‘åŠw‰@¶‚É‚ę‚éŒū“Ŗ”­•\i”­•\ŽŅ–¼C‘č–ŚCŠw‰ļ–¼CźŠC”NŒŽj


2018”N“xF

  1. ‰““”@^”æ ‘oˆĄ’č€‚š”ŗ‚¤Ž©—R‹«ŠE–ā‘č‚É‘Ī‚·‚鉚‚Ģis‘¬“x‚Ę‘Q‹ß“IŒ`óC
    ‘ę44‰ń”­“W•ū’öŽ®Œ¤‹†‰ļC“ś–{—Žq‘åŠwC2018”N12ŒŽD

  2. —é–Ų@Œ’‰ī ”ńüŒ^ŠgŽU•ū’öŽ®‚É‘Ī‚·‚鎩—R‹«ŠE–ā‘č‚ĘˆŚ—¬‚ĢŒų‰ŹC
    ‘ę44‰ń”­“W•ū’öŽ®Œ¤‹†‰ļC“ś–{—Žq‘åŠwC2018”N12ŒŽD

  3. ‰““”@^”æ A free boundary problem for a reaction diffusion equation with positive bistable nonlinearity,
    RIMS‹¤“ÆŒ¤‹†u”ńüŒ`”­“W•ū’öŽ®‚šŠī”Õ‚Ę‚·‚錻‰šĶ‚ÉŒü‚Æ‚½”Šw—˜_‚Ģ“WŠJvA‹ž“s‘åŠw ”—‰šĶŒ¤‹†ŠC2018”N10ŒŽD

  4. Œ“Žq@—T‘å Properties of spreading solutions to a free boundary problem with Dirichlet boundary conditions,
    12th AIMS Conference on Dynamical Systems, Differential Equations and applications, ‘—§‘ä˜p‘åŠwC‘ä–kC2018”N7ŒŽD

  5. ‰““”@^”æ Asymptotic behaviors of solutions to nonlinear diffusion y problems with Dirichlet and free boundary conditions,
    12th AIMS Conference on Dynamical Systems, Differential Equations and applications, ‘—§‘ä˜p‘åŠwC‘ä–kC2018”N7ŒŽD

2017”N“xF

  1. ¬—с@Œõ–Ų : ”ńüŒ`‘Ž‰»Œ^ŠgŽU‚š”ŗ‚¤X—Ńƒ‚ƒfƒ‹‚É‚Ø‚Æ‚éˆź—l—LŠE«,
    ‘ę12‰ń”ńüŒ`•Ī”÷•Ŗ•ū’öŽ®‚Ę•Ļ•Ŗ–ā‘čCŽń“s‘åŠw“Œ‹ž, 2018”N2ŒŽ.

  2. Œ“Žq@—T‘å : ”—¶‘ŌŠwƒ‚ƒfƒ‹‚ĢŽ©—R‹«ŠE–ā‘č‚É‘Ī‚·‚鉚‚Ģ‘Q‹ß‘¬“xC
    ‹ćBŠÖ”•ū’öŽ®ƒZƒ~ƒi[C•Ÿ‰Ŗ‘åŠwƒZƒ~ƒi[ƒnƒEƒX, 2018”N1ŒŽD

  3. ŽOD@Œ[–ē : ”ńÄŽŸ‹«ŠEšŒ‚É‚Ø‚Æ‚éˆź”Ź‰» Carleman ƒ‚ƒfƒ‹‚Ģ—¬‘Ģ—ĶŠw“I‹ÉŒĄ‚É‚Ā‚¢‚Ä,
    ‘ę4‚R‰ń”­“W•ū’öŽ®Œ¤‹†‰ļC“ś–{—Žq‘åŠw, 201‚V”N12ŒŽ.

  4. ‰““”@^”æ : ‘oˆĄ’č€‚š”ŗ‚¤Ž©—R‹«ŠE–ā‘č‚Ę‘Q‹ß‹““®,
    ‘ę43‰ń”­“W•ū’öŽ®Œ¤‹†‰ļC“ś–{—Žq‘åŠw, 2017”N12ŒŽD

  5. Œ“Žq@—T‘å : ”½‰žŠgŽU•ū’öŽ®‚ĢŽ©—R‹«ŠE–ā‘č‚É‘Ī‚·‚鉚‚Ģ‘Q‹ß‘¬“xC
    ‘ę43‰ń”­“W•ū’öŽ®Œ¤‹†‰ļC“ś–{—Žq‘åŠw, 2017”N12ŒŽD

  6. Œ“Žq@—T‘å : ”ńÄŽŸƒfƒBƒŠƒNƒŒ‹«ŠEšŒ‚š”ŗ‚¤ŒĀ‘ĢŠgŽUƒ‚ƒfƒ‹‚É‚Ā‚¢‚āC
    2017H‚Ģ•Ī”÷•Ŗ•ū’öŽ®ƒZƒ~ƒi[C‘åć‘åŠw, 2017”N9ŒŽD

  7. ‰““”@^”æ : ‘oˆĄ’č€‚š”ŗ‚¤”½‰žŠgŽU•ū’öŽ®‚É‘Ī‚·‚鎩—R‹«ŠE–ā‘č,
    ‘ę39‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[CƒOƒŠ[ƒ“ƒzƒeƒ‹ŽOƒ–Ŗ(Š—ŒSŽsjC2017”N9ŒŽD

  8. ŽOD@Œ[–ē : ”ńÄŽŸ‹«ŠEšŒ‚šŽ‚Āˆź”Ź‰»‚µ‚½ Carleman ƒ‚ƒfƒ‹‚Ģ—¬‘Ģ—ĶŠw“I‹ÉŒĄ‚Ö‚ĢŽū‘©‚É‚Ā‚¢‚Ä,
    ‘ę39‰ńE­“W•ūEöŽ®ŽįŽčƒZƒ~ƒi[CƒOƒŠ[ƒ“ƒzƒeƒ‹ŽOE–Ŗ(E—ŒSEsjC2017”N9ŒŽD

2016”N“xF

  1. ¬—с@Œõ–Ų : ”ńüŒ`‘Ž‰»Œ^ŠgŽU‚š”ŗ‚¤‚ĮX—Ńƒ‚ƒfƒ‹‚É‚Ø‚Æ‚é‘åˆę‰š‚Ģ‘¶ŻC
    ‘ę11‰ń”ńüŒ`•Ī”÷•Ŗ•ū’öŽ®‚Ę•Ļ•Ŗ–ā‘čCŽń“s‘åŠw“Œ‹ž, 2017”N2ŒŽD

  2. ŽOD@Œ[–ē : ŒĀ•Ź—±Žq‚©‚ēŒ©‚½ Carleman ƒ‚ƒfƒ‹Œ^•ū’öŽ®Œn,
    ‘ę42‰ń”­“W•ū’öŽ®Œ¤‹†‰ļC“ś–{—Žq‘åŠw, 2016”N12ŒŽ.

  3. Œ“Žq@—T‘å : ”½‰žŠgŽUŒn‹ßŽ—‚É‚ę‚éŒĀ‘ĢŠgŽUƒ‚ƒfƒ‹‚Ģ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“,
    ‘ę42‰ń”­“W•ū’öŽ®Œ¤‹†‰ļC“ś–{—Žq‘åŠw, 2016”N12ŒŽD

  4. ¬—с@Œõ–Ų : ”ńüŒ`‘Ž‰»Œ^ŠgŽU‚š”ŗ‚¤‚ĮX—Ńƒ‚ƒfƒ‹‚É‚Ø‚Æ‚é‘åˆę‰š‚Ģ‘¶ŻC
    ‘ę42‰ń”­“W•ū’öŽ®Œ¤‹†‰ļC“ś–{—Žq‘åŠw, 2016”N12ŒŽD

  5. ’†ŽR@r•ć : ”—¶‘ŌŠw‚É‚Ø‚Æ‚é‹óŠŌ“I‚É”ńˆź—l‚ȏšŒ‰ŗ‚Å‚ĢŽ©—R‹«ŠE–ā‘č‚É‚Ā‚¢‚Ä,
    ‘ę42‰ń”­“W•ū’öŽ®Œ¤‹†‰ļC“ś–{—Žq‘åŠw, 2016”N12ŒŽD

  6. Yuki Kaneko : Numerical example of a free boundary problem modeling the spreading of speciesC
    Japanese-German International Workshop on Mathematical Fluid DynamicsCƒ_ƒ‹ƒ€ƒVƒ…ƒ^ƒbƒg, ƒhƒCƒc, 2016”N12ŒŽD

  7. Œ“Žq@—T‘å : ŒĀ‘ĢŠgŽUƒ‚ƒfƒ‹‚ĢŽ©—R‹«ŠE–ā‘č‚É‘Ī‚·‚鐔’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“C
    2016‰Ä‚Ģ•Ī”÷•Ŗ•ū’öŽ®ƒZƒ~ƒi[C‘åć‘åŠw, 2016”N8ŒŽD

  8. ŽOD@Œ[–ē : Convergence of hydrodynamical limit for generalized Carleman models,
    ‘ę38‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[C‚ ‚¤‚é‹ž–ki‹ž“s•{—§ƒ[ƒ~ƒi[ƒ‹ƒnƒEƒX)C2016”N8ŒŽD

  9. Yuki Kaneko : Generation of singularity and large time behaviors of solutions for a free boundary problem of a reaction-diffusion equationC
    11th AIMS Conference on Dynamical Systems, Differential Equations and ApplicationsCƒtƒƒŠƒ_BƒI[ƒ‰ƒ“ƒh, 2016”N7ŒŽD

  10. Yuki Kaneko : Spreading, vanishing and singularity for radially symmetric solutions of a Stefan-type free boundary problemC
    International Conference on Reaction-Diffusion EquationsC’†‘l–Æ‘åŠw, 2016”N5ŒŽD

2015”N“xF

  1. Yuki Kaneko : Spreading and vanishing phenomena in a free boundary problem for nonlinear diffusion equationsC
    ALGORITMY 2016: Conference on Scientific ComputationCƒ”ƒBƒ\ƒPEƒ^ƒgƒŠ(ƒXƒƒoƒLƒA), 2016”N3ŒŽD

  2. Œ“Žq@—T‘å : ŒĀ‘ĢŠgŽU‚š•\‚·Ž©—R‹«ŠE–ā‘č‚Ģ‰š‹““®‚Ę“ĮˆŁ“_C
    ‘ę6‰ńˆŚ—¬‚ĘŠgŽU‚Ģ”—Cˆ¤•Q‘åŠw, 2015”N12ŒŽD

  3. ‘źŒū@_—R : “ś–{Œź‚Ő”Šw‚šŠw‚Ō—ÆŠw¶‚Ģ“ą—e—‰š‚šŽx‚¦‚éƒTƒ|[ƒg‚šl‚¦‚é\‘åŠw”Šw‚ĢŠī‘b‰Č–Śu”÷•ŖĻ•ŖvEuüŒ`‘搔v‚ÉŠÖ‚µ‚āE\,
    “dŽqī•ń’ŹMŠw‰ļ@Žvl‚ĘŒ¾ŒźŒ¤‹†‰ļ,‘ˆī“c‘åŠw, 2015”N10ŒŽ.

  4. Œ“Žq@—T‘å : Spreading, vanishing and singularity for radially symmetric solu- tions of a Stefan-type free boundary problemC
    RIMSŒ¤‹†W‰ļu”ńüŒ`Œ»Ū‚Ģ‰šĶ‚Ö‚Ģ‰ž—p‚Ę‚µ‚Ä‚Ģ”­“W•ū’öŽ®˜_‚Ģ“WŠJvC‹ž“s‘åŠw”—‰šĶŒ¤‹†Š, 2015”N10ŒŽD

  5. Œ“Žq@—T‘å : Ž©—R‹«ŠE‚šŽ‚Ā‹…‘ĪĢ—Ģˆę‚ɂ؂Ƃ锽‰žŠgŽU•ū’öŽ®‚É‚Ā‚¢‚Ä,
    2015H‚Ģ•Ī”÷•Ŗ•ū’öŽ®ƒZƒ~ƒi[, ‘åć‘åŠw, 2015”N9ŒŽ.

  6. ¬—с@Œõ–Ų : A large-time behavior of one dimensional dead core for a reaction-diffusion equation with strong absorption,
    ‘ę37‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[, ¬’M’©—¢ƒNƒ‰ƒbƒZƒzƒeƒ‹, 2015”N8ŒŽ.

  7. ŽOD Œ[–ē : Diffusive limits of nonlinear hyperbolic systems with variable coefficients,
    ‘ę37‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[, ¬’M’©—¢ƒNƒ‰ƒbƒZƒzƒeƒ‹, 2015”N8ŒŽ.

  8. Yuki Kaneko : Spreading and vanishing phenomena for a free boundary problem of reaction-diffusion equations,
    Mathematics for Nonlinear Phenomena: Analysis and Computation, ŽD–yƒRƒ“ƒxƒ“ƒVƒ‡ƒ“ƒZƒ“ƒ^[, 2015”N8ŒŽ. (Poster Session)

  9. Œ“Žq@—T‘å : ŒĀ‘ĢŠgŽU‚š•\‚·”½‰žŠgŽU•ū’öŽ®‚ĢŽ©—R‹«ŠE–ā‘č,
    –¾Ž””ńüŒ^”—ƒZƒ~ƒi[, –¾Ž”‘åŠw, 2015”N8ŒŽ.

