‘åŠw‰@¶‚É‚æ‚éŒû“ª”•\i”•\ŽÒ–¼C‘è–ÚCŠw‰ï–¼CêŠC”NŒŽj
2018”N“xF
- ‰““¡@^”¿
‘oˆÀ’耂𔺂¤Ž©—R‹«ŠE–â‘è‚ɑ΂·‚é‰ð‚Ìis‘¬“x‚Æ‘Q‹ß“IŒ`óC
‘æ44‰ñ”“W•û’öŽ®Œ¤‹†‰ïC“ú–{—Žq‘åŠwC2018”N12ŒŽD
- —é–Ø@Œ’‰î
”ñüŒ^ŠgŽU•û’öŽ®‚ɑ΂·‚鎩—R‹«ŠE–â‘è‚ÆˆÚ—¬‚ÌŒø‰ÊC
‘æ44‰ñ”“W•û’öŽ®Œ¤‹†‰ïC“ú–{—Žq‘åŠwC2018”N12ŒŽD
- ‰““¡@^”¿
A free boundary problem for a reaction diffusion equation with
positive bistable nonlinearity,
RIMS‹¤“¯Œ¤‹†u”ñüŒ`”“W•û’öŽ®‚ðŠî”Õ‚Æ‚·‚錻‰ð͂Ɍü‚¯‚½”Šw—˜_‚Ì“WŠJvA‹ž“s‘åŠw
”—‰ðÍŒ¤‹†ŠC2018”N10ŒŽD
- Œ“Žq@—T‘å
Properties of spreading solutions to a free boundary problem with
Dirichlet boundary conditions,
12th AIMS Conference on Dynamical Systems, Differential Equations and
applications, ‘—§‘ä˜p‘åŠwC‘ä–kC2018”N7ŒŽD
- ‰““¡@^”¿
Asymptotic behaviors of solutions to nonlinear diffusion y problems with
Dirichlet and free boundary conditions,
12th AIMS Conference on Dynamical Systems, Differential Equations and
applications, ‘—§‘ä˜p‘åŠwC‘ä–kC2018”N7ŒŽD
2017”N“xF
- ¬—Ñ@Œõ–Ø :
”ñüŒ`‘Þ‰»Œ^ŠgŽU‚𔺂¤X—у‚ƒfƒ‹‚É‚¨‚¯‚éˆê—l—LŠE«,
‘æ12‰ñ”ñüŒ`•Δ÷•ª•û’öŽ®‚ƕϕª–â‘èCŽñ“s‘åŠw“Œ‹ž, 2018”N2ŒŽ.
- Œ“Žq@—T‘å :
”—¶‘ÔŠwƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è‚ɑ΂·‚é‰ð‚Ì‘Q‹ß‘¬“xC
‹ãBŠÖ”•û’öŽ®ƒZƒ~ƒi[C•Ÿ‰ª‘åŠwƒZƒ~ƒi[ƒnƒEƒX, 2018”N1ŒŽD
- ŽOD@Œ[–ç :
”ñÄŽŸ‹«ŠEðŒ‚É‚¨‚¯‚éˆê”ʉ» Carleman ƒ‚ƒfƒ‹‚Ì—¬‘Ì—ÍŠw“I‹ÉŒÀ‚ɂ‚¢‚Ä,
‘æ4‚R‰ñ”“W•û’öŽ®Œ¤‹†‰ïC“ú–{—Žq‘åŠw, 201‚V”N12ŒŽ.
- ‰““¡@^”¿ :
‘oˆÀ’耂𔺂¤Ž©—R‹«ŠE–â‘è‚Æ‘Q‹ß‹““®,
‘æ43‰ñ”“W•û’öŽ®Œ¤‹†‰ïC“ú–{—Žq‘åŠw, 2017”N12ŒŽD
- Œ“Žq@—T‘å :
”½‰žŠgŽU•û’öŽ®‚ÌŽ©—R‹«ŠE–â‘è‚ɑ΂·‚é‰ð‚Ì‘Q‹ß‘¬“xC
‘æ43‰ñ”“W•û’öŽ®Œ¤‹†‰ïC“ú–{—Žq‘åŠw, 2017”N12ŒŽD
- Œ“Žq@—T‘å :
”ñÄŽŸƒfƒBƒŠƒNƒŒ‹«ŠEðŒ‚𔺂¤ŒÂ‘ÌŠgŽUƒ‚ƒfƒ‹‚ɂ‚¢‚ÄC
2017H‚̕Δ÷•ª•û’öŽ®ƒZƒ~ƒi[C‘åã‘åŠw, 2017”N9ŒŽD
- ‰““¡@^”¿ :
‘oˆÀ’耂𔺂¤”½‰žŠgŽU•û’öŽ®‚ɑ΂·‚鎩—R‹«ŠE–â‘è,
‘æ39‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[CƒOƒŠ[ƒ“ƒzƒeƒ‹ŽOƒ–ª(Š—ŒSŽsjC2017”N9ŒŽD
- ŽOD@Œ[–ç :
”ñÄŽŸ‹«ŠEðŒ‚ðŽ‚Âˆê”ʉ»‚µ‚½ Carleman ƒ‚ƒfƒ‹‚Ì—¬‘Ì—ÍŠw“I‹ÉŒÀ‚Ö‚ÌŽû‘©‚ɂ‚¢‚Ä,
‘æ39‰ñE“W•ûEöŽ®ŽáŽèƒZƒ~ƒi[CƒOƒŠ[ƒ“ƒzƒeƒ‹ŽOE–ª(E—ŒSEsjC2017”N9ŒŽD
2016”N“xF
- ¬—Ñ@Œõ–Ø :
”ñüŒ`‘Þ‰»Œ^ŠgŽU‚𔺂¤‚ÁX—у‚ƒfƒ‹‚É‚¨‚¯‚é‘åˆæ‰ð‚Ì‘¶ÝC
‘æ11‰ñ”ñüŒ`•Δ÷•ª•û’öŽ®‚ƕϕª–â‘èCŽñ“s‘åŠw“Œ‹ž, 2017”N2ŒŽD
- ŽOD@Œ[–ç :
ŒÂ•Ê—±Žq‚©‚猩‚½ Carleman ƒ‚ƒfƒ‹Œ^•û’öŽ®Œn,
‘æ42‰ñ”“W•û’öŽ®Œ¤‹†‰ïC“ú–{—Žq‘åŠw, 2016”N12ŒŽ.
- Œ“Žq@—T‘å :
”½‰žŠgŽUŒn‹ßŽ—‚É‚æ‚éŒÂ‘ÌŠgŽUƒ‚ƒfƒ‹‚Ì”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“,
‘æ42‰ñ”“W•û’öŽ®Œ¤‹†‰ïC“ú–{—Žq‘åŠw, 2016”N12ŒŽD
- ¬—Ñ@Œõ–Ø :
”ñüŒ`‘Þ‰»Œ^ŠgŽU‚𔺂¤‚ÁX—у‚ƒfƒ‹‚É‚¨‚¯‚é‘åˆæ‰ð‚Ì‘¶ÝC
‘æ42‰ñ”“W•û’öŽ®Œ¤‹†‰ïC“ú–{—Žq‘åŠw, 2016”N12ŒŽD
- ’†ŽR@r•ã :
”—¶‘ÔŠw‚É‚¨‚¯‚é‹óŠÔ“I‚É”ñˆê—l‚ÈðŒ‰º‚ł̎©—R‹«ŠE–â‘è‚ɂ‚¢‚Ä,
‘æ42‰ñ”“W•û’öŽ®Œ¤‹†‰ïC“ú–{—Žq‘åŠw, 2016”N12ŒŽD
- Yuki Kaneko :
Numerical example of a free boundary problem modeling the spreading of speciesC
Japanese-German International Workshop on Mathematical Fluid DynamicsCƒ_ƒ‹ƒ€ƒVƒ…ƒ^ƒbƒg, ƒhƒCƒc, 2016”N12ŒŽD
- Œ“Žq@—T‘å :
ŒÂ‘ÌŠgŽUƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è‚ɑ΂·‚é”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“C
2016‰Ä‚̕Δ÷•ª•û’öŽ®ƒZƒ~ƒi[C‘åã‘åŠw, 2016”N8ŒŽD
- ŽOD@Œ[–ç :
Convergence of hydrodynamical limit for generalized Carleman models,
‘æ38‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C‚ ‚¤‚鋞–ki‹ž“s•{—§ƒ[ƒ~ƒi[ƒ‹ƒnƒEƒX)C2016”N8ŒŽD
- Yuki Kaneko :
Generation of singularity and large time behaviors of solutions for a free boundary problem of a reaction-diffusion equationC
11th AIMS Conference on Dynamical Systems, Differential Equations and ApplicationsCƒtƒƒŠƒ_BƒI[ƒ‰ƒ“ƒh, 2016”N7ŒŽD
- Yuki Kaneko :
Spreading, vanishing and singularity for radially symmetric solutions of a Stefan-type free boundary problemC
International Conference on Reaction-Diffusion EquationsC’†‘l–¯‘åŠw, 2016”N5ŒŽD
2015”N“xF
- Yuki Kaneko :
Spreading and vanishing phenomena in a free boundary problem for nonlinear diffusion equationsC
ALGORITMY 2016: Conference on Scientific ComputationCƒ”ƒBƒ\ƒPEƒ^ƒgƒŠ(ƒXƒƒoƒLƒA), 2016”N3ŒŽD
- Œ“Žq@—T‘å :
ŒÂ‘ÌŠgŽU‚ð•\‚·Ž©—R‹«ŠE–â‘è‚Ì‰ð‹““®‚Æ“ÁˆÙ“_C
‘æ6‰ñˆÚ—¬‚ÆŠgŽU‚Ì”—Cˆ¤•Q‘åŠw, 2015”N12ŒŽD
- ‘êŒû@_—R :
“ú–{Œê‚Å”Šw‚ðŠw‚Ô—¯Šw¶‚Ì“à—e—‰ð‚ðŽx‚¦‚éƒTƒ|[ƒg‚ðl‚¦‚é\‘åŠw”Šw‚ÌŠî‘b‰È–Úu”÷•ªÏ•ªvEuüŒ`‘ã”v‚ÉŠÖ‚µ‚ÄE\,
“dŽqî•ñ’ÊMŠw‰ï@Žvl‚ÆŒ¾ŒêŒ¤‹†‰ï,‘ˆî“c‘åŠw, 2015”N10ŒŽ.
- Œ“Žq@—T‘å :
Spreading, vanishing and singularity for radially symmetric solu-
tions of a Stefan-type free boundary problemC
RIMSŒ¤‹†W‰ïu”ñüŒ`Œ»Û‚̉ð͂ւ̉ž—p‚Æ‚µ‚Ă̔“W•û’öŽ®˜_‚Ì“WŠJvC‹ž“s‘åŠw”—‰ðÍŒ¤‹†Š, 2015”N10ŒŽD
- Œ“Žq@—T‘å :
Ž©—R‹«ŠE‚ðŽ‚Â‹…‘Î̗̈æ‚É‚¨‚¯‚锽‰žŠgŽU•û’öŽ®‚ɂ‚¢‚Ä,
2015H‚̕Δ÷•ª•û’öŽ®ƒZƒ~ƒi[, ‘åã‘åŠw, 2015”N9ŒŽ.
