

{
af(n) ∣∣ n ∈ N

}
is also a non-stack language

by the same proof. Thus, a rewb that describes a language in this form is a counterexample.
We borrow the technique in [6] (Example 1) which shows that the rewb α = ((1\2)1(2\1a)2)∗

describes L(α) =
{
an

2
∣∣∣ n ∈ N

}
. This follows since Dk(([12]1 [21 a]2)n) = an

2 holds by
recording the iteration count of the Kleene star, n, in the capture (2)2 as an, and extending
the length by 2n+ 1, as shown below:

Dk(([12]1 [21 a]2)n+1) = Dk(([12]1 [21 a]2)n[12]1 [21 a]2) = Dk(· · · [2an]2 [12]1 [21 a]2)

= Dk(· · · [2an]2 [1an]1 [21 a]2) = Dk(· · · [2an]2 [1an]1 [2an+1]2) = an
2
a2n+1 = a(n+1)2

.

The rewb ((1\4 a)1 (2\3)2 (3\2 a)3 (4\1\3)4)∗ describes
{
an(n+7)(2n+1)/6 ∣∣ n ∈ N

}
and extends

the length by a quadratic in n instead (see Appendix F for the calculation). Thus,

6 For the latter part, we can take the language {anbn | n ∈ N} that can be described by an NESA (see
Appendix E) but not by any rewb [4].

T. Nogami and T. Terauchi 71:11

I Theorem 18. There exists a rewb that describes a non-stack language.

From this and Corollary 17, this rewb needs a captured reference, in the sense that:

I Corollary 19. There exists a rewb that describes a language that no rewb without a captured
reference can describe.

6 Larsen’s hierarchy is within the class of nonerasing stack language

In this section, we construct an NESA Ai that describes L(xi), where the rewb xi over
the alphabet Σ =

{
al0, a

m
0 , a

r
0, a

l
1, a

m
1 , a

r
1, . . .

}
is given by Larsen [12] and defined as follows:

x0 , (al0am0 ar0)∗, xi+1 , (ali+1(i xi)i ami+1\i ari+1)∗ (i ≥ 0). Our result implies that Larsen’s
hierarchy is within the class of nonerasing stack languages. Since Larsen showed that no
rewb with its nested level less than i can describe L(xi) [12], it also implies that for every
i ∈ N, there is a nonerasing stack language that needs a rewb of nested level at least i.7

q0
0

al
0a

m
0 a

r
0/$→al

0a
m
0 a

r
0$

q1
0

q0
0 c1

0 r1
0

e1
0

al
1/$→al

1$

$→ [0$

al
0a

m
0 a

r
0/$→al

0a
m
0 a

r
0$

$→]0$

am
1 /$→am

1 $

$→0$

ar
1/$→ar

1$

[0,R

¬[0,R

0$, S

¬0,R

a/a,R

]0,R

q2
0

q1
0

q0
0

c2
1 r2

1

c1
0 r1

0

e2
1

e1
0

c2
0 r2

0

e2
0

al
2/$→al

2$

$→ [1$ $→]1$

al
1/$→al

1$

am
2 /$→am

2 $

$→1$

ar
2/$→ar

2$

$→ [0$

al
0a

m
0 a

r
0/$→al

0a
m
0 a

r
0$

$→]0$

am
1 /$→am

1 $

$→0$

ar
1/$→ar

1$

[1,R

¬[1,L

1$, S

¬1,R

[0,R

¬[0,R

0$, S

¬0,R

0,L

]1,R

a/a,R {[0,]0} ,R

a/a,R

]0,R [0,R

¬[0,L
0,R

¬0,R

]0,R

a/a,R

Figure 1 A0 (upper left), A1 (upper right), A2 (lower)

The NESA Ai has the start state qi0 which is also its only final state. Figure 1 depicts
A0, A1, and A2. A0 is easy. A1 is obtained by connecting the eight states to q0

0 and making
q1

0 the start/final state, as shown in the figure. The five states on the right handle the
dereference of \0 in x1. That is, at c1

0, A1 first seeks the left-nearest [0, passes the control to
e1

0, checks the input string against the stack at e1
0, passes the control to r1

0, and at r1
0, finally

goes back to the right-nearest 0 which must be written on the stack top. In much the same
way, A2 is obtained from A1 but we must be sensitive to the handling of the dereference

7 Technically, Larsen [12] adopts a syntax that excludes unbound references, and so this implied result
applies only to rewbs with no unbound references.