2014”N“xF

  1. Yuki Kaneko : Criteria of spreading and vanishing for a free boundary problem in mathematical ecology,
    The 11th Japanese-German International Workshop on Mathematical Fluid Dynamics, ‘ˆī“c‘åŠw, 2015”N3ŒŽ (in English).

  2. ‰Ķ‡@—D—C : ¶EŌŒnƒ‚ƒfƒ‹‚ĢŽ©—R‹«ŠE–ā‘č‚É‚Ø‚Æ‚é‘召‚ĢspreadingŒ»Ū,
    ‘ę3‰ńuŒ»Ū‚Ģ”—vŒ¤‹†‰ļ, ˆÉ“¤ŽRŒ¤CƒZƒ“ƒ^[, 2015”N1ŒŽ.

  3. ’Ā ”@Žģ : Mathematical analysis for a model of Hepatitis B Virus,
    ‘ę3‰ńuŒ»Ū‚Ģ”—vŒ¤‹†‰ļ, ˆÉ“¤ŽRŒ¤CƒZƒ“ƒ^[, 2015”N1ŒŽ.

  4. ŽR–{ —ę : ”ńüŒ`ŠgŽU‚š”ŗ‚¤X—Ńƒ‚ƒfƒ‹‚É‚Ā‚¢‚Ä,
    ‘ę3‰ńuŒ»Ū‚Ģ”—vŒ¤‹†‰ļ, ˆÉ“¤ŽRŒ¤CƒZƒ“ƒ^[, 2015”N1ŒŽ.

  5. ‹g“c@—Y‰ī : Global stability for semilinear Volterra diffusion equations with spatial inhomogeneity and advection,
    ‘ę3‰ńuŒ»Ū‚Ģ”—vŒ¤‹†‰ļ, ˆÉ“¤ŽRŒ¤CƒZƒ“ƒ^[, 2015”N1ŒŽ.

  6. Œ“Žq@—T‘å : ŒĀ‘ĢŠgŽU‚Ę”½‰žŠgŽU•ū’öŽ®‚ĢŽ©—R‹«ŠE–ā‘č,
    ‘ę3‰ńuŒ»Ū‚Ģ”—vŒ¤‹†‰ļ, ˆÉ“¤ŽRŒ¤CƒZƒ“ƒ^[, 2015EN1ŒŽ.

  7. ‰Ķ‡@—D—C : ¶‘ŌŒnƒ‚ƒfƒ‹‚ĢŽ©—R‹«ŠE–ā‘č‚É‚Ø‚Æ‚é‘召‚ĢspreadingŒ»Ū,
    ‘ę40‰ń”­“W•ū’öŽ®Œ¤‹†‰ļ, “ś–{—Žq‘åŠw, 2014”N12ŒŽ.

  8. ŽR–{@—ę : ”ńüŒ`ŠgŽU‚š”ŗ‚¤X—Ńƒ‚ƒfƒ‹‚É‚Ā‚¢‚Ä,
    ‘ę40‰ń”­“W•ū’öŽ®Œ¤‹†‰ļ, “ś–{—Žq‘åŠw, 2014”N12ŒŽ.

  9. ‹g“c@—Y‰ī : ‹óŠŌ”ńˆź—l«‚š”ŗ‚¤”¼üŒ`VolterraŠgŽU•ū’öŽ®‚Ģ‰š‚Ģ‘Q‹ß‹““®,
    ‘ę40‰ń”­“W•ū’öŽ®Œ¤‹†‰ļ, “ś–{—Žq‘åŠw, 2014”N12ŒŽ.

  10. Œ“Žq@—T‘å : ŒĀ‘ĢŠgŽUƒ‚ƒfƒ‹‚ĢŽ©—R‹«ŠE–ā‘č‚ÉŒ»‚ź‚éSpreading‚ĘVanishing ‚Ģˆź”ŹŒ^,
    ‘ę40‰ń”­“W•ū’öŽ®Œ¤‹†‰ļ, “ś–{—Žq‘åŠw, 2014”N12ŒŽ.

  11. Yuki Kaneko : Spreading and vanishing for a free boundary problem in population ecology,
    International Research Training Group Seminar, TU Darmstadt (ƒ_ƒ‹ƒ€ƒVƒ…ƒ^ƒbƒgH‰Č‘åŠw), Germany, 2014”N11ŒŽ (in English).

  12. Yusuke Kawai : Big and Small Spreading Phenomena for Free Boundary Problems of Spruce Budworm Models,
    RIMS workshopuReconsideration of the method of estimates on partial differential equations from a point of view of the theory on abstract evolution equationsv, ‹ž“s‘åŠw”—‰šĶŒ¤‹†Š, 2014”N10ŒŽ.

  13. Yusuke Yoshida : Asymptotic behavior of solutions for semilinear Volterra diffusion equations with spatial inhomogeneity,
    RIMS WorkshopuReconsideration of the method of estimates on partial differential equations from a point of view of the theory on abstract evolution equationsv, ‹ž“s‘åŠw”—‰šĶŒ¤‹†Š, 2014”N10ŒŽ (in English).

  14. ‰Ķ‡@—D—C : Holling IIIŒ^‚Ģ¶‘ŌŒnƒ‚ƒfƒ‹‚ɂ؂Ƃ鎩—R‹«ŠE–ā‘č,
    ‘ę36‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[, ‹x‰É‘ŗ“ģˆ¢‘h, 2014”N8ŒŽ.

  15. ‹g“c@—Y‰ī : ‹óŠŌ”ńˆź—l«‚š”ŗ‚¤”¼üŒ`VolterraŠgŽU•ū’öŽ®‚É‚Ā‚¢‚Ä,
    ‘ę36‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[, ‹x‰É‘ŗ“ģˆ¢‘h, 2014”N8ŒŽ.

  16. Œ“Žq@—T‘å : ‘½ŽŸŒ³—Ģˆę‚É‚Ø‚Æ‚éŒĀ‘ĢŠgŽUƒ‚ƒfƒ‹‚ĢŽ©—R‹«ŠE–ā‘č,
    ‘ę36‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[, ‹x‰É‘ŗ“ģˆ¢‘h, 2014”N8ŒŽ.

  17. Œ“Žq@—T‘å : ‘½ŽŸŒ³—Ģˆę‚É‚Ø‚Æ‚éŒĀ‘ĢŠgŽUƒ‚ƒfƒ‹‚Ģ‰š‚Ģ‘Q‹ß‹““®,
    2014‰Ä‚Ģ•Ī”÷•Ŗ•ū’öŽ®ƒZƒ~ƒi[, ‘åćEåŠw, 2014”N8ŒŽ.

  18. Yuki Kaneko : Free boundary problems modeling the spreading of species in multi-dimensional domains,
    The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Madrid, Spain, 2014”N7ŒŽiin Englishj.

2013”N“xF

  1. Œ“Žq@—T‘å : ‘½ŽŸŒ³—Ģˆę‚É‚Ø‚Æ‚éŒĀ‘ĢŠgŽUƒ‚ƒfƒ‹‚ĢŽ©—R‹«ŠE–ā‘č‚É‚Ā‚¢‚Ä,
    ‘ę21‰ń‰ž—p‰šĶŒ¤‹†‰ļƒVƒ“ƒ|ƒWƒEƒ€, ” Ŗ, 2014”N3ŒŽ.

  2. Œ“Žq@—T‘å : ‘½ŽŸŒ³—Ģˆę‚ɂ؂Ƃ锽‰žŠgŽU•ū’öŽ®‚ĢŽ©—R‹«ŠE–ā‘č,
    ‘ę2‰ńuŒ»Ū‚Ģ”—vŒ¤‹†‰ļ, ˆÉ“Œ, 2014”N1ŒŽ.

  3. Œ“Žq@—T‘å : ŒĀ‘ĢŠgŽU‚š•\‚ķ‚·Ž©—R‹«ŠE–ā‘č‚ĢŽć‰š‚Ģ‘¶Ż‚É‚Ā‚¢‚Ä,
    ‘ę39‰ń”­“W•ū’öŽ®Œ¤‹†‰ļ, “ś–{—Žq‘åŠw, 2013”N12ŒŽ.

  4. Œ“Žq@—T‘å : On a population model with a free boundary and related elliptic problems,
    RIMS Seminar uProgress in Qualitative Theory of Ordinary Differential Equationsv, ‹ž“s‘åŠw”—‰šĶŒ¤‹†Š, 2013”N11ŒŽ (in English).

  5. Œ“Žq@—T‘å : Spreading and vanishing behaviors of solutions in a population model with a free boundary,
    International Research Training Group Seminar, TU Darmstadt (ƒ_ƒ‹ƒ€ƒVƒ…ƒ^ƒbƒgH‰Č‘åŠw), Germany, 2013”N10ŒŽ (in English).

  6. Œ“Žq@—T‘å : Spreading and vanishing behaviors of radially symmetric solutions in a population model with a free boundary,
    One Forum, Two Cities 2013: Aspect of Nonlinear PDEs, ‘ˆī“c‘åŠw, 2013”N9ŒŽ (in English).

2012”N“xF

  1. Œ“Žq@—T‘å : ”—¶‘ŌŠwƒ‚ƒfƒ‹‚ĢŽ©—R‹«ŠE–ā‘č‚ÉŒ»‚ź‚éSpreading‚ĘVanishing,
    “ś–{”Šw‰ļ”N‰ļ, ‹ž“s‘åŠw, 2013”N3ŒŽ.

  2. ]‰Ä@—mˆź : Š“õĒ‚Ģ—¬s‚š•\‚·’x‰„”÷•Ŗ•ū’öŽ®‚Ģ’čķ‰š‚Ģ‘åˆę‘Q‹ßˆĄ’萫‚Ę‚»‚Ģ‰ž—p,
    ‘ę12‰ń‚³‚¢‚½‚ܐ”—‰šĶƒZƒ~ƒi[, é‹Ź‘åŠw(ƒTƒeƒ‰ƒCƒgƒLƒƒƒ“ƒpƒX), 2013”N03ŒŽ.

  3. Œ“Žq@—T‘å : ”—¶‘ŌŠw‚É‚Ø‚Æ‚éŒĀ‘ĢŠgŽUƒ‚ƒfƒ‹‚ĢŽ©—R‹«ŠE–ā‘č,
    ‘ę20‰ń‰ž—p‰šĶŒ¤‹†‰ļƒVƒ“ƒ|ƒWƒEƒ€, “’‰ĶŒ“, 2013”N3ŒŽ.

  4. ‘åŽ}@˜a_ : ”ķHŽŅ‚Ģ‚½‚ß‚Ģ•ŪŒģ‹ęˆę‚ŖE¶Ż‚·‚é”ķHŽŅ]•ßHŽŅƒ‚ƒfƒ‹,
    “ŒH‘吔—‰šĶŒ¤‹†‰ļ, “Œ‹žH‹Ę‘åŠw, 2013”N2ŒŽ.

  5. ‘åŽ}@˜a_ : •ŪŒģ‹ęˆę‚Ŗ‘¶Ż‚·‚é”ķHŽŅ]•ßHŽŅƒ‚ƒfƒ‹‚Ģ³’l’čķ‰š‚Ģ‘¶Ż‹y‚ŃˆĄ’萫‚ÉŠÖ‚·‚élŽ@,
    ‘ę5‰ń“Œ–k‘ȉ~Œ^E•ś•ØŒ^”÷•Ŗ•ū’öŽ®Œ¤‹†W‰ļ, “Œ–k‘åŠw, 2013”N1ŒŽ.

  6. “‡‘܁@Œ\l : Œš·ŠgŽU‚š”ŗ‚¤ Lotka-Volterra Œ^‹£‡ƒ‚ƒfƒ‹‚Ģ³’l’čķ‰š‚É‚Ā‚¢‚Ä,
    ‘ę38‰ń”­“W•ū’öŽ®Œ¤‹†‰ļ, “ś–{—Žq‘åŠw, 2012”N12ŒŽ.

  7. Œ“Žq@—T‘å : ”—¶‘ŌŠw‚ÉŒ»‚ź‚鎩—R‹«ŠE–ā‘č‚Ģ‹…‘ĪĢ‰š‚Ę‘Q‹ß‹““®,
    ‘ę38‰ń”­“W•ū’öŽ®Œ¤‹†‰ļ, “ś–{—Žq‘åŠw, 2012”N12ŒŽ.

  8. ]‰Ä@—mˆź : Š“õĒƒ‚ƒfƒ‹‚šŠÜ‚Ž’x‰„”÷•Ŗ•ū’öŽ®‚ɂ؂Ƃ镽t‰š‚Ģ‘åˆęˆĄ’萫,
    KSU”ńüŒ`‰šEĶƒZƒ~ƒi[, ‹ž“sŽY‹Ę‘åŠw, 2012”N12ŒŽ.

