
173

Repairing Regular Expressions for Extraction

NARIYOSHI CHIDA, NTT Social Informatics Laboratories / Waseda University, Japan

TACHIO TERAUCHI,Waseda University, Japan

While synthesizing and repairing regular expressions (regexes) based on Programming-by-Examples (PBE)

methods have seen rapid progress in recent years, all existing works only support synthesizing or repairing

regexes for membership testing, and the support for extraction is still an open problem. This paper fills the

void by proposing the first PBE-based method for synthesizing and repairing regexes for extraction.

Our work supports regexes that have real-world extensions such as backreferences and lookarounds. The

extensions significantly affect the PBE-based synthesis and repair problem. In fact, we show that there are

unsolvable instances of the problem if the synthesized regexes are not allowed to use the extensions, i.e., there

is no regex without the extensions that correctly classify the given set of examples, whereas every problem

instance is solvable if the extensions are allowed. This is in stark contrast to the case for the membership

where every instance is guaranteed to have a solution expressible by a pure regex without the extensions.

The main contribution of the paper is an algorithm to solve the PBE-based synthesis and repair problem for

extraction. Our algorithm builds on existing methods for synthesizing and repairing regexes for membership

testing, i.e., the enumerative search algorithms with SMT constraint solving. However, significant extensions

are needed because the SMT constraints in the previous works are based on a non-deterministic semantics

of regexes. Non-deterministic semantics is sound for membership but not for extraction, because which

substrings are extracted depends on the deterministic behavior of actual regex engines. To address the issue,

we propose a new SMT constraint generation method that respects the deterministic behavior of regex

engines. For this, we first define a novel formal semantics of an actual regex engine as a deterministic big-step

operational semantics, and use it as a basis to design the new SMT constraint generation method. The key idea

to simulate the determinism in the formal semantics and the constraints is to consider continuations of regex
matching and use them for disambiguation. We also propose two new search space pruning techniques called

approximation-by-pure-regex and approximation-by-backreferences that make use of the extraction information

in the examples. We have implemented the synthesis and repair algorithm in a tool called R3 (Repairing Regex

for extRaction) and evaluated it on 50 regexes that contain real-world extensions. Our evaluation shows the

effectiveness of the algorithm and that our new pruning techniques substantially prune the search space.

CCSConcepts: • Software and its engineering→ Software notations and tools; •Theory of computation
→ Regular languages; Operational semantics.

Additional Key Words and Phrases: Regular Expression, Programming by Example, Program Repair

ACM Reference Format:
Nariyoshi Chida and Tachio Terauchi. 2023. Repairing Regular Expressions for Extraction. Proc. ACM Program.
Lang. 7, PLDI, Article 173 (June 2023), 31 pages. https://doi.org/10.1145/3591287

1 INTRODUCTION
Regular expressions (regexes) play a critical role for membership testing and extraction in modern

programming languages and software development. For example, they are heavily used for vali-

dating user inputs [O’Hara 2022; OWASP 2022], inspecting packets [Services 2022; Snort 2022],

Authors’ addresses: Nariyoshi Chida, nariyoshichidamm@gmail.com, NTT Social Informatics Laboratories / Waseda

University, Japan; Tachio Terauchi, Waseda University, Japan, terauchi@waseda.jp.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/6-ART173

https://doi.org/10.1145/3591287

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

HTTPS://ORCID.ORG/0000-0002-9542-9234
HTTPS://ORCID.ORG/0000-0001-5305-4916
https://doi.org/10.1145/3591287
https://orcid.org/0000-0002-9542-9234
https://orcid.org/0000-0001-5305-4916
https://doi.org/10.1145/3591287

173:2 Nariyoshi Chida and Tachio Terauchi

and extracting data from (unstructured) texts [Li et al. 2008; Luckie et al. 2019] in the frameworks

for building Web applications [Angular 2022; Django 2022], etc. However, despite the practical

importance of regexes, writing or repairing regexes is an error-prone task [Michael et al. 2019;

Wang et al. 2020].

Recent works have addressed this problem by synthesizing or repairing regexes based on

Programming-by-Examples (PBE)methodswhich have receivedmuch attention in recent years [Chen

et al. 2020; Chida and Terauchi 2022b; Ferreira et al. 2021; Lee et al. 2016; Li et al. 2021, 2020; Pan

et al. 2019; Zhang et al. 2020]. The PBE-based methods allow the users to write or repair regexes

automatically from examples that reflect the user’s intention. Yet, while methods for synthesizing

or repairing regexes for membership testing exist, none of them can handle extraction. Additionally,
there are several works for generating a regex for extraction from examples [Bartoli et al. 2014,

2016] based on genetic algorithms. However, they do not guarantee the correctness of the repair,

that is, the synthesized regex is not guaranteed to conform to the given set of examples.

This paper fills the void by proposing the first PBE-based method for synthesizing and repairing

regexes for extraction. We first formally define a PBE-based repair problem called the extraction-
regex-repair problem.

1
The problem takes a (possibly incorrect) regex, a set of positive examples,

and a set of negative examples. Like in previous PBE works for membership, a negative example is

a string to be rejected. However, unlike the previous works, a positive example consists of not only

a string to be accepted, but also the information of substrings to be extracted from the string. The

goal of the repair problem is to find a regex that is consistent with the given set of examples and is

syntactically close to the given original one. Like in the previous PBE works, the syntactic closeness

is used to bias the synthesis to one that is close to the user’s intention [Chida and Terauchi 2022b;

Pan et al. 2019], that is, the original regex may not be correct but is assumed to be close to the one

that the user intended. Our work handles regexes with real-world extensions such as backreferences

and lookarounds [Friedl 2006]. The extensions significantly affect the repair problem. In fact, we

show that there are unsolvable problem instances if repaired regexes are not allowed to use the

extensions, i.e., there is no regex without the extensions that correctly classify the given set of

examples, whereas every problem instance is solvable if the extensions are allowed. This is in stark

contrast to the case for the membership repair problem in which every instance is guaranteed to

have a solution expressible by a pure regex without the extensions.

At a high level, our algorithm for solving the extraction-regex-repair problem builds on the

approach used in the previous works on PBE-based repair methods for membership which conducts

enumerative search by repeatedly generating and solving SMT constraints that encode assertions

of the form “the given template regex can be instantiated to one that conforms with the given set of

examples”, coupled with certain pruning techniques to reduce the search space. A template regex is

a regex that contains holes to be filled. However, there are following key challenges that did not

exist in the previous works that only considered membership.

The first challenge comes from the fact that regex engines in the real world run in a deterministic

manner by prioritizing the behavior of operators that potentially have an ambiguity such as the

union operator and the Kleene-star operator. The previous works that only considered membership

do not face this challenge because the determinism of regex engines does not affect the matching

results in terms of membership testing.
2
However, in the case of extraction, it does affect the

result because which substrings are extracted depends on the deterministic behavior of the regex

engine. To address the issue, we propose a new SMT constraint generation method that respects

1
Synthesis is a special case of the repair problem in which the pre-repair regex is 𝜖 .

2
Technically, the membership result can be affected in some rare cases when substrings captured in positive lookarounds

are backreferenced [Chida and Terauchi 2022b; Loring et al. 2019], but the issue is not addressed in the previous PBE works.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

Repairing Regular Expressions for Extraction 173:3

the deterministic behavior of regex engines. For this, we first define a novel formal semantics of

an actual regex engine as a deterministic big-step operational semantics, and use it as a basis to

design the new SMT constraint generation method. The key idea to simulate the determinism in

the formal semantics and the constraints is to consider continuations of regex matching and use

them for disambiguation. There are several variants of determinism in actual regex engines that

often give different extraction results (even though many are equivalent for just membership), and

in this work, we choose that of the ECMAScript 2023 language specification, that is, our semantics

and constraints emulate the behavior of the regex engines of JavaScript. However, the high-level

idea of our approach is applicable to other regex engines.

The second challenge is the large search space. The previous PBE-based methods for membership

reduced the search space by pruning useless templates based on over- and under-approximations [Chen

et al. 2020; Chida and Terauchi 2022b; Lee et al. 2016; Pan et al. 2019]. That is, by creating from the

template regexes that over- or under-approximate the strings accepted by possible instantiations of

the template, one can cheaply detect when a template is impossible to be instantiated to a regex

that correctly classifies the examples. Although we can use the same approximations in our method

for extraction, it is not enough to reduce the search space as we shall show in our evaluation. The

increase in the search space is inevitable since, in the case of extraction, not only do we need to

find a regex that correctly classifies the examples in terms of membership only (i.e., only whether

the example string is accepted or rejected), but we also need to find places in the regex to insert

capturing groups to correctly reflect the extraction information in the examples. To address this

challenge, we propose two new over-approximation techniques called approximation-by-pure-regex
and approximation-by-backreferences. The key idea in these techniques is to modify the example

string by embedding the extraction information in it so that its membership result against a cer-

tain regex created from the template can be used to detect whether or not the template can be

instantiated to become a regex that correctly reflects the extraction information in the example.

We have implemented our algorithm as a tool called R3 (Repairing Regex for extRaction) and

evaluated it on 50 regexes including ones that contain real-world extensions. To evaluate the impact

of our new pruning, we compare R3 to the baseline: R3base, which does not use our new pruning

techniques. Our evaluation shows that R3 can repair regexes efficiently in a real-world situation

using few examples, and our new pruning technique substantially improves the performance.

In summary, our paper makes the following contributions.

• We give a novel deterministic formal semantics of regexes that is consistent with an ac-

tual regex engine for both membership and extraction (Section 3). Our semantics follows

the ECMAScript 2023 language specification and supports real-world extensions such as

backreferences and lookarounds.

• We define the extraction-regex-repair problem, which is the first PBE problem of repairing a

regex for extraction task (Section 4). We show that real-world extensions such as lookarounds

are essential to ensure the existence of the solutions of the problem, in that there exist

instances of the problem for which there exist no solutions without the use of extensions

while every instance is solvable when the extensions are allowed.

• We give an algorithm for solving the extraction-regex-repair problem (Section 5). Our algo-

rithm is based on an enumerative search and uses an SMT solver to find a solution. We build

on our novel formal semantics to design the new SMT constraint generation method that

respects the deterministic behavior of the regex engine (Section 5.2). Additionally, we propose

new pruning techniques to reduce the search space (Section 5.3). We emphasize that the SMT

constraint generation method and the pruning techniques are significantly different from

those of prior works that only considered membership due to extraction-specific challenges

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

173:4 Nariyoshi Chida and Tachio Terauchi

such as deterministic semantics of regex engines and utilizing the extraction information in

examples. Such challenges are not addressed in any state-of-the-art regex synthesizers and

repairers for membership. Our work addresses the new challenges by novel ideas such as the

use of continuation regexes in SMT constraints and using backreferences in pruning.

• We evaluate our method on 50 regexes including ones that contain real-world extensions

(Section 6). We show that R3 can find a solution efficiently, and our new pruning techniques

improve the performance substantially.

2 OVERVIEW
We overview the extraction-regex-repair problem and our PBE method that solves the problem

with an example. The example is inspired by regexes from Stack Overflow
3
and Blog posts

4
.

Motivating Example. The user wants to extract a text of a leaf element from an XML document

using a regex. If an XML document has two or more leaf elements, the user wants to extract the

leftmost one. For example, the user wants to extract the text 𝑏 from the XML document <𝑎>𝑏</𝑎>, 𝑐

from <𝑎><𝑏>𝑐</𝑏></𝑎>, and𝑑 from <𝑎><𝑏>𝑑</𝑏><𝑐>𝑒</𝑐></𝑎>. For this purpose, the user prepared

the regex .∗? (?<=<(.∗)1>) (.∗?)2 (?=<[/]\1>).∗. The regex uses the positive lookbehind (?<=<(.∗)1>)
and the positive lookahead (?=<[/]\1>) to find the opening and closing tags, respectively, and

extracts the text of the tags by the 2nd capturing group (.∗?)2. Note that the positive lookbehind
contains the capturing group (.∗)1 which is backreferenced in the positive lookahead by the operator
\1 to ensure that the opening and closing tag names match. Unfortunately, the regex does not

extract texts correctly due to the deterministic behavior of actual regex engines. For example, for

the input <𝑎><𝑏>𝑐</𝑏></𝑎>, the regex extracts <𝑏>𝑐</𝑏> rather than 𝑐 .

Repair Problem. Our tool R3 can help the user to repair the regex automatically by solving the

extraction-regex-repair problem. The instance of the repair problem is a (possibly incorrect) regex,

a set of positive examples, and a set of negative examples. A solution of the instance is a correct
regex, i.e., a regex that is consistent with all examples, and is syntactically close to the given regex.

A positive example is a string to be accepted with the information of substrings to be extracted.

We use L and M𝑖 to denote the information of a substring to be extracted by the 𝑖th capturing

group. For example, the positive example 𝑎L𝑎M1𝑎 means that the regex should accept the string

𝑎𝑎𝑎 and extract the second character 𝑎. Note that a positive example specifies not only substrings

to be extracted but also the positions of the substrings, reflecting the behavior of the extraction

operations in actual regex engines. A negative example is a string to be rejected. Here, suppose

that the user prepared the positive examples <𝑎><L𝑎M1>L𝑎M2</𝑎></𝑎> and <L𝑏M1>L𝑐M2</𝑏>, and the

negative example <𝑎>𝑎</𝑏>. Note that, in a PBE scenario, the number of examples should be small

for usability. A possible way for a user to prepare such examples is to first prepare membership

examples (i.e., by only considering which strings should be accepted or rejected), following the

methods recommended in prior PBE works for membership such as consulting the RegExLib

website [RegExLib 2022], and then add to the positive examples information about the positions of

the substrings to be extracted.

RepairMethod.Once the user inputs the examples with the (possibly incorrect) regex, R3 generates

a candidate template of a solution (Template Generation), and then checks whether the candidate

template can be instantiated into the solution (Searching Template Instances). R3 iteratively performs

these steps until it finds a solution.

(Template Generation) R3 generates templates, which are regexes containing holes. Roughly, a
hole □ is a placeholder that is to be replaced with some concrete regex. For the running example, R3

3
https://stackoverflow.com/questions/68248512/regex-lookahead-lookbehind

4
http://blog.gtiwari333.com/2011/12/htmlxml-tag-parsing-using-regex-in-java.html

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

https://stackoverflow.com/questions/68248512/regex-lookahead-lookbehind
http://blog.gtiwari333.com/2011/12/htmlxml-tag-parsing-using-regex-in-java.html

Repairing Regular Expressions for Extraction 173:5

starts with the initial template set to be the input regex .∗? (?<=<(.∗)1>) (.∗?)2 (?=<[/]\1>).∗. Since
the regex does not correctly classify the examples (namely, <𝑎><L𝑎M1>L𝑎M2</𝑎></𝑎>),5 R3 replaces
some subexpressions with holes and expands the holes by replacing them with templates that may

contain holes. After some iterations, R3 finds the template .∗? (?<=<(□∗)1>)(□∗?)2 (?=<[/]\1>).∗.
(Searching Template Instances) Then, R3 checks whether the template can be instantiated to a

regex that correctly classifies the examples by replacing its holes with sets of characters. For this,

R3 generates and solves an SMT constraint. The constraint generation builds on that proposed for

membership [Chida and Terauchi 2022b; Pan et al. 2019]. That is, for each example, we generate

a formula over variables representing the holes in the template encoding a constraint of the

form “there is an assignment to the holes that makes the template into a regex that correctly

classifies the example”, and take the conjunction of the formulas over the examples. We make two

extensions to this to generate constraints for our extraction problem: bookkeeping of extracted

substring indexes for positive examples, and simulating the deterministic behavior of the regex

engine. While the former is a relatively straightforward extension, the latter is more subtle and

we next give an overview of how it is done. The key idea is to use continuations to encode in the

SMT constraint the deterministic behavior of the regex engine.
6
For example, for the template

.∗? (?<=<(□∗)1>)(□∗?)2 (?=<[/]\1>).∗, the number of iterations of the lazy Kleene star □∗? depends
on the result of the matching of the continuation (?=<[/]\1>).∗. That is, if the remaining substring

of the example under consideration matches the continuation then we must not iterate the Kleene

star at all, and we encode such facts as SMT constraints, i.e., we encode conditions of the form “if

the continuation is instantiated to match the remaining substring then ... else ...”.

If the SMT constraint is satisfiable, then R3 returns the obtained regex as the repair result.

Otherwise, R3 continues the search process by generating more templates as described above. R3

also performs template pruning to filter out useless templates. Template pruning is also used in

template-based synthesis and repair methods for membership [Chen et al. 2020; Chida and Terauchi

2022b; Lee et al. 2016; Pan et al. 2019], and its high-level idea is simple: if a template cannot be

instantiated into a regex that is consistent with some example even if we replace the holes in

the template with arbitrary expressions, then there is no need to consider the template or any

template that can be obtained by expanding the holes of the template. However, the details of the

pruning process are quite subtle, and we propose two novel pruning techniques that make use of the

extraction information in positive examples, called approximation-by-pure-regex and approximation-
by-backreferences. Briefly, both techniques over-approximate the problem of detecting whether the

template can be pruned to the membership problem of whether a certain regex created from the

template accepts certain input strings created from the positive examples. The former technique

creates a pure regex (i.e., one without backreferences or lookarounds) while the latter technique

does a more accurate but more expensive detection by creating a regex with backreferences. The

details are found in Section 5.

For the template .∗? (?<=<(□∗)1>)(□∗?)2 (?=<[/]\1 >).∗, R3 finds that the generated constraint

is satisfiable, and replaces both holes with the set of characters [𝑎 − 𝑧] (which is a regex that

matches any lowercase Latin alphabet) to return the repaired regex .∗? (?<=<([𝑎 − 𝑧]∗)1)>) ([𝑎 −
𝑧]∗?)2 (?=</\1>).∗, which is consistent with all the examples.

5
In general, R3 checks if the current template can be instantiated to a regex that correctly classifies the examples, by the

process described in Searching Template Instances (note that a concrete regex is a template that does not have holes).

6
The idea to use continuations is inspired by the work of Sakuma et al. [2012] (cf. Section 7 for details).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

173:6 Nariyoshi Chida and Tachio Terauchi

3 REGEX
In this section, we define the syntax and semantics of regexes. As remarked before, unlike the case of

membership, the deterministic behavior of the union and Kleene-star operators affect the semantics

of regexes. In this paper, we chose to the semantics of regexes used in JavaScript for two reasons.

First, JavaScript is one of the most popular programming languages for building Web applications,

especially with regexes for extraction. Second, JavaScript has a language specification that defines

the syntax and semantics including that of regexes in a semi-formal fashion as the ECMAScript

language specification. We follow the latest version of the specification (as of November 2022), i.e.,

ECMAScript 2023 [ECMA International 2022].

Notation. Throughout the paper, we use the following notation. We write N for the set of natural

numbers, and [𝑖] for the set {1, 2, · · · , 𝑖} for 𝑖 ∈ N. For a sequence 𝑙 , we write |𝑙 | for its length, 𝑙 [𝑖]
(for 0 ≤ 𝑖 < |𝑙 |) for its 𝑖th element, 𝑙 [𝑖 .. 𝑗] for the sub-sequence from the 𝑖th element to the 𝑗th

element for 0 ≤ 𝑖 ≤ 𝑗 < |𝑙 |, and 𝑙 [𝑖 .. 𝑗) for 𝑙 [𝑖 .. 𝑗 − 1]. We fix a finite alphabet Σ. Then, we write
𝑎, 𝑏 ∈ Σ for a character; 𝑥,𝑦 ∈ Σ∗ for a sequence of characters (i.e., string); 𝜖 for the empty string.