- ¬—Ñ@Œõ–Ø :
A large-time behavior of one dimensional dead core for a reaction-diffusion equation with strong absorption,
‘æ37‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, ¬’M’©—¢ƒNƒ‰ƒbƒZƒzƒeƒ‹, 2015”N8ŒŽ.
- ŽOD Œ[–ç :
Diffusive limits of nonlinear hyperbolic systems with variable coefficients,
‘æ37‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, ¬’M’©—¢ƒNƒ‰ƒbƒZƒzƒeƒ‹, 2015”N8ŒŽ.
- Yuki Kaneko :
Spreading and vanishing phenomena for a free boundary problem of reaction-diffusion equations,
Mathematics for Nonlinear Phenomena: Analysis and Computation, ŽD–yƒRƒ“ƒxƒ“ƒVƒ‡ƒ“ƒZƒ“ƒ^[, 2015”N8ŒŽ. (Poster Session)
- Œ“Žq@—T‘å :
ŒÂ‘ÌŠgŽU‚ð•\‚·”½‰žŠgŽU•û’öŽ®‚ÌŽ©—R‹«ŠE–â‘è,
–¾Ž¡”ñüŒ^”—ƒZƒ~ƒi[, –¾Ž¡‘åŠw, 2015”N8ŒŽ.
2014”N“xF
- Yuki Kaneko :
Criteria of spreading and vanishing for a free boundary problem in mathematical ecology,
The 11th Japanese-German International Workshop on Mathematical Fluid Dynamics, ‘ˆî“c‘åŠw, 2015”N3ŒŽ (in English).
- ‰Í‡@—D—C :
¶EÔŒnƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è‚É‚¨‚¯‚é‘嬂ÌspreadingŒ»Û,
‘æ3‰ñuŒ»Û‚Ì”—vŒ¤‹†‰ï, ˆÉ“¤ŽRŒ¤CƒZƒ“ƒ^[, 2015”N1ŒŽ.
- ’Â ”@Žì :
Mathematical analysis for a model of Hepatitis B Virus,
‘æ3‰ñuŒ»Û‚Ì”—vŒ¤‹†‰ï, ˆÉ“¤ŽRŒ¤CƒZƒ“ƒ^[, 2015”N1ŒŽ.
- ŽR–{ —æ :
”ñüŒ`ŠgŽU‚𔺂¤X—у‚ƒfƒ‹‚ɂ‚¢‚Ä,
‘æ3‰ñuŒ»Û‚Ì”—vŒ¤‹†‰ï, ˆÉ“¤ŽRŒ¤CƒZƒ“ƒ^[, 2015”N1ŒŽ.
- ‹g“c@—Y‰î :
Global stability for semilinear Volterra diffusion equations with spatial inhomogeneity and advection,
‘æ3‰ñuŒ»Û‚Ì”—vŒ¤‹†‰ï, ˆÉ“¤ŽRŒ¤CƒZƒ“ƒ^[, 2015”N1ŒŽ.
- Œ“Žq@—T‘å :
ŒÂ‘ÌŠgŽU‚Æ”½‰žŠgŽU•û’öŽ®‚ÌŽ©—R‹«ŠE–â‘è,
‘æ3‰ñuŒ»Û‚Ì”—vŒ¤‹†‰ï, ˆÉ“¤ŽRŒ¤CƒZƒ“ƒ^[, 2015EN1ŒŽ.
- ‰Í‡@—D—C :
¶‘ÔŒnƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è‚É‚¨‚¯‚é‘嬂ÌspreadingŒ»Û,
‘æ40‰ñ”“W•û’öŽ®Œ¤‹†‰ï, “ú–{—Žq‘åŠw, 2014”N12ŒŽ.
- ŽR–{@—æ :
”ñüŒ`ŠgŽU‚𔺂¤X—у‚ƒfƒ‹‚ɂ‚¢‚Ä,
‘æ40‰ñ”“W•û’öŽ®Œ¤‹†‰ï, “ú–{—Žq‘åŠw, 2014”N12ŒŽ.
- ‹g“c@—Y‰î :
‹óŠÔ”ñˆê—l«‚𔺂¤”¼üŒ`VolterraŠgŽU•û’öŽ®‚̉ð‚Ì‘Q‹ß‹““®,
‘æ40‰ñ”“W•û’öŽ®Œ¤‹†‰ï, “ú–{—Žq‘åŠw, 2014”N12ŒŽ.
- Œ“Žq@—T‘å :
ŒÂ‘ÌŠgŽUƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è‚ÉŒ»‚ê‚éSpreading‚ÆVanishing ‚̈ê”ÊŒ^,
‘æ40‰ñ”“W•û’öŽ®Œ¤‹†‰ï, “ú–{—Žq‘åŠw, 2014”N12ŒŽ.
- Yuki Kaneko :
Spreading and vanishing for a free boundary problem in population ecology,
International Research Training Group Seminar, TU Darmstadt (ƒ_ƒ‹ƒ€ƒVƒ…ƒ^ƒbƒgH‰È‘åŠw), Germany, 2014”N11ŒŽ (in English).
- Yusuke Kawai :
Big and Small Spreading Phenomena for Free Boundary Problems of Spruce Budworm Models,
RIMS workshopuReconsideration of the method of estimates on partial differential equations from a point of view of the theory on abstract evolution equationsv,
‹ž“s‘åŠw”—‰ðÍŒ¤‹†Š, 2014”N10ŒŽ.
- Yusuke Yoshida :
Asymptotic behavior of solutions for semilinear Volterra diffusion equations with spatial inhomogeneity,
RIMS WorkshopuReconsideration of the method of estimates on partial differential equations from a point of view of the theory on abstract evolution equationsv,
‹ž“s‘åŠw”—‰ðÍŒ¤‹†Š, 2014”N10ŒŽ (in English).
- ‰Í‡@—D—C :
Holling IIIŒ^‚̶‘ÔŒnƒ‚ƒfƒ‹‚É‚¨‚¯‚鎩—R‹«ŠE–â‘è,
‘æ36‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, ‹x‰É‘º“숢‘h, 2014”N8ŒŽ.
- ‹g“c@—Y‰î :
‹óŠÔ”ñˆê—l«‚𔺂¤”¼üŒ`VolterraŠgŽU•û’öŽ®‚ɂ‚¢‚Ä,
‘æ36‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, ‹x‰É‘º“숢‘h, 2014”N8ŒŽ.
- Œ“Žq@—T‘å :
‘½ŽŸŒ³—̈æ‚É‚¨‚¯‚éŒÂ‘ÌŠgŽUƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è,
‘æ36‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, ‹x‰É‘º“숢‘h, 2014”N8ŒŽ.
- Œ“Žq@—T‘å :
‘½ŽŸŒ³—̈æ‚É‚¨‚¯‚éŒÂ‘ÌŠgŽUƒ‚ƒfƒ‹‚̉ð‚Ì‘Q‹ß‹““®,
2014‰Ä‚̕Δ÷•ª•û’öŽ®ƒZƒ~ƒi[, ‘åãEåŠw, 2014”N8ŒŽ.
- Yuki Kaneko :
Free boundary problems modeling the spreading of species in multi-dimensional domains,
The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Madrid, Spain, 2014”N7ŒŽiin Englishj.
2013”N“xF
- Œ“Žq@—T‘å :
‘½ŽŸŒ³—̈æ‚É‚¨‚¯‚éŒÂ‘ÌŠgŽUƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è‚ɂ‚¢‚Ä,
‘æ21‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, ” ª, 2014”N3ŒŽ.
- Œ“Žq@—T‘å :
‘½ŽŸŒ³—̈æ‚É‚¨‚¯‚锽‰žŠgŽU•û’öŽ®‚ÌŽ©—R‹«ŠE–â‘è,
‘æ2‰ñuŒ»Û‚Ì”—vŒ¤‹†‰ï, ˆÉ“Œ, 2014”N1ŒŽ.
- Œ“Žq@—T‘å :
ŒÂ‘ÌŠgŽU‚ð•\‚í‚·Ž©—R‹«ŠE–â‘è‚ÌŽã‰ð‚Ì‘¶Ý‚ɂ‚¢‚Ä,
‘æ39‰ñ”“W•û’öŽ®Œ¤‹†‰ï, “ú–{—Žq‘åŠw, 2013”N12ŒŽ.
- Œ“Žq@—T‘å :
On a population model with a free boundary and related elliptic problems,
RIMS Seminar uProgress in Qualitative Theory of Ordinary Differential Equationsv, ‹ž“s‘åŠw”—‰ðÍŒ¤‹†Š, 2013”N11ŒŽ (in English).
- Œ“Žq@—T‘å :
Spreading and vanishing behaviors of solutions in a population model with a free boundary,
International Research Training Group Seminar, TU Darmstadt (ƒ_ƒ‹ƒ€ƒVƒ…ƒ^ƒbƒgH‰È‘åŠw), Germany, 2013”N10ŒŽ (in English).
- Œ“Žq@—T‘å :
Spreading and vanishing behaviors of radially symmetric solutions in a population model with a free boundary,
One Forum, Two Cities 2013: Aspect of Nonlinear PDEs, ‘ˆî“c‘åŠw, 2013”N9ŒŽ (in English).
2012”N“xF
- Œ“Žq@—T‘å :
”—¶‘ÔŠwƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è‚ÉŒ»‚ê‚éSpreading‚ÆVanishing,
“ú–{”Šw‰ï”N‰ï, ‹ž“s‘åŠw, 2013”N3ŒŽ.
- ]‰Ä@—mˆê :
Š´õǂ̗¬s‚ð•\‚·’x‰„”÷•ª•û’öŽ®‚Ì’èí‰ð‚Ì‘åˆæ‘Q‹ßˆÀ’è«‚Æ‚»‚̉ž—p,
‘æ12‰ñ‚³‚¢‚½‚Ü”—‰ð̓Zƒ~ƒi[, é‹Ê‘åŠw(ƒTƒeƒ‰ƒCƒgƒLƒƒƒ“ƒpƒX), 2013”N03ŒŽ.
- Œ“Žq@—T‘å :
”—¶‘ÔŠw‚É‚¨‚¯‚éŒÂ‘ÌŠgŽUƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è,
‘æ20‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, “’‰ÍŒ´, 2013”N3ŒŽ.
- ‘åŽ}@˜a_ :
”íHŽÒ‚Ì‚½‚ß‚Ì•ÛŒì‹æˆæ‚ªE¶Ý‚·‚é”íHŽÒ]•ßHŽÒƒ‚ƒfƒ‹,
“ŒH‘å”—‰ðÍŒ¤‹†‰ï, “Œ‹žH‹Æ‘åŠw, 2013”N2ŒŽ.