  9. ‘åŽ}@˜a_ : Coexistence in a diffusive Lotka-Volterra prey-predator system with a protection zone,
    RIMSŒ¤‹†W‰ļu”ń•½tŒ»Ū‚Ģ‰šĶ‚É‚Ø‚Æ‚é”­“W•ū’öŽ®—˜_‚ĢV“WŠJv, ‹ž“s‘åŠw, 2012”N10ŒŽ.

  10. ]‰Ä@—mˆź : Global stability of a positive equilibrium for delayed epidemic models and IVGTT models with nonlinear incidence rates,
    GCOE Tutorial Workshop ``Biomathematics of Structured Populations" with a Mini-Symposium in Honor of Professor Yasuhiro Takeuchi, “Œ‹ž‘åŠw, 2012”N10ŒŽ.

  11. Œ“Žq@—T‘å : ‘½ŽŸŒ³‰~ŠĀ—ĢEę‚ɂ؂Ƃ鐔—¶‘ŌŠwƒ‚ƒfƒ‹‚ĢŽ©—R‹«ŠE–ā‘č‚É‚ĀE¢‚Ä,
    “ś–{”Šw‰ļH‹G‘‡•Ŗ‰Č‰ļ, ‹ćB‘åŠw, 2012”N9ŒŽ.

  12. ‘åŽ}@˜a_ : ”ńüŒ`ŠgŽU‚Ę protection zone ‚š”ŗ‚¤”ķHŽŅ-•ßHŽŅƒ‚ƒfƒ‹‚Ģ’čķ‰š,
    “ś–{”Šw‰ļH‹G‘‡•Ŗ‰Č‰ļ, ‹ćB‘åŠw, 2012”N9ŒŽ.

  13. ]‰Ä@—mˆź : Asymptotic stability for epidemic models with time delays and monotonicity of the incidence function,
    ‘ę22‰ń“ś–{”—¶•ØŠw‰ļ”N‰ļ, ‰ŖŽR‘åŠw, 2012”N9ŒŽ.

  14. Œ“Žq@—T‘å : ”½‰žŠgŽU•ū’öŽ®‚ĢŽ©—R‹«ŠE–ā‘č| Spreading ‚Ę Vanishing |,
    ‘ę34‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[, ƒ^ƒiƒxŒo‰cĆ“ģŒ¤CƒZƒ“ƒ^[, 2012”N9ŒŽ.

  15. Y. Kaneko : Asymptotic behavior of radially symmetric solutions for a free boundary problem in ecology,
    Turing Symposium on Morphogenesis, å‘䍑ŪƒZƒ“ƒ^[, 2012”N8ŒŽ.(Poster Session)

  16. Y. Enatsu : Lyapunov functionals and global stability for epidemic models with delays,
    Turing Symposium on Morphogenesis, å‘䍑ŪƒZƒ“ƒ^[, 2012”N8ŒŽ.(Poster Session)

  17. Y. Kaneko : Asymptotic behavior of radially symmetric solutions for a free boundary problem related to an ecological model,
    Seminar on Partial Differential Equations in Osaka, 2012, ‘åć‘åŠwHŠw•”, 2012”N8ŒŽ.

  18. Y. Enatsu : Lyapunov functionals for disease transmission models with delays and its applications,
    Seminar on Partial Differential Equations in Osaka, 2012, ‘åć‘åŠwHŠw•”, 2012”N8ŒŽ.

  19. K. Oeda : Effect of a protection zone and cross-diffusion on a prey-predator model,
    Seminar on Partial Differential Equations in Osaka, 2012, ‘åć‘åŠwHŠw•”, 2012”N8ŒŽ.

  20. Y. Kaneko : Free boundary problems modeling the spreading of species in symmetric domains,
    The 9th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Orlando Florida, USA , July 1-5, 2012.

  21. Y. Enatsu : Asymptotic behavior of solutions of epidemic models with delays,
    The 9th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Orlando Florida, USA , July 1-5, 2012.

  22. K. Oeda : Coexistence problem for a prey-predator model with a protection zone,
    The 9th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Orlando Florida, USA , July 1-5, 2012.

  23. ‘åŽ}@˜a_ : Protection zone ‚Ŗ‘¶Ż‚·‚é”ķHŽŅ-•ßHŽŅƒ‚ƒfƒ‹‚Ģ‹¤‘¶‰š,
    é‹Ź‘åŠw‰šĶƒ[ƒ~, é‹Ź‘åŠw, 2012”N6ŒŽ.

  24. Y. Enatsu : Global stability analysis of delayed epidemic models with Lyapunov functionals and its applications,
    China-Japan-Korea International Conference on Mathematical Biology, Pusan National University Sangnam International House, Korea, May, 2012.

2011”N“xF

  1. Y. Enatsu : Harmless delays for the global stability of a positive equilibrium of epidemic models,
    Conference on Evolution Equations, Related Topics and Applications, Waseda University, Tokyo, March 19-23, 2012.(Poster Session)

  2. K. Oeda : Effect of a protection zone on a Lotka-Volterra prey-predator model,
    Conference on Evolution Equations, Related Topics and Applications, Waseda University, Tokyo, March 19-23, 2012.(Poster Session)

  3. ]‰Ä@—mˆź : Harmless delays for global stability of equilibria of epidemic models and its applications,
    ‘ę19‰ń‰ž—p‰šĶŒ¤‹†‰ļƒVƒ“ƒ|ƒWƒEƒ€, ”MŠC, 2012”N3ŒŽ.

  4. Œ“Žq@—T‘å : N“üƒ‚ƒfƒ‹‚ĢŽ©—R‹«ŠE–ā‘č‚É‚Ā‚¢‚Ä,
    KSU”ńüŒ`‰šĶƒZƒ~ƒi[, ‹ž“sŽY‹Ę‘åŠw, 2012”N1ŒŽ.

  5. Œ“Žq@—T‘å : ”—¶‘ŌŠw‚ÉŒ»‚ź‚鎩—R‹«ŠE–ā‘č‚ʉš‚Ģ‘Q‹ß‹““®,
    ‘ę37‰ń”­“W•ū’öŽ®Œ¤‹†‰ļ, Šņ•Œ‘åŠw, 2011”N12ŒŽ.

  6. Œ“Žq@—T‘å : ”—¶‘ŌŠw‚ĢN“üƒ‚ƒfƒ‹‚ɂ؂Ƃ鎩—R‹«ŠE–ā‘č‚É‚Ā‚¢‚Ä,
    ‘ę15‰ń“ŒH‘吔—‰šĶƒZƒ~ƒi[, “Œ‹žH‹Ę‘åŠw, 2011”N12ŒŽ.

  7. K. Oeda : Stationary solutions of a three species population model with a protection zone,
    The 4th Japanese-German International Workshop on Mathematical Fluid Dynamics, ‘ˆī“c‘åŠw, 2011”N12ŒŽ.

  8. ‘åŽ}@˜a_ : Eś¬HŽŅ‚ĢE½‚ß‚Ģprotection zone‚Ŗ‘¶Ż‚·‚é”ķHŽŅ-•ßHŽŅƒ‚ƒfƒ‹‚É‚Ā‚¢‚Ä,
    •Ī”÷•Ŗ•ū’öŽ®‚ĘŒ»ŪFPDEs and Phenomena in Miyazaki 2011, ‹{č‘åŠw, 2011”N11ŒŽ.

  9. Y. Enatsu : Stability analysis of a positive equilibrium for delayed epidemic models,
    International Research Training Group 1529 Mathematical Fluid Dynamics Seminar, TU Darmstadt, Germany, November 2011.

  10. Œ“Žq@—T‘å : A free boundary problem modeling the invasion of species,
    RIMSŒ¤‹†W‰ļu”ń•½t”ńüŒ`Œ»Ū‚Ģ‰šĶ|”­“W•ū’öŽ®‚Ģ—§ź‚©‚ē|v, ‹ž“s‘åŠw, 2011”N10ŒŽ.

  11. ]‰Ä@—mˆź : Global stability of a positive equilibrium for epidemic models with delays,
    RIMSŒ¤‹†W‰ļu”ń•½t”ńüŒ`Œ»Ū‚Ģ‰šĶ|”­“W•ū’öŽ®‚Ģ—§źE©‚ēE|v, ‹ž“s‘åŠw, 2011”N10ŒŽ.

  12. Œ“Žq@—T‘å : ”—¶‘ŌŠw‚ÉŒ»‚ź‚锽‰žŠgŽU•ū’öŽ®‚ĢŽ©—R‹«ŠE–ā‘č‚É‚Ā‚¢‚Ä,
    “ś–{”Šw‰ļH‹G‘‡•Ŗ‰Č‰ļ, MB‘åŠw, 2011”N9ŒŽ.

  13. Œ“Žq@—T‘å : ¶•Ø‚ĢN“ü‚š•\‚·Ž©—R‹«ŠE–ā‘č‚Ģ‰š‚Ģ‘Q‹ß‹““®‚É‘Ī‚·‚é”ńüŒ`”½‰ž€‚ĢŒų‰Ź,
    ƒTƒ}[ƒZƒ~ƒi[ in ²¢•Ū 2011, 2011”N8ŒŽ.

  14. Œ“Žq@—T‘å : ¶•Ø‚ĢN“üƒ‚ƒfƒ‹‚ÉŒ»‚ź‚é‘oˆĄ’č€‚š”ŗ‚¤ŠgŽU•ū’öŽ®‚ĢŽ©—R‹«ŠE–ā ‘č‚É‚Ā‚¢‚Ä,
    ‰Ä‚Ģ•Ī”÷•Ŗ•ū’öŽ®ƒZƒ~ƒi[2011, —“’J‘åŠwƒZƒ~ƒi[ƒnƒEƒX, 2011”N8ŒŽ.

  15. ‘åŽ}@˜a_ : Protection zone‚šŽ‚Ā”ķHŽŅ-•ßHŽŅŒ^‚ĢŒš·ŠgŽUŒn‚É‚Ā‚¢‚Ä,
    Summer Seminar on PDE in 2011, —“’J‘åŠwƒZƒ~ƒi[ƒnƒEƒX, 2011”N8ŒŽ.

  16. Y. Enatsu : On the global stability of a positive equilibrium for delayed epidemic models with a class of nonlinear incidence rates,
    International Conference on Differential and Difference Equations and Applications, Azores University, Portugal, July 2011.

2010”N“xF

  1. ]‰Ä@—mˆź : ˜A‘±Š“õĒƒ‚ƒfƒ‹‚Ģ‘åˆęˆĄ’萫‚š•Ū‚Ā—£ŽUƒ‚ƒfƒ‹,
    “ś–{”Šw‰ļ”N‰ļ, ‘ˆī“c‘åŠw, 2011”N3ŒŽ.

  2. Œ“Žq@—T‘å : ¶•Ø‚ĢN“üƒ‚ƒfƒ‹‚ÉŒ»‚ź‚鎩—R‹«ŠE–ā‘č‚É‚Ā‚¢‚Ä,
    ‘ę18‰ń‰ž—p‰šĶŒ¤‹†‰ļƒVƒ“ƒ|ƒWƒEƒ€, ” Ŗ“’–{, 2011”N2ŒŽ.

  3. ]‰Ä@—mˆź : ŽžŠŌ’x‚ź‚š‚ą‚ĀŠ“õĒE‚ƒfƒ‹‚ɂ؂ƁE镽t“_‚Ģ‘åˆęˆĄ’萫,
    ‘ę18‰ń‰ž—p‰šĶŒ¤‹†‰ļƒVƒ“ƒ|ƒWƒEƒ€, ” Ŗ“’–{, 2011”N2ŒŽ.

  4. ‘åŽ}@˜a_ : Stationary solutions for a prey-predator cross-diffusion system with a protection zone,
    ‘ę3‰ń–¼ŒĆ‰®”÷•Ŗ•ū’öŽ®Œ¤‹†W‰ļ, –¼ŒĆ‰®‘åŠw, 2011”N2ŒŽ.

  5. Œ“Žq@—T‘å : ŠgŽU‚š”ŗ‚¤ƒƒWƒXƒeƒBƒbƒN•ū’öŽ®‚ĢŽ©—R‹«ŠEEā‘č‚É‚Ā‚¢‚Ä,
    Œ»Ū‚Ģ”—Œ¤‹†‰ļ, ˆÉ“Œ, 2011”N2ŒŽ.

  6. ]‰Ä@—mˆź : ŽžŠŌ’x‚ź‚š‚ą‚ĀŠ“õĒƒ‚ƒfƒ‹‚Ģ‘åˆęˆĄ’萫‰šĶ,
    Œ»Ū‚Ģ”—Œ¤‹†‰ļ, ˆÉ“Œ, 2011”N2ŒŽ.

  7. ‘åŽ}@˜a_ : ¶‘§—Ģˆę‚Ŗˆź’v‚µ‚Č‚¢”ķHŽŅ-•ßHŽŅƒ‚ƒfƒ‹‚Ģ‰šĶ,
    Œ»Ū‚Ģ”—Œ¤‹†‰ļ, ˆÉ“Œ, 2011”N2ŒŽ.

  8. Œ“Žq@—T‘å : ŠgŽU‚š”ŗ‚¤ƒƒWƒXƒeƒBƒbƒN•ū’öŽ®‚ĢŽ©—R‹«ŠE–ā‘č‚ʉš‚Ģ‘Q‹ßE““®‚É‚Ā‚¢‚Ä,
    ‘ę36‰ń”­“W•ū’öŽ®Œ¤‹†‰ļ, ’†‰›‘åŠw, 2010”N12ŒŽ.