For a function 𝑓 , we use 𝑑𝑜𝑚(𝑓) to denote the domain of 𝑓 . For a (partial) function 𝑓 , we write

𝑓 [𝛼 ↦→ 𝛽] for the (partial) function that maps 𝛼 to 𝛽 and behaves as 𝑓 for all other arguments.

3.1 Syntax and Informal Semantics
The syntax of regexes is defined as follows:

𝑟 ::= [𝐶] | 𝜖 | 𝑟𝑟 | 𝑟 |𝑟 | 𝑟 ∗ | 𝑟 ∗? | (𝑟)𝑖 | \𝑖 | (?=𝑟) | (?!𝑟) | (?<=𝑟) | (?<!𝑟)

where 𝐶 ⊆ Σ and 𝑖 ∈ N\{0}. The operator [𝐶] is the set of characters, which matches a character

in 𝐶 . We write 𝑎 for [{𝑎}], . for [Σ], and [^𝐶] for [Σ \𝐶]. The operators 𝜖 and 𝑟1𝑟2 are the empty

string and the concatenation, respectively, and the semantics of the operators are standard. The

operator 𝑟1 |𝑟2 is the deterministic union, which first attempts to match 𝑟1, and if the matching fails,

then it attempts to match 𝑟2. The operators 𝑟
∗
and 𝑟 ∗? are greedy and lazy Kleene stars, respectively,

which attempt to match 𝑟 as many (resp. few) as possible. The precedence order of the operators is

defined as follows: the (greedy and lazy) Kleene star, the concatenation, and the union. The left

one has a higher precedence. From these operators, we can construct the other operators defined

in the ECMAScript language specification as syntactic sugars: the greedy and lazy Kleene plus 𝑟+

and 𝑟+? as 𝑟 ∗𝑟 and 𝑟 ∗?𝑟 , respectively, the greedy and lazy optional operator 𝑟? and 𝑟?? as 𝑟 |𝜖 and
𝜖 |𝑟 , respectively, and the greedy and lazy bounded repetition 𝑟 {𝑖, 𝑗} and 𝑟 {𝑖, 𝑗}?, where 𝑖 ≤ 𝑗 , as

𝑟1?𝑟2? · · · 𝑟 𝑗−𝑖?𝑟 𝑗−𝑖+1 · · · 𝑟 𝑗 and 𝑟1??𝑟2?? · · · 𝑟 𝑗−𝑖??𝑟 𝑗−𝑖+1 · · · 𝑟 𝑗 , respectively. We often refer to regexes

that only consist of the above operators as pure regexes.
The remaining operators are real-world extensions. The operator (𝑟)𝑖 is the capturing group, which

attempts to match 𝑟 , and if the attempt succeeds, stores the matched substring into a storage called

environment with the index 𝑖 . Precisely, an environment is a mapping Γ from capturing group

indexes to substring positions such that for each capturing group index 𝑖 , Γ(𝑖) is the substring
position stored at 𝑖 . The captured substring positions are returned as extraction results.7 While regex

engines often allow capturing groups to be implicitly indexed by their positions, for readability

and without loss of generality, we assume that every capturing group in our paper has an explicit

index, i.e., all capturing groups in our paper are the so-called named capturing groups. However,
as is often the case in real regex engines (and inevitably so when the indexes are implicit), we

require that every capturing group in a regex has a unique index, i.e., we assume the no-label-
repetition convention [Berglund and van der Merwe 2017]. The operator \𝑖 is the backreference,
7
Technically, only the last captured substring positions are returned if the capturing group is matched multiple times, and

capturing groups in negative lookaheads or lookbehinds are not subject to extraction (cf. Section 3.2).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

Repairing Regular Expressions for Extraction 173:7

which refers to the substring stored in the environment with the index 𝑖 , and then attempts to

match the substring. Note that, as in real regex engines, capturing groups serve the dual purpose of

returning the captured substring positions as extraction results and allowing backreferences to

refer to the captured substrings. The operators (?=𝑟) and (?!𝑟) are positive and negative lookaheads,

respectively, which attempt to match (resp. not match) 𝑟 without any character consumption. The

operators (?<=𝑟) and (?<!𝑟) are positive and negative lookbehinds, respectively, which attempt to

match (resp. not match) 𝑟 toward the left without any character consumption.

3.2 Formal Semantics
We now define the formal semantics of regexes. Traditionally, the semantics of pure regexes is

defined by induction on the structure of the pure regexes in a non-deterministic manner. In our

case, it is difficult to use the same approach due to the real-world extensions and the determinism.

As a result, we define the semantics of regexes by a big-step semantics that models the behavior of

an actual regex engine that follows the ECMAScript 2023 language specification. Later in Section 5,

we extend the semantics to generate constraints for ensuring the correctness of repaired regexes.

We define the semantics as the deterministic matching relation (𝑟, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′, Γ′), where
𝑟 is a regex, 𝑟𝑐 is a continuation regex, 𝑤 is an input string, 𝑝 and 𝑝′ are positions on the input

string, Γ and Γ′ are environments, 𝑑 is a direction of the matching, and 𝑙 is a flag to indicate

whether the evaluation is in lookarounds or not. The continuation regex is a regex that needs

to be evaluated to finishing the matching. We use the continuation regex in the evaluation of

the union and Kleene-star operators to disambiguate the choice in the evaluation. For 𝑘 ∈ N, an
environment Γ : [𝑘] → N × N is a function that maps an index to a pair of integers that denotes

the position of a substring captured by the capturing-group operator with the index. The direction

is either forward or backward, meaning the position moves from left to right or from right to left,

respectively. We start an evaluation with the forward direction, and set the direction to backward
when entering lookbehinds. The flag 𝑙 is either true or false, which indicates whether the matching

is in lookarounds. We start an evaluation with the flag with false, and set the flag to true when
entering lookarounds. The judgement (𝑟, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′, Γ′) states that the regex 𝑟 attempts to

match the input string𝑤 from the position 𝑝 with the environment Γ, the continuation regex 𝑟𝑐 , the

direction 𝑑 , and the flag 𝑙 , and changes the position to 𝑝′ and the environment to Γ′. Additionally,
we write (𝑟, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ failed to denote the failure of the matching.

We now show the rules of the semantics. For space, we only describe some representative rules

shown in Figure 1. The full rules are given in Appendix E. The rules for the set-of-characters

operator say that, when the direction is forward, the matching succeeds if the character𝑤 [𝑝] is in
the set of characters 𝐶 . When the direction is backward, it looks back and checks the character

𝑤 [𝑝 − 1]. The rules for the concatenation operator 𝑟1𝑟2 evaluate these expressions from left to

right if the direction is forward and from right to left if the direction is backward. The forward
rules for the union operator 𝑟1 |𝑟2 first evaluate the concatenation of the subexpression 𝑟1 and the

continuation regex 𝑟𝑐 to check whether or not the consequent matching succeeds. If the matching

of the concatenation consumes all the remaining characters, it means that the whole matching

can be succeeded if we choose 𝑟1.
8
From this, we then evaluate the subexpression 𝑟1. Otherwise,

we evaluate the subexpression 𝑟2. The backward rules for the union (shown in Appendix E) are

analogous but with the reverse order of 𝑟1 and 𝑟𝑐 .

The rules for the greedy-Kleene-star operator first decide whether the iteration should be

terminated by using the continuation regex. To this end, we evaluate the concatenation 𝑟 ⟨𝑟 ∗ : 𝑝⟩𝑟𝑐 .

8
Technically, this behavior is only for the case 𝑙 = false, i.e., when the union is not in a lookaround. When in a lookaround,

it is sufficient for the concatenation to just consume some prefix of the remaining characters, as stipulated by the rule.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

173:8 Nariyoshi Chida and Tachio Terauchi

Set of Characters

𝑑 = forward 𝑝 < |𝑤 | 𝑤 [𝑝] ∈ 𝐶
([𝐶], 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝 + 1, Γ)

𝑑 = backward 0 ≤ 𝑝 − 1 𝑤 [𝑝 − 1] ∈ 𝐶
([𝐶], 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝 − 1, Γ)

Concatenation and Union

𝑑 = forward (𝑟1, 𝑟2𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝1, Γ1)
(𝑟2, 𝑟𝑐 ,𝑤, 𝑝1, Γ1, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)
(𝑟1𝑟2, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)

𝑑 = backward (𝑟2, 𝑟𝑐𝑟1,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝1, Γ1)
(𝑟1, 𝑟𝑐 ,𝑤, 𝑝1, Γ1, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)
(𝑟1𝑟2, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)

𝑑 = forward (𝑟1𝑟𝑐 , 𝜖,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝1, Γ1) (¬𝑙 ∧ 𝑝1 = |𝑤 |) ∨ 𝑙 (𝑟1, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)
(𝑟1 |𝑟2, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)

𝑑 = forward (𝑟1𝑟𝑐 , 𝜖,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ 𝜏 𝜏 = failed ∨ (¬𝑙 ∧ 𝜏 = (𝑝′′, Γ′′) where 𝑝′′ ≠ |𝑤 |)
(𝑟2, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′, Γ′)

(𝑟1 |𝑟2, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′, Γ′)

Greedy Kleene Star with Guards

𝑑 = forward (𝑟 ⟨𝑟∗ : 𝑝⟩𝑟𝑐 , 𝜖,𝑤, 𝑝, reset (𝑟, Γ), 𝑑, 𝑙) ⇓ (𝑝1, Γ1) 𝑝1 = |𝑤 | ∨ 𝑙
(𝑟, ⟨𝑟∗ : 𝑝⟩𝑟𝑐 ,𝑤, 𝑝, reset (𝑟, Γ), 𝑑, 𝑙) ⇓ (𝑝2, Γ2) (𝑟∗, 𝑟𝑐 ,𝑤, 𝑝2, Γ2, 𝑑, 𝑙) ⇓ (𝑝3, Γ3)

(𝑟∗, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝3, Γ3)

𝑝′ = 𝑝

(⟨𝑟 : 𝑝′⟩, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ failed

𝑝′ ≠ 𝑝 (𝑟, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′, Γ′)
(⟨𝑟 : 𝑝′⟩, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′, Γ′)

Lazy Kleene Star with Guards

𝑑 = forward (𝑟𝑐 , 𝜖,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ 𝜏 𝜏 = failed ∨ (¬𝑙 ∧ 𝜏 = (𝑝′, Γ′) where 𝑝′ ≠ |𝑤 |)
(𝑟 ⟨𝑟∗? : 𝑝⟩𝑟𝑐 , 𝜖,𝑤, 𝑝, reset (𝑟, Γ), 𝑑, 𝑙) ⇓ (𝑝3, Γ3) 𝑝3 = |𝑤 | ∨ 𝑙

(𝑟, ⟨𝑟∗? : 𝑝⟩𝑟𝑐 ,𝑤, 𝑝, reset (𝑟, Γ), 𝑑, 𝑙) ⇓ (𝑝1, Γ1) (𝑟∗?, 𝑟𝑐 ,𝑤, 𝑝1, Γ1, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)
(𝑟∗?, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)

Capturing Group, Backreference, and Positive Lookbehind

𝑑 = forward (𝑟$𝑖 , 𝑟𝑐 ,𝑤, 𝑝, Γ [𝑖 ↦→ (𝑝,⊥)], 𝑑, 𝑙) ⇓ (𝑝′, Γ′)
((𝑟)𝑖 , 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′, Γ′)

Γ(𝑖) = (𝑝′, 𝑝′′) (𝑤 [𝑝′ ..𝑝′′), 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′′′, Γ′)
(\𝑖, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′′′, Γ′)

𝑖 ∉ 𝑑𝑜𝑚(Γ) ∨ Γ(𝑖) = (𝑝′,⊥)
(\𝑖, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝, Γ)

𝑑 = forward Γ(𝑖) = (𝑝,⊥)
($𝑖 , 𝑟𝑐 ,𝑤, 𝑝′, Γ, 𝑑, 𝑙) ⇓ (𝑝, Γ [𝑖 ↦→ (𝑝, 𝑝′)])

(𝑟, 𝜖,𝑤, 𝑝, Γ, backward, true) ⇓ (𝑝′, Γ′)
((?<=𝑟), 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝, Γ′)

Fig. 1. Selected evaluation rules for regexes.

Here, the expression ⟨𝑟 ∗ : 𝑝⟩ is the Kleene-star operator with the guard operator that is used to

avoid non-terminating evaluation due to problematic regexes [Frisch and Cardelli 2004; Sakuma

et al. 2012], i.e., regexes of the form 𝑟 ∗ or 𝑟 ∗? where 𝑟 can match 𝜖 . A guard operator ⟨𝑟 : 𝑝⟩ checks
whether or not the current position is the same as the position 𝑝 . If so, then the evaluation of the

guard operator fails. Otherwise, it evaluates the regex 𝑟 . We return to the explanation of the rules

for evaluating the greedy-Kleene-star operator. If the matching of the concatenation 𝑟 ⟨𝑟 ∗ : 𝑝⟩𝑟𝑐
consumes all the remaining characters, i.e., the whole matching can be succeeded even if we choose

to iterate the Kleene star, then we evaluate 𝑟 by (𝑟, ⟨𝑟 ∗ : 𝑝⟩𝑟𝑐 ,𝑤, 𝑝, reset (𝑟, Γ), 𝑑, 𝑙) ⇓ (𝑝2, Γ2), and

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

Repairing Regular Expressions for Extraction 173:9

continue the iteration from (𝑟 ∗, 𝑟𝑐 ,𝑤, 𝑝2, Γ2, 𝑑, 𝑙). Here, reset(𝑟 , Γ) is an environment {(𝑖, (𝑝′, 𝑝′′)) ∈
Γ | 𝑖 is not an index of a capturing group in 𝑟 }. This means that, for each iteration, the Kleene-star

operator returns the environment back to the state before we evaluate it. This behavior is consistent

with the ECMAScript 2023 language specification. Otherwise, i.e., the matching of the concatenation

fails or does not consume all the remaining characters, then we cannot iterate the Kleene-star

operators and therefore stop the iteration by returning the matching result (𝑝1, Γ1).9 The rules
for the lazy-Kleene-star operator are similar to those for the greedy-Kleene-star operator. The

main difference is that the lazy-Kleene-star operator first checks whether the whole matching can

succeed without the iteration by (𝑟𝑐 , 𝜖,𝑤, 𝑝, Γ, 𝑑, 𝑙). If it succeeds, then the lazy-Kleene-star operator

stops the iteration. Otherwise, it tries to iterate in a similar way as the greedy-Kleene-star operator.

The rules for the capturing-group operator (𝑟)𝑖 evaluate the regex 𝑟 with the close symbol $𝑖 that
denotes the end of the 𝑖th capturing group. Evaluating $𝑖 closes the 𝑖th capturing group, and sets

the end position of the substring captured by the 𝑖th capturing group. We use the close symbol to

evaluate backreferences in the continuation regex correctly. The rule for the backreference operator

\𝑖 refers to the pair of indexes in the environment Γ(𝑖) = (𝑝′, 𝑝′′), and evaluates the substring

represented by the indexes, i.e.,𝑤 [𝑝′ ..𝑝′′). If the environment Γ does not have 𝑖 in the domain (i.e.,

𝑖 ∉ 𝑑𝑜𝑚(Γ)) or the 𝑖th capturing group is not closed yet (i.e., Γ(𝑖) = (𝑝′,⊥)), the backreference \𝑖 is
evaluated as the empty string 𝜖 , e.g., the regex \1(𝑎)1 exactly matches the string 𝑎. In this case, the

backreference is called unassigned backreference. The semantics is consistent with the ECMAScript

2023 specification that treats unassigned backreference as 𝜖 .

The rule for the positive lookbehind operator (?<=𝑟) sets the direction to backward and the flag

to true, and then evaluates the regex 𝑟 . After evaluating the regex 𝑟 , it resets the position 𝑝′ to
𝑝 . Note that we do not reset the environment. This means that substrings captured in positive

lookbehinds can be used from outside of the positive lookbehinds. Additionally, the continuation

in the hypothesis is set to 𝜖 to reflect the facts that a lookbehind only concerns whether the input

string can be scanned backward from the current position to match just the expression in the

lookbehind (i.e., 𝑟) and that once we move outside of the lookbehind we do not backtrack to inside

of it (i.e., even in the event of a match failure in the outer continuation 𝑟𝑐 of the conclusion).

Next, we provide some examples. In Examples 3.1 and 3.3, we omit the information of directions

and flags because they are always forward and false, respectively. Additionally, in Example 3.1, we

also omit the information of environments because they are always ∅. From this, the evaluations of

Example 3.1 return a position instead of a pair of a position and an environment.

Example 3.1. The matching of (𝑎 |𝑎𝑎)𝑎 on 𝑎𝑎𝑎 is:

𝑎 ∈ {𝑎}
(𝑎, 𝑎, 𝑎𝑎𝑎, 0) ⇓ 1

𝑎 ∈ {𝑎}
(𝑎, 𝜖, 𝑎𝑎𝑎, 1) ⇓ 2

(𝑎𝑎, 𝜖, 𝑎𝑎𝑎, 0) ⇓ 2 2 ≠ |𝑎𝑎𝑎 |
· · ·

(𝑎𝑎, 𝑎, 𝑎𝑎𝑎, 0) ⇓ 2
(𝑎 |𝑎𝑎, 𝑎, 𝑎𝑎𝑎, 0) ⇓ 2

𝑎 ∈ {𝑎}
(𝑎, 𝜖, 𝑎𝑎𝑎, 2) ⇓ 3

((𝑎 |𝑎𝑎)𝑎, 𝜖, 𝑎𝑎𝑎, 0) ⇓ 3.

Since the whole matching of the regex on the string succeeds, the regex accepts the string.

Example 3.2. The matching of ..(?<=(.)1) on 𝑎𝑏 is:

9
This behavior is only for the case the Kleene star is not in a lookaround. The difference in the behavior when in a lookaround

is similar to that for the union.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

173:10 Nariyoshi Chida and Tachio Terauchi

· · ·

𝑎 ∈ Σ
(., $1, 𝑎𝑎, 2, Γ0, backward, true) ⇓ (1, Γ0)

Γ0 (1) = (⊥, 2)
($1, 𝜖, 𝑎𝑎, 1, Γ0, backward, true) ⇓ (1, Γ1)

($1., 𝜖, 𝑎𝑎, 2, Γ0, backward, true) ⇓ (1, Γ1)
((.)1, 𝜖, 𝑎𝑎, 2, ∅, backward, true) ⇓ (1, Γ1)
((?<=(.)1), 𝜖, 𝑎𝑎, 2, ∅, forward, false) ⇓ (2, Γ1)

(..(?<=(.)1), 𝜖, 𝑎𝑎, 0, ∅, forward, false) ⇓ (2, Γ1)
where Γ0 = {(1, (⊥, 2))} and Γ1 = {(1, (1, 2))}. The regex accepts the string, and extracts the second
character 𝑎 by the 1st capturing group.