- ‘åŽ}@˜a_ :
•ÛŒì‹æˆæ‚ª‘¶Ý‚·‚é”íHŽÒ]•ßHŽÒƒ‚ƒfƒ‹‚̳’l’èí‰ð‚Ì‘¶Ý‹y‚шÀ’è«‚ÉŠÖ‚·‚élŽ@,
‘æ5‰ñ“Œ–k‘ȉ~Œ^E•ú•¨Œ^”÷•ª•û’öŽ®Œ¤‹†W‰ï, “Œ–k‘åŠw, 2013”N1ŒŽ.
- “‡‘Ü@Œ\l :
Œð·ŠgŽU‚𔺂¤ Lotka-Volterra Œ^‹£‡ƒ‚ƒfƒ‹‚̳’l’èí‰ð‚ɂ‚¢‚Ä,
‘æ38‰ñ”“W•û’öŽ®Œ¤‹†‰ï, “ú–{—Žq‘åŠw, 2012”N12ŒŽ.
- Œ“Žq@—T‘å :
”—¶‘ÔŠw‚ÉŒ»‚ê‚鎩—R‹«ŠE–â‘è‚Ì‹…‘ÎÌ‰ð‚Æ‘Q‹ß‹““®,
‘æ38‰ñ”“W•û’öŽ®Œ¤‹†‰ï, “ú–{—Žq‘åŠw, 2012”N12ŒŽ.
- ]‰Ä@—mˆê :
Š´õǃ‚ƒfƒ‹‚ðŠÜ‚Þ’x‰„”÷•ª•û’öŽ®‚É‚¨‚¯‚镽t‰ð‚Ì‘åˆæˆÀ’è«,
KSU”ñüŒ`‰ðE̓Zƒ~ƒi[, ‹ž“sŽY‹Æ‘åŠw, 2012”N12ŒŽ.
- ‘åŽ}@˜a_ :
Coexistence in a diffusive Lotka-Volterra prey-predator system with a protection zone,
RIMSŒ¤‹†W‰ïu”ñ•½tŒ»Û‚̉ð͂ɂ¨‚¯‚锓W•û’öŽ®—˜_‚ÌV“WŠJv, ‹ž“s‘åŠw, 2012”N10ŒŽ.
- ]‰Ä@—mˆê :
Global stability of a positive equilibrium for delayed
epidemic models and IVGTT models with nonlinear incidence rates,
GCOE Tutorial Workshop ``Biomathematics of Structured Populations"
with a Mini-Symposium in Honor of Professor Yasuhiro Takeuchi, “Œ‹ž‘åŠw, 2012”N10ŒŽ.
- Œ“Žq@—T‘å :
‘½ŽŸŒ³‰~ŠÂ—ÌEæ‚É‚¨‚¯‚é”—¶‘ÔŠwƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è‚É‚ÂE¢‚Ä,
“ú–{”Šw‰ïH‹G‘‡•ª‰È‰ï, ‹ãB‘åŠw, 2012”N9ŒŽ.
- ‘åŽ}@˜a_ :
”ñüŒ`ŠgŽU‚Æ protection zone ‚𔺂¤”íHŽÒ-•ßHŽÒƒ‚ƒfƒ‹‚Ì’èí‰ð,
“ú–{”Šw‰ïH‹G‘‡•ª‰È‰ï, ‹ãB‘åŠw, 2012”N9ŒŽ.
- ]‰Ä@—mˆê :
Asymptotic stability for epidemic models with time delays and monotonicity of the incidence function,
‘æ22‰ñ“ú–{”—¶•¨Šw‰ï”N‰ï, ‰ªŽR‘åŠw, 2012”N9ŒŽ.
- Œ“Žq@—T‘å :
”½‰žŠgŽU•û’öŽ®‚ÌŽ©—R‹«ŠE–â‘è| Spreading ‚Æ Vanishing |,
‘æ34‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, ƒ^ƒiƒxŒo‰cÓ쌤CƒZƒ“ƒ^[, 2012”N9ŒŽ.
- Y. Kaneko :
Asymptotic behavior of radially symmetric solutions for a free boundary problem in ecology,
Turing Symposium on Morphogenesis, å‘ä‘ÛƒZƒ“ƒ^[, 2012”N8ŒŽ.(Poster Session)
- Y. Enatsu :
Lyapunov functionals and global stability for epidemic models with delays,
Turing Symposium on Morphogenesis, å‘ä‘ÛƒZƒ“ƒ^[, 2012”N8ŒŽ.(Poster Session)
- Y. Kaneko :
Asymptotic behavior of radially symmetric solutions for a free boundary problem related to an ecological model,
Seminar on Partial Differential Equations in Osaka, 2012, ‘åã‘åŠwHŠw•”, 2012”N8ŒŽ.
- Y. Enatsu :
Lyapunov functionals for disease transmission models with delays and its applications,
Seminar on Partial Differential Equations in Osaka, 2012, ‘åã‘åŠwHŠw•”, 2012”N8ŒŽ.
- K. Oeda :
Effect of a protection zone and cross-diffusion on a prey-predator model,
Seminar on Partial Differential Equations in Osaka, 2012, ‘åã‘åŠwHŠw•”, 2012”N8ŒŽ.
- Y. Kaneko :
Free boundary problems modeling the spreading of species in symmetric domains,
The 9th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Orlando Florida, USA , July 1-5, 2012.
- Y. Enatsu :
Asymptotic behavior of solutions of epidemic models with delays,
The 9th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Orlando Florida, USA , July 1-5, 2012.
- K. Oeda :
Coexistence problem for a prey-predator model with a protection zone,
The 9th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Orlando Florida, USA , July 1-5, 2012.
- ‘åŽ}@˜a_ :
Protection zone ‚ª‘¶Ý‚·‚é”íHŽÒ-•ßHŽÒƒ‚ƒfƒ‹‚Ì‹¤‘¶‰ð,
é‹Ê‘åŠw‰ð̓[ƒ~, é‹Ê‘åŠw, 2012”N6ŒŽ.
- Y. Enatsu :
Global stability analysis of delayed epidemic models with Lyapunov functionals and its applications,
China-Japan-Korea International Conference on Mathematical Biology, Pusan National University Sangnam International House, Korea, May, 2012.
2011”N“xF
- Y. Enatsu :
Harmless delays for the global stability of a positive equilibrium of epidemic models,
Conference on Evolution Equations, Related Topics and Applications, Waseda University, Tokyo, March 19-23, 2012.(Poster Session)
- K. Oeda :
Effect of a protection zone on a Lotka-Volterra prey-predator model,
Conference on Evolution Equations, Related Topics and Applications, Waseda University, Tokyo, March 19-23, 2012.(Poster Session)
- ]‰Ä@—mˆê :
Harmless delays for global stability of equilibria of epidemic models and its applications,
‘æ19‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, ”MŠC, 2012”N3ŒŽ.
- Œ“Žq@—T‘å :
N“üƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è‚ɂ‚¢‚Ä,
KSU”ñüŒ`‰ð̓Zƒ~ƒi[, ‹ž“sŽY‹Æ‘åŠw, 2012”N1ŒŽ.
- Œ“Žq@—T‘å :
”—¶‘ÔŠw‚ÉŒ»‚ê‚鎩—R‹«ŠE–â‘è‚Æ‰ð‚Ì‘Q‹ß‹““®,
‘æ37‰ñ”“W•û’öŽ®Œ¤‹†‰ï, Šò•Œ‘åŠw, 2011”N12ŒŽ.
- Œ“Žq@—T‘å :
”—¶‘ÔŠw‚ÌN“üƒ‚ƒfƒ‹‚É‚¨‚¯‚鎩—R‹«ŠE–â‘è‚ɂ‚¢‚Ä,
‘æ15‰ñ“ŒH‘å”—‰ð̓Zƒ~ƒi[, “Œ‹žH‹Æ‘åŠw, 2011”N12ŒŽ.
- K. Oeda :
Stationary solutions of a three species population model with a protection zone,
The 4th Japanese-German International Workshop on Mathematical Fluid Dynamics, ‘ˆî“c‘åŠw, 2011”N12ŒŽ.
- ‘åŽ}@˜a_ :
Eú¬HŽÒ‚ÌE½‚ß‚Ìprotection zone‚ª‘¶Ý‚·‚é”íHŽÒ-•ßHŽÒƒ‚ƒfƒ‹‚ɂ‚¢‚Ä,
•Δ÷•ª•û’öŽ®‚ÆŒ»ÛFPDEs and Phenomena in Miyazaki 2011, ‹{è‘åŠw, 2011”N11ŒŽ.
- Y. Enatsu :
Stability analysis of a positive equilibrium for delayed epidemic models,
International Research Training Group 1529 Mathematical Fluid Dynamics Seminar, TU Darmstadt, Germany, November 2011.
- Œ“Žq@—T‘å :
A free boundary problem modeling the invasion of species,
RIMSŒ¤‹†W‰ïu”ñ•½t”ñüŒ`Œ»Û‚̉ðÍ|”“W•û’öŽ®‚Ì—§ê‚©‚ç|v, ‹ž“s‘åŠw, 2011”N10ŒŽ.
- ]‰Ä@—mˆê :
Global stability of a positive equilibrium for epidemic models with delays,
RIMSŒ¤‹†W‰ïu”ñ•½t”ñüŒ`Œ»Û‚̉ðÍ|”“W•û’öŽ®‚Ì—§êE©‚çE|v, ‹ž“s‘åŠw, 2011”N10ŒŽ.
- Œ“Žq@—T‘å :
”—¶‘ÔŠw‚ÉŒ»‚ê‚锽‰žŠgŽU•û’öŽ®‚ÌŽ©—R‹«ŠE–â‘è‚ɂ‚¢‚Ä,
“ú–{”Šw‰ïH‹G‘‡•ª‰È‰ï, MB‘åŠw, 2011”N9ŒŽ.
- Œ“Žq@—T‘å :
¶•¨‚ÌN“ü‚ð•\‚·Ž©—R‹«ŠE–â‘è‚̉ð‚Ì‘Q‹ß‹““®‚ɑ΂·‚é”ñüŒ`”½‰ž€‚ÌŒø‰Ê,
ƒTƒ}[ƒZƒ~ƒi[ in ²¢•Û 2011, 2011”N8ŒŽ.
- Œ“Žq@—T‘å :
¶•¨‚ÌN“üƒ‚ƒfƒ‹‚ÉŒ»‚ê‚é‘oˆÀ’耂𔺂¤ŠgŽU•û’öŽ®‚ÌŽ©—R‹«ŠE–â
‘è‚ɂ‚¢‚Ä,
‰Ä‚̕Δ÷•ª•û’öŽ®ƒZƒ~ƒi[2011, —´’J‘åŠwƒZƒ~ƒi[ƒnƒEƒX, 2011”N8ŒŽ.