MFCS 2023

71:12 On the Expressive Power of Regular Expressions with Backreferences

of \1 because A2 must handle the dereference of not only \1 but also \0 that appears in a
string captured by [1]1 whereas no backreference appears in a string captured by [0]0 in the
case of A1. To deal with this issue, we connect the three new states c2

0, e2
0 and r2

0 to e2
1. At

e2
1, if A2 encounters 0 in a checking, A2 suspends the checking and first goes to c2

0 to seek
[0, goes to e2

0 to check the input against the stack by reading out a]0 (no number appears
in this checking), and finally goes to r2

0 to go back to 0 which passed the control to c2
0. We

repeat this modification until Ai is obtained. (Thus, Ai has such states cij , eij , rij for each
j ∈ {0, . . . , i− 1}.) Therefore,

I Theorem 20. There exists an NESA Ai that recognizes L(xi).

7 Conclusions

REG CFL SL IL CSL

NESL

rewb without
a captured reference rewb

Larsen’s hierarchy [12]

[2] [1]

[13]

Corollary
17

/
Corollary 19

/

/

Theorem
18

Corollary
16

[4, 5]
/ [4]

Theorem 20

Figure 2 The inclusion relations between the classes

In this paper, we have shown the following five results: (1) that every rewb describes
an indexed language (Corollary 16), (2) in particular that every rewb without a captured
reference describes a nonerasing stack language (Corollary 17), (3) however that there exists
a rewb that describes a non-stack language (Theorem 18), (4) therefore that there exists a
rewb that needs a captured reference (Corollary 19), and (5) finally that Larsen’s hierarchy
{L(xi) | i ∈ N} given in [12] is within the class of nonerasing stack languages (Theorem 20).
We have obtained the results by using three automata models, namely NESA, SA, and NSA,
and using the semantics of rewbs given in [14, 6] that treats a rewb as a regular expression
allowing us to obtain the underlying NFA. Figure 2 depicts the inclusion relations between
the classes mentioned in the paper. Here, A→ B stands for A ⊆ B, A� B for A (B, and
A9 B for A * B, respectively. A label on an arrow refers to the evidence. A red dashed
arrow indicates a novel result proved in this paper, where for a strict inclusion, we show for
the first time the inclusion itself in addition to the fact that it is strict.

As future work, we would like to investigate the use of the pumping lemma for rewbs
without a captured reference that can be derived from the contraposition of our Corollary 17
and a pumping lemma for NESA [13]. We expect it to be a useful tool for discerning which
rewbs need captured references. Additionally, we suspect that our construction of NESA in
Theorem 20 is useful for not just xi of [12] but also for more general rewbs that have only
one \i for each (i)i, and we would like to investigate further uses of the construction.

References
1 Alfred V Aho. Indexed grammars—an extension of context-free grammars. Journal of the

ACM (JACM), 15(4):647–671, 1968.

T. Nogami and T. Terauchi 71:13

2 Alfred V Aho. Nested stack automata. Journal of the ACM (JACM), 16(3):383–406, 1969.
3 Alfred V. Aho. Algorithms for finding patterns in strings, page 255–300. MIT Press, Cambridge,

MA, USA, 1991.
4 Martin Berglund and Brink van der Merwe. Re-examining regular expressions with backrefer-

ences. Theoretical Computer Science, 940:66–80, 2023.
5 Cezar Câmpeanu, Kai Salomaa, and Sheng Yu. A formal study of practical regular expressions.

International Journal of Foundations of Computer Science, 14(06):1007–1018, 2003.
6 Dominik D Freydenberger and Markus L Schmid. Deterministic regular expressions with

back-references. Journal of Computer and System Sciences, 105:1–39, 2019.
7 Seymour Ginsburg, Sheila A Greibach, and Michael A Harrison. One-way stack automata.

Journal of the ACM (JACM), 14(2):389–418, 1967.
8 Seymour Ginsburg, Sheila A Greibach, and Michael A Harrison. Stack automata and compiling.

Journal of the ACM (JACM), 14(1):172–201, 1967.
9 Takeshi Hayashi. On derivation trees of indexed grammars—an extension of the uvwxy-

theorem—. Publications of the Research Institute for Mathematical Sciences, 9(1):61–92,
1973.

10 John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory,
languages, and computation, 2nd Edition. Addison-Wesley, 2001.

11 John E. Hopcroft and Jeffrey D. Ullman. Nonerasing stack automata. Journal of Computer
and System Sciences, 1(2):166–186, 1967.

12 Kim S Larsen. Regular expressions with nested levels of back referencing form a hierarchy.
Information Processing Letters, 65(4):169–172, 1998.

13 William F Ogden. Intercalation theorems for stack languages. In Proceedings of the first
annual ACM symposium on Theory of computing, pages 31–42, 1969.

14 Markus L Schmid. Characterising regex languages by regular languages equipped with
factor-referencing. Information and Computation, 249:1–17, 2016.