Example 3.3. The matching of (.∗)1\1 on 𝑎𝑎 is:

A B

((.∗)1\1, 𝜖, 𝑎𝑎, 0, ∅) ⇓ (2, Γ1)
where Γ1 = {(1, (0, 1))} and 𝐴 and 𝐵 are subderivations. The subderivation 𝐴 is:

· · ·
(.⟨.∗ : 0⟩$1\1, 𝜖, 𝑎𝑎, 0, Γ0) ⇓ (2, Γ1)

𝑎 ∈ Σ
(., ⟨.∗ : 0⟩$1\1, 𝑎𝑎, 0, Γ0) ⇓ (1, Γ0) · · ·

(.∗, $1\1, 𝑎𝑎, 0, Γ0) ⇓ (1, Γ0)
Γ0 (1) = (0,⊥)

($1, \1, 𝑎𝑎, 1, Γ0) ⇓ (1, Γ1)
(.∗$1, \1, 𝑎𝑎, 0, Γ0) ⇓ (1, Γ1)
((.∗)1, \1, 𝑎𝑎, 0, ∅) ⇓ (1, Γ1)

where Γ0 = {(1, (0,⊥))}.
The subderivation 𝐵 is:

Γ1 (1) = (0, 1)
𝑎 ∈ {𝑎}

(𝑎, 𝜖, 𝑎𝑎, 1, Γ1) ⇓ (2, Γ1)
(\1, 𝜖, 𝑎𝑎, 1, Γ1) ⇓ (2, Γ1).

The regex accepts the input string, and extracts first character 𝑎 by the 1st capturing group.

Example 3.4. Recall the motivating example from Section 2. We show a subderivation of the

matching of the repaired regex on the input string𝑤 = <𝑎><𝑎>𝑎</𝑎></𝑎>. For the subexpression

𝑟 = ([𝑎 − 𝑧]∗?)2, the continuation regex 𝑟𝑐 = (?=<[/]\1 >).∗, the position 𝑝 = 6, the environment

Γ = {(1, (4, 5))}, the direction 𝑑 = forward, and the flag 𝑙 = false, the subderivation is:

($2𝑟𝑐 , 𝜖,𝑤, 𝑝, Γ0, 𝑑, 𝑙) ⇓ failed 𝐴 𝐵 𝐶

([𝑎 − 𝑧]∗?, $2𝑟𝑐 ,𝑤, 𝑝, Γ0, 𝑑, 𝑙) ⇓ (𝑝 + 1, Γ0) ($2, 𝑟𝑐 ,𝑤, 𝑝 + 1, Γ0, 𝑑, 𝑙) ⇓ (𝑝 + 1, Γ1)
([𝑎 − 𝑧]∗?$2, 𝑟𝑐 ,𝑤, 𝑝, Γ0, 𝑑, 𝑙) ⇓ (𝑝 + 1, Γ1)

(𝑟, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝 + 1, Γ1)
where Γ0 = Γ [2 ↦→ (𝑝,⊥)] and Γ1 = Γ [2 ↦→ (𝑝, 𝑝+1)]. The subderivation𝐴 derives ([𝑎−𝑧]⟨[𝑎−𝑧]∗? :
𝑝⟩$2𝑟𝑐 , 𝜖,𝑤, 𝑝, reset ([𝑎−𝑧], Γ0), 𝑑, 𝑙) ⇓ (|𝑤 |, Γ1), 𝐵 derives ([𝑎−𝑧], ⟨[𝑎−𝑧]∗? : 𝑝⟩$2𝑟𝑐 ,𝑤, 𝑝, reset ([𝑎−
𝑧], Γ0), 𝑑, 𝑙) ⇓ (𝑝 + 1, Γ0), and 𝐶 derives ([𝑎 − 𝑧]∗?, $2𝑟𝑐 ,𝑤, 𝑝 + 1, Γ0, 𝑑, 𝑙) ⇓ (𝑝 + 1, Γ0). Therefore, the
regex 𝑟 consumes and captures the 𝑝th character of𝑤 , i.e., the middle character 𝑎 of𝑤 .

Finally, we define the language of regexes for extraction called capturing language, a terminology

borrowed from [Loring et al. 2019]. A capturing language of a regex is a set of pairs of an input

string and the environment containing the information about the substrings extracted from the

input string when matched against the regex.

Definition 3.5 (Capturing Language). The capturing language L𝑐 (𝑟) of a regex 𝑟 is defined as

L𝑐 (𝑟) = {(𝑤, Γ) | (𝑟, 𝜖,𝑤, 0, ∅, forward, false) ⇓ (|𝑤 |, Γ)}.

Additionally, we define the (non-capturing) language of 𝑟 by L(𝑟) = {𝑤 | ∃Γ.(𝑤, Γ) ∈ L𝑐 (𝑟)}.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

Repairing Regular Expressions for Extraction 173:11

Validation of the formal semantics. In order to validate our semantics, we have implemented a

regex engine based on our semantics, and evaluated it on the data sets used in our evaluation and

regexes that involve JavaScript-specific behavior taken from Davis et al. [2019]. In all cases, we

have confirmed that the behavior of our regex engine is consistent with that of actual JavaScript

regex engines.

4 REPAIR PROBLEM
In this section, we define our PBE regex repair problem for extraction called extraction-regex-repair
problem. There are two types of examples: positive examples and negative examples. For 𝑘 ∈ N, a
positive example is a pair (𝑤, Γ) ∈ Σ∗ × ([𝑘] → N × N) for some 𝑘 ≥ 1 that should belong to the

capturing language of the to-be synthesized regex. That is,𝑤 is a string to be accepted and Γ denotes
the indexes of the substrings to be extracted from𝑤 . For readability, we use L𝑖 and M𝑖 (or L and M𝑖 if
there is no danger of ambiguity) to denote a substring to be extracted by the 𝑖th capturing group in

a positive example. For example, we write L1𝑎L2𝑏M2𝑐M1 to denote a positive example (𝑎𝑏𝑐, Γ) where
Γ = {(1, (0, 3)), (2, (1, 2))}. A negative example is𝑤 ∈ Σ∗ that should not belong to the language of

the to-be synthesized regex, i.e., a string to be rejected.

Before we define the repair problem, we recall the notion of distance from prior works on PBE-

based repair of regexes [Chida and Terauchi 2022b; Pan et al. 2019]. The notion is used to quantify

the quality of a repair. That is, a regex of a short distance from the pre-repair regex is deemed to be

of high quality, justified by the assumption that the pre-repair regex may not be correct but is close

to the one the user intended.

Definition 4.1 (Distance [Chida and Terauchi 2022b; Pan et al. 2019]). For subtrees 𝑟1, . . . , 𝑟𝑛 of a

regex 𝑟 , the edit 𝑟 [𝑟 ′
1
/𝑟1, . . . , 𝑟 ′𝑛/𝑟𝑛] replaces each 𝑟𝑖 with 𝑟 ′𝑖 . The cost of an edit is the sum of the

number of nodes in 𝑟𝑖 and 𝑟
′
𝑖 (for 𝑖 ∈ [𝑛]). Given two regexes 𝑟1 and 𝑟2, the distance between 𝑟1 and

𝑟2, 𝐷 (𝑟1, 𝑟2), is the minimum cost of an edit that rewrites 𝑟1 to 𝑟2.

We now define the extraction-regex-repair problem.

Definition 4.2 (Extraction-Regex-Repair Problem). Given a regex 𝑟1, a set of positive examples

E+ and a set of negative examples E− satisfying satisfying (𝑤, Γ1), (𝑤, Γ2) ∈ E+ ⇒ Γ1 = Γ2 and
E− ∩ {𝑤 | (𝑤, _) ∈ E+} = ∅, the extraction-regex-repair problem is the problem of synthesizing

a regex 𝑟2 that is consistent with the examples (i.e., E+ ⊆ L𝑐 (𝑟2) and E− ∩ L(𝑟2) = ∅) and the

distance from 𝑟1 is minimal (i.e., 𝐷 (𝑟1, 𝑟2) ≤ 𝐷 (𝑟1, 𝑟3) for any 𝑟3 consistent with the examples).

In what follows, we show some interesting results regarding the extraction-regex-repair problem:

(1) there are unsolvable problem instances if repaired regexes are not allowed to use the extensions

(i.e., pure regexes), whereas (2) every problem instance is solvable if the extensions are allowed.

For (1), we show that there are non-trivial unsolvable problem instances, i.e., there are unsolv-

able problem instances even if positive examples do not have overlaps in its extraction such as

(𝑎𝑏𝑐, {(1, (0, 2)), (2, (1, 3))}), represented as L1𝑎L2𝑏M1𝑐M2.10

Theorem 4.3. There exist extraction-regex-repair-problem instances without overlaps that do not
have a pure regex solution.

Proof. Let Σ = {𝑎, 𝑏} for simplicity. Then, we show that the instance 𝑟1 = 𝜖 , E+ = {(𝑎𝑏, Γ0), (𝑏𝑎, Γ1)}
where Γ0 = {(1, (0, 1))} and Γ1 = {(1, (1, 2))}, and E− = {𝜖, 𝑎, 𝑏, 𝑎𝑎, 𝑏𝑏} does not have a pure regex
solution. Roughly, if there exists a solution, then the form of the solution must be 𝑟 ′ (𝑟𝑎)1𝑟 ′′ where
𝑟𝑎 is a regex that matches the character 𝑎, and 𝑟 ′ and 𝑟 ′′ need to match the empty string 𝜖 and the

10
It is trivial to see that no pure regex can have such an extraction result. By contrast, it is an interesting consequence of

Theorem 4.4 that the repair problem is solvable even with such overlaps when the extensions are allowed.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

173:12 Nariyoshi Chida and Tachio Terauchi

Algorithm 1: The repair algorithm

Input: a regex 𝑟 , a set of positive examples E+, and a set of negative examples E−
Output: a regex that satisfies the consistency condition and the minimal distance criteria

1: Q← { 𝑟 }

2: while Q is not empty do
3: t← Q.pop()
4: if {𝑤 | (𝑤, _) ∈ E+} ⊆ L(𝑡⊤), E− ∩ L(𝑡⊥) = ∅, and IsFeasible(𝑡 , E+, .∗) then
5: if {𝑤 | (𝑤, _) ∈ E+} ⊆ L(𝑡⊤,Σ) and IsFeasible(𝑡 , E+, .) then
6: Φ← generateConstraintForExtraction(𝑡, E+, E−)
7: if Φ is satisfiable then
8: return solution(𝑡,Φ)
9: Q.push(expandHoles(𝑡))
10: Q.push(addOrReduceHoles(𝑡))

character 𝑏 to be a solution. However, the regex accepts the negative example 𝑎 ∈ E− , which is a

contradiction. The full proof appears in Appendix A. □

Theorem 4.4. The extraction-regex-repair problem always has a solution.

Proof. We construct a regex that only accepts the positive examples by using lookarounds,

and therefore it satisfies the consistency condition. Then, the result follows from the fact that the

existence of a regex consistent with the examples implies the existence of a minimal such one. The

full proof appears in Appendix B. □

These results indicate that the real-world extensions play a crucial role in the repair problem.

Finally, we show that the extraction-regex-repair problem is NP-hard. We prove this by a reduction

from the set-cover problem which is NP-complete [Karp 1972]. For this, we consider the decision

version of the extraction-regex-repair problem. That is, given a regex 𝑟1, sets of positive and negative

examples, and 𝑘 ∈ N, the decision version of the extraction-regex-repair problem is the problem of

synthesizing a regex 𝑟2 that is consistent with the examples and satisfies 𝐷 (𝑟1, 𝑟2) ≤ 𝑘 . The proof is

in Appendix C.

Theorem 4.5. The extraction-regex-repair problem is NP-hard.

5 REPAIR ALGORITHM
We now describe our algorithm for solving the repair problem. At a high level, our algorithm

is based on the enumerative search with an SMT solver introduced in the previous works for

membership [Chida and Terauchi 2022b; Pan et al. 2019]. The main new ideas introduced in this

paper are the SMT constraint generation that respects the deterministic semantics and the new

pruning techniques that make use of the extraction information in the positive examples. We first

give an overview of our algorithm in Section 5.1, and then present the details of the new ideas in

Section 5.3 and 5.2.

5.1 Overview
Algorithm 1 shows the algorithm. Our algorithm takes as input an instance of the extraction-regex-

repair problem, i.e., a regex 𝑟 , a set of positive examples E+, and a set of negative examples E− . It
returns a regex that satisfies the condition required for the solution of the problem, i.e., it is one

that is consistent with the examples and the distance from 𝑟 is minimal.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

Repairing Regular Expressions for Extraction 173:13

Initializing a template. Our algorithm maintains a priority queue 𝑄 to store template regexes. A
template regex is a regex with the operator called hole denoted as □. More specifically, the syntax

of the template 𝑡 is defined as: 𝑡 ::= [𝐶] | 𝜖 | 𝑡𝑡 | · · · | (?<!𝑡) | □, i.e., the only difference between

the syntax of regexes and templates is the existence of the hole. Roughly, a hole is a placeholder

that is to be replaced with some concrete regex. At the beginning, our algorithm initializes the

priority queue 𝑄 to contain the given regex 𝑟 as a template at Line 1. The priority queue 𝑄 ranks

its elements by the distance so that the template that is closer to the given regex 𝑟 in terms of the

distance has a higher priority. This ensures that the returned regex satisfies the minimality criteria,

i.e., it is of minimal distance among ones that are consistent with the examples.

Template Pruning by Approximations. Next, we retrieve a template that has the highest

priority from the priority queue 𝑄 at Line 3. Then, we apply template pruning at Line 4. The test
{𝑤 | (𝑤, _) ∈ E+} ⊆ L(𝑡⊤), E− ∩ L(𝑡⊥) = ∅ is analogous to the pruning used in the prior works

on membership [Chen et al. 2020; Chida and Terauchi 2022b; Lee et al. 2016; Pan et al. 2019], and

works by building an over- and under-approximating regexes 𝑡⊤ and 𝑡⊥. The regexes satisfy the

properties L(𝑟 ′) ⊆ L(𝑡⊤) for any regex 𝑟 ′ obtainable by filling the holes of 𝑡 by arbitrary regexes.

Therefore, if the test fails, then we can safely prune the template and any template obtainable by

expanding the holes of the template (cf. Expanding, Adding, or Reducing Holes below). The
construction of 𝑡⊤ and 𝑡⊥ can be found in Appendix D.

However, the above pruning is not enough for our purpose because it does not consider extraction.

For example, consider a template 𝑡 = 𝑎(𝑏□)1 and a positive example L𝑎𝑏𝑐M1. The above pruning
technique cannot discard the template because the over-approximated regex is 𝑡⊤ = 𝑎(𝑏.∗)1 and
{𝑎𝑏𝑐 | (𝑎𝑏𝑐, (1, 3)) ∈ E+} ⊆ L(𝑡⊤). However, 𝑡 cannot become a regex consistent with the example

because any regex obtained from it consumes the first character 𝑎 without extraction.

Thus, for positive examples, we apply new template pruning techniques for extraction introduced

in this paper, denoted as IsFeasible in Algorithm 1. The idea of our pruning is to construct a regex

and an input string from a template and a positive example by embedding the information of

extraction. We defer the details of our pruning technique for extraction to Section 5.3.

Constraint Solving for Finding a Solution. If the pruning by approximations passes, then

we check whether the template can be turned into a regex that is consistent with the examples

by replacing its holes with some sets of characters. For this, our algorithm generates an SMT

constraint at Line 6. As remarked before, the constraint generation builds on that proposed for

membership [Chida and Terauchi 2022b; Pan et al. 2019], and works by generating an SMT formula

𝜙𝑒 constructed for each example 𝑒 ∈ E+ ∪ E− that encodes the condition for correctly classifying

𝑒 . In more detail, 𝜙𝑒 is over propositional variables 𝑣
𝑎
𝑖 where 𝑖 ∈ N denotes the 𝑖th hole in the

template and 𝑎 ∈ Σ. The variable 𝑣𝑎𝑖 is set to true if and only if the set of characters that fills the

𝑖th hole contains the character 𝑎. The final constraint is the conjunction
∧

𝑒∈E+∪E− 𝜙𝑒 , and if the

constraint is satisfiable, we obtain from the solution a regex that correctly classifies all examples. As

remarked before, one of the key innovations of our work is a method for generating a constraint that

respects the deterministic semantics of an actual regex engine. For this, we design the constraint

generation algorithm by following our novel formal semantics presented Section 3.2. We defer

further details of the constraint generation to Section 5.2. Once we find a solution, we apply the

following generalization technique to the solution: we add characters to the sets of characters

that were obtained by replacing holes in the template as long as the additions do not violate the

consistency of the examples.

Expanding, Adding, or Reducing Holes. If the SMT constraint is unsatisfiable, then we con-

tinue to explore by enumerating templates. At Line 9, we expand holes in the template by re-

placing a hole with an expression all of whose immediate subexpressions are holes. At Line 10,

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

173:14 Nariyoshi Chida and Tachio Terauchi

Hole

𝑑 = forward □ is the 𝑖th hole. 𝑝 < |𝑤 |

(□, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝 + 1, Γ, 𝑣𝑤 [𝑝]
𝑖
)}, {(⊥,⊥,¬𝑣𝑤 [𝑝]

𝑖
)})

𝑑 = backward □ is the 𝑖th hole. 0 ≤ 𝑝 − 1

(□, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝 − 1, Γ, 𝑣𝑤 [𝑝−1]
𝑖

)}, {(⊥,⊥,¬𝑣𝑤 [𝑝−1]
𝑖

)})
Set of Characters

𝑑 = forward 𝑝 < |𝑤 | 𝑤 [𝑝] ∈ 𝐶
([𝐶], 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝 + 1, Γ, true)}, ∅)

𝑑 = backward 0 ≤ 𝑝 − 1 𝑤 [𝑝 − 1] ∈ 𝐶
([𝐶], 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝 − 1, Γ, true)}, ∅)

Union

𝑑 = forward (𝑡1𝑡𝑐 , 𝜖,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆1, 𝐹1)
𝑆 ′
1
= ite(𝑙, 𝑆1, {(𝑝′, Γ′, 𝜙 ′) ∈ 𝑆1 | 𝑝′ = |𝑤 |}) 𝐹 ′

1
= 𝐹1 ∪ ite(𝑙, ∅, {(⊥,⊥, 𝜙 ′) | (𝑝′, _, 𝜙 ′) ∈ 𝑆1, 𝑝′ ≠ |𝑤 |})

𝜙𝑆1 =
∨
(_,_,𝜙 ′) ∈𝑆 ′

1

𝜙 ′ 𝜙𝐹1 =
∨
(⊥,⊥,𝜙 ′) ∈𝐹 ′

1

𝜙 ′

(𝑡1, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆2, 𝐹2) (𝑡2, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆3, 𝐹3)
(𝑡1 |𝑡2, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝′, Γ′, 𝜙𝑆1 ∧ 𝜙 ′) | (𝑝′, Γ′, 𝜙 ′) ∈ 𝑆2} ∪ {(𝑝′, Γ′, 𝜙𝐹1 ∧ 𝜙 ′) | (𝑝′, Γ′, 𝜙 ′) ∈ 𝑆3},

{(⊥,⊥, 𝜙𝐹1 ∧ 𝜙 ′) | (⊥,⊥, 𝜙 ′) ∈ 𝐹3})

Capturing Group, Backreference, and Positive Lookbehind

𝑑 = forward
(𝑡$𝑖 , 𝑡𝑐 ,𝑤, 𝑝, Γ [𝑖 ↦→ (𝑝,⊥)], 𝑑, 𝑙) d (𝑆, 𝐹)

((𝑡)𝑖 , 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆, 𝐹)

𝑑 = forward Γ(𝑖) = (𝑝′,⊥)
($𝑖 , 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝, Γ [𝑖 ↦→ (𝑝′, 𝑝)], true)}, ∅)

Γ(𝑖) = (𝑝′, 𝑝′′) (𝑤 [𝑝′ ..𝑝′′), 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆, 𝐹)
(\𝑖, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆, 𝐹)

𝑖 ∉ 𝑑𝑜𝑚(Γ) ∨ Γ(𝑖) = (𝑝′,⊥)
(\𝑖, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝, Γ, true)}, ∅)

(𝑡, 𝜖,𝑤, 𝑝, Γ, backward, true) d (𝑆, 𝐹)
((?<=𝑡), 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝, Γ′, 𝜙 ′) | (_, Γ′, 𝜙 ′) ∈ 𝑆}, 𝐹)

Fig. 2. Selected rules for generating an SMT constraint.

we add a hole to the template by replacing a leaf subexpression (i.e., a set of characters [𝐶],
the empty string 𝜖 , or a backreference \𝑖) by a hole. Additionally, we reduce an expression hav-

ing a hole as an immediate subexpression into a hole. For example, we have expandHoles(□) =
{□□,□|□,□∗,□∗?, (□)𝑖 , (?=□), (?!□), (?<=□), (?<!□)}. And for the template 𝑡 = (□|□)𝑎\𝑖 , we have

addOrReduceHoles(𝑡) = {□𝑎\𝑖, (□|□)□\𝑖, (□|□)𝑎□}. This part is essentially identical to that of

the previous works [Chida and Terauchi 2022b; Pan et al. 2019], and we refer to them for further

information.