  9. ‘åŽ}@˜a_ : Protection zone‚šŽ‚Ā”ķHŽŅ-•ßHŽŅŒ^‚ĢŒš·ŠgŽUŒn‚Ģ’čķ–ā‘č‚Ę‚»‚Ģ‹ÉŒĄŒn,
    ‘ę36‰ń”­“W•ū’öŽ®Œ¤‹†‰ļ, ’†‰›‘åŠw, 2010”N12ŒŽ.

  10. Y. Enatsu : Global asymptotic stability of SIRS models with a class of nonlinear incidence rates and distributed delays,
    The Third China-Japan Colloquium of Mathematical Biology, ŠC–k—Ī‰€, China, October 2010.

  11. ‘åŽ}@˜a_ : Stationary problem of a prey-predator cross-diffusion system with a protection zone,
    RIMSŒ¤‹†W‰ļuŒ»Ū‚Ģ”—‰šĶ‚ÖŒü‚Æ‚½”ńüŒ`”­“W•ū’öŽ®‚Ę‚»‚ĢŽü•Óv, ‹ž“s‘åŠw, 2010”N10ŒŽ.

  12. ]‰Ä@—mˆź : ŽžŠŌ’x‚ź‚š‚ą‚ĀŠ“õĒƒ‚ƒfƒ‹‚ɂ؂Ƃ镽t‰š‚Ģ‘åˆęˆĄ’萫‰šĶ,
    ‘ę32‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[, ˆÉ“¤’·‰Ŗ, 2010”N8ŒŽ.

  13. ‘åŽ}@˜aE_ : Protection zone‚šŽ‚Ā”ķHŽŅ-•ßHŽŅŒ^‚ĢŒš·ŠgŽUŒn‚Ģ’čķ‰š‚É‚Ā‚¢‚Ä,
    ‘ę32‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[, ˆÉ“¤’·‰Ŗ, 2010”N8ŒŽ.

  14. Y. Enatsu : global stability for a class of epidemic models with delays and a nonlinear incidence rate,
    8th AIMS conference on Dynamical systems, Differential equations and Applications, Dresden, Germany, May 2010.

2009”N“xF

  1. ‘åŽ}@˜a_ : Protection zoneEšŽ‚Ā”ķHŽŅ-EߐHŽŅŒ^‚ĢŠgŽUƒ‚ƒfƒ‹‚É‚Ā‚¢‚Ä,
    “ś–{”Šw‰ļ2010”N“xt‚Ģ”N‰ļ‰ž—p”Šw•Ŗ‰Č‰ļ, Œc‰ž‹`m‘åŠw, 2010”N3ŒŽ.

  2. Y. Enatsu : Global asymptotic stability for a class of epidemic models with delays,
    International Workshop on Mathematical Fluid Dynamics, ‘ˆī“c‘åŠw, 2010”N3ŒŽ.

  3. K. Oeda : Stationary problem for a cross-diffusion system of a prey-predator type with a protection zone,
    International Workshop on Mathematical Fluid Dynamics, ‘ˆī“c‘åŠw, 2010”N3ŒŽ.

  4. “…@‹`O : Ž©—R‹«ŠE‚š”ŗ‚¤Prey-Predator Model,
    ‘ę17‰ń‰ž—p‰šĶŒ¤EEEVƒ“ƒ|ƒWƒEƒ€, “’‰ĶŒ“, 2010”N3ŒŽ.

  5. Žē“c@‚‘× : Forest Kinematic Model ‚Ģ’čķ–ā‘č‚ÉŠÖ‚·‚鉚Ķ,
    ‘ę17‰ń‰žEp‰šĶŒ¤‹†‰ļƒVƒ“ƒ|ƒWƒEƒ€, “’‰ĶŒ“, 2010”N3ŒŽ.

  6. ‘åŽ}@˜a_ : Protection zone‚šŽ‚Ā”ķHŽŅ-•ßHŽŅŒ^‚ĢŒš·ŠgŽUŒn‚Ģ³’l’čķ‰š,
    ‘ę17‰ń‰ž—p‰šĶŒ¤‹†‰ļƒVƒ“ƒ|ƒWƒEƒ€, “’‰ĶŒ“, 2010”N3ŒŽ.

  7. ‘åŽ}@˜a_ : Protection zone‚š”ŗ‚¤”ķHŽŅ-•ßHŽŅŒ^‚ĢŒš·ŠgŽUƒ‚ƒfƒ‹‚Ģ’čķ‰š‚É‚Ā‚¢‚Ä,
    ‘ę4‰ń”ńüŒ^•Ī”÷•Ŗ•ū’öŽ®‚Ę•Ļ•Ŗ–ā‘č, Žń“s‘åŠw“Œ‹ž, 2010”N2ŒŽ.

  8. Y. Enatsu: Stability analysis of delayed epidemic models with a class of nonlinear incidence rates,
    International Research Training Group 1529 Mathematical Fluid Dynamics Seminar, TU Darmstadt,Germany,February 2010.

  9. ‘åŽ}@˜a_ : Protection zone‚šŽ‚Ā”ķHŽŅ-•ßHŽŅŒ^‚ĢEš·ŠgŽUŒn‚Ģ’čķ–ā‘č,
    RDSƒZƒ~ƒi[, –¾Ž”‘åŠw, 2010”N1ŒŽ.

  10. K. Oeda : Stationary problem for a Lotka-Volterra cooperative model with nonlinear diffusion,
    International Research Training Group 1529 Mathematical Fluid Dynamics Seminar,TU Darmstadt,Germany,November 2009.

  11. ]‰Ä@—mˆź : ¶•Ø”Šw‚É‚Ø‚Æ‚é‘åˆę‘Q‹ßˆĄ’萫‚ÉŠÖ‚·‚éLyapunov ŠÖ”‚Ģ\¬–@,
    RIMSŒ¤‹†W‰ļu‘ę6‰ń¶•Ø”Šw‚Ģ—˜_‚Ę‚»‚Ģ‰ž—pv, —“’J‘åŠwƒZƒ~ƒi[ƒnƒEƒX, 2009”N11ŒŽ.

  12. ]‰Ä@—mˆź : ”—ƒ‚ƒfƒ‹‚É‚Ø‚Æ‚éLyapunov ŠÖ”‚š—p‚¢‚½•½t“_‚Ģ‘åˆę‘Q‹ßˆĄ’萫‚É‚Ā‚¢‚Ä,
    ‘ę7‰ńŒvŽZ”ŠwŒ¤‹†EE — ”Ö’ņƒƒCƒ„ƒ‹ƒzƒeƒ‹, 2009”N10ŒŽ.

  13. ²“”@“TO : Gray-Scott Œ^”½‰žŠgŽUŒn‚Ģ’čķ–ā‘č‚É‚Ā‚¢‚Ä,
    “ś–{”Šw‰ļH‹G‘‡•Ŗ‰Č‰ļ, ‘åć‘åŠw, 2009”N9ŒŽ.

  14. ‘åŽ}@˜a_ : Existence of coexistence states for a strongly coupled prey-predator system with a protection zone,
    “ś–{”Šw‰ļH‹G‘‡•Ŗ‰Č‰ļ, ‘åć‘åŠw, 2009”N9ŒŽ.

  15. ]‰Ä@—mˆź : ”ńüE`ŚG€‚ĘŽžŠŌ’x‚ź‚š‚ą‚ĀŠ“õĒƒ‚ƒfƒ‹‚Ģ‘åˆę‘Q‹ßˆĄ’萫,
    “ś–{”Šw‰ļH‹G‘‡•Ŗ‰Č‰ļ, ‘åć‘åŠw, 2009”N9ŒŽ.

  16. ‘åŽ}@˜a_ : ”ńüŒ`ŠgŽU€‚š”ŗ‚¤Lotka-VolterraŒ^‹¤¶Œn‚Ģ”ń’萔³’l’čķ‰š‚É‚Ā‚¢‚Ä,
    MZSeminar, ‹{č‘åŠw, 2009”N9ŒŽ.

  17. Y.Enatsu : Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates,
    Conference on Evolution Equations,Related Topics and Applications,München, Germany September 2009.(Poster Session)

  18. K.Oeda : Positive steady states for a strongly coupled prey-predator system with a protection zone,
    Conference on Evolution Equations,Related Topics and Applications,München, Germany September 2009.(Poster Session)

  19. T.Wakasa : Asymptotic Characterization of linearized eigenvalue problems associated with balanced bistable reaction-diffusion equations,
    Conference on Evolution Equations,Related Topics and Applications,München, Germany September 2009.(Poster Session)

  20. ²E”@“TO : Gray-Scott Œ^”½‰žŠgŽUŒn‚Ģ’čķ–ā‘č‚É‚Ā‚¢‚Ä,
    RIMSŒ¤‹†W‰ļuŽUˆķŒn‚Ģ”—-ƒpƒ^[ƒ“‚š•\Œ»‚·‚é‘Q‹ß‰š‚Ģ\¬-v, ‹ž“s‘åŠw, 2009”N6ŒŽ.

2008”N“xF

  1. ‘åŽ}@˜a_ : ”ńüŒ`ŠgŽU€‚šŠÜ‚ŽLotka-Volterra‹¤¶Œn‚É‘Ī‚·‚é’čķ–ā‘č,
    OSƒZƒ~ƒi[, “Œ–k‘åŠw, 2009”N3ŒŽ.

  2. ²“”@“TO : ‚ ‚鎩ŒČG”}‰»Šw”½‰ž‚ÉŒ»‚ź‚é’čķƒpƒ^[ƒ“Œ`¬–ā‘č‚Ģ‰šĶ,
    ‘ę16‰ń‰ž—p‰šĶŒ¤‹†‰ļƒVƒ“ƒ|ƒWƒEƒ€, ”MŠC, 2009”N3ŒŽ.

  3. ‘åŽ}@˜a_ : ”ńüŒ`ŠgŽU€‚šŠÜ‚ŽLotka-Volterra‹¤¶Œn‚Ģ³’l’čķ‰š‚É‚Ā‚¢‚Ä,
    ‘ę16‰ń‰ž—p‰šĶŒ¤‹†‰ļƒVƒ“ƒ|ƒWƒEƒ€, ”MŠC, 2009”N3ŒŽ.

  4. ‘åŽ}@˜a_ : ”ńüŒ`ŠgŽU€‚šŠÜ‚Ž‹¤¶Œnƒ‚ƒfƒ‹‚Ģ‹óŠŌ”ńˆź—l‚Č’čķ‰š‚Ģ‘¶ŻE”ń‘¶Ż,
    ‘ę3‰ń”ńüŒ^•Ī”÷•Ŗ•ū’öŽ®‚Ę•Ļ•Ŗ–ā‘č, Žń“s‘åŠw“Œ‹ž, 2009”N2ŒŽ.

  5. Žį‹·@“O : Precise asymptotic results on some linearized eigenvalue problems associated with scalar reaction diffusion equations,
    SNP2008, ŠÖ¼ƒZƒ~ƒi[ƒnƒEƒX, 2008”N12ŒŽ.

  6. Žį‹·@“O : ‚ ‚é‘oˆĄ’čŒ^•ū’öŽ®‚É‘Ī‚·‚éüŒ`‰»ŒÅ—L’l–ā‘č‚Ģ•\Œ»ŒöŽ®‚Ę‘Q‹ßŒöŽ®,
    PPM2008, ‹{č‘åŠw, 2008”N11ŒŽ.

  7. Žį‹·@“O, Žlƒc’J@»“ń : ‚ ‚éüŒ`‰»ŒÅ—L’l–ā‘č‚ĢŒÅ—LŠÖ”‚Ģ‘Q‹ßŒ`ó‚É‚Ā‚¢‚Ä,
    “ś–{”Šw‰ļH‹G‘‡•ŖEȉļ, “Œ‹žH‹Ę‘åŠw, 2008”N9ŒŽ.

  8. T.Wakasa : On some linearized eigenvalue problems associated with Chafee-Infante equatio:A classical approach from elliptic integrals,
    World Congress of Nonlinear Analysts 2008, Orlando,Florida,USA, July,2008.

2007”N“xF

  1. ‘åŽ}@˜a_ : ”ńüŒ`ŠgŽU€‚šŠÜ‚Ž‹¤¶Œnƒ‚ƒfƒ‹‚Ģ‹óŠŌ”ńˆź—l‚Ȑ³’l’čķ‰š‚É‚Ā‚¢‚Ä,
    “ś–{”Šw‰ļ”N‰ļ, ‹ß‹E‘åŠw, 2008”N3ŒŽ.

  2. Žį‹·@“O, Žlƒc’J@»“ń : ‚ ‚éüŒ`‰»ŒÅ—L’l–ā‘č‚Ģ‚·‚ׂĂĢŒÅ—L’l‚ĘŒÅ—LŠÖ”‚É‚Ā‚¢‚Ä,
    “ś–{”Šw‰ļ”N‰ļ, ‹ß‹E‘åŠw, 2008”N3ŒŽ.