A Formal definitions and proofs for Section 3

I Definition 21. Suppose that ⊥ /∈ Σ]Bk] [k], and we define a Turing machine with one
tape Dk as follows:

Dk = “On input string v ∈ (Σ]Bk] [k])∗,
(1) Move the head to the right until it reads an i ∈ [k], then go to (2). If such i does

not exist, go to (6).
(2) The assertion P2 , ‘The symbol the head points out now is the leftmost natural

number i ∈ [k] on the tape’ holds. Move the head to the left until it reads a [i,
then go to (3). If such [i does not exist, go to (5).

(3) Let P3 be ‘There is a right bracket]i between the current head position and this i’.
If P3 holds, go to (4). Otherwise, go to (7).

(4) Move the head to the right one by one, seeking a bracket]i. Note that no j ∈ [k]
can appear in this scan since P2 and P3 holds. Now, if the symbol written on
the tape cell that the head points to is a ∈ Σ, then insert a into the position
immediately preceding this i, and go right; if it is b ∈ Bk\ {]i}, simply go right; if
it is]i, go to (5).

(5) Go back to (1) and remove this i.
(6) P6 , ‘No j ∈ [k] is written on the tape’ holds. Again scan the tape from the

beginning, and remove all brackets.
(7) Erase all symbols written on the tape, and write the symbol ⊥.”

MFCS 2023

71:14 On the Expressive Power of Regular Expressions with Backreferences

Henceforth, we refer to these step numbers as encircled numbers 1©, 2©, etc. The order of
execution of Dk seems to be either (1© 2©(3© 4© 5©+ 5©))∗ 1©(6©+ 2© 3© 7©) or (1© 2©(3© 4© 5©+
5©))ω, however the latter cannot happen; because each time Dk executes the loop unit
1© 2©(3© 4© 5©+ 5©), the leftmost natural number i ∈ [k] is replaced with a string that does not
contain natural numbers, therefore the loop runs for at most the number of elements of [k]
in an input string, which is bounded above by the length of the input string. Hence Dk halts
for any input. Thus, we think of Dk as a computable function (Σ]Bk] [k])∗ → Σ∗] {⊥}.

I Lemma 22. Suppose that the loop unit (namely 1© 2© 3© 4© 5© or 1© 2© 5©) is executed exactly
m′ times when an input string v = v0n1v1 · · ·nmvm (m = cnt v) is given to Dk. Then, for
each r ∈ {0, 1, . . . ,m′}, let v(r) be the string written on the tape immediately after the rth

loop, and let v[r] be the string over Σ]Bk defined as follows:

v[r] ,

{
the string bracketed in [i and]i scanned at 4©, (if 1© 2© 3© 4© 5© is executed)
ε. (if 1© 2© 5© is executed)

Under the assumptions above, for each r ∈ {0, 1, . . . ,m′} the following equality holds:

v(r) = v0 g(v[1]) v1 · · · g(v[r]) vrnr+1vr+1 · · ·nmvm.

Proof. When r = 0, the left side is v(0) and the right side is v0n1v1 · · ·nmvm = v, as required.
Recall that immediately before the (r + 1)st loop, the string written on the tape is v(r). It
continues as follows:

At 1©, the head of Dk is placed at immediately after g(v[r]) in

v(r) = v0 g(v[1]) v1 · · · g(v[r]) vrnr+1vr+1 · · ·nmvm,

and moves to nr+1. Henceforth, we write simply sr for v0 g(v[1]) v1 · · · g(v[r]) vr, which
appears before nr+1.
At 2©, there are two cases:

When Dk follows 3© 4© 5©, since it moves from 2© to 3© and P3 holds, sr is in the form
x0[nr+1v[r+1]]nr+1x1. At 4© and 5©, the strings written on the tape after each step are

4© sr g(v[r+1])nr+1vr+1 · · ·nmvm, and 5© sr g(v[r+1]) vr+1 · · ·nmvm.

By definition, this string after 5© is v(r+1).
When Dk follows 5©, since v[r+1] = ε, the string immediately after the execution of 5©,
namely v(r+1), is srvr+1 · · ·nmvm = sr g(v[r+1]) vr+1 · · ·nmvm.

In both cases, the equation holds for r + 1.

This completes the proof. J

I Lemma 23. For a matching string v, the loop of Dk runs exactly m = cnt v times. Hence
Dk(v) ∈ Σ∗.