5.2 SMT Constraint Generation
We describe the SMT constraint generation. As remarked before, for each example, we construct an

SMT formula that encodes the condition that the regex obtained from a satisfying assignment to the

formula correctly classifies the example. For this, we define constraint generation rules that derive

judgements of the form (𝑡, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆, 𝐹). The rules are designed based on the rules of our

novel formal semantics of regexes (cf. Section 3.2) and have a similar form. Namely, 𝑡 is a template

regex, 𝑡𝑐 is a continuation template regex,𝑤 is an input string, 𝑝 is a position on the input string, Γ
is an environment, 𝑑 is a direction, and 𝑙 is a flag. 𝑆 and 𝐹 are sets of results of succeeded or failed
matching with constraints. A result of succeeded (resp. failed) matching with constraints is a tuple

(𝑝′, Γ′, 𝜙), meaning that the matching succeeds (resp. fails) at position 𝑝′ with the environment Γ′

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

Repairing Regular Expressions for Extraction 173:15

if the constraint 𝜙 is satisfiable. In the case of failed matching, 𝑝′ = ⊥ and Γ′ = ⊥. For space, we
show selected rules in Figure 2. The full rules are given in Appendix F. In the figure, the function

ite is defined by: ite(true, 𝐴, 𝐵) = 𝐴 and ite(false, 𝐴, 𝐵) = 𝐵.

The main difference from the rules of the formal semantics is that the constraint generation rules

return (a pair of) sets of matching results each paired with an SMT formula, whereas the semantics

just returns a single matching result. This is so because the constraint generation rules simulate all

possible (deterministic) runs of the regex on the example string that can be obtained by changing

the sets of characters to fill the holes, pair each such result with the constraint formula that must

be satisfied for the run that yields the result to be actually happen, and return the set of such pairs

(divided into two sets: one for the successful runs, i.e., 𝑆 , and one for the failing runs, i.e., 𝐹).

For example, in the rules for holes, the matching can succeed (resp. fail) at position 𝑝 by assigning

(resp. not assigning) the character𝑤 [𝑝] in the set of characters to fill the hole. Thus, in the case

of 𝑑 = forward, the rule returns as the successful result (𝑝 + 1, Γ, 𝑣𝑤 [𝑝]
𝑖
) and as the failing result

(𝑝 − 1, Γ, 𝑣
𝑤 [𝑝−1]
𝑖

), meaning that the hole can be filled with the set of characters [𝐶] such that

𝑤 [𝑝] ∈ 𝐶 (resp.𝑤 [𝑝 − 1] ∉ 𝐶) to succeed (resp. fail) the matching. The rules for the other operators

follow the corresponding rules of the formal semantics, and similarly to the rules for holes, take

care of the fact that there can be multiple matching results due to the choice of how the holes are

filled. For example, like the corresponding rule of the formal semantics, the forward rule for the

union operator 𝑡1 |𝑡2 first evaluates the concatenation of the subexpression 𝑡1 and the continuation

template regex 𝑡𝑐 . However, unlike the corresponding rule of the formal semantics, the rule of

the concatenation 𝑡1𝑡𝑐 returns sets of results of succeeded and failed matching with constraints.

Therefore, the rule next evaluates both cases of succeeded and failed matching. In the case of the

succeeded matching, the rule evaluates the subexpression 𝑡1, and obtains the sets of succeeded and

failed matching results with constraints, i.e., 𝑆2 and 𝐹2, respectively. Similarly, in the case of the

failed matching, the rule evaluates the subexpression 𝑡2, and obtains the sets of succeeded and failed

matching results with constraints, i.e., 𝑆3 and 𝐹3, respectively. Finally, from these results, the rule

constructs the results for 𝑡1 |𝑡2. Specifically, the results of succeeded matching of 𝑡1 |𝑡2 consist of the
case that the matchings of both 𝑡1𝑡𝑐 and 𝑡1 succeed and the case that the matching of 𝑡1𝑡𝑐 fails but

the matching of 𝑡2 succeeds. Hence, they consist of (𝑝′, Γ′, 𝜙𝑆1 ∧ 𝜙 ′), where (𝑝′, Γ′, 𝜙 ′) ∈ 𝑆2 and 𝜙𝑆1
is the constraint for succeeding in the matching of 𝑡1𝑡𝑐 , and (𝑝′, Γ′, 𝜙𝐹1 ∧𝜙 ′), where (𝑝′, Γ′, 𝜙 ′) ∈ 𝑆3
and𝜙𝐹1 is the constraint for failing in the matching of 𝑡1𝑡𝑐 . Also, the results of failed matching of 𝑡1 |𝑡2
consist of the case that the matching of both 𝑡1𝑡𝑐 and 𝑡2 fails. Hence, they consist of (⊥,⊥, 𝜙𝐹1 ∧𝜙 ′)
where (⊥,⊥, 𝜙 ′) ∈ 𝐹3 and 𝜙𝐹1 is the constraint for failing in the matching of 𝑡1𝑡𝑐 .

Finally, for a template 𝑡 , a set of positive examples E+, and a set of negative examples E− , we
define the SMT constraints as Φ = Φ+ ∧ Φ− where Φ+ and Φ− are constraints for positive and

negative examples, respectively. The constraints Φ+ and Φ− are defined as follows.

• Φ+ =
∧

𝑒=(𝑤,Γ) ∈E+ encode
+ (𝑡, 𝑒) where encode+ (𝑡, 𝑒) = ∧

(|𝑤 |,Γ,𝜙) ∈𝑆 𝜙 and

• Φ− =
∧

𝑤∈E− ¬encode− (𝑡,𝑤) where encode− (𝑡,𝑤) =
∧
(|𝑤 |,_,𝜙) ∈𝑆 𝜙

with (𝑡, 𝜖,𝑤, 0, ∅, forward, false) d (𝑆, 𝐹).
As an example of the SMT constraint generation, consider a template 𝑡 = (𝑎 |𝑎𝑎)1 (□|𝜖), a set of

positive examples E+ = {L𝑎𝑎M1}, and a set of negative examples E− = {𝑎𝑏}. Then, the constraint
for the positive example is Φ+ = ¬𝑣𝑎

1
and the constraint for the negative example is Φ− = ¬𝑣𝑏

1
.

Therefore, the constraint for the examples is Φ = ¬𝑣𝑎
1
∧ ¬𝑣𝑏

1
. Additionally, consider the template

.∗? (?<=<(□∗)1>)(□∗?)2 (?=<[/]\1 >) .∗ from Section 2. The constraints for the subexpression 𝑡 =

(□∗?)2 on the example𝑤 =<𝑎><L𝑎M1>L𝑎M2</𝑎></𝑎> from the position 𝑝 = 6 with the continuation

template regex 𝑡𝑐 = (?=<[/]\1 >).∗, the environment Γ = {(1, (4, 5))}, the direction 𝑑 = forward,
and the flag 𝑙 = true are constructed by the judgement (𝑡, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆, 𝐹) where 𝑆 =

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

173:16 Nariyoshi Chida and Tachio Terauchi

{(𝑝, Γ ∪ {(2, (6, 6))},¬𝑣𝑎
2
), (𝑝 + 1, Γ ∪ {(2, (6, 7))}, 𝑣𝑎

2
)} and 𝐹 = ∅. Here, for example, the second

element (𝑝 +1, Γ∪{(2, (6, 7))}, 𝑣𝑎
2
) of 𝑆 indicates that, if the hole of (□∗?)2 is replaced with the set of

characters [𝐶] where 𝑎 ∈ 𝐶 , then (([𝐶]∗?)2, (?=<[/]\1 >).∗,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝 + 1, Γ ∪ {(2, (6, 7))}).

5.3 Over-Approximation for Extraction
In this section, we introduce two novel pruning techniques for extraction. We first introduce

the pruning technique that exploits backreferences, namely approximation-by-backreferences, to
ensure the correctness of extraction in Section 5.3.1. Although the pruning technique can support

real-world extensions, it sometimes suffers from regular expression denial of service (ReDoS) [Davis
et al. 2018] that stops the repair procedure for a long time. To avoid ReDoS, we introduce ReDoS-free
pruning technique for extraction, namely approximation-by-pure-regex, in Section 5.3.2. Although

the second pruning technique does not support real-world extensions, we can mitigate the ReDoS

issue by using it before we use the first pruning technique.

5.3.1 Approximation by Backreferences. We introduce our first pruning technique for extraction

approximation-by-backreferences. Given a template 𝑡 and a set of positive examples E+, the over-
approximation checks whether there exists a completion 𝑟 ′ of 𝑡 , i.e., a regex obtained from 𝑡 by

replacing the holes in 𝑡 with some regex, such that for each capturing group that appears in the

template 𝑡 , 𝑟 ′ correctly extracts substrings from the positive examples. For this, it constructs a

regex 𝑟 from the template 𝑡 and input strings 𝑤𝑒 from each positive example 𝑒 ∈ E+ such that

∀𝑒 ∈ E+ . ((∃𝑟 ′ ∈ R(𝑡). (𝑒 ∈ L𝑐 (𝑟 ′)) ⇒ 𝑤𝑒 ∈ L(𝑟)), where R(𝑡) is the set of valid completions.

We first show the construction for the input string. The idea of the construction is to append

the information of substrings to be extracted by the 𝑖th capturing group with the delimiter #𝑖 . The

information consists of a string of the positive example and two delimiters @. We represent a

position of a substring to be extracted by surrounding the substring with the delimiters @, e.g., the

string 𝑎@𝑎@𝑏 means that the second 𝑎 should be extracted from the string 𝑎𝑎𝑏. Formally, given a

template 𝑡 and a positive example 𝑒 = (𝑤 ′, Γ), let 𝐼 = {𝑖1, 𝑖2, · · · , 𝑖𝑛} be the set of indexes of capturing
groups in 𝑡 , then we construct an input string𝑤 as follow:𝑤 = @𝑤 ′#1𝑤𝑖1#2𝑤𝑖2# · · · #𝑛𝑤𝑖𝑛 , where,

for 𝑗 ∈ [𝑛], #𝑗 ,@ ∉ Σ and, for 𝑖 ∈ 𝐼 ,𝑤𝑖 = 𝑤 ′ [0..𝑝𝑙)@𝑤 ′ [𝑝𝑙 ..𝑝𝑟)@𝑤 ′ [𝑝𝑟 ..|𝑤 ′ |) with Γ(𝑖) = (𝑝𝑙 , 𝑝𝑟) if
𝑖 ∈ 𝑑𝑜𝑚(Γ), and otherwise𝑤𝑖 = 𝜖 . That is, for the case of 𝑖 ∈ 𝐼 and 𝑖 ∈ 𝑑𝑜𝑚(Γ),𝑤𝑖 means that the

substring𝑤 ′ [𝑝𝑙 ..𝑝𝑟) between the delimiters @ should be extracted by the 𝑖th capturing group, and

the prefix 𝑤 ′ [0..𝑝𝑙) and the suffix 𝑤 ′ [𝑝𝑟 ..|𝑤 ′ |) are used to indicate the position of 𝑤 [𝑝𝑙 ..𝑝𝑟). For
the case of 𝑖 ∉ 𝑑𝑜𝑚(Γ),𝑤𝑖 means that the 𝑖th capturing group does not extract any substring. The

first character @ is prepended to handle the delimiters @ in the regex. For example, consider a set

of positive examples E+ = {𝑎LM2𝑑}. For the positive example 𝑎LM2𝑑 = (𝑎𝑑, {(2, (1, 1))}), the input
string is@𝑤 ′#1𝑤1#2𝑤2 = @𝑎𝑑#1#2𝑎@@𝑑 . Here,𝑤1 = 𝜖 indicates that the 1st capturing group does

not extract any substring and 𝑤2 = 𝑎@@𝑑 indicates that the 2nd capturing group extracts the

empty string 𝜖 .

Next, we show the construction of the regex. To verify the correctness of extraction, we construct

two types of expressions: 𝑟assert1,𝐼 and 𝑟assert2,𝐼 , where 𝐼 is a set of indexes of capturing groups. The

expressions 𝑟assert1,𝐼 and 𝑟assert2,𝐼 are used for verifying the correctness of extraction at the end of

the whole matching and positive lookarounds, respectively. First, the expression 𝑟assert1,𝐼 is defined

as follows.

• For 𝐼 = {𝑖1, 𝑖2, · · · , 𝑖𝑛}, 𝑟assert1,𝐼 = 𝑟assert1,𝑖1𝑟assert1,𝑖2 · · · 𝑟assert1,𝑖𝑛 , where
• for 𝑗 ∈ [𝑛], 𝑟assert1,𝑖 𝑗 = #𝑗\prefix𝑖 𝑗 \flag𝑖 𝑗 \𝑖 𝑗\flag𝑖 𝑗 \suffix𝑖 𝑗

In the above definition, we use a string as an index of capturing groups instead of integers for

readability. For 𝑖 𝑗 ∈ 𝐼 with 𝑗 ∈ [𝑛], the expression 𝑟assert1,𝑖 𝑗 checks whether the extracted substring

by the 𝑖 𝑗 th capturing group is correct, i.e., the expression 𝑟assert1,𝑖 𝑗 tries to match the substring

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

Repairing Regular Expressions for Extraction 173:17

#𝑗𝑤𝑖 𝑗 of the input string constructed above. From this, if 𝑤𝑖 𝑗 is of form 𝑤 ′𝑝@𝑤 ′𝑖 𝑗@𝑤 ′𝑠 , then the

backreferences \prefix𝑖 𝑗 and \suffix𝑖 𝑗 try to match 𝑤 ′𝑝 and 𝑤 ′𝑠 , respectively, the backreferences

\flag𝑖 𝑗 try to match the delimiter@, and the backreference \𝑖 𝑗 tries to match𝑤 ′𝑖 𝑗 . Otherwise, i.e.,

𝑤𝑖 𝑗 = 𝜖 , the expression tries to match the empty string 𝜖 . Note that if a backreference is unassigned,

then it is handled as the empty string 𝜖 . As a result, if the matching succeeds, then it means that

the 𝑖 𝑗 th capturing group extracts the correct substring in the correct position. Additionally, we

need to check the correctness of extraction in positive lookarounds because once we move outside

of positive lookarounds, then we cannot backtrack to the inside of the positive lookarounds, and

therefore, we cannot check the correctness of extraction in positive lookarounds by the expression

𝑟assert1,𝐼 . From this, before we move outside of positive lookarounds, we check whether the extracted

substrings in the positive lookarounds are correct or not by using the expression 𝑟assert2,𝐼 .

The expression 𝑟assert2,𝐼 is defined as follows.

• For 𝐼 = {𝑖1, 𝑖2, · · · , 𝑖𝑛} 𝑟assert2,𝐼 = 𝑟assert2,𝑖1𝑟assert2,𝑖2 · · · 𝑟assert2,𝑖𝑛 , where
• for 𝑗 ∈ [𝑛], 𝑟assert2,𝑖 𝑗 = (?=[Σ ∪ {#1, #2, · · · , #𝑗−1, #𝑗+1, · · · #𝑛}]∗#𝑗𝑟assert1,𝑖 𝑗).

Basically, the expression 𝑟assert2,𝐼 behaves like the expression 𝑟assert1,𝐼 , but the subexpressions 𝑟assert2,𝑖
is nested by a positive lookahead to change the direction of the matching to forward. Additionally,
for 𝑖 𝑗 ∈ 𝐼 , we add the Kleene star to move the position to the expression #𝑗𝑟assert1,𝑖 𝑗 for checking the

correctness of extraction of the 𝑖 𝑗 th capturing group.

With them, we construct a regex for the approximation-by-backreferences as follows. For a tem-

plate 𝑡 , we use 𝐼𝑡 to denote the set of indexes of capturing groups that appear in 𝑡 . Given a template

𝑡 , we construct a regex 𝑟 = @𝑟body𝑟assert1,𝐼𝑡 , where 𝑟body is calculated as follows. First, we construct

the over-approximated regex 𝑟⊤ by the over-approximation for membership (cf. Appendix D). Then,

we construct 𝑟body by embedding expressions to check the correctness of extraction into the regex

𝑟⊤ by using the function 𝛽 , i.e., 𝑟body = 𝛽 (𝑟⊤). The definition of the function 𝛽 is as follows.

𝛽 ([𝐶](resp. 𝜖)) = [𝐶](resp. 𝜖) 𝛽 (𝑡∗
1
) = 𝛽 (𝑡1)∗ 𝛽 ((?<!𝑡1)) = (?<!𝛽 (𝑡1))

𝛽 (𝑡1𝑡2) = 𝛽 (𝑡1)𝛽 (𝑡2) 𝛽 (𝑡∗?
1
) = 𝛽 (𝑡1)∗? 𝛽 ((?=𝑡1)) = (?=𝛽 (𝑡1)𝑟assert2,𝐼𝑡

1

)

𝛽 (𝑡1 |𝑡2) = 𝛽 (𝑡1) |𝛽 (𝑡2) 𝛽 ((?!𝑡1)) = (?!𝛽 (𝑡1)) 𝛽 ((?<=𝑡1)) = (?<=𝑟assert2,𝐼𝑡
1

𝛽 (𝑡1))
𝛽 ((𝑡1)𝑖) = (?<=(@)flag𝑖 (.