  3. ‰–Œ©@’Žj : ŠĀ‹«•Ļ“®€‚ĘŠgŽU€‚š”ŗ‚¤3Žķ¶‘Ōƒ‚ƒfƒ‹‚Ģ’čķ‰š‚É‚Ā‚¢‚Ä,
    ‘ę15‰ń‰ž—p‰šĶŒ¤‹†‰ļƒVƒ“ƒ|ƒWƒEƒ€, ” Ŗ“’–{, 2008”N3ŒŽ.

  4. ‹I•½@‘åŽ÷ : Forest Kinematic Model‚É‘Ī‚·‚鎞ŠŌ‘åˆę‰š‚Ģ‘¶Ż‚Ę—ĶŠwŒn‚Ģ‰šĶ,
    ‘ę15‰ń‰ž—p‰šĶŒ¤‹†‰ļƒVƒ“ƒ|ƒWƒEƒ€, ” Ŗ“’–{, 2008”N3ŒŽ.

  5. Žį‹·@“O : On a linerized eigenvalue problem associated with 1-dimensional reaction diffusion equation of bistable-type,
    —“’J”—‰ČŠwƒZƒ~ƒi[, —“’J‘åŠw, 2008”N2ŒŽ.

  6. ‘åŽ}@˜a_ : ‹¤¶Œnƒ‚ƒfƒ‹‚Ģ’čķ‰šW‡‚É‘Ī‚·‚é”ńüŒ`ŠgŽU€‚ĢŒų‰Ź,
    ‹ćBŠÖ”•ū’öŽ®ƒZƒ~ƒi[, ‹ćB‘åŠw, 2007”N11ŒŽ.

  7. ‘åŽ}@˜a_ : Stationary patterns for a cooperative model with nonlinear diffusion,
    RIMSŒ¤‹†W‰ļu”ńüŒ`”­“W•ū’öŽ®‚ĘŒ»Ū‚Ģ”—v, ‹ž“s‘åŠw, 2007”N10ŒŽ.

  8. ²“”@“TEO : ‚ E锽‰žŠgŽUŒn‚ÉŠÖ‚·‚é’čķ‰šW‡‚É‚Ā‚¢‚Ä,
    ‘ę33‰ń”­“W•ū’öŽ®Œ¤‹†‰ļ, ’†‰›‘åŠw, 2007”N9ŒŽ.

  9. ‘åŽ}@˜a_ : ”ńüŒ`ŠgŽU€‚šŠÜ‚Ž‹¤¶Œnƒ‚ƒfƒ‹‚Ģ³’l’čķ‰š‚É‚Ā‚¢‚Ä,
    ‘ę33‰ń”­“W•ū’öŽ®Œ¤‹†‰ļ, ’†‰›‘åŠw, 2007”N9ŒŽ.

  10. ‘åŽ}@˜a_ : ”ńüŒ`ŠgŽU€‚šŠÜ‚Ž2Žķ‚Ģ¶•Ø‚Ģ‹¤¶Œn‚Ģ’čķ‰š‚É‚Ā‚¢‚Ä,
    ‘ę29‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~Ei[, ŽRŒū, 2007”N8ŒŽ.

  11. ‰–Œ©@’Žj : 3Eś¬¶‘Ōƒ‚ƒfƒ‹‚É‚Ø‚Æ‚é‹óŠŌ”ńˆź—l‚Č•ŖŠņ‰š‚Ę‚»‚ĢˆĄ’萫,
    ‘ę29‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[, ŽRŒū, 2007”N8ŒŽ.

  12. Žį‹·@“O : Representation and asymptotic formulas for some 1-dimensional linearized eigenvalue problems,
    RIMSŒ¤‹†W‰ļu•Ļ•Ŗ–ā‘č‚Ę‚»‚ĢŽü•Óv, ‹ž“s‘åŠw, 2007”N6ŒŽ.

  13. Žį‹·@“O : 1ŽŸŒ³”½‰žŠgŽU•ū’öŽ®‚ĢüŒ`‰»ŒÅ—L’l–ā‘č‚É‘Ī‚·‚éŒÅ—L’lEŒÅ—LŠÖ”,
    _Šyā‰šĶƒZƒ~ƒi[, “Œ‹ž—‰Č‘åŠw, 2007”N5ŒŽ.

2006”N“xF

  1. Žį‹·@“O, Žlƒc’J@»“ń : ‚ ‚éüŒ`‰»ŒÅ—L’l–ā‘č‚ɂ؂Ƃ錵–§‰š‚ĘŒÅ—L’l‚Ģ‘Q‹ßŒöŽ®,
    “ś–{”Šw‰ļ”N‰ļ”Ÿ”•ū’öŽ®•Ŗ‰Č‰ļ, é‹Ź‘åŠw, 2007”N3ŒŽ.

  2. ²“”@“TO : —LŠE—Ģˆę‚É‚Ø‚Æ‚é Gray-Scott ƒ‚ƒfƒ‹‚Ģ’čķ‰šW‡,
    ‘ę14‰ń‰ž—p‰šĶŒ¤‹†‰ļƒVƒ“ƒ|ƒWƒEƒ€, “’‰ĶŒ“, 2007”N2ŒŽ.

  3. ‘åŽ}@˜a_ : Cross-Diffusion Œn‚Ģ³’l’čķ‰šW‡‚Ģ\‘¢‚É‚Ā‚¢‚Ä,
    ‘ę14‰ń‰ž—p‰šĶŒ¤‹†‰ļƒVƒ“ƒ|ƒWƒEƒ€, “’‰ĶŒ“, 2007”N2ŒŽ.

  4. ‰–Œ©@’Žj : 3Žķƒ‚ƒfƒ‹‚Ģ‰šĶ,
    ‘ę14‰ń‰ž—p‰šĶŒ¤‹†‰ļƒVƒ“ƒ|ƒWƒEƒ€, “’‰ĶŒ“, 2007”N2ŒŽ.

  5. Žį‹·@“O : ‚ ‚éüŒ`‰»ŒÅ—L’l–ā‘č‚ĢŒÅ—L’lEŒÅ—LŠÖ”‚É‚Ā‚¢‚Ä,
    ”ńüŒ`•Ī”÷•Ŗ•ū’öŽ®‚Ę•Ļ•Ŗ–āEč@Ą’ĆƒZƒ~ƒi[, Ą’ƍH‹Ę‚“™ź–åŠwZ, 2007”N2ŒŽ.

  6. ²“”@“TO : Gray-Scott ƒ‚ƒfƒ‹‚É‚Ø‚Æ‚é’čķ–ā‘č‚É‚Ā‚¢‚Ä,
    RIMSŒ¤‹†W‰ļu‘ę3‰ń¶•Ø”Šw‚Ģ—˜_‚Ę‚»‚Ģ‰ž—pv, ‹ž“s‘åŠw, 2006”N12ŒŽ.

  7. ²“”@“TO : —LŠE—Ģˆę‚É‚Ø‚Æ‚é Gray-Scott ƒ‚ƒfƒ‹‚Ģ’čķ‰š\‘¢,
    “ś–{”Šw‰ļH‹G‘‡•Ŗ‰Č‰ļ, ‘åćŽs—§‘åŠw, 2006”N9ŒŽ.

  8. Žį‹·@“O : ‚ ‚锽‰žŠgŽU•ū’öŽ®‚ÉŠÖ˜A‚·‚éüŒ`‰»ŒÅ—L’l–ā‘č‚Ģ‰š•\Ž¦‚É‚Ā‚¢‚Ä,
    ‘ę32‰ń”­“W•ū’öŽ®E¤‹†‰ļ, ’†‰›‘åŠw, 2006”N9ŒŽ.

  9. ²“”@“TO : —LŠE—Ģˆę‚É‚Ø‚Æ‚é Gray-Scott ƒ‚ƒfƒ‹‚Ģ’čķ–ā‘č,
    ‘ę32‰ń”­“W•ū’öŽ®Œ¤‹†‰ļ, ’†‰›‘åŠw, 2006”N9ŒŽ.

  10. ‘剮@”Žˆź, ŠÖ‰Ŗ@’¼Ž÷, ‰–Œ©@’Žj : Competition versus Predation for some population models with three species,
    ‘ę32‰ń”­“W•ū’öŽ®Œ¤‹†‰ļ, ’†‰›‘åŠw, 2006”N9ŒŽ.

  11. ‘剮@”Žˆź, ŠÖEŖ@’¼Ž÷: Positive solutions for some population model with three species,
    “‡Ŗ‘åŠw‚É‚Ø‚Æ‚é”÷•Ŗ•ū’öŽ®ƒZƒ~ƒi[, “‡Ŗ‘åŠw, 2006”N8ŒŽ.

  12. Žį‹·@“O : ‚ ‚éüŒ`‰»ŒÅ—L’l–ā‘č‚Ģ‚·‚ׂĂĢŒÅ—L’lEŒÅ—LŠÖ”‚Ģ•\Ž¦‚É‚Ā‚¢‚Ä,
    Fukuoka Mini Workshop on Evolution Equations and Related Topics, •Ÿ‰Ŗ, 2006”N8ŒŽ.

  13. Žį‹·@“O : U‚čŽq‚Ģ•ū’öŽ®‚ĢüŒ`‰»–āEč‚É‘Ī‚·‚é‚·‚ׂĂĢŒÅ—L’lEŒÅ—LŠÖ”‚É‚Ā‚¢‚Ä,
    ‘ę28‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[, _ŒĖ, 2006”N8ŒŽ.

  14. ²“”@“TO : —LŠE—Ģˆę‚É‚Ø‚Æ‚é Gray-Scott ƒ‚ƒfƒ‹‚Ģ’čķ‰š\‘¢‚É‚Ā‚¢‚Ä,
    ‘ę28‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[, _ŒĖ, 2006”N8ŒŽ.

  15. ‘剮@”Žˆź, ŠÖ‰Ŗ@’¼Ž÷: ŠgŽU€‚š”ŗ‚¤ 3 Žķ population model ‚Ģ‰šĶ‚É‚Ā‚¢‚Ä,
    ‘ę28‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[, _ŒĖ, 2006”N8ŒŽ.

  16. ‘剮@”Žˆź : ”ń—LŠE—Ģˆę‚É‚Ø‚Æ‚éd‚Ż‚Ā‚«ƒ\ƒ{ƒŒƒt‹óŠŌ‚É‘Ī‚·‚éˆźlŽ@,
    ˆ¤•Q‘åŠw”Šw’k˜b‰ļ, ˆ¤•Q‘åŠw, 2006”N7ŒŽ.

  17. Hirokazu Ohya : Note on the embedding properties for Weighted Sobolev spaces in unbounded domains,
    The 6th International Congress of Dynamical Systems and Differential Equations, University of Poitiers at Poitiers, France, June, 2006.

  18. ‘剮@”Žˆź : Analysis of the embedding properties for Weighted Sobolev spaces in unbounded domains,
    _Šyā‰šĶƒZƒ~ƒi[, “Œ‹ž—‰Č‘åŠw, 2006”N5ŒŽ.
2005”N“xF

  1. Žį‹·@“O : U‚čŽq‚Ģ•ū’öŽ®‚ĢüŒ`‰»–ā‘č‚É‚Ø‚Æ‚éŒÅ—L’l‚ĘŒÅ—LŠÖ”C
    “ś–{”Šw‰ļ”N‰ļC’†‰›‘åŠwC2006”N3ŒŽ

  2. ²“”@“TOF Gray-Scott ƒ‚ƒfƒ‹‚É‚Ø‚Æ‚é’čķ‰š‚É‚Ā‚¢‚āC
    ‰ž—p‰šĶŒ¤‹†‰ļC”MŠCC2006”N2ŒŽ

  3. Žį‹·@“O : ”ńEE`ŒÅ—L’l–ā‘č‚ÉŠÖ˜A‚·‚éüŒ`‰»–ā‘čEĢ‰š‚ɁEĀ‚¢‚āC
    ‰ž—p‰šĶŒ¤‹†‰ļC”MŠCC2006”N2ŒŽ

  4. ‘剮@”Žˆź : Note on the embedding properties for Weighted Sobolev spaces in unbounded domains,
    ‰ž—p‰šĶŒ¤‹†‰ļC”MŠCC2006”N2ŒŽ

  5. Žį‹·@“O : ”ńüŒ`ŒÅ—L’l–ā‘č‚ĢüŒ`‰»–ā‘č‚ɂ؂Ƃ錵–§‰š‚É‚Ā‚¢‚āC
    —“’J‘åŠw”—‰ČŠwƒZƒ~ƒi[C—“’J‘åŠwC2006”N2ŒŽ

  6. ‘剮@”ŽEE: ”ń—LŠE‚ȏd‚ŻŠÖ”‚šŽ‚Ād‚Ż•t‚«ƒ\ƒ{ƒŒƒt‹óŠŌ‚ĢE„‚ߍž‚Ż‚É‚Ā‚¢‚Ä C
    —“’J‘åŠw”—‰ČŠwƒZƒ~ƒi[C—“’J‘åŠwC2006”N2ŒŽ

  7. ‰Y–ģ@“¹—Y : ‹óŠŌ”ńˆź—l‚Č‘oˆĄ’čŒ^”½‰žŠgŽU•ū’öŽ®‚ÉŒ»‚ź‚é‘JˆŚ‘w‚ĘƒXƒpƒCƒN‚É‚Ā‚¢‚āC
    “Œ–k‘åEw”Šw‹³ŽŗƒZƒ~ƒi[C“Œ–k‘åŠwC2005”N12ŒŽ.