Proof. Let m′ be the number of loop iterations. Because obviously m′ ≤ m, we suppose
m′ < m for contradiction. If so, since it is the case that the execution moves from 1© 2© 3© to
7© at the (m′ + 1)st loop, P3 does not hold for v(m′). By Lemma 22,

v(m′) = v0 g(v[1]) v1 · · · g(v[m′]) vm′︸ ︷︷ ︸
sm′

nm′+1vm′+1 · · ·nmvm

T. Nogami and T. Terauchi 71:15

follows. Since i in the (m′ + 1)st loop is this nm′+1 and sm′ 3 [nm′+1 , there is vj among
v0, . . . , vm′ such that vj 3 [nm′+1 . This vj can be written in the form u0[nm′+1u1. Because v
is matching and ym′ ⊇ vj 3 [nm′+1 , one of u1, vj+1, . . . , vm′ contains]nm′+1 . This contradicts
the fact that P3 does not hold at 3©. J

Proof of Lemma 6. In Lemma 23, the string v(m), which is written on the tape immediately
after the mth loop, becomes g(v(m)) at 6©, and therefore Dk halts, as required. J

Proof of Lemma 7. Immediate from Lemma 6. J

Finally, we prove that every v ∈ Σ[∗]
k (see Definition 4) is matching, concluding L(α) ⊆ Σ∗

with Lemma 23.

I Lemma 24. The following facts hold where α ∈ REWBk and i ∈ [k]:
(a) Rk(α) ⊆ (Σ] { [j ,]j | j ∈ var (α)}] var (α))∗,
(b) ∀v1, v2. v1[iv2 ∈ Rk(α) =⇒ ∃v′2, v3. v2 = v′2]iv3 ∧ v′2 /3 [i,]i, i.

Proof. Immediate from the definitions of Rk(α) and var (α). J

Proof of Lemma 8. There exists α ∈ REWBk such that v ∈ Rk(α). Hereafter, we let
m = cnt v and v = v0n1v1 · · ·nmvm. For each r ∈ {1, . . . ,m}, if yr−1 can be written in the
form x1[nrx2, we obtain v = x1[nrx2nrvr · · ·nmvm and by Lemma 24 (b), x2nrvr · · ·nmvm
can be written in the form x′2]nr

x3 with x′2 /3 [nr
,]nr

, nr. Here x′2]nr
/3 nr holds. Therefore,

x′2]nr
is a prefix of x2 and of course x′2 /3 [nr

,]nr
. Hence, v is matching. J

B Proof of Corollary 12

Proof of Corollary 12. There are a string w′ ∈ (Σ]Bk] [k])∗ and a final state qf ∈ F such
that q0

w=⇒
N

q
w′

=⇒
N

qf . Hence, ww′ ∈ L(N) = Rk(α) follows. By Lemma 8 the string ww′ is
matching, therefore by Lemma 7 its prefix w is matching. J

C Proof of Lemma 15

First, we define some notations (see also Appendix A for the formal definitions of v[r] and
v(r)). Let Σ∗⊥ , Σ∗]{⊥} and for every w ∈ Σ∗⊥ and s ∈ Σ∗, let w/s denote the string w but
with the suffix s erased if w ends with s, and otherwise ⊥. To use this notation, we expand the
set of all IDs I = Q×Σ∗×{#} (Γ]{¢,$, �})∗ {$} to I⊥ , Q×Σ∗⊥×{#} (Γ]{¢,$,�})∗ {$},
and we let C(w) denote an ID C = (·, w, · · ·) and `′(n) denote the following binary relation
over I⊥:

`′(n),
{

(C(w), C ′(w/(ai · · · ai+d−1)))
∣∣∣ C(ai · · · ak) `(n) C

′(ai+d · · · ak), w ∈ Σ∗⊥
}
.

In addition, we define `′,
⋃
n `′(n). Then, ` ⊆`′ is immediate and we show that the converse

partially holds, in the sense that:

I Lemma 25. For every string w ∈ Σ∗ and w′ ∈ Σ∗, C(w) `′ C ′(w′) implies C(w) ` C ′(w′).

Proof. By the definition of `′, there is (C(ai · · · ak), C ′(ai+d · · · ak)) ∈ ` such that w′ =
w/(ai · · · ai+d−1). By the definition of `, C(w) = C(ai · · · ai+d−1w

′) ` C ′(w′) holds. J

I Definition 26. Given C,C ′ ∈ I⊥, we write C |=(n) C
′ if C `′(n) C

′ and ∀j, C ′′.C `′(j)
C ′′ =⇒ j = n ∧ C ′′ = C ′. We often omit the subscript (n) and simply write C |= C ′. Note
that C |= C ′ implies not only C `′ C ′ but also determinism: ∀C ′′ ∈ I⊥. C `′ C ′′ =⇒ C ′ = C ′′.