∗)prefix𝑖)(𝛽 (𝑡1))𝑖 (?=(.
∗)suffix𝑖)

Note that backreferences are eliminated by the approximation for membership. The function 𝛽

inserts the expression 𝑟assert2,𝐼𝑡
1

into positive lookarounds to verify the correctness of the extraction

before the matching moves outside of the positive lookarounds. The main part of the construction

by 𝛽 is the case of capturing groups. In that case, it inserts the positive lookbehind and the positive

lookahead before and after the 𝑖th capturing group, respectively. The positive lookbehind extracts

the delimiter@ with the index flag𝑖 and the substring from the beginning of the input string to

the position before starting the 𝑖th capturing group with the index prefix𝑖 . The positive lookahead
extracts the substring from the position after ending the 𝑖th capturing group to the end of the input

string with the index suffix𝑖 .
As a result, IsFeasible at Line 4 computes the regex 𝑟 and the input string𝑤𝑒 for each example

𝑒 ∈ E+ by the procedures described above, and checks whether𝑤𝑒 ∈ L(𝑟) for each 𝑒 ∈ E+. If so,
there may exist a completion and therefore R3 expands the holes in the template. Otherwise, R3

does not expand the holes. As an example of the approximation, consider a template 𝑡 = □| (𝑏)1 and
a set of positive examples E+ = {L𝑏M1, 𝑎}. Then, the regex obtained by the over-approximation for

membership is 𝑟⊤ = .∗ | (𝑏)1, i.e., the hole □ is replaced with .∗, and the regex 𝑟 obtained by applying
the function 𝛽 to 𝑟⊤ and attaching @ and 𝑟assert1,𝐼𝑡 before and after it is as follows.

𝑟 = @(.∗ |(?<=(@)flag
1

(.∗)prefix
1

) (𝑏)1(?=(.∗)suffix
1

))#1\prefix1\flag1\1\flag1\suffix
1
.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

173:18 Nariyoshi Chida and Tachio Terauchi

For the positive examples L𝑏M1 and 𝑎, the input strings are𝑤1 = @𝑏#1@𝑏@ and𝑤2 = @𝑎#1. Recall

that unassigned backreferences in the JavaScript semantics are handled as the empty string 𝜖 . From

this, in the matching of 𝑟 on𝑤2, the backreferences in 𝑟 are evaluated as the empty string 𝜖 .

Finally, the regex and the input strings obtained by the above construction satisfy the following

property.

Proposition 5.1. Given a template 𝑡 and a set of positive examples E+, let 𝑟 and 𝑤𝑒 for each
𝑒 ∈ E+ be the regex and the input strings obtained by the above construction. Then, ∀𝑒 ∈ E+. ((∃𝑟 ′ ∈
R(𝑡). (𝑒 ∈ L𝑐 (𝑟 ′)) ⇒ 𝑤𝑒 ∈ L(𝑟)).

We use a variant of the approximation-by-backreferences at Line 5 of Algorithm 1. The variant

uses . instead of .∗ when we apply the approximation for membership.

5.3.2 Approximation by Pure Regex. Next, we introduce our second pruning technique approximation-
by-pure-regex. At a high level, the idea is the same as our first pruning technique, i.e., we convert a

template and a positive example to a regex and an input string, respectively, to have the information

of substrings to be extracted. However, the second pruning technique takes a different approach

to the conversion. The conversion used in the second pruning technique eliminates real-world

extensions in a template by approximating them to obtain a pure regex. From this, we can use

nonbacktracking regex engines, i.e., automata-based regex engines such as Google RE2 [Google

[n. d.]] which are known as ReDoS-free regex engines [Cox 2007], for membership. Note that the

regex-engine-dependent behavior does not affect results of the matching in terms of membership

and there is no automata-based regex engine that fully supports real-world extensions such as

backreferences and lookarounds
11
(and therefore we cannot use automata-based regex engines for

the first pruning technique).

We first describe the conversion from a positive example to an input string. Let 𝑒 = (𝑤, Γ) be a
positive example and 𝐼 be the set of indexes of capturing groups that appear in the template. Then,

for each index 𝑖 ∈ 𝑑𝑜𝑚(Γ) ∩ 𝐼 , we insert the delimiters #𝑖 in the position described by Γ(𝑖), i.e., we
simply replace L𝑖 and M𝑖 with #𝑖 . For example, we convert the positive example L1L2𝑎M2𝑏M1𝑐 to the

input string #1#2𝑎#2𝑏#1𝑐 . The delimiters indicate the positions of substrings to be extracted.

Next, we consider the conversion from a template to a pure regex. Before we describe the details

of the conversion, we first explain the procedure to eliminate backreferences by approximating

them, which is also used in the approximation for membership. For eliminating backreferences,

we first replace backreferences \𝑖 that are always evaluated as unassigned backreferences and

those that can be evaluated as both assigned and unassigned references with the empty string

𝜖 and (\𝑖 |𝜖), respectively. For example, we convert the template ((\2□)1 (\1𝑏)2)∗ to the template

((𝜖□)1 (\1𝑏)2)∗ because the Kleene-star operator in JavaScript resets substrings extracted in the

Kleene-star operator for each iteration (cf. Section 3), and therefore the backreference \2 is always
evaluated as an unassigned reference. Additionally, for example, we convert the template ((□)1 |𝑎)\1
to the template ((□)1 |𝑎) (\1|𝜖) because the backreference \1 may refer to the expression of the 1st

capturing group (i.e., □) or it may be an unassigned reference (i.e., 𝜖). By the replacements, the

relations between backreferences and the corresponding capturing groups form a directed acyclic

graph (DAG). Therefore, we eliminate backreferences by approximating them in a topological

order starting from the backreference whose corresponding capturing group does not have a

backreference. For this, for backreferences \𝑖 and the corresponding capturing groups (𝑡)𝑖 , we
replace \𝑖 with 𝑡 ′ where 𝑡 ′ is an expression obtained by removing capturing groups in 𝑡 . For

11
Actually, automata models that are equivalent to regexes with real-world extensions are unknown even for regexes with

backreferences and (positive and negative) lookaheads [Chida and Terauchi 2022a].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

Repairing Regular Expressions for Extraction 173:19

example, we convert the template (□)1 (\1𝑎)2\2 to the template (□)1 (□𝑎)2□𝑎, and the template

(?=((□)2\2)1)\1 to the template (?=((□)2□)1)□□.
Now, we describe the conversion. The conversion first eliminates the real-world extensions to

obtain a pure template regex. That is, it eliminates backreferences by approximation described above,

then eliminates lookarounds by simply replacing them with the empty string 𝜖 , and eliminates

capturing groups by replacing them with expressions with delimiters. We describe the elimination

of capturing groups. Since nested structures of capturing groups also form a DAG, we replace

capturing groups in a topological order starting from the capturing group that does not have a

capturing group in the expression. Specifically, let 𝑡 be a template that does not have a capturing

group as a subexpression. We replace a capturing group (𝑡)𝑖 that is (resp. not) in the Kleene-star

operator with the expression (#𝑖𝑡#𝑖 |𝑡) (resp. #𝑖𝑡#𝑖). We replace capturing groups that are in the

Kleene-star operator with the form of the union operator because the capturing groups only

extract a substring at the last iteration. For example, we convert the template (𝑎)∗
1
to the template

(#1𝑎#1 |𝑎)∗. We perform this procedure repeatedly until all capturing groups are eliminated. Finally,

the conversion uses the over-approximation for membership to obtain a pure regex from a pure

regex template. As a result, for a template 𝑡 and positive examples 𝑒 ∈ E+, IsFeasible at Line 4
constructs a pure regex 𝑟 and an input string𝑤 from 𝑡 and 𝑒 by the above procedure, respectively,

and checks whether 𝑤 ∈ L(𝑟). If there exists an input string 𝑤 such that 𝑤 ∉ L(𝑟), then we do

not expand the holes.

6 EVALUATION
We implemented our algorithm as a tool called R3 in Java with Z3 [De Moura and Bjørner 2008] as

the SMT solver. We conducted an experimental evaluation that is designed to answer the following

research questions: (RQ1) Can R3 repair a regex effectively? (RQ2) Can R3 find a high-quality

regex? (RQ3)Are the new pruning techniques useful for repairing a regex for extraction? To answer

(RQ1), we measured the running time of R3 using instances described in Section 6.1. To answer

(RQ2), we measured the quality of the repair based on the metrics introduced in the previous

works [Chida and Terauchi 2022b; Pan et al. 2019]. Finally, to answer (RQ3), we compared the

performance of R3 with and without our pruning techniques. In what follows, we refer to R3

without the new pruning techniques as R3base, and use R3hybrid to denote the hybrid of R3 and R3base
that returns the regex returned by the faster of the two. The experiments were run on a machine

with Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz with the time limit of 30 minutes. In this

evaluation, we only consider ASCII symbols, i.e., we only use regexes over the ASCII alphabet.

Validation. Our repair algorithm guarantees to generate only correct regexes, i.e., they are consis-

tent with all examples. We have validated that all regexes generated by R3 in this evaluation are

indeed consistent with all examples by running JavaScript’s regex engines.

6.1 Data Set
There is no standard benchmark for repairing regexes for extraction. Therefore, to conduct our

experiments, we prepared a data set collected from public GitHub projects.

GitHub data set. We collected incorrect and correct regexes for extraction from regex-related

commits of public GitHub projects. Specifically, we looked for commits that contain a change that

repairs regexes for extraction, and if so, collected the regexes before and after the repair as the

incorrect and correct regexes, respectively. When such commits provide examples of correct and

incorrect usage, we use them as examples for our repair methods. For commits that do not provide

examples, we prepared the examples based on the correct and incorrect regexes manually. The

examples were prepared by inspecting the differences between before and after the change of the

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

173:20 Nariyoshi Chida and Tachio Terauchi

(a) Running times. (b) Distances. (c) Percentages of changes.

Fig. 3. Histograms of the results of R3.

regexes in the commits. We prepared at least 10 positive and negative examples, respectively, for

each commit. From these examples, we use at most 5 positive and 5 negative examples for each

instance to be used for our repair algorithms. Note that, for usability, PBE methods should find a

solution from a small number of examples. The remaining examples are used as left-out example
sets for evaluating the quality of repaired regexes (cf. RQ2: Quality).

We took two approaches to find the commits. First, we checked all commits in the list collected

by Wang et al. [2020] who studied real-world bugs of regexes in Apache, Mozilla, Facebook, and

Google GitHub projects. As a result, we obtained 23 regexes. Second, inspired by the approach of

Wang et al. [2020] who searched regex-related commits, we used GitHub Advanced Search with

keywords such as “regular expression”, “regex”, and “regexp” with the keyword “bug”. We checked

the commits in the order of keyword relevance until we obtained 27 regexes, ignoring duplicates.

Consequently, we collected 50 regexes. The average and maximum sizes of the regexes (measured

as the number of AST nodes) are 38.8 and 199, respectively. Additionally, the average and maximum

numbers of capturing groups are 1.9 and 13, respectively. Finally, 24 (resp. 5) regexes have a (resp.

lazy) Kleene star, 32 (resp. 2) regexes have a (resp. lazy) Kleene plus, 9 regexes have a union operator,

17 regexes have an optional operator, 1 regex has a positive lookahead, and 1 regex has a positive

lookbehind.

Table 1. Solved instances.

instances running time (seconds)

Solved (50) min med max
R3 39 (78%) 0.1 1.7 1011.7

R3base 36 (72%) 0.1 3.2 536.0

R3hybrid 40 (80%) 0.1 1.8 1011.7

RQ1: Efficiency. Table 1 reports the results

of the number of solved instances within the

time limit (Solved) and the minimum, median,

and maximum running times in seconds (min,
med, and max, respectively). Additionally, we
plot the number of regexes against the run-

ning times. Figure 3a shows the histogram. The

times in the histogram are grouped every 2 minutes. As the table shows, R3 repaired 39 instances

(78%) within the time limit. We inspected the unsolved instances, and found that R3 could not

repair the instances that (i) require large changes from the original and (ii) involve highly-nested

Kleene stars which burden the constraint generation process. These findings agree with the existing

works that are based on the enumerative search algorithms with SMT constraint solving [Chida

and Terauchi 2022b; Pan et al. 2019]. For example, R3 could not find the repair of the regex

.∗(mochitest(-debug|-e10s|-devtools-chrome)?|reftest|· · · |jittest)([0-9]+)1 within
the time limit. The intended solution is .∗-([0-9]+)1$, which is of a large distance from the

original. As the plot shows, majority of the instances (74.3%) can be repaired within 5 seconds. In

summary, R3 can repair a real-world regex efficiently.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

Repairing Regular Expressions for Extraction 173:21

Fig. 4. F1 scores.

RQ2: Quality. As mentioned by Pan et al. [2019], repairs

that are similar to the original ones are often considered good

in PBE because they are similar to what the user intended,

and the prior PBE works [Chida and Terauchi 2022b; Pan et al.

2019] used the edit distance between from the original as a

metric of repair quality. A large change indicates low quality

as such repairs may be far from what the user intended. As

Figure 3b shows, all repaired regexes were repaired within

the distance 10. Figure 3c shows the percentages of changes

from the original. As the figure shows, we observe that most

repairs are close to the original regexes with the average

ratio of change being 5.8%, and about 87.2% of regexes were

repaired within 10% of changes.

Additionally, following the approach used by Pan et al. [2019], we also measured the quality of

repaired regexes with respect to left-out example sets. That is, by using the examples not used in

the repair algorithms, we measured the F1 score. The F1 score is defined as follows: for the repaired

regex 𝑟 , we estimate the precision of 𝑟 by 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) where 𝑇𝑃 (resp. 𝐹𝑃) is the number of

positive (resp. negative) examples that are correctly (resp. incorrectly) classified by 𝑟 . Additionally,

we estimate the recall of 𝑟 by𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) where 𝐹𝑁 is the number of positive examples that are

incorrectly classified by 𝑟 . Then, the F1 score of 𝑟 is defined as (2 × recall × precision)/(recall +
precision). The F1 score is between 0 and 1, and the high F1 score implies the high quality of the

repaired regex. Figure 4 shows the histogram. As the figure shows, more than 87.5% of the repaired

regexes have the F1 scores of at least 0.8. We inspected the repaired regexes with low F1 scores, and

found that R3 could not find a repair with a high F1 score when the repair requires large changes

from the original. In summary, R3 can produce regexes that have high-similarity and generalize well
to left-out example sets, and therefore of high-quality.

Fig. 5. Effect of the pruning techniques.

RQ3: Impact of Over-Approximation for Extraction. To un-
derstand the impact of our new pruning techniques, we com-

pared R3 against R3base. Figure 5 plots their running times.

The points above the diagonal means that R3 is faster than

R3base. The points on the border (colored in blue) indicate that

the tool could not find a repair within the timeout. As the

plot shows, R3 is faster than R3base in 24 instances, and R3 is

slower than R3base in 16 instances. However, in 12 instances

of the 16 instances, the difference of the running times be-

tween R3 and R3base were within 0.2 seconds, whereas such

is true for only 2 of the former 24 instances. We inspected

the 4 instances on which R3base was non-trivially faster, and found that, in these cases, R3 was

suffering from ReDoS (cf. Section 5.3). A possible way to address the issue is to simply set a time

limit on the approximation process. Additionally, in 4 instances, R3 solved the instance within the

timeout while R3base could not. R3 achieved 21.9× speedups on average and more than 445.9× in
the largest case. In summary, the new pruning techniques significantly improve the running times.

7 RELATEDWORK
Synthesizing regexes for membership. There is much work on synthesizing or repairing a regex

from examples [Angluin 1978; Brādzma 1993; Fernau 2009; Rebele et al. 2018]. Our work is most

closely related to the recent works on synthesizing or repairing a regex from examples [Chida and

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

173:22 Nariyoshi Chida and Tachio Terauchi

Terauchi 2022b; Lee et al. 2016; Li et al. 2020; Pan et al. 2019] or from examples and natural language

descriptions [Chen et al. 2020; Li et al. 2021]. However, all these works only support for membership,

and the support for extraction is out of scope. As shown in our paper, supporting extraction requires

considering deterministic semantics which incurs non-trivial extensions to the prior methods that

only considered membership. Additionally, all except for Chida and Terauchi [2022b] only support

pure regexes and do not consider real-world extensions such as lookarounds and backreference.

Chida and Terauchi [2022b] support backreferences and some forms of lookarounds but not general

lookbehinds, and as remarked above, they do not consider extraction and use a non-deterministic

semantics.

Generating regexes by genetic algorithms. Bartoli et al. [2014, 2016] introduced a genetic-

programming based algorithm for generating a regex for extraction from examples. However, as

mentioned in Section 1, they do not guarantee the correctness of the repair. Additionally, the

extraction considered in their work is different from ours. That is, ourwork considers extraction from

matching a regex against the whole given string and extracting the (positions of) substrings captured

by the capturing groups in the regex, whereas their work considers extracting the substrings of the

given string that each matches a regex without capturing groups.

Formal semantics of regexes. Our paper’s novel formal semantics of regexes follows the EC-

MAScript 2023 language specification, and while its purpose in this paper is to be used as a basis for

a repair algorithm, it may be of independent interest. Our semantics is inspired by those in the pre-

vious works [Chida and Terauchi 2022b; Sakuma et al. 2012]. Namely, Chida and Terauchi [2022b]

give a big-step semantics for regexes including some real-world extensions, and Sakuma et al.

[2012] give a deterministic semantics of Perl regexes using continuations and monads. However,

as remarked above, the semantics of Chida and Terauchi [2022b] is non-deterministic and hence

is unsuitable to describe extraction, and that of Sakuma et al. [2012] only considers pure regexes

and does not consider real-world extensions. Other prior works on formal semantics of regexes

include the work by Loring et al. [2019] who provide a semantics that follows the ECMAScript

2015 language specification. However, their goal is dynamic symbolic execution that involves

counterexample-guided refinement, and adopting their semantics to a PBE repair problem may be

difficult. Furthermore, they do not support lookbehinds. Finally, Chen et al. [2022] give a semantics

of JavaScript’s regexes by using prioritized streaming string transducers. However, they do not

consider extensions such as backreferences and lookarounds.

8 CONCLUSION
We have presented the first PBE-based method for repairing regexes for extraction. Our method

supports real-world extensions such as general lookarounds and backreferences, and we have shown

that the extensions are important for the existence of a solution to the repair problem, and that the

repair problem is NP-hard. Our algorithm for solving the repair problem makes two significant

extensions to the prior methods that only considered membership: handling of deterministic

behavior and the new pruning techniques to reduce the search space. To realize the former, we have

also presented a novel formal semantics that the ECMAScript 2023 language specification. We have

implemented the algorithm as a tool called R3 and experimentally evaluated it on a real-world data

set. The evaluation has shown that R3 can repair real-world regexes successfully and efficiently.

ACKNOWLEDGMENTS
We thank anonymous reviewers for useful comments. This work was supported by JSPS KAKENHI

Grant Numbers JP17H01720, JP18K19787, JP20H04162, JP20K20625, and JP22H03570.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

Repairing Regular Expressions for Extraction 173:23

REFERENCES
Dana Angluin. 1978. On the complexity of minimum inference of regular sets. Information and Control 39, 3 (1978), 337–350.

https://doi.org/10.1016/S0019-9958(78)90683-6

Angular. 2022. Angular: The modern web developer’s platform. https://angular.io/ [Online; accessed 10-November-2022].