- ‘åŽ}@˜a_ :
Protection zone‚ðŽ‚Â”íHŽÒ-•ßHŽÒŒ^‚ÌŒð·ŠgŽUŒn‚ɂ‚¢‚Ä,
Summer Seminar on PDE in 2011, —´’J‘åŠwƒZƒ~ƒi[ƒnƒEƒX, 2011”N8ŒŽ.
- Y. Enatsu :
On the global stability of a positive equilibrium for delayed epidemic models
with a class of nonlinear incidence rates,
International Conference on Differential and Difference Equations and
Applications, Azores University, Portugal, July 2011.
2010”N“xF
- ]‰Ä@—mˆê :
˜A‘±Š´õǃ‚ƒfƒ‹‚Ì‘åˆæˆÀ’è«‚ð•ۂ—£ŽUƒ‚ƒfƒ‹,
“ú–{”Šw‰ï”N‰ï, ‘ˆî“c‘åŠw, 2011”N3ŒŽ.
- Œ“Žq@—T‘å :
¶•¨‚ÌN“üƒ‚ƒfƒ‹‚ÉŒ»‚ê‚鎩—R‹«ŠE–â‘è‚ɂ‚¢‚Ä,
‘æ18‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, ” ª“’–{, 2011”N2ŒŽ.
- ]‰Ä@—mˆê :
ŽžŠÔ’x‚ê‚ð‚à‚Š´õÇE‚ƒfƒ‹‚É‚¨‚¯E镽t“_‚Ì‘åˆæˆÀ’è«,
‘æ18‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, ” ª“’–{, 2011”N2ŒŽ.
- ‘åŽ}@˜a_ :
Stationary solutions for a prey-predator cross-diffusion system with a protection zone,
‘æ3‰ñ–¼ŒÃ‰®”÷•ª•û’öŽ®Œ¤‹†W‰ï, –¼ŒÃ‰®‘åŠw, 2011”N2ŒŽ.
- Œ“Žq@—T‘å :
ŠgŽU‚𔺂¤ƒƒWƒXƒeƒBƒbƒN•û’öŽ®‚ÌŽ©—R‹«ŠEEâ‘è‚ɂ‚¢‚Ä,
Œ»Û‚Ì”—Œ¤‹†‰ï, ˆÉ“Œ, 2011”N2ŒŽ.
- ]‰Ä@—mˆê :
ŽžŠÔ’x‚ê‚ð‚à‚Š´õǃ‚ƒfƒ‹‚Ì‘åˆæˆÀ’諉ðÍ,
Œ»Û‚Ì”—Œ¤‹†‰ï, ˆÉ“Œ, 2011”N2ŒŽ.
- ‘åŽ}@˜a_ :
¶‘§—̈悪ˆê’v‚µ‚È‚¢”íHŽÒ-•ßHŽÒƒ‚ƒfƒ‹‚̉ðÍ,
Œ»Û‚Ì”—Œ¤‹†‰ï, ˆÉ“Œ, 2011”N2ŒŽ.
- Œ“Žq@—T‘å :
ŠgŽU‚𔺂¤ƒƒWƒXƒeƒBƒbƒN•û’öŽ®‚ÌŽ©—R‹«ŠE–â‘è‚Æ‰ð‚Ì‘Q‹ßE““®‚ɂ‚¢‚Ä,
‘æ36‰ñ”“W•û’öŽ®Œ¤‹†‰ï, ’†‰›‘åŠw, 2010”N12ŒŽ.
- ‘åŽ}@˜a_ :
Protection zone‚ðŽ‚Â”íHŽÒ-•ßHŽÒŒ^‚ÌŒð·ŠgŽUŒn‚Ì’èí–â‘è‚Æ‚»‚̋ɌÀŒn,
‘æ36‰ñ”“W•û’öŽ®Œ¤‹†‰ï, ’†‰›‘åŠw, 2010”N12ŒŽ.
- Y. Enatsu :
Global asymptotic stability of SIRS models with a class of nonlinear incidence rates and distributed delays,
The Third China-Japan Colloquium of Mathematical Biology, ŠC–k—Ή€, China, October 2010.
- ‘åŽ}@˜a_ :
Stationary problem of a prey-predator cross-diffusion system with a protection zone,
RIMSŒ¤‹†W‰ïuŒ»Û‚Ì”—‰ð͂֌ü‚¯‚½”ñüŒ`”“W•û’öŽ®‚Æ‚»‚ÌŽü•Óv, ‹ž“s‘åŠw, 2010”N10ŒŽ.
- ]‰Ä@—mˆê :
ŽžŠÔ’x‚ê‚ð‚à‚Š´õǃ‚ƒfƒ‹‚É‚¨‚¯‚镽t‰ð‚Ì‘åˆæˆÀ’諉ðÍ,
‘æ32‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, ˆÉ“¤’·‰ª, 2010”N8ŒŽ.
- ‘åŽ}@˜aE_ :
Protection zone‚ðŽ‚Â”íHŽÒ-•ßHŽÒŒ^‚ÌŒð·ŠgŽUŒn‚Ì’èí‰ð‚ɂ‚¢‚Ä,
‘æ32‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, ˆÉ“¤’·‰ª, 2010”N8ŒŽ.
- Y. Enatsu :
global stability for a class of epidemic models with delays and a nonlinear incidence rate,
8th AIMS conference on Dynamical systems, Differential equations and Applications, Dresden, Germany, May 2010.
2009”N“xF
- ‘åŽ}@˜a_ :
Protection zoneEðŽ‚Â”íHŽÒ-EßHŽÒŒ^‚ÌŠgŽUƒ‚ƒfƒ‹‚ɂ‚¢‚Ä,
“ú–{”Šw‰ï2010”N“xt‚Ì”N‰ï‰ž—p”Šw•ª‰È‰ï, Œc‰ž‹`m‘åŠw, 2010”N3ŒŽ.
- Y. Enatsu :
Global asymptotic stability for a class of epidemic models with delays,
International Workshop on Mathematical Fluid Dynamics, ‘ˆî“c‘åŠw, 2010”N3ŒŽ.
- K. Oeda :
Stationary problem for a cross-diffusion system of a prey-predator type with a protection zone,
International Workshop on Mathematical Fluid Dynamics, ‘ˆî“c‘åŠw, 2010”N3ŒŽ.
- ´…@‹`O :
Ž©—R‹«ŠE‚𔺂¤Prey-Predator Model,
‘æ17‰ñ‰ž—p‰ðÍŒ¤EEEVƒ“ƒ|ƒWƒEƒ€, “’‰ÍŒ´, 2010”N3ŒŽ.
- Žç“c@‚‘× :
Forest Kinematic Model ‚Ì’èí–â‘è‚ÉŠÖ‚·‚é‰ðÍ,
‘æ17‰ñ‰žEp‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, “’‰ÍŒ´, 2010”N3ŒŽ.
- ‘åŽ}@˜a_ :
Protection zone‚ðŽ‚Â”íHŽÒ-•ßHŽÒŒ^‚ÌŒð·ŠgŽUŒn‚̳’l’èí‰ð,
‘æ17‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, “’‰ÍŒ´, 2010”N3ŒŽ.
- ‘åŽ}@˜a_ :
Protection zone‚𔺂¤”íHŽÒ-•ßHŽÒŒ^‚ÌŒð·ŠgŽUƒ‚ƒfƒ‹‚Ì’èí‰ð‚ɂ‚¢‚Ä,
‘æ4‰ñ”ñüŒ^•Δ÷•ª•û’öŽ®‚ƕϕª–â‘è, Žñ“s‘åŠw“Œ‹ž, 2010”N2ŒŽ.
- Y. Enatsu:
Stability analysis of delayed epidemic models with a class of nonlinear incidence rates,
International Research Training Group 1529 Mathematical Fluid Dynamics Seminar,
TU Darmstadt,Germany,February 2010.
- ‘åŽ}@˜a_ :
Protection zone‚ðŽ‚Â”íHŽÒ-•ßHŽÒŒ^‚ÌEð·ŠgŽUŒn‚Ì’èí–â‘è,
RDSƒZƒ~ƒi[, –¾Ž¡‘åŠw, 2010”N1ŒŽ.
- K. Oeda :
Stationary problem for a Lotka-Volterra cooperative model with nonlinear diffusion,
International Research Training Group 1529 Mathematical Fluid Dynamics Seminar,TU Darmstadt,Germany,November 2009.
- ]‰Ä@—mˆê :
¶•¨”Šw‚É‚¨‚¯‚é‘åˆæ‘Q‹ßˆÀ’è«‚ÉŠÖ‚·‚éLyapunov ŠÖ”‚Ì\¬–@,
RIMSŒ¤‹†W‰ïu‘æ6‰ñ¶•¨”Šw‚Ì—˜_‚Æ‚»‚̉ž—pv, —´’J‘åŠwƒZƒ~ƒi[ƒnƒEƒX, 2009”N11ŒŽ.
- ]‰Ä@—mˆê :
”—ƒ‚ƒfƒ‹‚É‚¨‚¯‚éLyapunov ŠÖ”‚ð—p‚¢‚½•½t“_‚Ì‘åˆæ‘Q‹ßˆÀ’諂ɂ‚¢‚Ä,
‘æ7‰ñŒvŽZ”ŠwŒ¤‹†EE — ”Ö’òƒƒCƒ„ƒ‹ƒzƒeƒ‹, 2009”N10ŒŽ.
- ²“¡@“TO :
Gray-Scott Œ^”½‰žŠgŽUŒn‚Ì’èí–â‘è‚ɂ‚¢‚Ä,
“ú–{”Šw‰ïH‹G‘‡•ª‰È‰ï, ‘åã‘åŠw, 2009”N9ŒŽ.
- ‘åŽ}@˜a_ :
Existence of coexistence states for a strongly coupled prey-predator system with a protection zone,
“ú–{”Šw‰ïH‹G‘‡•ª‰È‰ï, ‘åã‘åŠw, 2009”N9ŒŽ.
- ]‰Ä@—mˆê :
”ñüE`ÚG€‚ÆŽžŠÔ’x‚ê‚ð‚à‚Š´õǃ‚ƒfƒ‹‚Ì‘åˆæ‘Q‹ßˆÀ’è«,
“ú–{”Šw‰ïH‹G‘‡•ª‰È‰ï, ‘åã‘åŠw, 2009”N9ŒŽ.
- ‘åŽ}@˜a_ :
”ñüŒ`ŠgŽU€‚𔺂¤Lotka-VolterraŒ^‹¤¶Œn‚Ì”ñ’蔳’l’èí‰ð‚ɂ‚¢‚Ä,
MZSeminar, ‹{è‘åŠw, 2009”N9ŒŽ.