MFCS 2023

71:16 On the Expressive Power of Regular Expressions with Backreferences

I Lemma 27. Suppose that γ ∈ (Σ] Bk] [k])∗, i ∈ [k], w ∈ Σ∗, β ∈ (Γ] {¢,$})∗ and
p ∈ QN] {ei | i ∈ [k]}. Let m = cnt (γi) (≥ 1). If γi is matching,

(ci, w,#Z0γ¢p�$iβ$) |= · · · |= (ri, w/g((γi)[m]),#Z0γ¢p�$iβ$)

holds, where no ID with a state in QN appears in the calculation · · · .

Proof. In this proof, we sometimes write the stack representation # · · ·Z � · · ·$ as # · · · �
Z · · ·$ with the head-reversed arrow �. First, if γ /3 [i, it holds that

(ci, w,#Z0γ¢p�$iβ$) |=∗ (ci, w,#Z0 �γ¢p$iβ$)
|= (ri, w,#Z0 � γ¢p$iβ$) |=∗ (ri, w,#Z0γ¢p�$iβ$),

and by (γi)[m] = ε, we have w = w/g((γi)[m]), as required. Henceforth, we assume that
γ 3 [i and the decomposition γ = γ0[iγ1 (γ1 /3 [i). Moreover, we can further decompose
γ1 = γ2]iγ3 (γ2 /3 [i,]i, γ3 /3 [i) because γi is matching. We prove by induction on m.

Case m = 1: By cnt γ = 0, γ2 ∈ (Σ]Bk)∗ follows. Letting w′ , w/g(γ2), we have

(ci, w,#Z0γ0[iγ1¢p�$iβ$) |=∗ (ci, w,#Z0γ0[i �γ1¢p$iβ$) |= (ei, w,#Z0γ0[i�γ1¢p$iβ$)
|=∗ (ei, w′,#Z0γ0[iγ2]i �γ3¢p$iβ$) |= (ri, w′,#Z0γ0[iγ2]i �γ3¢p$iβ$)
|=∗ (ri, w′,#Z0γ0[iγ2]iγ3¢p�$iβ$).

Therefore, the claim holds since no ID with a state in QN appears in this calculation and
γ2 = (γi)[m] follows from (γi)(0) = γi = γ0[iγ2]iγ3i, γ3 /3 [i.

Case {1, . . . ,m} =⇒ m + 1: Let m0 , cnt γ0 and l , cnt γ2 (≥ 0). Now, m0 +
l ≤ m = cnt γ holds and we write γ2 = λ0nm0+1λ1 · · ·nm0+lλl. We also define ηr ,
γ0[iλ0nm0+1 · · ·λr−1nm0+r for each r ∈ {1, . . . , l}. By ηr being a prefix of γi and Lemma 7,
ηr is matching and (ηr)[m0+r] = (γi)[m0+r], r ∈ {1, . . . , l} holds. In particular, it follows that
nm0+r 6= i for every r (if there is r such that nm0+r = i, γ2 ⊇ λ0nm0+1 · · ·λr−1 3]i holds but
this contradicts γ2 /3]i). Thus, letting w0 , w, w′r , wr−1/g(λr−1), wr , w′r/g((ηr)[m0+r])
and w′ = wl/g(λl), we have

(ci, w,#Z0γ¢p�$iβ$)
|=∗ (ci, w,#Z0γ0[i �λ0nm0+1λ1 · · ·nm0+lλl]iγ3¢p$iβ$)
|= (ei, w0,#Z0γ0[i�λ0nm0+1λ1 · · ·nm0+lλl]iγ3¢p$iβ$)
|=∗ (ei, w′1,#Z0γ0[iλ0nm0+1 � λ1 · · ·nm0+lλl]iγ3¢p$iβ$)
|= (cnm0+1 , w

′
1,#Z0γ0[iλ0¢ri �$nm0+1λ1 · · ·nm0+lλl]iγ3¢p$iβ$)

|=∗ (rnm0+1 , w1,#Z0γ0[iλ0¢ri �$nm0+1λ1 · · ·nm0+lλl]iγ3¢p$iβ$)
(by η1 being matching and induction hypothesis)

|= (Eei,nm0+1 , w1,#Z0γ0[iλ0¢�$nm0+1λ1 · · ·nm0+lλl]iγ3¢p$iβ$)
|= (Lei,nm0+1 , w1,#Z0γ0[iλ0nm0+1 �λ1 · · ·nm0+lλl]iγ3¢p$iβ$)
|= (ei, w1,#Z0γ0[iλ0nm0+1 �λ1 · · ·nm0+lλl]iγ3¢p$iβ$)

|=∗ · · · |=∗ (ei, wl,#Z0γ0[iλ0nm0+1λ1 · · ·nm0+l �λl]iγ3¢p$iβ$)
(by similar calculation and induction hypothesis)

|=∗ (ei, w′,#Z0γ0[iλ0nm0+1λ1 · · ·nm0+lλl]i �γ3¢p$iβ$)
|= (ri, w′,#Z0γ0[iλ0nm0+1λ1 · · ·nm0+lλl]i �γ3¢p$iβ$)
|=∗ (ri, w′,#Z0γ0[iλ0nm0+1λ1 · · ·nm0+lλl]iγ3¢p�$iβ$),