A. Bartoli, G. Davanzo, A. De Lorenzo, E. Medvet, and E. Sorio. 2014. Automatic Synthesis of Regular Expressions from

Examples. Computer 47, 12 (dec 2014), 72–80. https://doi.org/10.1109/MC.2014.344

Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao. 2016. Inference of Regular Expressions for Text

Extraction from Examples. IEEE Transactions on Knowledge and Data Engineering 28, 5 (2016), 1217–1230. https:

//doi.org/10.1109/TKDE.2016.2515587

Martin Berglund and Brink van der Merwe. 2017. Regular Expressions with Backreferences Re-examined. In Proceedings
of the Prague Stringology Conference 2017, Prague, Czech Republic, August 28-30, 2017, Jan Holub and Jan Zdárek (Eds.).

Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University in Prague,

30–41. http://www.stringology.org/event/2017/p04.html

Alvis Brādzma. 1993. Efficient Identification of Regular Expressions from Representative Examples. In Proceedings of the
Sixth Annual Conference on Computational Learning Theory (Santa Cruz, California, USA) (COLT ’93). Association for

Computing Machinery, New York, NY, USA, 236–242. https://doi.org/10.1145/168304.168340

Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. 2020. Multi-Modal Synthesis of Regular Expressions. In

Proceedings of the 41st ACM SIGPLANConference on Programming Language Design and Implementation (London, UK) (PLDI
2020). Association for Computing Machinery, New York, NY, USA, 487–502. https://doi.org/10.1145/3385412.3385988

Taolue Chen, Alejandro Flores-Lamas, Matthew Hague, Zhilei Han, Denghang Hu, Shuanglong Kan, AnthonyW. Lin, Philipp

Rümmer, and Zhilin Wu. 2022. Solving String Constraints with Regex-Dependent Functions through Transducers with

Priorities and Variables. Proc. ACM Program. Lang. 6, POPL, Article 45 (jan 2022), 31 pages. https://doi.org/10.1145/3498707
Nariyoshi Chida and Tachio Terauchi. 2022a. On Lookaheads in Regular Expressions with Backreferences. In 7th International

Conference on Formal Structures for Computation andDeduction (FSCD 2022) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 228), Amy P. Felty (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 15:1–15:18.

https://doi.org/10.4230/LIPIcs.FSCD.2022.15

Nariyoshi Chida and Tachio Terauchi. 2022b. Repairing DoS Vulnerability of Real-World Regexes. In 2022 IEEE Symposium
on Security and Privacy (SP). 2060–2077. https://doi.org/10.1109/SP46214.2022.9833597

Russ Cox. 2007. Regular Expression Matching Can Be Simple And Fast (but is slow in Java, Perl, PHP, Python, Ruby, ...).

https://swtch.com/~rsc/regexp/regexp1.html [Online; accessed 10-November-2022].

James C. Davis, Christy A. Coghlan, Francisco Servant, and Dongyoon Lee. 2018. The Impact of Regular Expression

Denial of Service (ReDoS) in Practice: An Empirical Study at the Ecosystem Scale. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering
(Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association for Computing Machinery, New York, NY, USA, 246–256.

https://doi.org/10.1145/3236024.3236027

James C. Davis, Louis G. Michael IV, Christy A. Coghlan, Francisco Servant, and Dongyoon Lee. 2019. Why Aren’t Regular

Expressions a Lingua Franca? An Empirical Study on the Re-Use and Portability of Regular Expressions. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,

443–454. https://doi.org/10.1145/3338906.3338909

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.

Django. 2022. Django: The Web framework for perfectionists with deadlines. https://www.djangoproject.com/ [Online;

accessed 10-November-2022].

ECMA International. 2022. ECMAScript® 2023 Language Specification. https://tc39.es/ecma262/multipage/#sec-intro.

Henning Fernau. 2009. Algorithms for learning regular expressions from positive data. Information and Computation 207, 4

(2009), 521–541. https://doi.org/10.1016/j.ic.2008.12.008

Margarida Ferreira, Miguel Terra-Neves, Miguel Ventura, Inês Lynce, and Ruben Martins. 2021. FOREST: An Interactive

Multi-tree Synthesizer for Regular Expressions. In Tools and Algorithms for the Construction and Analysis of Systems,
Jan Friso Groote and Kim Guldstrand Larsen (Eds.). Springer International Publishing, Cham, 152–169.

Jeffrey E. F. Friedl. 2006. Mastering Regular Expressions (3 ed.). O’Reilly, Beijing. https://www.safaribooksonline.com/

library/view/mastering-regular-expressions/0596528124/

Alain Frisch and Luca Cardelli. 2004. Greedy Regular Expression Matching. In Automata, Languages and Programming,
Josep Díaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

618–629.

Google. [n. d.]. RE2. https://github.com/google/re2 [Online; accessed 10-November-2022].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

https://doi.org/10.1016/S0019-9958(78)90683-6
https://angular.io/
https://doi.org/10.1109/MC.2014.344
https://doi.org/10.1109/TKDE.2016.2515587
https://doi.org/10.1109/TKDE.2016.2515587
http://www.stringology.org/event/2017/p04.html
https://doi.org/10.1145/168304.168340
https://doi.org/10.1145/3385412.3385988
https://doi.org/10.1145/3498707
https://doi.org/10.4230/LIPIcs.FSCD.2022.15
https://doi.org/10.1109/SP46214.2022.9833597
https://swtch.com/~rsc/regexp/regexp1.html
https://doi.org/10.1145/3236024.3236027
https://doi.org/10.1145/3338906.3338909
https://www.djangoproject.com/
https://tc39.es/ecma262/multipage/#sec-intro
https://doi.org/10.1016/j.ic.2008.12.008
https://www.safaribooksonline.com/library/view/mastering-regular-expressions/0596528124/
https://www.safaribooksonline.com/library/view/mastering-regular-expressions/0596528124/
https://github.com/google/re2

173:24 Nariyoshi Chida and Tachio Terauchi

Richard M. Karp. 1972. Reducibility among Combinatorial Problems. Springer US, Boston, MA, 85–103. https://doi.org/10.

1007/978-1-4684-2001-2_9

Mina Lee, Sunbeom So, and Hakjoo Oh. 2016. Synthesizing Regular Expressions from Examples for Introductory Automata

Assignments. SIGPLAN Not. 52, 3 (oct 2016), 70–80. https://doi.org/10.1145/3093335.2993244

Yunyao Li, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar Vaithyanathan, and H. V. Jagadish. 2008. Regular

Expression Learning for Information Extraction. In Proceedings of the 2008 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, Honolulu, Hawaii, 21–30. https://aclanthology.org/D08-

1003

Yeting Li, Shuaimin Li, ZhiwuXu, Jialun Cao, Zixuan Chen, YunHu, Haiming Chen, and Shing-Chi Cheung. 2021. TransRegex:

Multi-Modal Regular Expression Synthesis by Generate-and-Repair. In Proceedings of the 43rd International Conference on
Software Engineering (Madrid, Spain) (ICSE ’21). IEEE Press, 1210–1222. https://doi.org/10.1109/ICSE43902.2021.00111

Yeting Li, Zhiwu Xu, Jialun Cao, Haiming Chen, Tingjian Ge, Shing-Chi Cheung, and Haoren Zhao. 2020. FlashRegex:

Deducing Anti-ReDoS Regexes from Examples. In Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering (Virtual Event, Australia) (ASE ’20). Association for Computing Machinery, New York, NY, USA,

659–671. https://doi.org/10.1145/3324884.3416556

Blake Loring, Duncan Mitchell, and Johannes Kinder. 2019. Sound Regular Expression Semantics for Dynamic Symbolic

Execution of JavaScript. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 425–438.

https://doi.org/10.1145/3314221.3314645

Matthew Luckie, Bradley Huffaker, and k claffy. 2019. Learning Regexes to Extract Router Names from Hostnames. In

Proceedings of the Internet Measurement Conference (Amsterdam, Netherlands) (IMC ’19). Association for Computing

Machinery, New York, NY, USA, 337–350. https://doi.org/10.1145/3355369.3355589

Louis G. Michael, James Donohue, James C. Davis, Dongyoon Lee, and Francisco Servant. 2019. Regexes Are Hard:

Decision-Making, Difficulties, and Risks in Programming Regular Expressions. In Proceedings of the 34th IEEE/ACM
International Conference on Automated Software Engineering (San Diego, California) (ASE ’19). IEEE Press, 415–426.

https://doi.org/10.1109/ASE.2019.00047

Chris O’Hara. 2022. Validator.js. https://github.com/validatorjs/validator.js/ [Online; accessed 10-November-2022].

OWASP. 2022. Input Validation Cheat Sheet. https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_

Sheet.html [Online; accessed 10-November-2022].

Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni. 2019. Automatic Repair of Regular Expressions. Proc. ACM
Program. Lang. 3, OOPSLA, Article 139 (oct 2019), 29 pages. https://doi.org/10.1145/3360565

Thomas Rebele, Katerina Tzompanaki, and Fabian M. Suchanek. 2018. Adding Missing Words to Regular Expressions. In

Advances in Knowledge Discovery and Data Mining, Dinh Phung, Vincent S. Tseng, Geoffrey I. Webb, Bao Ho, Mohadeseh

Ganji, and Lida Rashidi (Eds.). Springer International Publishing, Cham, 67–79.

RegExLib. 2022. https://regexlib.com/ [Online; accessed 10-November-2022].

Yuto Sakuma, Yasuhiko Minamide, and Andrei Voronkov. 2012. Translating regular expression matching into transducers.

Journal of Applied Logic 10, 1 (2012), 32–51. https://doi.org/10.1016/j.jal.2011.11.003 Special issue on Automated

Specification and Verification of Web Systems.

Amazon Web Services. 2022. Regex match rule statement. https://docs.aws.amazon.com/waf/latest/developerguide/waf-

rule-statement-type-regex-match.html [Online; accessed 10-November-2022].

Snort. 2022. Snort. https://www.snort.org/ [Online; accessed 10-November-2022].

Peipei Wang, Chris Brown, Jamie A. Jennings, and Kathryn T. Stolee. 2020. An Empirical Study on Regular Expression Bugs.

In Proceedings of the 17th International Conference on Mining Software Repositories (Seoul, Republic of Korea) (MSR ’20).
Association for Computing Machinery, New York, NY, USA, 103–113. https://doi.org/10.1145/3379597.3387464

Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L. Glassman. 2020. Interactive Program Synthesis by

Augmented Examples. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology
(Virtual Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY, USA, 627–648. https://doi.org/10.

1145/3379337.3415900

A PROOF OF THEOREM 4.3
Proof. For simplicity, we assume that Σ = {𝑎, 𝑏}. We show that the instance 𝑟1 = 𝜖 , E+ =

{(𝑎𝑏, Γ0), (𝑏𝑎, Γ1)} where Γ0 = {(1, (0, 1))} (i.e., the first character 𝑎 should be extracted from 𝑎𝑏) and

Γ1 = {(1, (1, 2))} (i.e., the second character 𝑎 should be extracted from 𝑏𝑎), and E− = {𝜖, 𝑎, 𝑏, 𝑎𝑎, 𝑏𝑏}
(i.e., except for 𝑎𝑏 and 𝑏𝑎, the length of strings accepted by the solution should be greater than

or equal to 3) does not have a pure regex solution. Suppose for a contradiction that the instance

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/3093335.2993244
https://aclanthology.org/D08-1003
https://aclanthology.org/D08-1003
https://doi.org/10.1109/ICSE43902.2021.00111
https://doi.org/10.1145/3324884.3416556
https://doi.org/10.1145/3314221.3314645
https://doi.org/10.1145/3355369.3355589
https://doi.org/10.1109/ASE.2019.00047
https://github.com/validatorjs/validator.js/
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://doi.org/10.1145/3360565
https://regexlib.com/
https://doi.org/10.1016/j.jal.2011.11.003
https://docs.aws.amazon.com/waf/latest/developerguide/waf-rule-statement-type-regex-match.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-rule-statement-type-regex-match.html
https://www.snort.org/
https://doi.org/10.1145/3379597.3387464
https://doi.org/10.1145/3379337.3415900
https://doi.org/10.1145/3379337.3415900

Repairing Regular Expressions for Extraction 173:25

Set of Characters and Empty String

𝑑 = forward 𝑝 < |𝑤 | 𝑤 [𝑝] ∈ 𝐶
([𝐶], 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝 + 1, Γ)

𝑑 = backward 0 ≤ 𝑝 − 1 𝑤 [𝑝 − 1] ∈ 𝐶
([𝐶], 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝 − 1, Γ)

(𝜖, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝, Γ)

Concatenation

𝑑 = forward (𝑟1, 𝑟2𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝1, Γ1) (𝑟2, 𝑟𝑐 ,𝑤, 𝑝1, Γ1, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)
(𝑟1𝑟2, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)

𝑑 = backward (𝑟2, 𝑟𝑐𝑟1,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝1, Γ1) (𝑟1, 𝑟𝑐 ,𝑤, 𝑝1, Γ1, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)
(𝑟1𝑟2, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)

Union

𝑑 = forward (𝑟1𝑟𝑐 , 𝜖,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝1, Γ1) (¬𝑙 ∧ 𝑝1 = |𝑤 |) ∨ 𝑙 (𝑟1, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)
(𝑟1 |𝑟2, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)

𝑑 = forward (𝑟1𝑟𝑐 , 𝜖,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ 𝜏
(¬𝑙 ∧ (𝜏 = failed ∨ 𝜏 = (𝑝′′, Γ′′) where 𝑝′′ ≠ |𝑤 |) ∨ (𝑙 ∧ 𝜏 = failed)

(𝑟2, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′, Γ′)
(𝑟1 |𝑟2, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′, Γ′)

𝑑 = backward (𝑟𝑐𝑟1, 𝜖,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝1, Γ1) (¬𝑙 ∧ 𝑝1 = |𝑤 |) ∨ 𝑙 (𝑟1, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)
(𝑟1 |𝑟2, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)

𝑑 = backward (𝑟𝑐𝑟1, 𝜖,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ 𝜏
(¬𝑙 ∧ (𝜏 = failed ∨ 𝜏 = (𝑝′′, Γ′′) where 𝑝′′ ≠ |𝑤 |) ∨ (𝑙 ∧ 𝜏 = failed)

(𝑟2, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′, Γ′)
(𝑟1 |𝑟2, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′, Γ′)

Fig. 6. Rules for pure regexes (except for Kleene stars and repetitions).

has a pure regex solution. Let 𝑟2 be the solution. Since 𝑟2 is consistent with positive examples, it

has a capturing group (𝑟𝑎)1 where 𝑟𝑎 matches to the character 𝑎, i.e., 𝑎 ∈ L(𝑟𝑎). The capturing
group (𝑟𝑎)1 does not appear in the Kleene-star operator. To prove this, suppose the capturing group

appears in the Kleene-star operator. Then, the Kleene-star operator can iterate exactly once because

if it iterates zero times, then the solution 𝑟2 does not extract any substring, which is a contradiction.

In addition, if it iterates more than two times, for the string 𝑎𝑏, the substring extracted by the

capturing group is no longer the first character 𝑎, which is a contradiction, because the Kleene-star

operator consumes at least one character for each iteration. Therefore, the Kleene-star operator

iterates exactly once. However, in this case, we can obtain a regex 𝑟3 that is consistent with examples

and 𝐷 (𝑟1, 𝑟3) < 𝐷 (𝑟1, 𝑟2) by replacing the Kleene-star operator 𝑟 ′∗ with the expression 𝑟 ′ which is

a contradiction. Additionally, the capturing group does not appear in the union operator for the

similar reason, i.e., for the union operator, we can obtain the smaller expression that is consistent

with examples by replacing the union operator with the subexpression that contains the capturing

group. From this, the only operator in which the capturing group appears is the concatenation

operator. As a result, 𝑟2 should take the form of 𝑟 ′ (𝑟𝑎)1𝑟 ′′. Since 𝑟2 is consistent with positive

examples, 𝑟 ′ and 𝑟 ′′ can match to the character 𝑏 and the empty string 𝜖 , i.e., 𝜖, 𝑏 ∈ L(𝑟 ′) and
𝜖, 𝑏 ∈ L(𝑟 ′′). However, if so, 𝑟2 can match the string 𝑎 ∈ E− , which is a contradiction. □

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

173:26 Nariyoshi Chida and Tachio Terauchi

Greedy Kleene Star

𝑑 = forward (𝑟 ⟨𝑟∗ : 𝑝⟩𝑟𝑐 , 𝜖,𝑤, 𝑝, reset (𝑟, Γ), 𝑑, 𝑙) ⇓ (𝑝1, Γ1) (¬𝑙 ∧ 𝑝1 = |𝑤 |) ∨ 𝑙
(𝑟, ⟨𝑟∗ : 𝑝⟩𝑟𝑐 ,𝑤, 𝑝, reset (𝑟, Γ), 𝑑, 𝑙) ⇓ (𝑝2, Γ2) (𝑟∗, 𝑟𝑐 ,𝑤, 𝑝2, Γ2, 𝑑, 𝑙) ⇓ (𝑝3, Γ3)

(𝑟∗, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝3, Γ3)
𝑑 = backward (𝑟𝑐 ⟨𝑟∗ : 𝑝⟩𝑟, 𝜖,𝑤, 𝑝, reset (𝑟, Γ), 𝑑, 𝑙) ⇓ (𝑝1, Γ1) (¬𝑙 ∧ 𝑝1 = |𝑤 |) ∨ 𝑙
(𝑟, 𝑟𝑐 ⟨𝑟∗ : 𝑝⟩,𝑤, 𝑝, reset (𝑟, Γ), 𝑑, 𝑙) ⇓ (𝑝2, Γ2) (𝑟∗, 𝑟𝑐 ,𝑤, 𝑝2, Γ2, 𝑑, 𝑙) ⇓ (𝑝3, Γ3)

(𝑟∗, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝3, Γ3)

Lazy Kleene Star

𝑑 = forward (𝑟𝑐 , 𝜖,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ 𝜏 (¬𝑙 ∧ (𝜏 = failed ∨ 𝜏 = (𝑝′, Γ′) where 𝑝′ ≠ |𝑤 |)) ∨ (𝑙 ∧ 𝜏 = failed)
(𝑟 ⟨𝑟∗? : 𝑝⟩𝑟𝑐 , 𝜖,𝑤, 𝑝, reset (𝑟, Γ), 𝑑, 𝑙) ⇓ (𝑝3, Γ3) (¬𝑙 ∧ 𝑝3 = |𝑤 |) ∨ 𝑙

(𝑟, ⟨𝑟∗? : 𝑝⟩𝑟𝑐 ,𝑤, 𝑝, reset (𝑟, Γ), 𝑑, 𝑙) ⇓ (𝑝1, Γ1) (𝑟∗?, 𝑟𝑐 ,𝑤, 𝑝1, Γ1, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)
(𝑟∗?, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)

𝑑 = backward (𝑟𝑐 , 𝜖,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ 𝜏 (¬𝑙 ∧ (𝜏 = failed ∨ 𝜏 = (𝑝′, Γ′) where 𝑝′ ≠ |𝑤 |) ∨ (𝑙 ∧ 𝜏 = failed)
(𝑟𝑐 ⟨𝑟∗? : 𝑝⟩𝑟, 𝜖,𝑤, 𝑝, reset (𝑟, Γ), 𝑑, 𝑙) ⇓ (𝑝3, Γ3) (¬𝑙 ∧ 𝑝3 = |𝑤 |) ∨ 𝑙

(𝑟, 𝑟𝑐 ⟨𝑟∗? : 𝑝⟩,𝑤, 𝑝, reset (𝑟, Γ), 𝑑, 𝑙) ⇓ (𝑝1, Γ1) (𝑟∗?, 𝑟𝑐 ,𝑤, 𝑝1, Γ1, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)
(𝑟∗?, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝2, Γ2)

Guard

𝑝′ = 𝑝

(⟨𝑟 : 𝑝′⟩, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ failed
𝑝′ ≠ 𝑝 (𝑟, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′, Γ′)
(⟨𝑟 : 𝑝′⟩, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′, Γ′)

Fig. 7. Rules for Kleene stars.