  8. Žį‹·@“O : Chafee-Infante–ā‘č‚ĢüŒ`‰»–ā‘č‚É‚Ø‚Æ‚éŒÅ—L’l‚ĘŒÅ—LŠÖ”C
    “śE{”Šw‰ļ‘‡•Ŗ‰Č‰ļC‰ŖŽR‘åŠwC2005”N9ŒŽ.

  9. ‘剮@”Žˆź : Žw”ŠÖ”‚šd‚Ż‚ÉŽ‚Ād‚Ż•t‚«ƒ\ƒ{ƒŒƒt‹óŠŌ‚Ģ–„‚ߍž‚Ż‚É‚Ā‚¢‚āC
    “ś–{”Šw‰ļ‘‡•Ŗ‰Č‰ļC‰ŖŽR‘åŠwC2005”N9ŒŽ.

  10. Žį‹·@“O : CHAFEE-INFANTE–ā‘č‚ĢüŒ`‰»–ā‘č‚É‚Ø‚Æ‚éŒÅ—L’l‚ĘŒÅ—LŠÖ”‚ĢŒöŽ®C
    ‘ę27‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[C¼]C2005”N8ŒŽ.

  11. ‰Y–ģ@“¹—Y : ‘oˆĄ’čŒ^”½‰žŠgŽU•ū’öŽ®‚ÉŒ»‚ź‚é‘JˆŚ‘w‰š‚Ģƒ‚[ƒXŽw”‚É‚Ā‚¢‚āC
    ‘ę27‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[C¼]C2005”N8ŒŽ.

  12. Hirokazu Ohya : Embedding properties for Weighted-Sobolev spaces in unbounded domains,
    PDE's seminar, Worcester Polytechnic Institute, USA Aug 2005.

  13. ‰Y–ģ@“¹—YFStability of steady-state solutions with transition layers for a bistable reaction-diffusion equation,
    RIMSŒ¤‹†W‰ļu•Ļ•Ŗ–ā‘č‚Ę‚»‚ĢŽü•ÓvEC‹ž“s‘åŠwC2005”N6ŒŽD
2004”N“xF

  1. ²“”@“TOFGray-Scottƒ‚ƒfƒ‹‚Ģ’čķ‰š‚É‚Ā‚¢‚Ä,
    “ś–{”Šw‰ļ”N‰ļC“ś–{‘åŠwC2005”N3ŒŽD

  2. ‰Y–ģ@“¹—YF‘oˆĄ’čŒ^”½‰žŠgŽU•ū’öŽ®‚Ģ‘JˆŚ‘w‚āƒXƒpƒCƒN‚šŽ‚Ā‰š‚ĢˆĄ’萫,
    “ś–{”Šw‰ļ”N‰ļC“ś–{‘åŠwC2005”N3ŒŽD

  3. Žį‹·@“OFGeneration of interfaces to Lotka-Volterra competition-diffusion system with large interaction rates,
    “ś–{”Šw‰ļ”NEEC“ś–{‘åŠwEC2005”N3ŒŽD

  4. Žį‹·@“OFGeneration of interfaces to Lotka-Volterra competition diffusion system with large interaction,
    ”Šw‘‡ŽįŽčŒ¤‹†W‰ļ, –kŠC“¹‘åŠw, 2005”N2ŒŽD

  5. Žį‹·@“OFGeneration of corner-layer to Lotka-Volterra competition diffusion system with large interaction rates,
    Workshop on Mathematical and Numerical Analysis of Nonlinear Phenomena, “Œ‹ž“s—§‘åŠw, 2005”N2ŒŽD

  6. ²“”@“TOFSome stationary problem for the Gray-Scott model,
    Workshop on Mathematical and Numerical Analysis of Nonlinear Phenomena, “Œ‹ž“s—§‘åŠw, 2005”N2ŒŽD

  7. ²“”@“TOFGray-Scottƒ‚ƒfƒ‹‚Ģ’čķ‰š‚É‚Ā‚¢‚Ä,
    ‘ę30‰ń”­“W•ū’öŽ®Œ¤‹†‰ļC’†‰›‘åŠwC2004”N12ŒŽD

  8. ‰Y–ģ@“¹—YF‘oˆĄ’čE^‚Ģ”½‰žŠgŽU•ū’öŽ®‚ÉŒ»‚ź‚é‘JˆŚ‘w‚āƒXƒpƒCƒN‚šŽ‚Ā‰š‚ĢˆĄ’萫,
    ‘ę30‰ń”­“W•ū’öŽ®Œ¤‹†‰ļC’†‰›‘åŠwC2004”N12ŒŽD

  9. Žį‹·@“OF‹£‡Œ^”½‰žŠgŽU•ū’öŽ®Œn‚ĢŠE–ŹŒ`¬‚ĢƒvƒƒZƒX‚É‚Ā‚¢‚Ä,
    ‘ę30‰ń”­“W•ū’öŽ®Œ¤‹†‰ļC’†‰›‘åŠwC2004”N12ŒŽD

  10. ‹v“”@t‰īFPositive solutions to some strongly coupled diffusion systems,
    ‘ę‚Q‰ń•l¼•Ī”÷•Ŗ•ū’öŽ®Œ¤‹†W‰ļ, Ć‰Ŗ‘åŠw, 2004”N12ŒŽD

  11. ‰Y–ģ@“¹—YFSteady-states with transition layers and spikes for a bistable reaction-diffusion equation,
    Mathematical Approach to Nonlinear Phenomena; Modeling, Analysis and Simulations,
    Third Polish Japanese Days, ē—t‘åŠw, 2004”N11ŒŽ.

  12. Žį‹·@EOFGeneration of an interface of competition-diffusion system with large interaction,
    RIMSŒ¤‹†W‰ļu”­“W•ū’öŽ®‚ʉš‚Ģ‘Q‹ß‰šĶv, ‹ž“s‘åŠw, 2004”N11ŒŽ.

  13. ‹v“”@t‰īFPositive solutions to some cross-diffusion systems in population dynamics,
    RIMSŒ¤‹†W‰ļu”½‰žŠgŽUŒn‚ÉŒ»‚ź‚鎞E‹óŠŌƒpƒ^[ƒ“‚ĢƒƒJƒjƒYƒ€vC‹ž“s‘åŠwC2004”N10ŒŽ.

  14. ‹v“”@t‰īFCoexistence states to a prey-predator model with nonlinear diffusion,
    “ś–{”Šw‰ļ‘‡•Ŗ‰Č‰ļC–kŠC“¹‘åŠwC2004”N9ŒŽD

  15. ‘剮@”ŽˆźF‚ ‚é‚Q“_‹«ŠE’l–ā‘č‚ɂ؂Ƃ鐳’l‰š‚Ģ‘½d«‚É‚Ā‚¢‚Ä,
    “ś–{”Šw‰ļ‘‡•Ŗ‰Č‰ļC–kŠC“¹‘åŠwC2004”N9ŒŽD

  16. ‘剮@”ŽˆźF”ń—LŠE—Ģˆę‚ɂ؂Ƃ锼üŒ^‘ȉ~Œ^•ū’öŽ®‚ɂ؂Ƃ鉚‚Ģ‘½d«‚É‚Ā‚¢‚Ä,
    ˆ¤•Q‘åŠw‚É‚Ø‚Æ‚é”÷•Ŗ•ū’öŽ®ƒZƒ~ƒi[Cˆ¤•Q‘åŠwC2004”N9ŒŽD

  17. ²“”@“TOFGray-Scottƒ‚ƒfƒ‹‚Ģ’čķ‰š‚É‚Ā‚¢‚Ä,
    ‘ę26‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[C‰œ‘½–€C2004”N8ŒŽD

  18. ‰Y–ģ@“¹—YF‚ ‚é‘oˆĄ’čŒ^•ū’öŽ®‚É‘Ī‚·‚é‘JˆŚ‘w‚āƒXƒpƒCƒN‚šŽ‚Ā‰š‚ĢˆĄ’萫,
    ‘ę26‰ń”­“WEū’öŽ®ŽįŽčƒZƒ~ƒi[C‰œ‘½–€C2004”N8ŒŽD

  19. Žį‹·@“OFGeneration of corner layer of Lotka-Volterra competition model with large diffusion,
    ‘ę26‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[C‰œ‘½–€C2004”N8ŒŽD

  20. ‘剮@”ŽˆźFE ‚锼üŒ^‘ȉ~Œ^•ū’öŽ®‚ɂ؂Ƃ鐳’l‰š‚Ģ‘½d«‚É‚Ā‚¢‚Ä,
    ‘ę26‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[C‰œ‘½–€C2004”N8ŒŽD

  21. Michinori IshiwataFExistence of a stable set for some nonlinear parabolic equation involving critical Sobolev exponent,
    The 5th International Congress of Dynamical Systems and Differential Equations, Univ. California State Polytechnic at Pomona, USA, June, 2004.

  22. Kosuke KutoFCoexistence states for a prey-predator model with cross-diffusion,
    The 5th International Congress of Dynamical Systems and Differential Equations, Univ. California State Polytechnic at Pomona, USA, June, 2004.

  23. Michio UranoFTransition layers and spikes for a reaction-diffusion equation with bistable nonlinearity,
    The 5th International Congress of Dynamical Systems and Differential Equations, Univ. California State Polytechnic at Pomona, USA, June, 2004.

  24. Hirokazu OhyaFMultiple positive solutions for some semilinear elliptic equations with concave-convex nonlinearity,
    The 5th International Congress of Dynamical Systems and Differential Equations, Univ. California State Polytechnic at Pomona, USA, June, 2004.

  25. ‘剮@”ŽˆźF‚ ‚锼üŒ^‘ȉ~Œ^•ū’öŽ®‚ɂ؂Ƃ鐳’l‰š‚Ģ‘½d‘¶Ż‚É‚Ā‚¢‚āC
    •Ļ•Ŗ–ā‘čƒZƒ~ƒi[C“Œ‹ž“s—§‘åŠwC2004”N6ŒŽD
2003”N“xF
  1. ‰Y–ģ@“¹—YF‚ ‚é‘oEĄ’čŒ^”½‰žŠgŽU•ū’öŽ®‚Ģ‰š‚É‘ĪE·‚é‘JˆŚ‘w‚ĘƒXƒpƒCƒNEɂĀ‚¢‚Ä,
    “ś–{”Šw‰ļ”N‰ļC’}”g‘åŠwC2004”N3ŒŽD

  2. ‘剮@”ŽˆźF‚ ‚锼üŒ`‘ȉ~Œ^•ū’öŽ®‚É‚Ø‚Æ‚éŽw”ŒøŠ‚·‚鐳’l‰š‚Ģ‘½d«‚É‚Ā‚¢‚Ä,
    “ś–{”Šw‰ļ”N‰ļC’}”g‘åŠwC2004”N3ŒŽD

  3. Ī“n ’Ź“æFA remark on the asymptotic behavior of some solutions for nonlinear parabolic equations involving critical Sobolev exponent,
    “ś–{”Šw‰ļ”N‰ļC’}”g‘åŠwC2004”N3ŒŽD

  4. Ī“n@’Ź“æFAsymptotic behavior of some global solutions of nonlinear parabplic problem with critical Sobolev exponent,
    ‰ž—p‰šĶŒ¤‹†‰ļC“’‰ĶŒ“C2004”N3ŒŽD

  5. ‰Y–ģ@“¹—YF‘oˆĄ’č€‚šŽ‚Ā”½‰žEgŽU•ū’öŽ®‚É‘Ī‚·‚é‘JˆŚ‘w‚ĘƒXƒpƒCƒN,
    ‰ž—p‰šĶŒ¤‹†‰ļC“’‰ĶŒ“C2004”N3ŒŽD

  6. ‘剮@”ŽˆźFMultiplicity results for some semilinear elliptic equations with concave-convex nonlinearity,
    ‰ž—p‰šĶŒ¤‹†‰ļC“’‰ĶŒ“C2004”N3ŒŽD

  7. Ī“n@’Ź“æFAsymtotic behavior of solutions for some nonlinear parabolic equations involving critical Sobolev exponent,
    Ć‰Ŗ‘åŠwƒZƒ~ƒi[, Ć‰Ŗ‘åŠw, 2004”N2ŒŽ.

  8. Ī“n@’Ź“æFOn the asymptotic behavior of some global solutions for nonlinear parabolic problems with critical Sobolev nonlinearity,
    —“’J‘åŠwƒZƒ~ƒi[, —“’J‘åŠw, 2004”N2ŒŽ.

  9. Ī“n@’Ź“æFOn the asymptotic behavior of some global solutions of nonlinear parabolic problems with critical Sobolev inequality,
    ‘ę 4 ‰ńŽRŒū‚É‚Ø‚Æ‚é•Ī”÷•Ŗ•ū’öŽ®‡hƒZƒ~ƒi[, KKR ŽRŒū‚ ‚³‚­‚ē, 2004”N2ŒŽ.