T. Nogami and T. Terauchi 71:17

and

w′ = w/g(λ0) g((η1)[m0+1]) g(λ1) · · · g((ηl)[m0+l]) g(λl)
= w/g(λ0) g((γi)[m0+1]) g(λ1) · · · g((γi)[m0+l]) g(λl),

where no ID with a state in QN appears in this calculation. Here, we write

γ = γ0[iλ0nm0+1λ1 · · ·nm0+lλl]iγ3 = v0n1v1 · · ·nmvm

and decompose its substrings as

vm0 = χ0[iλ0, vm0+l = λl]iχ1, and γ3 = χ1nm0+l+1vm0+l+1 · · ·nmvm.

Then, by Lemma 22, we can write (γi)(m) as

v0 · · · ︸ ︷︷ ︸
vm0

χ0[i

=(γi)[m+1]︷ ︸︸ ︷
λ0 g((γi)[m0+1]) vm0+1 · · · g((γi)[m0+l]) ︸ ︷︷ ︸

vm0+l

λl]i

γ′
3,︷ ︸︸ ︷

χ1 g((γi)[m0+l+1])vm0+l+1 · · · g((γi)[m]) vm i.

That is, it holds that γ′3 , χ1 g((γi)[m0+l+1])vm0+l+1 · · · g((γi)[m]) vm /3 [i by γ3 /3 [i, and
we obtain (γi)[m+1] = λ0 g((γi)[m0+1])λ1 · · · g((γi)[m0+l])λl, as shown above. Therefore, the
claim holds for m+ 1 since w′ = w/g((γi)[m+1]). J

Proof of Lemma 15. For arbitrary w ∈ Σ∗, by Lemma 27,

(q, w,#Z0γ �$) `(3) (Wq′ , w,#Z0γi�$) |=(4) (ci, w,#Z0γ¢q′ �i)
|=∗ (ri, w/g((γi)[m]),#Z0γ¢q′ �i) |=(14) (Eq′,i, w/g((γi)[m]),#Z0γ¢�i)
|=(15) (Lq′,i, w/g((γi)[m]),#Z0γi�$) |=(17) (q′, w/g((γi)[m]),#Z0γi�$) (∗)

holds. Assuming (a), we can replace |= in equation (∗) with ` by Lemma 25 because
w/g((γi)[m]) = w′ ∈ Σ∗ holds, and therefore, (b) follows. Supposing (b) conversely, we have
(q, w,#Z0γ � $) `(3) (Wq′ , w,#Z0γi � $) `′ · · · `′ (p, w′,#β$), where no ID with a state
in QN appears in either this calculation or (∗) except in their leftmost and rightmost IDs.
Therefore, their two calculations coincide by the determinism of |=. In particular, we obtain
p = q′, w′ = w/g((γi)[m]) and β = Z0γi � by the equality of their rightmost IDs, and thus,
(a) follows because w′ ∈ Σ∗. J

D Proof of Theorem 13

Proof of Theorem 13. Taking any w ∈ L(α), we have v = v0n1v1 · · ·nmvm ∈ Rk(α) =
L(N) (here, m = cnt v) such that w = Dk(v). Now, suppose that q0

v0=⇒
N

q(0)
n1v1=⇒
N

q(1)
n2v2=⇒
N

· · · nmvm=⇒
N

q(m) ∈ F . Letting yr , v0n1v1 · · ·nrvr and zr , g(v0) g(v[1]) g(v1) · · · g(v[r]) g(vr)
for each r ∈ {0, 1, . . . ,m}, we show by induction on r that for any w′ ∈ Σ∗, (q0, zrw

′,#Z0 �
$) `∗ (q(r), w

′,#Z0yr �$) holds.
Case r = 0: It holds that q0

v0=⇒
N

q(0) and y0 = v0 ∈ (Σ]Bk)∗. Letting γ = ε in Lemma 14,
we obtain (q0, g(v0)w′,#Z0 �$) `∗ (q(0), w

′,#Z0y0 �$), as required.
Case r ⇒ r + 1: By the induction hypothesis, it holds that (q0, zr+1w