B PROOF OF THEOREM 4.4
Proof. Let 𝑘 be the maximum number of indexes of capturing groups in positive examples.

We assume that 𝑘 ≥ 1. Note that if 𝑘 = 0, then it is immediate since we can obtain the solution

by taking the unions of strings in positive examples. We show that we can always construct

a regex that satisfies the consistency condition. Let a regex 𝑟 , a set of positive examples E+ =

{(𝑤1, Γ1), (𝑤2, Γ2), · · · , (𝑤𝑛, Γ𝑛)}, and a set of negative examples E− be an input instance of the

extraction-regex-repair problem.

Then, we prepare a regex 𝑟 ′ = 𝑟1𝑟2 · · · 𝑟𝑘𝑟body where
• for all 𝑖 ∈ [𝑘], 𝑟𝑖 = (?=(𝑟𝑖,defined |𝑟𝑖,undefined)),
• 𝑟𝑖,defined = .∗ (𝑟𝑖,defined,1 |𝑟𝑖,defined,2 | · · · |𝑟𝑖,defined,𝑛)𝑖 ,

• for 𝑗 ∈ [𝑛], 𝑟𝑖,defined, 𝑗 =
{
(?<=(?<!.)𝑤 𝑗 [0..𝑝𝑙))𝑤 𝑗 [𝑝𝑙 ..𝑝𝑟)(?=𝑤 𝑗 [𝑝𝑟 ..|𝑤 𝑗 |)(?!.))) if Γ𝑗 (𝑖) = (𝑝𝑙 , 𝑝𝑟)
𝑟𝑖,defined, 𝑗 = ∅ otherwise

,

• 𝑟𝑖,undefined = 𝑟𝑖,undefined,1 |𝑟𝑖,undefined,2 | · · · |𝑟𝑖,undefined,𝑛 ,

• for 𝑗 ∈ [𝑛], 𝑟𝑖,undefined, 𝑗 =
{
∅ if Γ𝑗 (𝑖) = (𝑝𝑙 , 𝑝𝑟)
(?<!.)𝑤 𝑗 (?!.) otherwise

, and

• 𝑟body = (𝑤1 |𝑤2 | · · · |𝑤𝑛).
We now show that the regex 𝑟 ′ satisfies the consistency condition by showing L𝑐 (𝑟 ′) = E+. We

first show that for every (𝑤 𝑗 , Γ𝑗) ∈ E+, (𝑤 𝑗 , Γ𝑗) ∈ L𝑐 (𝑟 ′). To prove this, we show that𝑤 𝑗 ∈ L(𝑟 ′),
and then, we show that 𝑟 ′ extracts correct substrings. Since 𝑟 ′ consists of the positive lookaheads
𝑟𝑖 and the expression 𝑟body whose language is {𝑤 | (𝑤, _) ∈ E+}, 𝑟 ′ accepts 𝑤 𝑗 if all the positive

lookaheads 𝑟𝑖 succeeds. For each 𝑟𝑖 , it succeeds on𝑤 𝑗 and correctly extracts the substrings because

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

Repairing Regular Expressions for Extraction 173:27

Capturing Group

𝑑 = forward
(𝑟$𝑖 , 𝑟𝑐 ,𝑤, 𝑝, Γ[𝑖 ↦→ (𝑝,⊥)], 𝑑, 𝑙) ⇓ (𝑝′, Γ′)

((𝑟)𝑖 , 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′, Γ′)

𝑑 = forward Γ(𝑖) = (𝑝,⊥)
($𝑖 , 𝑟𝑐 ,𝑤, 𝑝′, Γ, 𝑑, 𝑙) ⇓ (𝑝, Γ [𝑖 ↦→ (𝑝, 𝑝′)])

𝑑 = backward
($𝑖𝑟, 𝑟𝑐 ,𝑤, 𝑝, Γ[𝑖 ↦→ (⊥, 𝑝)], 𝑑, 𝑙) ⇓ (𝑝′, Γ′)

((𝑟)𝑖 , 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′, Γ′)

𝑑 = backward Γ(𝑖) = (𝑝′,⊥)
($𝑖 , 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝, Γ [𝑖 ↦→ (𝑝, 𝑝′)])

Backreference

Γ(𝑖) = (𝑝′, 𝑝′′) (𝑤 [𝑝′ ..𝑝′′), 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′′′, Γ′)
(\𝑖, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝′′′, Γ′)

𝑖 ∉ 𝑑𝑜𝑚(Γ) ∨ Γ(𝑖) = (𝑝′,⊥)
(\𝑖, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝, Γ)

Lookahead

(𝑟, 𝜖,𝑤, 𝑝, Γ, forward, true) ⇓ (𝑝′, Γ′)
((?=𝑟), 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝, Γ′)

(𝑟, 𝜖,𝑤, 𝑝, Γ, forward, true) ⇓ failed
((?!𝑟), 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝, Γ)

Lookbehind

(𝑟, 𝜖,𝑤, 𝑝, Γ, backward, true) ⇓ (𝑝′, Γ′)
((?<=𝑟), 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝, Γ′)

(𝑟, 𝜖,𝑤, 𝑝, Γ, backward, true) ⇓ failed
((?<!𝑟), 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝, Γ)

Fig. 8. Rules for real-world extensions.

(1) if Γ𝑗 (𝑖) = (𝑝𝑙 , 𝑝𝑟), then 𝑟𝑖,defined, 𝑗 = (?<=(?<!.)𝑤 𝑗 [0..𝑝𝑙))𝑤 𝑗 [𝑝𝑙 ..𝑝𝑟)(?=𝑤 𝑗 [𝑝𝑟 ..|𝑤 𝑗 |)(?!.)) by the

construction. The subexpression𝑤 𝑗 [𝑝𝑙 ..𝑝𝑟) exactly matches the string𝑤 𝑗 [𝑝𝑙 ..𝑝𝑟). The pos-
itive lookbehind (?<=(?<!.)𝑤 𝑗 [0..𝑝𝑙)) asserts that the string from the beginning to the cur-

rent position, i.e., 𝑝𝑙 − 1, should be exactly the string𝑤 𝑗 [0..𝑝𝑙) and the positive lookahead

(?=𝑤 𝑗 [𝑝𝑟 ..|𝑤 𝑗 |)(?!.)) asserts that the string from the current position, i.e., 𝑝𝑟 , to the end of

the string should be exactly the string𝑤 𝑗 [𝑝𝑟 ..|𝑤 𝑗 |). Note that the expressions (?<!.) and (?!.)

match the beginning and the end of strings, respectively, i.e., we can see them as the syntactic

sugars of the anchor operators ^ and $ [Friedl 2006], respectively. As a result, the expression

𝑟𝑖,defined, 𝑗 exactly matches𝑤 𝑗 on the correct position. Additionally, since lookarounds do not

consume any character, the 𝑖th capturing group only extracts𝑤 𝑗 [𝑝𝑙 ..𝑝𝑟).
(2) If 𝑖 ∉ 𝑑𝑜𝑚(Γ𝑗), then 𝑟𝑖,defined, 𝑗 = ∅ that does not match any word and 𝑟𝑖,undefined, 𝑗 = (?<!.)𝑤 𝑗 (?!.)

that exactly matches the string𝑤 𝑗 . Since 𝑟𝑖,defined fails due to 𝑟𝑖,defined, 𝑗 , 𝑟 𝑗 does not extract any

word, whereas the matching of 𝑟 𝑗 on𝑤 𝑗 succeeds due to 𝑟𝑖,undefined, 𝑗 .

Next, we show that for every (𝑤 𝑗 , Γ𝑗) ∉ E+, (𝑤 𝑗 , Γ𝑗) ∉ L𝑐 (𝑟 ′). The matching of 𝑟 ′ on 𝑤 𝑗 fails

regardless of the positive lookaheads 𝑟𝑖 because the only subexpression that consumes characters

is 𝑟body, and it exactly matches the strings in {𝑤 | (𝑤, _) ∈ E+} by the construction. Hence,

L𝑐 (𝑟 ′) = E+. This satisfies the consistency condition, and implies the existence of the solution.

□

C PROOF OF THEOREM 4.5
We first review SetCover.

Definition C.1. Given a finite set 𝑈 , 𝑆 ⊆ P(𝑈), where P(𝑈) denotes the powerset of a set

𝑈 , and a positive integer 𝑘 , SetCover is the problem of deciding whether there exists a subset

𝑇 = {𝑇1,𝑇2, · · · ,𝑇𝑛} ⊆ 𝑆 such that 𝑛 ≤ 𝑘 and

⋃
𝑇 = 𝑈 .

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

173:28 Nariyoshi Chida and Tachio Terauchi

Set of Characters and Empty String

𝑑 = forward 𝑝 < |𝑤 | 𝑤 [𝑝] ∈ 𝐶
([𝐶], 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝 + 1, Γ, true)}, ∅)

𝑑 = backward 0 ≤ 𝑝 − 1 𝑤 [𝑝 − 1] ∈ 𝐶
([𝐶], 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝 − 1, Γ, true)}, ∅)

(𝜖, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝, Γ, true)}, ∅)
Hole

𝑑 = forward □ is the 𝑖th hole. 𝑝 < |𝑤 |

(□, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝 + 1, Γ, 𝑣𝑤 [𝑝]
𝑖
)}, {(⊥,⊥,¬𝑣𝑤 [𝑝]

𝑖
)})

𝑑 = backward □ is the 𝑖th hole. 0 ≤ 𝑝 − 1

(□, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝 − 1, Γ, 𝑣𝑤 [𝑝−1]
𝑖

)}, {(⊥,⊥,¬𝑣𝑤 [𝑝−1]
𝑖

)})

Concatenation

𝑑 = forward (𝑡1, 𝑡2𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆, 𝐹) ∀(𝑝𝑖 , Γ𝑖 , 𝜙𝑖) ∈ 𝑆. (𝑡2, 𝑡𝑐 ,𝑤, 𝑝𝑖 , Γ𝑖 , 𝑑, 𝑙) d (𝑆𝑖 , 𝐹𝑖)
(𝑡1𝑡2, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (⋃

0≤𝑖< |𝑆 | {(𝑝′, Γ′, 𝜙𝑖 ∧ 𝜙 ′) | (𝑝′, Γ′, 𝜙 ′) ∈ 𝑆𝑖 },
𝐹 ∪⋃

0≤𝑖< |𝑆 | {(⊥,⊥, 𝜙𝑖 ∧ 𝜙 ′) | (⊥,⊥, 𝜙 ′) ∈ 𝐹𝑖 })

𝑑 = backward (𝑡2, 𝑡𝑐𝑡1,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆, 𝐹) ∀(𝑝𝑖 , Γ𝑖 , 𝜙𝑖) ∈ 𝑆. (𝑡1, 𝑡𝑐 ,𝑤, 𝑝𝑖 , Γ𝑖 , 𝑑, 𝑙) d (𝑆𝑖 , 𝐹𝑖)
(𝑡1𝑡2, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (⋃

0≤𝑖< |𝑆 | {(𝑝′, Γ′, 𝜙𝑖 ∧ 𝜙 ′) | (𝑝′, Γ′, 𝜙 ′) ∈ 𝑆𝑖 },
𝐹 ∪⋃

0≤𝑖< |𝑆 | {(⊥,⊥, 𝜙𝑖 ∧ 𝜙 ′) | (⊥,⊥, 𝜙 ′) ∈ 𝐹𝑖 })

Union

𝑑 = forward (𝑡1𝑡𝑐 , 𝜖,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆1, 𝐹1)
𝑆 ′
1
= ite(𝑙, 𝑆1, {(𝑝′, Γ′, 𝜙 ′) ∈ 𝑆1 | 𝑝′ = |𝑤 |}) 𝐹 ′

1
= 𝐹1 ∪ ite(𝑙, ∅, {(⊥,⊥, 𝜙 ′) | (𝑝′, _, 𝜙 ′) ∈ 𝑆1, 𝑝′ ≠ |𝑤 |})

𝜙𝑆1 =
∨
(_,_,𝜙 ′) ∈𝑆 ′

1

𝜙 ′ 𝜙𝐹1 =
∨
(⊥,⊥,𝜙 ′) ∈𝐹 ′

1

𝜙 ′

(𝑡1, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆2, 𝐹2) (𝑡2, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆3, 𝐹3)
(𝑡1 |𝑡2, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝′, Γ′, 𝜙𝑆1 ∧ 𝜙 ′) | (𝑝′, Γ′, 𝜙 ′) ∈ 𝑆2} ∪ {(𝑝′, Γ′, 𝜙𝐹1 ∧ 𝜙 ′) | (𝑝′, Γ′, 𝜙 ′) ∈ 𝑆3},

{(⊥,⊥, 𝜙𝐹1 ∧ 𝜙 ′) | (⊥,⊥, 𝜙 ′) ∈ 𝐹3})

𝑑 = backward (𝑡𝑐𝑡1, 𝜖,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆1, 𝐹1)
𝑆 ′
1
= ite(𝑙, 𝑆1, {(𝑝′, Γ′, 𝜙 ′) ∈ 𝑆1 | 𝑝′ = |𝑤 |}) 𝐹 ′

1
= 𝐹1 ∪ ite(𝑙, ∅, {(⊥,⊥, 𝜙 ′) | (𝑝′, _, 𝜙 ′) ∈ 𝑆1, 𝑝′ ≠ |𝑤 |})

𝜙𝑆1 =
∨
(_,_,𝜙 ′) ∈𝑆 ′

1

𝜙 ′ 𝜙𝐹1 =
∨
(⊥,⊥,𝜙 ′) ∈𝐹 ′

1

𝜙 ′

(𝑡1, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆2, 𝐹2) (𝑡2, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆3, 𝐹3)
(𝑡1 |𝑡2, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝′, Γ′, 𝜙𝑆1 ∧ 𝜙 ′) | (𝑝′, Γ′, 𝜙 ′) ∈ 𝑆2} ∪ {(𝑝′, Γ′, 𝜙𝐹1 ∧ 𝜙 ′) | (𝑝′, Γ′, 𝜙 ′) ∈ 𝑆3},

{(⊥,⊥, 𝜙𝐹1 ∧ 𝜙 ′) | (⊥,⊥, 𝜙 ′) ∈ 𝐹3})

Fig. 9. Rules for pure regexes (except for Kleene stars) and holes.

Proof. We give a reduction from SetCover to the repair problem. For this, we create (the

decision version of) the repair problem.

• The alphabet Σ = 𝑈 ;

• The set of positive examples E+ = {L𝑎M1 | 𝑎 ∈ Σ};
• The set of negative examples E− = ∅;
• The distance bound is 2𝑘 ; and

• The pre-repair expression 𝑟 = (𝑟1 |𝑟2 | · · · |𝑟𝑛)1 where 𝑟𝑖 = (?=[𝑇𝑖])𝑘∅[𝑇𝑖] for 𝑖 ∈ [𝑛].
Here, 𝑟𝑘 is the expression obtained by concatenating 𝑟 𝑘 times.

It is easy to see that this is a polynomial reduction and is a valid instance of the repair problem.

We show that the reduction is correct, i.e., the instance of SetCover has a solution iff the instance

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

Repairing Regular Expressions for Extraction 173:29

Greedy Kleene Star

𝑑 = forward (𝑡 ⟨𝑡∗ : 𝑝⟩𝑡𝑐 , 𝜖,𝑤, 𝑝, reset (𝑡, Γ), 𝑑, 𝑙) d (𝑆, 𝐹) 𝑆𝑎 = ite(𝑙, 𝑆, {(𝑝′, Γ′, 𝜙 ′) ∈ 𝑆 | 𝑝′ = |𝑤 |})
𝜙𝑆 =

∨
(_,_,𝜙 ′) ∈𝑆𝑎 𝜙

′ 𝜙𝐹 =
∨
(_,_,𝜙 ′) ∈𝐹∪(𝑆\𝑆𝑎) 𝜙

′ (𝑡, ⟨𝑡∗ : 𝑝⟩𝑡𝑐 ,𝑤, 𝑝, reset (𝑡, Γ), 𝑑, 𝑙) d (𝑆 ′, 𝐹 ′)
𝑆 ′
𝑆𝐴𝑇

= {(𝑝′, Γ′, 𝜙 ′) ∈ 𝑆 ′ |𝜙 ′ ∧ 𝜙𝑆 is satisfiable.} 𝜙𝐹 ′ =
∨
(⊥,⊥,𝜙 ′) ∈𝐹 ′ 𝜙

′

∀(𝑝𝑖 , Γ𝑖 , 𝜙𝑖) ∈ 𝑆 ′𝑆𝐴𝑇 . (𝑡
∗, 𝑡𝑐 ,𝑤, 𝑝𝑖 , Γ𝑖 , 𝑑, 𝑙) d (𝑆𝑖 , 𝐹𝑖)

(𝑡∗, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝, Γ, 𝜙𝐹 ∨ (𝜙𝑆 ∧ 𝜙𝐹 ′))} ∪
⋃

0≤𝑖< |𝑆 ′
𝑆𝐴𝑇
| {(𝑝′, Γ′, 𝜙𝑆 ∧ 𝜙𝑖 ∧ 𝜙 ′) | (𝑝′, Γ′, 𝜙 ′) ∈ 𝑆𝑖 }, ∅)

𝑑 = backward (𝑡𝑐 ⟨𝑡∗ : 𝑝⟩𝑡, 𝜖,𝑤, 𝑝, reset (𝑡, Γ), 𝑑, 𝑙) d (𝑆, 𝐹) 𝑆𝑎 = ite(𝑙, 𝑆, {(𝑝′, Γ′, 𝜙 ′) ∈ 𝑆 | 𝑝′ = |𝑤 |})
𝜙𝑆 =

∨
(_,_,𝜙 ′) ∈𝑆𝑎 𝜙

′ 𝜙𝐹 =
∨
(_,_,𝜙 ′) ∈𝐹∪(𝑆\𝑆𝑎) 𝜙

′ (𝑡, 𝑡𝑐 ⟨𝑡∗ : 𝑝⟩,𝑤, 𝑝, reset (𝑡, Γ), 𝑑, 𝑙) d (𝑆 ′, 𝐹 ′)
𝑆 ′
𝑆𝐴𝑇

= {(𝑝′, Γ′, 𝜙 ′) ∈ 𝑆 ′ | 𝜙 ′ ∧ 𝜙𝑆 is satisfiable.} 𝜙𝐹 ′ =
∨
(⊥,⊥,𝜙 ′) ∈𝐹 ′ 𝜙

′

∀(𝑝𝑖 , Γ𝑖 , 𝜙𝑖) ∈ 𝑆 ′𝑆𝐴𝑇 . (𝑡
∗, 𝑡𝑐 ,𝑤, 𝑝𝑖 , Γ𝑖 , 𝑑, 𝑙) d (𝑆𝑖 , 𝐹𝑖)