- Y.Enatsu :
Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates,
Conference on Evolution Equations,Related Topics and Applications,München, Germany
September 2009.(Poster Session)
- K.Oeda :
Positive steady states for a strongly coupled prey-predator system with a protection zone,
Conference on Evolution Equations,Related Topics and Applications,München, Germany
September 2009.(Poster Session)
- T.Wakasa :
Asymptotic Characterization of linearized eigenvalue problems associated with balanced bistable reaction-diffusion
equations,
Conference on Evolution Equations,Related Topics and Applications,München, Germany
September 2009.(Poster Session)
- ²E¡@“TO :
Gray-Scott Œ^”½‰žŠgŽUŒn‚Ì’èí–â‘è‚ɂ‚¢‚Ä,
RIMSŒ¤‹†W‰ïuŽUˆíŒn‚Ì”—-ƒpƒ^[ƒ“‚ð•\Œ»‚·‚é‘Q‹ß‰ð‚Ì\¬-v, ‹ž“s‘åŠw, 2009”N6ŒŽ.
2008”N“xF
- ‘åŽ}@˜a_ :
”ñüŒ`ŠgŽU€‚ðŠÜ‚ÞLotka-Volterra‹¤¶Œn‚ɑ΂·‚é’èí–â‘è,
OSƒZƒ~ƒi[, “Œ–k‘åŠw, 2009”N3ŒŽ.
- ²“¡@“TO :
‚ ‚鎩ŒÈG”}‰»Šw”½‰ž‚ÉŒ»‚ê‚é’èíƒpƒ^[ƒ“Œ`¬–â‘è‚̉ðÍ,
‘æ16‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, ”MŠC, 2009”N3ŒŽ.
- ‘åŽ}@˜a_ :
”ñüŒ`ŠgŽU€‚ðŠÜ‚ÞLotka-Volterra‹¤¶Œn‚̳’l’èí‰ð‚ɂ‚¢‚Ä,
‘æ16‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, ”MŠC, 2009”N3ŒŽ.
- ‘åŽ}@˜a_ :
”ñüŒ`ŠgŽU€‚ðŠÜ‚Þ‹¤¶Œnƒ‚ƒfƒ‹‚Ì‹óŠÔ”ñˆê—l‚È’èí‰ð‚Ì‘¶ÝE”ñ‘¶Ý,
‘æ3‰ñ”ñüŒ^•Δ÷•ª•û’öŽ®‚ƕϕª–â‘è, Žñ“s‘åŠw“Œ‹ž, 2009”N2ŒŽ.
- Žá‹·@“O :
Precise asymptotic results on some linearized eigenvalue problems associated with scalar reaction
diffusion equations,
SNP2008, ŠÖ¼ƒZƒ~ƒi[ƒnƒEƒX, 2008”N12ŒŽ.
- Žá‹·@“O :
‚ ‚é‘oˆÀ’èŒ^•û’öŽ®‚ɑ΂·‚éüŒ`‰»ŒÅ—L’l–â‘è‚Ì•\Œ»ŒöŽ®‚Æ‘Q‹ßŒöŽ®,
PPM2008, ‹{è‘åŠw, 2008”N11ŒŽ.
- Žá‹·@“O, Žlƒc’J@»“ñ :
‚ ‚éüŒ`‰»ŒÅ—L’l–â‘è‚̌ŗLŠÖ”‚Ì‘Q‹ßŒ`ó‚ɂ‚¢‚Ä,
“ú–{”Šw‰ïH‹G‘‡•ªEȉï, “Œ‹žH‹Æ‘åŠw, 2008”N9ŒŽ.
- T.Wakasa :
On some linearized eigenvalue problems associated with Chafee-Infante equatio:A classical
approach from elliptic integrals,
World Congress of Nonlinear Analysts 2008, Orlando,Florida,USA, July,2008.
2007”N“xF
- ‘åŽ}@˜a_ :
”ñüŒ`ŠgŽU€‚ðŠÜ‚Þ‹¤¶Œnƒ‚ƒfƒ‹‚Ì‹óŠÔ”ñˆê—l‚ȳ’l’èí‰ð‚ɂ‚¢‚Ä,
“ú–{”Šw‰ï”N‰ï, ‹ß‹E‘åŠw, 2008”N3ŒŽ.
- Žá‹·@“O, Žlƒc’J@»“ñ :
‚ ‚éüŒ`‰»ŒÅ—L’l–â‘è‚Ì‚·‚ׂĂ̌ŗL’l‚ƌŗLŠÖ”‚ɂ‚¢‚Ä,
“ú–{”Šw‰ï”N‰ï, ‹ß‹E‘åŠw, 2008”N3ŒŽ.
- ‰–Œ©@’Žj :
ŠÂ‹«•Ï“®€‚ÆŠgŽU€‚𔺂¤3Ží¶‘Ôƒ‚ƒfƒ‹‚Ì’èí‰ð‚ɂ‚¢‚Ä,
‘æ15‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, ” ª“’–{, 2008”N3ŒŽ.
- ‹I•½@‘åŽ÷ :
Forest Kinematic Model‚ɑ΂·‚鎞ŠÔ‘åˆæ‰ð‚Ì‘¶Ý‚Æ—ÍŠwŒn‚̉ðÍ,
‘æ15‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, ” ª“’–{, 2008”N3ŒŽ.
- Žá‹·@“O :
On a linerized eigenvalue problem associated with 1-dimensional reaction diffusion equation of bistable-type,
—´’J”—‰ÈŠwƒZƒ~ƒi[, —´’J‘åŠw, 2008”N2ŒŽ.
- ‘åŽ}@˜a_ :
‹¤¶Œnƒ‚ƒfƒ‹‚Ì’èí‰ðW‡‚ɑ΂·‚é”ñüŒ`ŠgŽU€‚ÌŒø‰Ê,
‹ãBŠÖ”•û’öŽ®ƒZƒ~ƒi[, ‹ãB‘åŠw, 2007”N11ŒŽ.
- ‘åŽ}@˜a_ :
Stationary patterns for a cooperative model with nonlinear diffusion,
RIMSŒ¤‹†W‰ïu”ñüŒ`”“W•û’öŽ®‚ÆŒ»Û‚Ì”—v, ‹ž“s‘åŠw, 2007”N10ŒŽ.
- ²“¡@“TEO :
‚ E锽‰žŠgŽUŒn‚ÉŠÖ‚·‚é’èí‰ðW‡‚ɂ‚¢‚Ä,
‘æ33‰ñ”“W•û’öŽ®Œ¤‹†‰ï, ’†‰›‘åŠw, 2007”N9ŒŽ.
- ‘åŽ}@˜a_ :
”ñüŒ`ŠgŽU€‚ðŠÜ‚Þ‹¤¶Œnƒ‚ƒfƒ‹‚̳’l’èí‰ð‚ɂ‚¢‚Ä,
‘æ33‰ñ”“W•û’öŽ®Œ¤‹†‰ï, ’†‰›‘åŠw, 2007”N9ŒŽ.
- ‘åŽ}@˜a_ :
”ñüŒ`ŠgŽU€‚ðŠÜ‚Þ2Ží‚̶•¨‚Ì‹¤¶Œn‚Ì’èí‰ð‚ɂ‚¢‚Ä,
‘æ29‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~Ei[, ŽRŒû, 2007”N8ŒŽ.
- ‰–Œ©@’Žj :
3Eú¬¶‘Ôƒ‚ƒfƒ‹‚É‚¨‚¯‚é‹óŠÔ”ñˆê—l‚È•ªŠò‰ð‚Æ‚»‚̈À’è«,
‘æ29‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, ŽRŒû, 2007”N8ŒŽ.
- Žá‹·@“O :
Representation and asymptotic formulas for some 1-dimensional linearized eigenvalue problems,
RIMSŒ¤‹†W‰ïu•Ï•ª–â‘è‚Æ‚»‚ÌŽü•Óv, ‹ž“s‘åŠw, 2007”N6ŒŽ.
- Žá‹·@“O :
1ŽŸŒ³”½‰žŠgŽU•û’öŽ®‚ÌüŒ`‰»ŒÅ—L’l–â‘è‚ɑ΂·‚éŒÅ—L’lEŒÅ—LŠÖ”,
_Šyâ‰ð̓Zƒ~ƒi[, “Œ‹ž—‰È‘åŠw, 2007”N5ŒŽ.
2006”N“xF
- Žá‹·@“O, Žlƒc’J@»“ñ :
‚ ‚éüŒ`‰»ŒÅ—L’l–â‘è‚É‚¨‚¯‚錵–§‰ð‚ƌŗL’l‚Ì‘Q‹ßŒöŽ®,
“ú–{”Šw‰ï”N‰ï”Ÿ”•û’öŽ®•ª‰È‰ï, é‹Ê‘åŠw, 2007”N3ŒŽ.
- ²“¡@“TO :
—LŠE—̈æ‚É‚¨‚¯‚é Gray-Scott ƒ‚ƒfƒ‹‚Ì’èí‰ðW‡,
‘æ14‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, “’‰ÍŒ´, 2007”N2ŒŽ.
- ‘åŽ}@˜a_ :
Cross-Diffusion Œn‚̳’l’èí‰ðW‡‚Ì\‘¢‚ɂ‚¢‚Ä,
‘æ14‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, “’‰ÍŒ´, 2007”N2ŒŽ.
- ‰–Œ©@’Žj :
3Žíƒ‚ƒfƒ‹‚̉ðÍ,
‘æ14‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, “’‰ÍŒ´, 2007”N2ŒŽ.
- Žá‹·@“O :
‚ ‚éüŒ`‰»ŒÅ—L’l–â‘è‚̌ŗL’lEŒÅ—LŠÖ”‚ɂ‚¢‚Ä,
”ñüŒ`•Δ÷•ª•û’öŽ®‚ƕϕª–âEè@À’ÃZƒ~ƒi[, À’ÃH‹Æ‚“™ê–åŠwZ, 2007”N2ŒŽ.
- ²“¡@“TO :
Gray-Scott ƒ‚ƒfƒ‹‚É‚¨‚¯‚é’èí–â‘è‚ɂ‚¢‚Ä,
RIMSŒ¤‹†W‰ïu‘æ3‰ñ¶•¨”Šw‚Ì—˜_‚Æ‚»‚̉ž—pv, ‹ž“s‘åŠw, 2006”N12ŒŽ.
- ²“¡@“TO :
—LŠE—̈æ‚É‚¨‚¯‚é Gray-Scott ƒ‚ƒfƒ‹‚Ì’èí‰ð\‘¢,
“ú–{”Šw‰ïH‹G‘‡•ª‰È‰ï, ‘åãŽs—§‘åŠw, 2006”N9ŒŽ.
- Žá‹·@“O :
‚ ‚锽‰žŠgŽU•û’öŽ®‚ÉŠÖ˜A‚·‚éüŒ`‰»ŒÅ—L’l–â‘è‚̉ð•\ަ‚ɂ‚¢‚Ä,
‘æ32‰ñ”“W•û’öŽ®E¤‹†‰ï, ’†‰›‘åŠw, 2006”N9ŒŽ.