′,#Z0 � $) `∗
(q(r), g(v[r+1]) g(vr+1)w′,#Z0yr �$). By Lemma 8, v is matching. Hence, v’s prefix yrnr+1

is also matching by Lemma 7. Let q(r)
nr+1vr+1=⇒

N
q(r+1) be q(r)

nr+1−→
N

q′
vr+1=⇒
N

q(r+1). Because
cnt (yrnr+1) = r + 1, the following calculation holds by Lemma 15 (a) =⇒ (b):

(q(r), g((yrnr+1)[r+1]) g(vr+1)w′,#Z0yr �$)

MFCS 2023

71:18 On the Expressive Power of Regular Expressions with Backreferences

`(3) (Wq′ , g((yrnr+1)[r+1]) g(vr+1)w′,#Z0yrnr+1 �$)
`∗ (q′, g(vr+1)w′,#Z0yrnr+1 �$) `∗ (q(r+1), w

′,#Z0yrnr+1vr+1 �$).

By Lemma 7, it holds that (yrnr+1)[r+1] = v[r+1] and yrnr+1vr+1 = yr+1, as required.
In particular, letting r = m and w′ = ε in the claim, we obtain (q0, w,#Z0 � $) `∗
(q(m), ε,#Z0ym � $) because w = Dk(v) = zm by Lemma 6. Therefore, w ∈ L(Aα) holds
since q(m) ∈ F .

Conversely, take any w ∈ L(Aα). There exist m and an ID C(r) = (pr, wr,#βr$) for each
r ∈ {1, . . . ,m} such that C(1) = (q0, w,#Z0 �$) ` · · · ` C(r) ` · · · ` C(m) = (pm, ε,#βm$),
where pm ∈ F . We show by induction on r that for each r = 1, . . . ,m, the following claim
holds: if pr ∈ QN , there is γr such that C(r) = (pr, wr,#Z0γr �$), (a) γr ∈ (Σ]Bk] [k])∗,
(b) w = Dk(γr)wr and (c) q0

γr=⇒
N

pr.
Case r = 1: It holds that p1 = q0 ∈ QN and C(1) = (q0, w,#Z0 �$). Letting p1 = q0,

w1 = w and γ1 = ε, we have (a) γ1 = ε ∈ (Σ] Bk] [k])∗, (b) w = Dk(γ1)w1 and (c)
q0

γ1=⇒
N

p1 = q0, as required.
Case {1, . . . , r} ⇒ r + 1: Suppose that pr+1 ∈ QN . We can define j as the maximum of

the set {1 ≤ j ≤ r | pj ∈ QN} since p1 ∈ QN . Rules that can be applied to C(j) are limited
to (1), (2) and (3) because pj ∈ QN .

In the case of (1), j = r holds because pj+1 ∈ QN . By pr ∈ QN and the induction
hypothesis, we have C(r) = (pr, wr,#Z0γr �$), and pr, wr and γr satisfy conditions (a), (b)
and (c). Hence, by Lemma 14 (a)2, there is a ∈ Σ such that pr

a−→
N

pr+1, wr = awr+1 and
βr+1 = Z0γra�. Now, we let γr+1 = γra. Since βr+1 = Z0γr+1� , (a) γr+1 = γra ∈ (Σ]Bk]
[k])∗ because γr ∈ (Σ]Bk] [k])∗, (b) Dk(γr+1)wr+1 = Dk(γr)awr+1 = Dk(γr)wr = w, and
(c) q0

γr+1=⇒
N

pr+1 because q0
γr=⇒
N

pr
a−→
N

pr+1. The case of (2) follows similarly as the case of (1)

with Lemma 14 (b)2. In the case of (3), there is q′ ∈ QN such that pj
i−→
N

q′. By pj ∈ QN and
the induction hypothesis, we have C(j) = (pj , wj ,#Z0γj �$), and pj , wj and γj satisfy the
conditions (a), (b) and (c). Because q0

γj=⇒
N

pj
i−→
N

q′, γji is matching by Corollary 12. Besides,
it holds that pr+1 ∈ QN and (pj , wj ,#Z0γj � $) `(3) (Wq′ , wj ,#Z0γji � $) ` · · · ` C(r+1),
where no ID with a state in QN appears in the calculation · · · . Hence, by Lemma 15
(b) =⇒ (a), we have pr+1 = q′, wj = g((γji)[m])wr+1, and βr+1 = Z0γji �. Now, we let
γr+1 = γji. Since βr+1 = Z0γr+1 �, (a) γr+1 = γri ∈ (Σ]Bk][k])∗ because γr ∈ (Σ]Bk][k])∗,
(b) Dk(γr+1)wr+1 = Dk(γj) g((γji)[m])wr+1 = Dk(γj)wj = w, and (c) q0