  10. ‘剮@”ŽˆźFMultiplicity of rapidly decaying solutions for some semilinear elliptic equations with concave-convex nonlinearity,
    U“®—˜_ƒ[ƒNƒVƒ‡ƒbƒvCˆ¤•Q‘åŠwC2004”N2ŒŽD

  11. Ī“n@’Ź“æFAsymptotic behavior of some global solutions for nonlinear parabolic problems with scale-invarinat Lyapunov functionals,
    L“‡‘åŠw”—‰šĶƒZƒ~ƒi[, L“‡‘åŠw, 2004”N1ŒŽ.

  12. Ī“n@’Ź“æFAsymptotic behavior of some global solutions for nonlinear parabolic problems with critical Sobolev nonlinearity,
    ‘ę 3 ‰ń•Ī”÷EŖ•ū’öŽ®ƒ[ƒNƒVƒ‡ƒbƒv, ƒEEFƒ‹ƒTƒ“ƒsƒA‘å•Ŗ, 2004”N1ŒŽ.

  13. –å“c@’qmA‹v“”@t‰īFPositive steady-states for a prey-predator model with nonlinear diffusion,
    ”­“W•ū’öŽ®Œ¤‹†W‰ļC’†‰›‘åŠwC2003”N12ŒŽD

  14. ‰Y–ģ@“¹—YF‘oˆĄ’č€‚šŽ‚Ā”½‰žŠgŽU•ū’öŽ®‚Ģ‘JˆŚ‘w‚ĘƒXƒpƒCƒN‚É‚Ā‚¢‚Ä,
    ”­“W•ū’öŽ®Œ¤‹†W‰ļC’†‰›‘åŠwC2003”N12ŒŽD

  15. ‘剮@”ŽˆźFŒł”z€‚šŠÜ‚Ž”¼üŒ`‘ȉ~Œ^•ū’öŽ®‚É‚Ø‚Æ‚é Žw”ŒøEŠ‚·‚鐳’l‰š‚Ģ‘½d«‚É‚Ā‚¢‚Ä,
    ”­“W•ū’öŽ®Œ¤‹†W‰ļC’†‰›‘åŠwC2003”N12ŒŽD

  16. Ī“n@’Ź“æFAsymtotic behavior of solutions for some nonlinear parabolic equations involving critical Sobolev exponent,
    Fudan University, Shanghai, China, 2003”N11ŒŽD

  17. ‰Y–ģ@“¹—YFTransition layers and spikes for a bistable reaction-diffusion equations,
    EĻ•Ŗ–ā‘čƒZƒ~ƒi[C“Œ‹ž“s—§‘åŠwC2003”N11ŒŽD

  18. ‹v“”@t‰īFMultiple existence and stability of steady-states for a prey-predator system
    with cross-diffusion,
    uNon-local Elliptic and Parabolic ProblemsvC‘åć‘åŠwC2003”N11ŒŽD

  19. Ī“n@’Ź“æFAsymptotic behavior of some global solutions for nonlinear parabolic problems with critical Sobolev nonlinearity,
    uPDEs and Phenomena in Miyazaki 2003vC‹{č‘åŠwC2003”N11ŒŽD

  20. Ī“n@’Ź“æFMorse polynomials for functionals associated to some nonlinear elliptic problems involving nearly critical exponent,
    u”÷•Ŗ•ū’öŽ®‚Ę•Ø—”ŠwvC“Œ‹ž‘åŠwC2003”N10ŒŽD

  21. ‰Y–ģ@“¹—YFTransition layers and spikes for a bistable reaction-diffusion equations,
    RIMSŒ¤‹†W‰ļu”­“W•ū’öŽ®‚ʉš‚Ģ‘Q‹ß‰šĶvC ‹ž“s‘åŠwC2003”N10ŒŽD

  22. Žį‹·@“OFGierer-Meinhardt shadow system ‚ÉŒ»‚ź‚é’čķƒpƒ^[ƒ“‚Ģ ˆĄ’萫‚Ę Hopf•ŖŠņ‚É‚Ā‚¢‚Ä,
    ‘ę25‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[C‘¾É•{C2003”N8ŒŽD

  23. ²“”@“TOFGray-Scott ƒ‚ƒfƒ‹‚É‚Ø‚Æ‚éis”g‰š‚É‚Ā‚¢‚Ä,
    ‘ę25‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[C‘¾É•{C2003”N8ŒŽD

  24. ‰Y–ģ@“¹—YFTransition layers and spikes for a bistable reaction-diffusion equation,
    ‘ę25‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[EC‘¾É•{C2003”N8ŒŽD

  25. ‘åE®@”ŽˆźEF”ń—LŠE—Ģˆę‚É‚Ø‚Æ‚é‚ ‚鏀üŒ^‘ȉ~Œ^•ū’öŽ®‚É‚Ā‚¢‚Ä,
    ‘ę25‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[C‘¾É•{C2003”N8ŒŽD

  26. Ī“n@’Ź“æFMorse theoretical approach for the existence of multiple solutions of some nonlinear elliptic problems with nearly critical exponent,
    —Šw•”‰šĶƒZƒ~ƒi[C_ŒĖ‘åŠwC2003”N7ŒŽD

  27. ‘剮@”ŽˆźF”ń—LŠE—Ģˆę‚É‚Ø‚Æ‚é‚ ‚鏀üŒ^‘ȉ~E^•ū’öŽ®‚Ģ‰š\‘¢‚É‚Ā‚¢‚Ä,
    •Ļ•Ŗ–ā‘čƒZƒ~Ei[C“Œ‹ž“s—§‘åŠwC2003”N7ŒŽD

  28. ‘剮@”ŽˆźFExistence results for some quasilinear elliptic equations in an unbounded domain,
    RIMSŒ¤‹†W‰ļu•Ļ•Ŗ–ā‘č‚Ę‚»‚ĢŽü•ÓvC‹žEs‘åŠwC2003”N6ŒŽD

  29. Ī“n@’Ź“æFAn introduction to Morse theory with applications to nonlinear elliptic equations,
    Šō‰½Šw‚ʁEؗŠwƒZƒ~ƒi[C ‘ˆī“c‘åŠwC2003”N6ŒŽD

2002”N“xF
  1. Ī“n@’Ź“æFMultiplicity of solutions for some semilinear elliptic equations involving nearly critical exponent: Morse theoretical approach,
    “ś–{”Šw‰ļ”N‰ļC “Œ‹ž‘åŠwC2003”N3ŒŽD

  2. ‘剮@”ŽˆźF—ÕŠEŽw”‚šŽ‚Ā‚ ‚鏀üŒ`‘ȉ~Œ^•ū’öŽ®‚É‚Ā‚¢‚Ä,
    “ś–{”Šw‰ļ”N‰ļC “Œ‹ž‘åŠwC2003”N3ŒŽD

  3. ‰Y–ģ@“¹—YFTransition layers and spikes for a bistable reaction-diffusion equation,
    ‘ę10‰ń‰ž—p‰šĶŒ¤‹†‰ļƒVƒ“ƒ|ƒWƒEƒ€C” Ŗ“’–{C2003”N3ŒŽD

  4. Žį‹·@“OFStability-change and Hopf-bifurcation phenomena arising in an activator-inhibitor model,
    ‘ę10‰ń‰ž—p‰šĶŒ¤‹†‰ļƒVƒ“ƒ|ƒWƒEƒ€C” Ŗ“’–{C2003”N3ŒŽD

  5. ‘剮@”ŽˆźFExistence results for some quasilinear elliptic equations involoving critical Sobolev exponents,
    ‘ę10‰ń‰ž—p‰šĶŒ¤‹†‰ļƒVƒ“ƒ|ƒWƒEƒ€C” Ŗ“’–{C2003”N3ŒŽD

  6. ‹v“”@t‰īFPostive solutions to reaction-diffusion systems with cross-diffusion,
    ‘ę28‰ń”­“W•ū’öŽ®Œ¤‹†‰ļC’†‰›‘åŠwC2002”N12ŒŽD

  7. ‘剮@”ŽˆźFExistence results for some quasilinear elliptic equations involoving critical Sobolev exponents,
    ‘ę28‰ń”­“W•ū’öŽ®Œ¤‹†‰ļC’†‰›‘åŠwC2002”N12ŒŽD

  8. ‹v“”@t‰īFPositive steady-states for a reaction diffusion system with cross-diffusion,
    ‘ę52‰ńŠwK‰@‘åŠwƒXƒyƒNƒgƒ‹—˜_ƒZƒ~ƒi[C ŠwK‰@‘åŠwC2002”N11ŒŽD

  9. Ī“n@’Ź“æFMultiplicity of solutions for some semilinear ellipric equations with weight functions: Morse theoretical approach,
    ’k˜b‰ļC Ć‰Ŗ‘åŠwC2002”N10ŒŽD

  10. Ī“n@’Ź“æFOn some semilinear elliptic and parabolic equations involving Sobolev critical exponent,
    ’k˜b‰ļC –¼ŒĆ‰®‘åŠwC2002”N10ŒŽD

  11. ‹v“”@t‰īFPositive solutions for reaction-diffusion system with cross-diffusion and related topics,
    Seminor on Theory of Evolution Equations and its ApplicationsC
    ‘åć‘åŠwC2002”N10ŒŽD

  12. ‹v“”@t‰īFStability analysis for steady-states of a prey-predator system with cross-diffusion,
    “ś–{”Šw‰ļ‘‡•Ŗ‰Č‰ļC “‡Ŗ‘åŠwC2002”N9ŒŽD

  13. Ī“n@’Ź“æFMultiplicity of solutions for some semilinear elliptic equations with weight function,
    ’é‘åŠw‚É‚Ø‚Æ‚é”÷•ŖƒZƒ~ƒi[C ’é‘åŠwC2002”N8ŒŽD

  14. ‹v“”@t‰īFStability of steady-state solutions to a prey-predator system with cross-diffution,
    ‘ę24‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[C ‹ß‹E‘åŠwHŠw•”C2002”N8ŒŽD

  15. ²“”@“TOFGray-Scottƒ‚ƒfƒ‹‚É‚Ø‚Æ‚é’čķ‰š‚ĘˆĄ’萫‚É‚Ā‚¢‚Ä,
    ‘ę24‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[C ‹ß‹E‘åŠwHŠw•”C2002”N8ŒŽD

  16. ‰Y–ģ@“¹—YFTransition layers for general bistable equations,
    ‘ę24‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[C ‹ß‹E‘åŠwHŠw•”C2002”N8ŒŽD

  17. Ī“n@’Ź“æFMultiplicity of solutions for some semilinear ellipric equations with weight functions: Morse theoretical approach,
    ’k˜b‰ļC “Œ–k‘åŠwC2002”N6ŒŽD

  18. ‹v“”@t‰īFCoexistence states for a prey-predator system with cross-diffusion,
    •Ļ•Ŗ–ā‘čƒZƒ~ƒi[C “Œ‹ž“s—§‘åŠwC 2002”N5ŒŽ

2001”N“xF
  1. ‹v“”@t‰īFMultiple coexistence states for a prey-predator system with cross-diffusion,
    ‘ę27‰ń”­“W•ū’öŽ®Œ¤‹†‰ļC’†‰›‘åŠwEC2001”N12ŒŽD

  2. ‹v“”@t‰īFRadial solutions of elliptic equations with concave-convex nonlinearity,
    “ś–{”Šw ‰ļ‘‡•Ŗ‰Č‰ļC‹ćB‘åŠwC2001”N10ŒŽD

  3. ‹v“”@t‰īFMultiple existence of steady-states for a prey-predator system with cross-diffusion,
    “ś–{”Šw‰ļ‘‡•Ŗ‰Č‰ļC‹ćB‘åŠwC2001”N10ŒŽD

  4. ‘剮@”ŽˆźFŒł”z€‚šŽ‚Ā”¼üŒ`‘ȉ~Œ^•ū’öŽ®‚Ģ‹…‘ĪĢ‰šW‡‚Ģ‰šĶC
    “ś–{”Šw‰ļ‘‡•Ŗ‰Č‰ļC ‹ćB‘åŠwC2001”N10ŒŽD

  5. ‹v“”@t‰īF‘ŠŒŻŠgŽU€‚š‚ą‚ĀLotka-VolterraŒn‚Ģ³’l’čķ‰š‚ÉŠÖ‚·‚鑽d«,
    ‘ę23‰ń”­“W•ū’ö Ž®ŽįŽčƒZƒ~ƒi[C¼ŽRC2001”N8ŒŽD

  6. ‘剮@”ŽˆźFKeller-Segel ƒ‚ƒfƒ‹‚ĢŠÖ˜A‚·‚锼EE`‘ȉ~Œ^•ū’öŽ®‚Ģ³’l‰š‚É‚Ā‚¢‚āC
    ‘ę23‰ń”­“W •ū’öŽ®ŽįŽčƒZƒ~ƒi[C¼ŽRC2001”N8ŒŽD

  7. ‹v“”@t‰īFDiffusion problems with concave-convex nonliearities,
    RIMSŒ¤‹†W‰ļu•Ļ•Ŗ–ā‘č‚Ę‚»‚ĢŽü•ÓvC‹ž“s‘åŠwC2001”N6ŒŽD