- ²“¡@“TO :
—LŠE—̈æ‚É‚¨‚¯‚é Gray-Scott ƒ‚ƒfƒ‹‚Ì’èí–â‘è,
‘æ32‰ñ”“W•û’öŽ®Œ¤‹†‰ï, ’†‰›‘åŠw, 2006”N9ŒŽ.
- ‘剮@”Žˆê, ŠÖ‰ª@’¼Ž÷, ‰–Œ©@’Žj :
Competition versus Predation for some population models with three species,
‘æ32‰ñ”“W•û’öŽ®Œ¤‹†‰ï, ’†‰›‘åŠw, 2006”N9ŒŽ.
- ‘剮@”Žˆê, ŠÖEª@’¼Ž÷:
Positive solutions for some population model with three species,
“‡ª‘åŠw‚É‚¨‚¯‚é”÷•ª•û’öŽ®ƒZƒ~ƒi[, “‡ª‘åŠw, 2006”N8ŒŽ.
- Žá‹·@“O :
‚ ‚éüŒ`‰»ŒÅ—L’l–â‘è‚Ì‚·‚ׂĂ̌ŗL’lEŒÅ—LŠÖ”‚Ì•\ަ‚ɂ‚¢‚Ä,
Fukuoka Mini Workshop on Evolution Equations and Related Topics, •Ÿ‰ª, 2006”N8ŒŽ.
- Žá‹·@“O :
U‚èŽq‚Ì•û’öŽ®‚ÌüŒ`‰»–âEè‚ɑ΂·‚é‚·‚ׂĂ̌ŗL’lEŒÅ—LŠÖ”‚ɂ‚¢‚Ä,
‘æ28‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, _ŒË, 2006”N8ŒŽ.
- ²“¡@“TO :
—LŠE—̈æ‚É‚¨‚¯‚é Gray-Scott ƒ‚ƒfƒ‹‚Ì’èí‰ð\‘¢‚ɂ‚¢‚Ä,
‘æ28‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, _ŒË, 2006”N8ŒŽ.
- ‘剮@”Žˆê, ŠÖ‰ª@’¼Ž÷:
ŠgŽU€‚𔺂¤ 3 Ží population model ‚̉ð͂ɂ‚¢‚Ä,
‘æ28‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, _ŒË, 2006”N8ŒŽ.
- ‘剮@”Žˆê :
”ñ—LŠE—̈æ‚É‚¨‚¯‚éd‚݂‚«ƒ\ƒ{ƒŒƒt‹óŠÔ‚ɑ΂·‚éˆêlŽ@,
ˆ¤•Q‘åŠw”Šw’k˜b‰ï, ˆ¤•Q‘åŠw, 2006”N7ŒŽ.
- Hirokazu Ohya :
Note on the embedding properties for Weighted Sobolev spaces in unbounded domains,
The 6th International Congress of Dynamical Systems and Differential Equations,
University of Poitiers at Poitiers, France, June, 2006.
- ‘剮@”Žˆê :
Analysis of the embedding properties for Weighted Sobolev spaces in unbounded domains,
_Šyâ‰ð̓Zƒ~ƒi[, “Œ‹ž—‰È‘åŠw, 2006”N5ŒŽ.
2005”N“xF
- Žá‹·@“O :
U‚èŽq‚Ì•û’öŽ®‚ÌüŒ`‰»–â‘è‚É‚¨‚¯‚éŒÅ—L’l‚ƌŗLŠÖ”C
“ú–{”Šw‰ï”N‰ïC’†‰›‘åŠwC2006”N3ŒŽ
- ²“¡@“TOF
Gray-Scott ƒ‚ƒfƒ‹‚É‚¨‚¯‚é’èí‰ð‚ɂ‚¢‚ÄC
‰ž—p‰ðÍŒ¤‹†‰ïC”MŠCC2006”N2ŒŽ
- Žá‹·@“O :
”ñEE`ŒÅ—L’l–â‘è‚ÉŠÖ˜A‚·‚éüŒ`‰»–â‘èẺð‚ÉE‚¢‚ÄC
‰ž—p‰ðÍŒ¤‹†‰ïC”MŠCC2006”N2ŒŽ
- ‘剮@”Žˆê :
Note on the embedding properties for Weighted
Sobolev spaces in unbounded domains,
‰ž—p‰ðÍŒ¤‹†‰ïC”MŠCC2006”N2ŒŽ
- Žá‹·@“O :
”ñüŒ`ŒÅ—L’l–â‘è‚ÌüŒ`‰»–â‘è‚É‚¨‚¯‚錵–§‰ð‚ɂ‚¢‚ÄC
—´’J‘åŠw”—‰ÈŠwƒZƒ~ƒi[C—´’J‘åŠwC2006”N2ŒŽ
- ‘剮@”ŽEE:
”ñ—LŠE‚Èd‚ÝŠÖ”‚ðŽ‚Âd‚Ý•t‚«ƒ\ƒ{ƒŒƒt‹óŠÔ‚ÌE„‚ßž‚݂ɂ‚¢‚Ä C
—´’J‘åŠw”—‰ÈŠwƒZƒ~ƒi[C—´’J‘åŠwC2006”N2ŒŽ
- ‰Y–ì@“¹—Y :
‹óŠÔ”ñˆê—l‚È‘oˆÀ’èŒ^”½‰žŠgŽU•û’öŽ®‚ÉŒ»‚ê‚é‘JˆÚ‘w‚ƃXƒpƒCƒN‚ɂ‚¢‚ÄC
“Œ–k‘åEw”Šw‹³ŽºƒZƒ~ƒi[C“Œ–k‘åŠwC2005”N12ŒŽ.
- Žá‹·@“O :
Chafee-Infante–â‘è‚ÌüŒ`‰»–â‘è‚É‚¨‚¯‚éŒÅ—L’l‚ƌŗLŠÖ”C
“úE{”Šw‰ï‘‡•ª‰È‰ïC‰ªŽR‘åŠwC2005”N9ŒŽ.
- ‘剮@”Žˆê :
Žw”ŠÖ”‚ðd‚݂Ɏ‚Âd‚Ý•t‚«ƒ\ƒ{ƒŒƒt‹óŠÔ‚Ì–„‚ßž‚݂ɂ‚¢‚ÄC
“ú–{”Šw‰ï‘‡•ª‰È‰ïC‰ªŽR‘åŠwC2005”N9ŒŽ.
- Žá‹·@“O :
CHAFEE-INFANTE–â‘è‚ÌüŒ`‰»–â‘è‚É‚¨‚¯‚éŒÅ—L’l‚ƌŗLŠÖ”‚ÌŒöŽ®C
‘æ27‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C¼]C2005”N8ŒŽ.
- ‰Y–ì@“¹—Y :
‘oˆÀ’èŒ^”½‰žŠgŽU•û’öŽ®‚ÉŒ»‚ê‚é‘JˆÚ‘w‰ð‚̃‚[ƒXŽw”‚ɂ‚¢‚ÄC
‘æ27‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C¼]C2005”N8ŒŽ.
- Hirokazu Ohya : Embedding properties for Weighted-Sobolev spaces in
unbounded domains,
PDE's seminar, Worcester Polytechnic Institute, USA Aug 2005.
- ‰Y–ì@“¹—YFStability of steady-state solutions with transition
layers for a bistable reaction-diffusion equation,
RIMSŒ¤‹†W‰ïu•Ï•ª–â‘è‚Æ‚»‚ÌŽü•ÓvEC‹ž“s‘åŠwC2005”N6ŒŽD
2004”N“xF
- ²“¡@“TOFGray-Scottƒ‚ƒfƒ‹‚Ì’èí‰ð‚ɂ‚¢‚Ä,
“ú–{”Šw‰ï”N‰ïC“ú–{‘åŠwC2005”N3ŒŽD
- ‰Y–ì@“¹—YF‘oˆÀ’èŒ^”½‰žŠgŽU•û’öŽ®‚Ì‘JˆÚ‘w‚âƒXƒpƒCƒN‚ðŽ‚Â‰ð‚̈À’è«,
“ú–{”Šw‰ï”N‰ïC“ú–{‘åŠwC2005”N3ŒŽD
- Žá‹·@“OFGeneration of interfaces to Lotka-Volterra
competition-diffusion system with large interaction rates,
“ú–{”Šw‰ï”NEEC“ú–{‘åŠwEC2005”N3ŒŽD
- Žá‹·@“OFGeneration of interfaces to Lotka-Volterra
competition diffusion system with large interaction,
”Šw‘‡ŽáŽèŒ¤‹†W‰ï, –kŠC“¹‘åŠw, 2005”N2ŒŽD
- Žá‹·@“OFGeneration of corner-layer to Lotka-Volterra
competition diffusion system with large interaction rates,
Workshop on Mathematical and Numerical Analysis of Nonlinear Phenomena,
“Œ‹ž“s—§‘åŠw, 2005”N2ŒŽD
- ²“¡@“TOFSome stationary problem for the Gray-Scott model,
Workshop on Mathematical and Numerical Analysis of Nonlinear Phenomena,
“Œ‹ž“s—§‘åŠw, 2005”N2ŒŽD
- ²“¡@“TOFGray-Scottƒ‚ƒfƒ‹‚Ì’èí‰ð‚ɂ‚¢‚Ä,
‘æ30‰ñ”“W•û’öŽ®Œ¤‹†‰ïC’†‰›‘åŠwC2004”N12ŒŽD
- ‰Y–ì@“¹—YF‘oˆÀ’èE^‚Ì”½‰žŠgŽU•û’öŽ®‚ÉŒ»‚ê‚é‘JˆÚ‘w‚âƒXƒpƒCƒN‚ðŽ‚Â‰ð‚̈À’è«,
‘æ30‰ñ”“W•û’öŽ®Œ¤‹†‰ïC’†‰›‘åŠwC2004”N12ŒŽD
- Žá‹·@“OF‹£‡Œ^”½‰žŠgŽU•û’öŽ®Œn‚ÌŠE–ÊŒ`¬‚̃vƒƒZƒX‚ɂ‚¢‚Ä,
‘æ30‰ñ”“W•û’öŽ®Œ¤‹†‰ïC’†‰›‘åŠwC2004”N12ŒŽD
- ‹v“¡@t‰îFPositive solutions to some strongly coupled diffusion systems,
‘æ‚Q‰ñ•l¼•Δ÷•ª•û’öŽ®Œ¤‹†W‰ï, ɪ‘åŠw, 2004”N12ŒŽD
- ‰Y–ì@“¹—YFSteady-states with transition layers and spikes for a bistable
reaction-diffusion equation,
Mathematical Approach to Nonlinear Phenomena;
Modeling, Analysis and Simulations,
Third Polish Japanese Days,
ç—t‘åŠw, 2004”N11ŒŽ.