(𝑡∗, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝, Γ, 𝜙𝐹 ∨ (𝜙𝑆 ∧ 𝜙𝐹 ′))} ∪
⋃

0≤𝑖< |𝑆 ′
𝑆𝐴𝑇
| {(𝑝′, Γ′, 𝜙𝑆 ∧ 𝜙𝑖 ∧ 𝜙 ′) | (𝑝′, Γ′, 𝜙 ′) ∈ 𝑆𝑖 }, ∅)

Lazy Kleene Star

𝑑 = forward (𝑡𝑐 , 𝜖,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆, 𝐹) 𝑆𝑎 = ite(𝑙, 𝑆, {(𝑝′, Γ′, 𝜙 ′) ∈ 𝑆 | 𝑝′ = |𝑤 |})
𝜙𝑆 =

∨
(_,_,𝜙 ′) ∈𝑆𝑎 𝜙

′ 𝜙𝐹 =
∨
(_,_,𝜙 ′) ∈𝐹∪(𝑆\𝑆𝑎) 𝜙

′ (𝑡 ⟨𝑡∗? : 𝑝⟩𝑡𝑐 , 𝜖,𝑤, 𝑝, reset (𝑡, Γ), 𝑑, 𝑙) d (𝑆 ′, 𝐹 ′)
𝑆 ′𝑎 = ite(𝑙, 𝑆 ′, {(𝑝′, Γ′, 𝜙 ′) ∈ 𝑆 ′ | 𝑝′ = |𝑤 |}) 𝜙𝑆 ′ =

∨
(_,_,𝜙 ′) ∈𝑆 ′𝑎 𝜙

′ 𝜙𝐹 ′ =
∨
(_,_,𝜙 ′) ∈𝐹 ′∪(𝑆 ′\𝑆 ′𝑎) 𝜙

′

(𝑡, ⟨𝑡∗? : 𝑝⟩𝑡𝑐 ,𝑤, 𝑝, reset (𝑡, Γ), 𝑑, 𝑙) d (𝑆 ′′, 𝐹 ′′) 𝑆 ′′
𝑆𝐴𝑇

= {(𝑝′, Γ′, 𝜙 ′) ∈ 𝑆 ′′ | 𝜙 ′ ∧ 𝜙𝐹 ∧ 𝜙𝑆 ′ is satisfiable.}
𝜙𝐹 ′′ =

∨
(⊥,⊥,𝜙 ′) ∈𝐹 ′′ 𝜙

′ ∀(𝑝𝑖 , Γ𝑖 , 𝜙𝑖) ∈ 𝑆 ′′𝑆𝐴𝑇 . (𝑡
∗?, 𝑡𝑐 ,𝑤, 𝑝𝑖 , Γ𝑖 , 𝑑, 𝑙) d (𝑆𝑖 , 𝐹𝑖)

(𝑡∗?, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝, Γ, 𝜙𝑆 ∨ (𝜙𝐹 ∧ 𝜙𝐹 ′) ∨ (𝜙𝐹 ∧ 𝜙𝑆 ′ ∧ 𝜙𝐹 ′′))}∪⋃
0≤𝑖< |𝑆 ′′

𝑆𝐴𝑇
| {(𝑝′, Γ′, 𝜙𝐹 ∧ 𝜙𝑆 ′ ∧ 𝜙𝑖 ∧ 𝜙 ′) | (𝑝′, Γ′, 𝜙 ′) ∈ 𝑆𝑖 }, ∅)

𝑑 = backward (𝑡𝑐 , 𝜖,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆, 𝐹) 𝑆𝑎 = ite(𝑙, 𝑆, {(𝑝′, Γ′, 𝜙 ′) ∈ 𝑆 | 𝑝′ = |𝑤 |})
𝜙𝑆 =

∨
(_,_,𝜙 ′) ∈𝑆𝑎 𝜙

′ 𝜙𝐹 =
∨
(_,_,𝜙 ′) ∈𝐹∪(𝑆\𝑆𝑎) 𝜙

′ (𝑡𝑐 ⟨𝑡∗? : 𝑝⟩𝑡, 𝜖,𝑤, 𝑝, reset (𝑡, Γ), 𝑑, 𝑙) d (𝑆 ′, 𝐹 ′)
𝑆 ′𝑎 = ite(𝑙, 𝑆 ′, {(𝑝′, Γ′, 𝜙 ′) ∈ 𝑆 ′ | 𝑝′ = |𝑤 |}) 𝜙𝑆 ′ =

∨
(_,_,𝜙 ′) ∈𝑆 ′𝑎 𝜙

′ 𝜙𝐹 ′ =
∨
(_,_,𝜙 ′) ∈𝐹 ′∪(𝑆 ′\𝑆 ′𝑎) 𝜙

′

(𝑡, 𝑡𝑐 ⟨𝑡∗? : 𝑝⟩,𝑤, 𝑝, reset (𝑡, Γ), 𝑑, 𝑙) d (𝑆 ′′, 𝐹 ′′) 𝑆 ′′
𝑆𝐴𝑇

= {(𝑝′, Γ′, 𝜙 ′) ∈ 𝑆 ′′ | 𝜙 ′ ∧ 𝜙𝐹 ∧ 𝜙𝑆 ′ is satisfiable.}
𝜙𝐹 ′′ =

∨
(⊥,⊥,𝜙 ′) ∈𝐹 ′′ 𝜙

′ ∀(𝑝𝑖 , Γ𝑖 , 𝜙𝑖) ∈ 𝑆 ′′𝑆𝐴𝑇 . (𝑡
∗?, 𝑡𝑐 ,𝑤, 𝑝1, Γ1, 𝑑, 𝑙) d (𝑆𝑖 , 𝐹𝑖)

(𝑡∗?, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝, Γ, 𝜙𝑆 ∨ (𝜙𝐹 ∧ 𝜙𝐹 ′) ∨ (𝜙𝐹 ∧ 𝜙𝑆 ′ ∧ 𝜙𝐹 ′′))}∪⋃
0≤𝑖< |𝑆 ′′

𝑆𝐴𝑇
| {(𝑝′′, Γ′′, 𝜙𝑆 ∧ 𝜙𝑆 ′ ∧ 𝜙𝑖 ∧ 𝜙 ′′) | (𝑝′′, Γ′′, 𝜙 ′′) ∈ 𝑆𝑖 }, ∅)

Guards

𝑝′ = 𝑝

(⟨𝑡 : 𝑝′⟩, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (∅, {(𝑝, Γ, true)})
𝑝′ ≠ 𝑝 (𝑡, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆, 𝐹)
(⟨𝑡 : 𝑝′⟩, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆, 𝐹)

Fig. 10. Rules for Kleene stars.

of the repair problem created above has a solution. First, we show the only if direction. Let 𝑇 ′ ⊆ 𝑇
be a solution of the instance of SetCover. Then, the solution of the repair problem is the regex

𝑟 ′ = (𝑟 ′
1
|𝑟 ′
2
| · · · |𝑟 ′𝑛) where 𝑟 ′𝑖 = 𝑟𝑖 if 𝑇𝑖 ∉ 𝑇 ′ and otherwise 𝑟 ′𝑖 = ([𝑇𝑖])𝑘𝜖 [𝑇𝑖]. That is, for all 𝑟𝑖 , if

𝑇𝑖 ∈ 𝑇 ′, then we replace the empty set ∅ in 𝑟𝑖 with the empty string 𝜖 and otherwise 𝑟𝑖 remains the

same. Note that the distance between 𝑟 and 𝑟 ′ is 2|𝑇 ′ | ≤ 2𝑘 . Additionally, the regex 𝑟 ′ is consistent
with all the examples. That is, for all 𝑎 ∈ Σ, 𝑟 ′ extracts the character 𝑎 by the 1st capturing group

because there exists 𝑇𝑖 ∈ 𝑇 ′ such that 𝑎 ∈ 𝑇𝑖 since 𝑇
′
is a solution of the SetCover instance,

and therefore 𝑟 ′𝑖 = (?=[𝑇𝑖])𝑘𝜖 [𝑇𝑖] by the construction and 𝑎 ∈ L(𝑟 ′𝑖). Also, E− is immediate since

E− = ∅. Thus, 𝑟 ′ is a correct repair.
Next, we show the if direction. For this, we first show that the only meaningful change in the

repair is to change the ∅ in 𝑟 with 𝜖 . First, any valid repair of 𝑟 does not change the capturing group
because, to change the capturing group, we need to replace all immediate subexpressions with

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

173:30 Nariyoshi Chida and Tachio Terauchi

Capturing Group

𝑑 = forward
(𝑡$𝑖 , 𝑡𝑐 ,𝑤, 𝑝, Γ [𝑖 ↦→ (𝑝,⊥)], 𝑑, 𝑙) d (𝑆, 𝐹)

((𝑡)𝑖 , 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆, 𝐹)

𝑑 = forward Γ(𝑖) = (𝑝′,⊥)
($𝑖 , 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝, Γ [𝑖 ↦→ (𝑝′, 𝑝)], true)}, ∅)

𝑑 = backward
($𝑖𝑡, 𝑡𝑐 ,𝑤, 𝑝, Γ [𝑖 ↦→ (𝑝,⊥)], 𝑑, 𝑙) d (𝑆, 𝐹)

((𝑡)𝑖 , 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆, 𝐹)

𝑑 = backward Γ(𝑖) = (𝑝′,⊥)
($𝑖 , 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝, Γ [𝑖 ↦→ (𝑝, 𝑝′)], true)}, ∅)

Backreference

Γ(𝑖) = (𝑝′, 𝑝′′) (𝑤 [𝑝′ ..𝑝′′), 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆, 𝐹)
(\𝑖, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (𝑆, 𝐹)

𝑖 ∉ 𝑑𝑜𝑚(Γ) ∨ Γ(𝑖) = (𝑝′,⊥)
(\𝑖, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝, Γ, true)}, ∅)

Lookaheads

(𝑡, 𝜖,𝑤, 𝑝, Γ, forward, true) d (𝑆, 𝐹)
((?=𝑡), 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝, Γ′, 𝜙 ′) | (_, Γ′, 𝜙 ′) ∈ 𝑆}, 𝐹)

(𝑡, 𝜖,𝑤, 𝑝, Γ, forward, true) d (𝑆, 𝐹)
((?!𝑡), 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝, Γ, 𝜙 ′) | (⊥,⊥, 𝜙 ′) ∈ 𝐹 }, {(⊥,⊥, 𝜙 ′) | (_, _, 𝜙 ′) ∈ 𝑆})

Lookbehinds

(𝑡, 𝜖,𝑤, 𝑝, Γ, backward, true) d (𝑆, 𝐹)
((?<=𝑡), 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝, Γ′, 𝜙 ′) | (_, Γ′, 𝜙 ′) ∈ 𝑆}, 𝐹)

(𝑡, 𝜖,𝑤, 𝑝, Γ, backward, true) d (𝑆, 𝐹)
((?<!𝑡), 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝, Γ, 𝜙 ′) | (⊥,⊥, 𝜙 ′) ∈ 𝐹 }, {(⊥,⊥, 𝜙 ′) | (_, _, 𝜙 ′) ∈ 𝑆})

Fig. 11. Rules for real-world extensions.

holes and it immediately violates the distance bound 2𝑘 since 𝑟 has (?=𝑟𝑖)
𝑘
. For the same reason,

any valid repair of 𝑟 must preserve the 𝑛 union choices, and for each 𝑟𝑖 , it is useless to change

(?=[𝑇𝑖]). Additionally, it is also useless to change [𝑇𝑖] to some expression whose language contains

elements not in 𝑇𝑖 due to the 𝑘 many (?=[𝑇𝑖]) preceding it. Note that the changing (?=[𝑇𝑖])𝑘 would

exceed the distance bound. Nor, can [𝑇𝑖] be changed to some expression whose language does not

contain elements in 𝑇𝑖 because we do not need to exclude any character in Σ. As a result, it is easy
to see that the only meaningful change is to change ∅ with 𝜖 . Therefore, the solution of the repair

problem is of the form 𝑟 ′ = (𝑟 ′
1
|𝑟 ′
2
| · · · |𝑟 ′𝑛) obtained from 𝑟 by replacing some ∅ with 𝜖 . From the

solutions of the repair problem, we can construct the set 𝑇 ′ = {𝑇𝑖 | 𝑟𝑖 ≠ 𝑟 ′𝑖 }. Then, the set 𝑇 ′ is a
solution of the instance of SetCover. This is because, since the distance bound is 2𝑘 , the repair

changes at most 𝑘 empty sets. From this, there exists at most 𝑘 𝑟𝑖 such that 𝑟𝑖 ≠ 𝑟 ′𝑖 for 𝑖 ∈ [𝑛], and
therefore |𝑇 ′ | ≤ 𝑘 by the construction. Additionally, for all 𝑎 ∈ Σ, there exists𝑇𝑖 such that 𝑎 ∈ 𝑇𝑖 by
the construction because 𝑟 ′ is the solution of the repair problem, and therefore there exists 𝑟 ′𝑖 such
that 𝑎 ∈ L(𝑟𝑖) and 𝑟𝑖 ≠ 𝑟 ′𝑖 . Thus, 𝑇

′
is a correct solution. □

D APPROXIMATION FOR MEMBERSHIP
Given a template 𝑡 , we construct the over- and under-approximation for membership by the

following procedures. First, we eliminate backreferences by approximating them. We use the same

procedure to eliminate backreferences describes in Section 5.3.2.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

Repairing Regular Expressions for Extraction 173:31

Next, we eliminate holes by approximating them. For this, we use the function 𝛼 which is defined

as follows. Below, 𝑟 = ∅ if 𝑟 = .∗ and 𝑟 = .∗ if 𝑟 = ∅.
𝛼 ([𝐶], 𝑟) = [𝐶] 𝛼 ((𝑡)𝑖 , 𝑟) = (𝛼 (𝑡, 𝑟))𝑖
𝛼 (𝜖, 𝑟) = 𝜖 𝛼 ((?=𝑡), 𝑟) = (?=𝛼 (𝑡, 𝑟))

𝛼 (𝑡1𝑡2, 𝑟) = 𝛼 (𝑡1, 𝑟)𝛼 (𝑡2, 𝑟) 𝛼 ((?!𝑡), 𝑟) = (?!𝛼 (𝑡, 𝑟))
𝛼 (𝑡1 |𝑡2, 𝑟) = 𝛼 (𝑡1, 𝑟) |𝛼 (𝑡2, 𝑟) 𝛼 ((?<=𝑡), 𝑟) = (?<=𝛼 (𝑡, 𝑟))
𝛼 (𝑡∗, 𝑟) = 𝛼 (𝑡, 𝑟)∗ 𝛼 ((?<!𝑡), 𝑟) = (?<!𝛼 (𝑡, 𝑟))
𝛼 (𝑡∗?, 𝑟) = 𝛼 (𝑡, 𝑟)∗? 𝛼 (□, 𝑟) = 𝑟

As a result, we obtain an over- (resp. under-)approximated regex 𝑟⊤ (resp. 𝑟⊥) by𝛼 (𝑡 ′, .∗) (resp.𝛼 (𝑡 ′, ∅)),
where 𝑡 ′ is a template obtained from 𝑡 by applying the first procedure for eliminating backrefer-

ences.

E FULL RULES OF THE SEMANTICS
In this section, we show the full version of the rules for the formal semantics of regexes. Figures 6, 7,

and 8 show the rules for pure regexes except for Kleene stars, Kleene stars, and real-world extensions,

respectively. For the state (𝑟, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) that is not applicable for any rule in the figures, we

assume that (𝑟, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓ (𝑝, Γ) if 𝑟 is the Kleene star, and otherwise, (𝑟, 𝑟𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) ⇓
failed. Below, we describe the rules that are not described in Section 3.

The rule for positive lookaheads (?=𝑟) first performs the matching of the expression 𝑟 with the

direction 𝑑 = forward. If the matching succeeds, then it returns the result after resetting the position

from 𝑝′ to 𝑝 . The rule for negative lookaheads (?!𝑟) is similar to the rule of positive lookaheads, i.e.,

it first performs the matching of 𝑟 . However, unlike positive lookaheads, the matching of negative

lookaheads succeeds if the matching of 𝑟 fails. Additionally, negative lookaheads reset not only

the position but also the environment. The rule for negative lookbehinds is similar to the rule of

negative lookahead. The only difference is the direction, i.e., negative lookbehinds set the direction

to 𝑑 = backward.

F FULL RULES OF THE CONSTRAINT GENERATION RULES
In this section, we give the full version of the inference rules for the SMT constraint generation.

Figures 9, 10, and 11 show the rules for pure regexes except for Kleene stars and holes, for Kleene

stars, and the real-world extensions, respectively. For the state (𝑡, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) that is not applicable
for any rule in the figure, we evaluate it as (𝑡, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d (∅, ∅) if 𝑡 is not the Kleene star, and
otherwise, i.e., 𝑡 is the Kleene star, (𝑡, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙) d ({(𝑝, Γ, true)}, ∅).

These rules except for the rule of holes build on the semantics of regexes defined in Section 3. The

difference between the semantics and the inference rules is that the inference rules compute results

of succeeded and failed matching, and construct SMT constraints based on the results. Additionally,

the inference rules have the rule of holes. Since our algorithm tries to replace holes with a set of

characters such that the obtained regex is consistent with examples, the rule of holes behaves like

the rule of the set-of-characters operator. That is, for (□, 𝑡𝑐 ,𝑤, 𝑝, Γ, 𝑑, 𝑙), if 𝑝 ≤ |𝑤 |, then we can

replace the hole with the sets of character [𝐶] such that𝑤 [𝑝] ∈ 𝐶 or𝑤 [𝑝] ∉ 𝐶 . Therefore, we add

(𝑝 + 1, Γ, 𝑣𝑤 [𝑝]
𝑖
) to the succeeded result, i.e., the matching at the hole succeeded and therefore the

replaced set of characters accepts the character𝑤 [𝑝], and (⊥,⊥,¬𝑣𝑤 [𝑝]
𝑖
) to the failed result, i.e.,

the matching at the hole failed and therefore the replaced set of characters rejects the character

𝑤 [𝑝].

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 173. Publication date: June 2023.

	Abstract
	1 Introduction
	2 Overview
	3 Regex
	3.1 Syntax and Informal Semantics
	3.2 Formal Semantics

	4 Repair Problem
	5 Repair Algorithm
	5.1 Overview
	5.2 SMT Constraint Generation
	5.3 Over-Approximation for Extraction

	6 Evaluation
	6.1 Data Set

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Proof of Theorem 4.3
	B Proof of Theorem 4.4
	C Proof of Theorem 4.5
	D Approximation for Membership
	E Full Rules of the Semantics
	F Full Rules of the Constraint Generation Rules