2000”N“xF
  1. Īģ@—RˆźFSteady-state solutions for reaction diffusion systems for general prey-predator model,@
    ‘ę8‰ń‰ž—p‰šĶŒ¤‹†‰ļC“’‰ĶŒ“C2001”N2ŒŽD

  2. ‘剮@”ŽˆźFKeller-Segel ƒ‚ƒfƒ‹‚ÉŠÖ˜A‚·‚锼üŒ`‘ȉ~Œ^•ū’öŽ®‚Ģ‰šĶC
    ‘ę8‰ń‰ž—p‰šĶŒ¤‹†‰ļC“’‰ĶŒ“C2001”N2ŒŽ

  3. Īģ@—RˆźFSteady-state solutions for reaction diffusion systems with Holling-type interaction,@
    ‘ę26‰ń”­“W•ū’öŽ®Œ¤‹†‰ļCē—t‘åŠwC2000”N12ŒŽD

  4. ’†“‡@ŽåŒbF‘oˆĄ’č•ū’öŽ®‚Ģ’čķ–ā‘č‚ÉŒ»‚ź‚é–§W‚µ‚½‘JˆŚ‘w‚ĘƒXƒpƒCƒNC
    RIMSŒ¤‹†W‰ļu”ńüŒ`”­“W•ū’öŽ®‚Ę ‚»‚Ģ‰ž—pvC‹ž“s‘åŠwC2000”N10ŒŽD

  5. ’†“‡@ŽåŒbFStationary solutions of a bistable equation with clustering layers and spikesC
    RIMSŒ¤‹†W‰ļuŽ© —R‹«ŠE–ā‘čvC‹ž“s‘åŠwC2000”N10ŒŽD

  6. ’†“‡@ŽåŒbF‘oˆĄ’čŒ^”½‰žŠgŽU•ū’öŽ®‚Ģ’čķ‰š‚É‚Ā‚¢‚ā\Ü‚čd‚Č‚Į‚½‘JˆŚ‘w‚ĘƒXƒpƒCƒN\C
    “ś –{”Šw‰ļ‘‡•Ŗ‰Č‰ļC‹ž“s‘åŠwC2000”N9ŒŽD

  7. ‹v“”@t‰īFSublinear term ‚š‚ą‚ĀŠgŽU•ū’öŽ®‚Ģ‰š‚Ģ‹““®‚É‚Ā‚¢‚āC
    ‘ę22‰ń”­“W•ū’öŽ®ŽįŽčƒZ ƒ~ƒi[Cå‘äC2000”N8ŒŽD

  8. Kousuke KutoFStabilization of solutions of a diffusion problem with a non-Lipschitz reaction term,
    The 3rd World Congress of Nonlinear Analysts, Catania, Italy, July, 2000.

  9. Kimie NakashimaFMulti-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation,
    The 3rd World Congress of Nonlinear Analysts, Catania, Italy, July, 2000.

  10. Shingo TakeuchiFPartial differential equations with degenerate diffusion and logisitic reaction,
    The 3rd World Congress of Nonlinear Analysts, Catania, Italy, July, 2000.

  11. Kimie NakashimaFMorse indices of multi-layered stationary solutions for a spatially
    inhomogeneous Allen-Cahn equation,
    Dynamics in Inhomogeneous Media, Univ. of Athens, Greece, June, 2000.

1999”N“xF
  1. ’|“ą@TŒįFMultiplicity result for a degenerate elliptic equation with logisitic reaction,
    “ś–{”Šw‰ļ”N ‰ļC‘ˆī“c‘åŠwC2000”N3ŒŽD

  2. ‹v“”@t‰īFSublinear term ‚š‚ą‚ĀŠgŽU•ū’öŽ®‚Ģ’čķ‰š‚Ę‚»‚ĢˆĄ’萫‚É‚Ā‚¢‚āC
    “ś–{”Šw‰ļ”N‰ļC ‘ˆī“c‘åŠwC2000”N3ŒŽD

  3. ‹v“”@t‰īFStabilization of solutions of a diffusion problem with a non-Lipschitz reaction term,
    ‘ę7‰ń‰ž—p‰šĶŒ¤‹†‰ļCˆÉ“¤’·‰ŖC2000”N3ŒŽD

  4. œA£@Œ’•¶FMultiple existence of positive solutions of competing species equations with diffusion
    and large interactions,
    ‘ę‚V‰ń‰ž—p‰šĶŒ¤‹†‰ļCˆÉ“¤’·‰ŖC2000”N3ŒŽD

  5. ’|“ą@TŒįFMultiplicity result for a degenerate elliptic equation with logisitic reaction,
    u”ńüŒ`‚ɂ؂Ƃ鉚‚Ģ‹óŠŌ\‘¢‚Ęƒ_ƒCƒiƒ~ƒNƒXvŒ¤‹†W‰ļC“Œ‹ž‘åŠwC2000”N1ŒŽD

  6. ’|“ą@ETŒįFMultiplicity result for a degenerate elliptic equation with logisitic reaction,
    ‘ę25 ‰ń”­“W•ū’öŽ®Œ¤‹†‰ļCē—t‘åŠwC1999”N12ŒŽD

  7. ‹v“”@t‰īFSublinear term ‚š‚ą‚ĀŠgŽU•ū’öŽ®‚Ģ‰šW‡‚É‚Ā‚¢‚Ä,
    ‘ę25‰ń”­“W•ū’öŽ®Œ¤‹†‰ļC ē—t‘åŠwC1999”N12ŒŽD

  8. Kimie Nakashima: Multi-layered stationary solutions for a spatially inhomogeneous Allen Cahn equation,
    International Conference on Free Boundary Problems: Theory and Applications, Chiba Univ., November, 1999.

  9. Shingo Takeuchi: Behavior of solutions near the flat hats of stationary solutions for a degenerate
    parabolic equation,
    International Conference on Free Boundary Problems:
    Theory and Applications, Chiba Univ., November, 1999.

  10. ’†“‡@ŽåŒbF‚ ‚é‘oˆĄ’čŠgŽU•ū’öŽ®‚Ģ’čķ–ā‘č‚ÉŒ»‚ź‚éˆĄ’č‘JˆŚ‘w‚Ę•sˆĄ’č‘JˆŚ‘w‚É‚Ā‚¢‚āC
    “ś–{”Šw‰ļ‘‡•Ŗ‰Č‰ļCL“‡‘åŠwC1999”N9ŒŽD

  11. ’|“ą@TŒįF‚ ‚é‘Ž‰»‘ȉ~Œ^•ū’öŽ®‚Ģ³’l‰š‚ĢŒ`ó‚Ę‘½d«‚É‚Ā‚¢‚Ä,
    ‘ę21‰ń”­“WŽįŽčƒZƒ~ƒi[C‹ž“sC1999”N8ŒŽD

  12. ‹v“”@t‰īFSublinear - superlinear type‚Ģ”ńüŒ`€‚š”ŗ‚¤ŠgŽU•ū’öŽ®‚Ģ‰š‚Ģ‹““®‚É‚Ā‚¢‚Ä,
    ‘ę21‰ń”­“WŽįŽčƒZƒ~ƒi[C‹ž“sC1999”N8ŒŽD

  13. ’|“ą[email protected]TŒįFDegenerate elliptic equation with logisitic reaction,
    RIMSŒ¤‹†W‰ļu•Ļ•Ŗ–ā‘č‚Ę‚»‚ĢŽü•ÓvC‹ž“s‘åŠwC1999”N6ŒŽD

1998”N“xF
  1. ’|“ą@TŒįFPositive solutions for a degenerate elliptic equation with logisitic reaction,
    “ś–{”Šw‰ļ”N‰ļCŠwK‰@‘åŠwC1999”N3ŒŽD

  2. Kimie Nakashima: Boundary layers in a steady-state problem for the Lotka - Volterra competition model,
    Analyse Nonlineaire et Problemes de Transitions de Phase, Univ. de Paris-Dud, France, March, 1999.

  3. ’|“ą@TŒįFPositive solutions of a degenerate elliptic equation with logistic reaction,
    ‘ę24‰ń ”­“W•ū’öŽ®Œ¤‹†‰ļCē—t‘åEwC1998”N12ŒŽD

  4. ‘åé@‰pōFMultiple coexistence states for Lotka-Volterra competition systems with diffusion,
    ‘ę24‰ń”­“W•ū’öŽ®Œ¤‹†‰ļCē—t‘åŠwEC1998”N12ŒŽD

  5. Žsģ@’B•vFSome remarks on global solutions to quasilinear parabolic system with cross-diffusion,
    ‘ę24‰ń”­“W•ū’öŽ®Œ¤‹†‰ļCē—t‘åŠwC1998”N12ŒŽD

  6. ’|“ą@TŒįFBehavior of solutions near the flat hats of stationary solutions for a degenerate p-Laplacian, Workshop on Phase TransitionC
    ē—t‘åŠwC1998”N10ŒŽD

  7. ’|“ą@TŒįF‚ ‚é‘Ž‰»•ś•ØŒ^•ū’öE®‚ÉŠÖ‚·‚é’čķ‰š‚Ģflat hat ‚ĢŒų‰Ź‚ɁEĀ‚¢‚Ä,
    ‘ę20‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[C•l¼C1998”N8ŒŽD

1997”N“xF
  1. ’†“‡@ŽåŒbF‚ ‚锼üŒ`‘ȉ~Œ^•ū’öŽ®‚Ģ‘JˆŚ‘w‚š‚ą‚Ā‰š‚É‚Ā‚¢‚āC
    “ś–{”Šw‰ļ”N‰ļC–¼é‘åŠwC 1998”N3ŒŽD

  2. ’†“‡@ŽåŒbFLotka-Volterra competition model ‚Ģ layer@‚š‚ą‚Ā‰š‚É‚Ā‚¢‚āC
    “ś–{”Šw‰ļ”N‰ļC –¼é‘åŠwC1998”N3ŒŽD

  3. ’|“ą@TŒįF‚ ‚é‘Ž‰»Eś•ØŒ^•ū’öŽ®‚ÉŠÖ‚·‚é—LŒĄŽžŠŌ‚Å‚Ģflat hat ‚ĢŒ`¬‚É‚Ā‚¢‚āC
    “ś–{”Šw‰ļ ”N‰ļC–¼é‘åŠwC1998”N3ŒŽD

  4. œA£@@ŒõF‚ ‚éķ”÷•Ŗ•ū’öŽ®‚Ģ‰Šś’l–ā‘č‚É‘Ī‚·‚鐳’l‰š‚Ģ\‘¢C
    ‘ę23 ‰ń”­“W•ū’öŽ®Œ¤‹†‰ļC ē—t‘åŠwC1997”N12ŒŽD

  5. ’†“‡@ŽåŒbF‚ ‚é‘ȉ~Œ^•ū’öŽ®‚Ģlayer‚šŽ‚Ā‰š‚É‚Ā‚¢‚āC
    ‘ę23 ‰ń”­“W•ū’öŽ®Œ¤‹†‰ļCē—t‘å ŠwC1997”N12ŒŽD

  6. ’|“ą@TŒįF‚ ‚é‘Ž‰»Œ^•ś•ØŒ^•ū’öŽ®‚ÉŠÖ‚·‚é—LŒĄŽžŠŌ‚Å‚Ģflat hat ‚ĢŒ`¬‚É‚Ā‚¢‚āC
    ‘ę23 ‰ń ”­“W•ū’öŽ®Œ¤‹†‰ļCē—t‘åŠwC1997”N12ŒŽD

  7. ‹g“c@“ցFGlobal attractivity of coexistence states for a certain class of reaction diffusion systems
    with 3x3 cooperative matrices,@
    ‘ę23‰ń”­“W•ū’öŽ®Œ¤‹†‰ļCē—t‘åŠwC1997”N12ŒŽD

  8. œA£@@ŒõFStructure of positive radial solutions to the Haraux Weissler equation for a subcritical pC
    “ś–{”Šw‰ļ‘‡•Ŗ‰Č‰ļC“Œ‹ž‘åŠwC1997”N9ŒŽD

  9. œA£@@ŒõFStructure of positive radial solutions to the Haraux Weissler equation for a subcritical pC
    “ś–{”Šw‰ļ‘‡•Ŗ‰Č‰ļC“Œ‹ž‘åŠwC1997”N9ŒŽD

  10. ’|“ą@TŒįF‘Ž‰»p-Laplacian ‚ĢŠgŽU‚Ęcubic like ‚Ģ”½‰žC
    ‘ę19 ‰ń”­“W•ū’öŽ®ŽįŽčƒZƒ~ƒi[C“y ‰YC1997”N8ŒŽD

  11. ’†“‡@ŽåŒbFOn radial and non-radial positive steady states for Lotka-Volterra competitionC
    “ś–{”Šw‰ļ”N‰ļCMB‘åŠwC1997”N3ŒŽD

  12. ’|“ą@TŒįFp-Laplacian ‚šŠgŽU€‚É‚ą‚Ā Chafee-Infante –ā‘čC
    “ś–{”Šw‰ļ‘‡•Ŗ‰Č‰ļCMB‘åŠwC 1997”N3ŒŽD