- Žá‹·@EOFGeneration of an interface of competition-diffusion
system with large interaction,
RIMSŒ¤‹†W‰ïu”“W•û’öŽ®‚Ɖð‚Ì‘Q‹ß‰ðÍv, ‹ž“s‘åŠw, 2004”N11ŒŽ.
- ‹v“¡@t‰îFPositive solutions to some cross-diffusion systems in population
dynamics,
RIMSŒ¤‹†W‰ïu”½‰žŠgŽUŒn‚ÉŒ»‚ê‚鎞E‹óŠÔƒpƒ^[ƒ“‚̃ƒJƒjƒYƒ€vC‹ž“s‘åŠwC2004”N10ŒŽ.
- ‹v“¡@t‰îFCoexistence states to a prey-predator model with nonlinear
diffusion,
“ú–{”Šw‰ï‘‡•ª‰È‰ïC–kŠC“¹‘åŠwC2004”N9ŒŽD
- ‘剮@”ŽˆêF‚ ‚é‚Q“_‹«ŠE’l–â‘è‚É‚¨‚¯‚é³’l‰ð‚Ì‘½d«‚ɂ‚¢‚Ä,
“ú–{”Šw‰ï‘‡•ª‰È‰ïC–kŠC“¹‘åŠwC2004”N9ŒŽD
- ‘剮@”ŽˆêF”ñ—LŠE—̈æ‚É‚¨‚¯‚锼üŒ^‘ȉ~Œ^•û’öŽ®‚É‚¨‚¯‚é‰ð‚Ì‘½d«‚ɂ‚¢‚Ä,
ˆ¤•Q‘åŠw‚É‚¨‚¯‚é”÷•ª•û’öŽ®ƒZƒ~ƒi[Cˆ¤•Q‘åŠwC2004”N9ŒŽD
- ²“¡@“TOFGray-Scottƒ‚ƒfƒ‹‚Ì’èí‰ð‚ɂ‚¢‚Ä,
‘æ26‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C‰œ‘½–€C2004”N8ŒŽD
- ‰Y–ì@“¹—YF‚ ‚é‘oˆÀ’èŒ^•û’öŽ®‚ɑ΂·‚é‘JˆÚ‘w‚âƒXƒpƒCƒN‚ðŽ‚Â‰ð‚̈À’è«,
‘æ26‰ñ”“WEû’öŽ®ŽáŽèƒZƒ~ƒi[C‰œ‘½–€C2004”N8ŒŽD
- Žá‹·@“OFGeneration of corner layer of Lotka-Volterra
competition model with large diffusion,
‘æ26‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C‰œ‘½–€C2004”N8ŒŽD
- ‘剮@”ŽˆêFE ‚锼üŒ^‘ȉ~Œ^•û’öŽ®‚É‚¨‚¯‚é³’l‰ð‚Ì‘½d«‚ɂ‚¢‚Ä,
‘æ26‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C‰œ‘½–€C2004”N8ŒŽD
- Michinori IshiwataFExistence of a stable set for some nonlinear parabolic equation involving critical Sobolev exponent,
The 5th International Congress of Dynamical Systems and Differential Equations,
Univ. California State Polytechnic at Pomona, USA, June, 2004.
- Kosuke KutoFCoexistence states for a prey-predator model with cross-diffusion,
The 5th International Congress of Dynamical Systems and Differential Equations,
Univ. California State Polytechnic at Pomona, USA, June, 2004.
- Michio UranoFTransition layers and spikes for a reaction-diffusion equation with bistable nonlinearity,
The 5th International Congress of Dynamical Systems and Differential Equations,
Univ. California State Polytechnic at Pomona, USA, June, 2004.
- Hirokazu OhyaFMultiple positive solutions for some semilinear elliptic equations with concave-convex nonlinearity,
The 5th International Congress of Dynamical Systems and Differential Equations,
Univ. California State Polytechnic at Pomona, USA, June, 2004.
- ‘剮@”ŽˆêF‚ ‚锼üŒ^‘ȉ~Œ^•û’öŽ®‚É‚¨‚¯‚é³’l‰ð‚Ì‘½d‘¶Ý‚ɂ‚¢‚ÄC
•Ï•ª–â‘èƒZƒ~ƒi[C“Œ‹ž“s—§‘åŠwC2004”N6ŒŽD
2003”N“xF
- ‰Y–ì@“¹—YF‚ ‚é‘oEÀ’èŒ^”½‰žŠgŽU•û’öŽ®‚̉ð‚É‘ÎE·‚é‘JˆÚ‘w‚ƃXƒpƒCƒNEɂ‚¢‚Ä,
“ú–{”Šw‰ï”N‰ïC’}”g‘åŠwC2004”N3ŒŽD
- ‘剮@”ŽˆêF‚ ‚锼üŒ`‘ȉ~Œ^•û’öŽ®‚É‚¨‚¯‚éŽw”Œ¸Š‚·‚é³’l‰ð‚Ì‘½d«‚ɂ‚¢‚Ä,
“ú–{”Šw‰ï”N‰ïC’}”g‘åŠwC2004”N3ŒŽD
- Γn ’Ê“¿FA remark on the asymptotic behavior of some solutions for nonlinear parabolic equations involving critical Sobolev exponent,
“ú–{”Šw‰ï”N‰ïC’}”g‘åŠwC2004”N3ŒŽD
- Γn@’Ê“¿FAsymptotic behavior of some global solutions of nonlinear
parabplic problem with critical Sobolev exponent,
‰ž—p‰ðÍŒ¤‹†‰ïC“’‰ÍŒ´C2004”N3ŒŽD
- ‰Y–ì@“¹—YF‘oˆÀ’耂ðŽ‚Â”½‰žEgŽU•û’öŽ®‚ɑ΂·‚é‘JˆÚ‘w‚ƃXƒpƒCƒN,
‰ž—p‰ðÍŒ¤‹†‰ïC“’‰ÍŒ´C2004”N3ŒŽD
- ‘剮@”ŽˆêFMultiplicity results for some semilinear elliptic equations
with concave-convex nonlinearity,
‰ž—p‰ðÍŒ¤‹†‰ïC“’‰ÍŒ´C2004”N3ŒŽD
- Γn@’Ê“¿FAsymtotic behavior of solutions for some nonlinear
parabolic equations involving critical Sobolev exponent,
ɪ‘åŠwƒZƒ~ƒi[, ɪ‘åŠw, 2004”N2ŒŽ.
- Γn@’Ê“¿FOn the asymptotic behavior of some global solutions
for nonlinear parabolic problems with critical Sobolev nonlinearity,
—´’J‘åŠwƒZƒ~ƒi[, —´’J‘åŠw, 2004”N2ŒŽ.
- Γn@’Ê“¿FOn the asymptotic behavior of some global solutions of
nonlinear parabolic problems with critical Sobolev inequality,
‘æ 4 ‰ñŽRŒû‚É‚¨‚¯‚é•Δ÷•ª•û’öŽ®‡hƒZƒ~ƒi[, KKR ŽRŒû‚ ‚³‚‚ç, 2004”N2ŒŽ.
- ‘剮@”ŽˆêFMultiplicity of rapidly decaying solutions for some semilinear
elliptic equations with concave-convex nonlinearity,
U“®—˜_ƒ[ƒNƒVƒ‡ƒbƒvCˆ¤•Q‘åŠwC2004”N2ŒŽD
- Γn@’Ê“¿FAsymptotic behavior of some global solutions for
nonlinear parabolic problems with scale-invarinat Lyapunov functionals,
L“‡‘åŠw”—‰ð̓Zƒ~ƒi[, L“‡‘åŠw, 2004”N1ŒŽ.
- Γn@’Ê“¿FAsymptotic behavior of some global
solutions for nonlinear parabolic problems with critical Sobolev nonlinearity,
‘æ 3 ‰ñ•Δ÷Eª•û’öŽ®ƒ[ƒNƒVƒ‡ƒbƒv, ƒEEFƒ‹ƒTƒ“ƒsƒA‘啪, 2004”N1ŒŽ.