γr+1=⇒
N

pr+1 because

q0
γj=⇒
N

pj
i−→
N

pr+1.
Therefore, the claim holds for the case of r + 1. In particular, letting r = m in the claim,

we have C(m) = (pm, wm,#Z0γm�$), and pm, wm and γm satisfy (a), (b) and (c) (note that
pm ∈ F ⊆ QN). Because wm = ε, it holds that w = Dk(γm) and that q0

γm=⇒
N

pm ∈ F , or
γm ∈ L(N) = Rk(α). Therefore, we have w ∈ Dk(Rk(α)) = L(α). J

E Supplement to Corollary 17

We show that the language T , {anbn | n ∈ N} is described by the NESA A given in Figure 3.
The set of stack symbols Γ is {Z0, ?}, where ? is a distinguished character. Intuitively, A
first pushes ? while consuming the input a to count the occurrences of a and leaves q0 for q1
nondeterministically. At q1, A moves its stack pointer leftward while consuming the input b,
and leaves there for the accepting state q2 if and only if the stack pointer reaches the bottom

T. Nogami and T. Terauchi 71:19

q0 q1 q2
ε/S

a/$→?$
b/?, L

b/?$, L

ε/Z0, S

Figure 3 An NESA that recognizes T = {anbn | n ∈ N}

of the stack. Finally, A halts at q2. Here is the proof of L(A) = T :

Proof. The inclusion T ⊆ L(A) follows from the following calculation for any n ∈ N:

(q0, a
nbn,#Z0 �$) `n (q0, b

n,#Z0 ?
n �$)

` (q1, b
n,#Z0 ?

n �$) `n (q1, ε,#Z0 � ?
n$) ` (q2, ε,#Z0 � ?

n$).

Conversely, take any w ∈ L(A). By the construction of A, we can assume that w = anbm

(where n,m ∈ N) and its accepting calculation is in the following form for some l ∈ N:

(q0, a
nbm,#Z0 �$) `l (q0, a

n−lbm,#Z0 ?
l �$)

` (q1, a
n−lbm,#Z0 ?

l �$) `∗ (q1, ε,#Z0 � ?
l$) ` (q2, ε,#Z0 � ?

l$).

In this calculation, the steps `∗ indicate n = l = m. J

F Calculation for the rewb of Theorem 18

Letting k = 4, we calculate the language L(α) described by the k-rewb

α = ((1\4 a)1 (2\3)2 (3\2 a)3 (4\1\3)4)∗.

It is easy to see that

Rk(α) = { ([14 a]1 [23]2 [32 a]3 [41 3]4)n | n ∈ N} .

Let bn denote ([14 a]1 [23]2 [32 a]3 [41 3]4)n (therefore L(α) = {Dk(bn) | n ∈ N}). We show by
induction that Dk(bn) = Dk(c1 · · · cn) where cn , [1an(n+1)/2]1 [2an−1]2 [3an]3 [4an(n+3)/2]4
for every n ≥ 1. First, when n = 1,

Dk(b1) = Dk([14 a]1 [23]2 [32 a]3 [41 3]4) = Dk([1a]1 [23]2 [32 a]3 [41 3]4)
= Dk([1a]1 [2]2 [32 a]3 [41 3]4) = Dk([1a]1 [2]2 [3a]3 [41 3]4)
= Dk([1a]1 [2]2 [3a]3 [4a 3]4) = Dk([1a]1 [2]2 [3a]3 [4a a]4) = Dk(c1).

Next, in the case of n+ 1,

Dk(bn+1) = Dk(bn [14 a]1 [23]2 [32 a]3 [41 3]4)
= Dk(c1 · · · cn[14 a]1 [23]2 [32 a]3 [41 3]4)
= Dk(c1 · · · cn[1an(n+3)/2 a]1 [2an]2 [3an a]3 [4an(n+3)/2 a an a]4)
= Dk(c1 · · · cn[1a(n+1)(n+2)/2]1 [2an]2 [3an+1]3 [4a(n+1)(n+4)/2]4)
= Dk(c1 · · · cncn+1).

∴ |Dk(bn)| =
n∑
i=1
|g(ci)| =

n∑
i=1

(i2 + 4i− 1) = n(n+ 7)(2n+ 1)
6 . (also for n = 0)

Therefore, we have L(α) =
{
an(n+7)(2n+1)/6 ∣∣ n ∈ N

}
.

MFCS 2023

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Every rewb describes an indexed language
	5 A rewb that describes a non-stack language
	6 Larsen's hierarchy is within the class of nonerasing stack language
	7 Conclusions
	A Formal definitions and proofs for Section 3
	B Proof of Corollary 12
	C Proof of Lemma 15
	D Proof of Theorem 13
	E Supplement to Corollary 17
	F Calculation for the rewb of Theorem 18