- –å“c@’qmA‹v“¡@t‰îFPositive steady-states for a prey-predator model with nonlinear diffusion,
”“W•û’öŽ®Œ¤‹†W‰ïC’†‰›‘åŠwC2003”N12ŒŽD
- ‰Y–ì@“¹—YF‘oˆÀ’耂ðŽ‚Â”½‰žŠgŽU•û’öŽ®‚Ì‘JˆÚ‘w‚ƃXƒpƒCƒN‚ɂ‚¢‚Ä,
”“W•û’öŽ®Œ¤‹†W‰ïC’†‰›‘åŠwC2003”N12ŒŽD
- ‘剮@”ŽˆêFŒù”z€‚ðŠÜ‚Þ”¼üŒ`‘ȉ~Œ^•û’öŽ®‚É‚¨‚¯‚é
Žw”Œ¸EŠ‚·‚é³’l‰ð‚Ì‘½d«‚ɂ‚¢‚Ä,
”“W•û’öŽ®Œ¤‹†W‰ïC’†‰›‘åŠwC2003”N12ŒŽD
- Γn@’Ê“¿FAsymtotic behavior of solutions for some nonlinear
parabolic equations involving critical Sobolev exponent,
Fudan University, Shanghai, China, 2003”N11ŒŽD
- ‰Y–ì@“¹—YFTransition layers and spikes for a bistable reaction-diffusion equations,
EÏ•ª–â‘èƒZƒ~ƒi[C“Œ‹ž“s—§‘åŠwC2003”N11ŒŽD
- ‹v“¡@t‰îFMultiple existence and stability of steady-states for a prey-predator system
with cross-diffusion,
uNon-local Elliptic and Parabolic ProblemsvC‘åã‘åŠwC2003”N11ŒŽD
- Γn@’Ê“¿FAsymptotic behavior of some global solutions for nonlinear parabolic problems
with critical Sobolev nonlinearity,
uPDEs and Phenomena in Miyazaki 2003vC‹{è‘åŠwC2003”N11ŒŽD
- Γn@’Ê“¿FMorse polynomials for functionals associated to some
nonlinear elliptic problems involving nearly critical exponent,
u”÷•ª•û’öŽ®‚Æ•¨—”ŠwvC“Œ‹ž‘åŠwC2003”N10ŒŽD
- ‰Y–ì@“¹—YFTransition layers and spikes for a bistable reaction-diffusion equations,
RIMSŒ¤‹†W‰ïu”“W•û’öŽ®‚Ɖð‚Ì‘Q‹ß‰ðÍvC ‹ž“s‘åŠwC2003”N10ŒŽD
- Žá‹·@“OFGierer-Meinhardt shadow system ‚ÉŒ»‚ê‚é’èíƒpƒ^[ƒ“‚Ì
ˆÀ’è«‚Æ Hopf•ªŠò‚ɂ‚¢‚Ä,
‘æ25‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C‘¾É•{C2003”N8ŒŽD
- ²“¡@“TOFGray-Scott ƒ‚ƒfƒ‹‚É‚¨‚¯‚éis”g‰ð‚ɂ‚¢‚Ä,
‘æ25‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C‘¾É•{C2003”N8ŒŽD
- ‰Y–ì@“¹—YFTransition layers and spikes for a bistable reaction-diffusion equation,
‘æ25‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[EC‘¾É•{C2003”N8ŒŽD
- ‘åE®@”ŽˆêEF”ñ—LŠE—̈æ‚É‚¨‚¯‚é‚ ‚é€üŒ^‘ȉ~Œ^•û’öŽ®‚ɂ‚¢‚Ä,
‘æ25‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C‘¾É•{C2003”N8ŒŽD
- Γn@’Ê“¿FMorse theoretical approach for the existence of
multiple solutions of some nonlinear elliptic problems with nearly critical exponent,
—Šw•”‰ð̓Zƒ~ƒi[C_ŒË‘åŠwC2003”N7ŒŽD
- ‘剮@”ŽˆêF”ñ—LŠE—̈æ‚É‚¨‚¯‚é‚ ‚é€üŒ^‘ȉ~E^•û’öŽ®‚̉ð\‘¢‚ɂ‚¢‚Ä,
•Ï•ª–â‘èƒZƒ~Ei[C“Œ‹ž“s—§‘åŠwC2003”N7ŒŽD
- ‘剮@”ŽˆêFExistence results for some quasilinear elliptic equations in an unbounded domain,
RIMSŒ¤‹†W‰ïu•Ï•ª–â‘è‚Æ‚»‚ÌŽü•ÓvC‹žEs‘åŠwC2003”N6ŒŽD
- Γn@’Ê“¿FAn introduction to Morse theory with applications to nonlinear elliptic equations,
Šô‰½Šw‚ÆE¨—ŠwƒZƒ~ƒi[C ‘ˆî“c‘åŠwC2003”N6ŒŽD
2002”N“xF
- Γn@’Ê“¿FMultiplicity of solutions for some semilinear elliptic
equations involving nearly critical exponent: Morse theoretical approach,
“ú–{”Šw‰ï”N‰ïC “Œ‹ž‘åŠwC2003”N3ŒŽD
- ‘剮@”ŽˆêF—ÕŠEŽw”‚ðŽ‚Â‚ ‚é€üŒ`‘ȉ~Œ^•û’öŽ®‚ɂ‚¢‚Ä,
“ú–{”Šw‰ï”N‰ïC “Œ‹ž‘åŠwC2003”N3ŒŽD
- ‰Y–ì@“¹—YFTransition layers and spikes for a bistable reaction-diffusion equation,
‘æ10‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€C” ª“’–{C2003”N3ŒŽD
- Žá‹·@“OFStability-change and Hopf-bifurcation phenomena arising
in an activator-inhibitor model,
‘æ10‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€C” ª“’–{C2003”N3ŒŽD
- ‘剮@”ŽˆêFExistence results for some quasilinear elliptic
equations involoving critical Sobolev exponents,
‘æ10‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€C” ª“’–{C2003”N3ŒŽD
- ‹v“¡@t‰îFPostive solutions to reaction-diffusion systems with
cross-diffusion,
‘æ28‰ñ”“W•û’öŽ®Œ¤‹†‰ïC’†‰›‘åŠwC2002”N12ŒŽD
- ‘剮@”ŽˆêFExistence results for some quasilinear elliptic
equations involoving critical Sobolev exponents,
‘æ28‰ñ”“W•û’öŽ®Œ¤‹†‰ïC’†‰›‘åŠwC2002”N12ŒŽD
- ‹v“¡@t‰îFPositive steady-states for a reaction diffusion system
with cross-diffusion,
‘æ52‰ñŠwK‰@‘åŠwƒXƒyƒNƒgƒ‹—˜_ƒZƒ~ƒi[C ŠwK‰@‘åŠwC2002”N11ŒŽD
- Γn@’Ê“¿FMultiplicity of solutions for some semilinear
ellipric equations with weight functions: Morse theoretical approach,
’k˜b‰ïC ɪ‘åŠwC2002”N10ŒŽD
- Γn@’Ê“¿FOn some semilinear elliptic and parabolic equations
involving Sobolev critical exponent,
’k˜b‰ïC –¼ŒÃ‰®‘åŠwC2002”N10ŒŽD
- ‹v“¡@t‰îFPositive solutions for reaction-diffusion system with
cross-diffusion and related topics,
Seminor on Theory of Evolution Equations and its ApplicationsC
‘åã‘åŠwC2002”N10ŒŽD
- ‹v“¡@t‰îFStability analysis for steady-states of a
prey-predator system with cross-diffusion,
“ú–{”Šw‰ï‘‡•ª‰È‰ïC “‡ª‘åŠwC2002”N9ŒŽD
- Γn@’Ê“¿FMultiplicity of solutions for some semilinear elliptic
equations with weight function,
’é‘åŠw‚É‚¨‚¯‚é”÷•ªƒZƒ~ƒi[C ’é‘åŠwC2002”N8ŒŽD
- ‹v“¡@t‰îFStability of steady-state solutions to a
prey-predator system with cross-diffution,
‘æ24‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C ‹ß‹E‘åŠwHŠw•”C2002”N8ŒŽD
- ²“¡@“TOFGray-Scottƒ‚ƒfƒ‹‚É‚¨‚¯‚é’èí‰ð‚ƈÀ’諂ɂ‚¢‚Ä,
‘æ24‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C ‹ß‹E‘åŠwHŠw•”C2002”N8ŒŽD
- ‰Y–ì@“¹—YFTransition layers for general bistable equations,
‘æ24‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C ‹ß‹E‘åŠwHŠw•”C2002”N8ŒŽD
- Γn@’Ê“¿FMultiplicity of solutions for some semilinear
ellipric equations with weight functions: Morse theoretical approach,
’k˜b‰ïC “Œ–k‘åŠwC2002”N6ŒŽD
- ‹v“¡@t‰îFCoexistence states for a prey-predator system with cross-diffusion,
•Ï•ª–â‘èƒZƒ~ƒi[C “Œ‹ž“s—§‘åŠwC 2002”N5ŒŽ
2001”N“xF
- ‹v“¡@t‰îFMultiple coexistence states for a prey-predator system with cross-diffusion,
‘æ27‰ñ”“W•û’öŽ®Œ¤‹†‰ïC’†‰›‘åŠwEC2001”N12ŒŽD
- ‹v“¡@t‰îFRadial solutions of elliptic equations with concave-convex nonlinearity,
“ú–{”Šw
‰ï‘‡•ª‰È‰ïC‹ãB‘åŠwC2001”N10ŒŽD
- ‹v“¡@t‰îFMultiple existence of steady-states for a prey-predator system with cross-diffusion,
“ú–{”Šw‰ï‘‡•ª‰È‰ïC‹ãB‘åŠwC2001”N10ŒŽD
- ‘剮@”ŽˆêFŒù”z€‚ðŽ‚Â”¼üŒ`‘ȉ~Œ^•û’öŽ®‚Ì‹…‘Î̉ðW‡‚̉ðÍC
“ú–{”Šw‰ï‘‡•ª‰È‰ïC
‹ãB‘åŠwC2001”N10ŒŽD
- ‹v“¡@t‰îF‘ŠŒÝŠgŽU€‚ð‚à‚ÂLotka-VolterraŒn‚̳’l’èí‰ð‚ÉŠÖ‚·‚鑽d«,
‘æ23‰ñ”“W•û’ö
Ž®ŽáŽèƒZƒ~ƒi[C¼ŽRC2001”N8ŒŽD
- ‘剮@”ŽˆêFKeller-Segel ƒ‚ƒfƒ‹‚ÌŠÖ˜A‚·‚锼EE`‘ȉ~Œ^•û’öŽ®‚̳’l‰ð‚ɂ‚¢‚ÄC
‘æ23‰ñ”“W
•û’öŽ®ŽáŽèƒZƒ~ƒi[C¼ŽRC2001”N8ŒŽD
- ‹v“¡@t‰îFDiffusion problems with concave-convex nonliearities,
RIMSŒ¤‹†W‰ïu•Ï•ª–â‘è‚Æ‚»‚ÌŽü•ÓvC‹ž“s‘åŠwC2001”N6ŒŽD
2000”N“xF
- Îì@—RˆêFSteady-state solutions for reaction diffusion systems for general prey-predator
model,@
‘æ8‰ñ‰ž—p‰ðÍŒ¤‹†‰ïC“’‰ÍŒ´C2001”N2ŒŽD
- ‘剮@”ŽˆêFKeller-Segel ƒ‚ƒfƒ‹‚ÉŠÖ˜A‚·‚锼üŒ`‘ȉ~Œ^•û’öŽ®‚̉ðÍC
‘æ8‰ñ‰ž—p‰ðÍŒ¤‹†‰ïC“’‰ÍŒ´C2001”N2ŒŽ
- Îì@—RˆêFSteady-state solutions for reaction diffusion systems with Holling-type
interaction,@
‘æ26‰ñ”“W•û’öŽ®Œ¤‹†‰ïCç—t‘åŠwC2000”N12ŒŽD
- ’†“‡@ŽåŒbF‘oˆÀ’è•û’öŽ®‚Ì’èí–â‘è‚ÉŒ»‚ê‚é–§W‚µ‚½‘JˆÚ‘w‚ƃXƒpƒCƒNC
RIMSŒ¤‹†W‰ïu”ñüŒ`”“W•û’öŽ®‚Æ
‚»‚̉ž—pvC‹ž“s‘åŠwC2000”N10ŒŽD
- ’†“‡@ŽåŒbFStationary solutions of a bistable equation with clustering layers and spikesC
RIMSŒ¤‹†W‰ïuŽ©
—R‹«ŠE–â‘èvC‹ž“s‘åŠwC2000”N10ŒŽD
- ’†“‡@ŽåŒbF‘oˆÀ’èŒ^”½‰žŠgŽU•û’öŽ®‚Ì’èí‰ð‚ɂ‚¢‚Ä\Ü‚èd‚È‚Á‚½‘JˆÚ‘w‚ƃXƒpƒCƒN\C
“ú
–{”Šw‰ï‘‡•ª‰È‰ïC‹ž“s‘åŠwC2000”N9ŒŽD
- ‹v“¡@t‰îFSublinear term ‚ð‚à‚ŠgŽU•û’öŽ®‚̉ð‚Ì‹““®‚ɂ‚¢‚ÄC
‘æ22‰ñ”“W•û’öŽ®ŽáŽèƒZ
ƒ~ƒi[Cå‘äC2000”N8ŒŽD
- Kousuke KutoFStabilization of solutions of a diffusion problem with a non-Lipschitz reaction
term,
The 3rd World Congress of Nonlinear Analysts, Catania, Italy, July, 2000.
- Kimie NakashimaFMulti-layered stationary solutions for a spatially inhomogeneous
Allen-Cahn equation,
The 3rd World Congress of Nonlinear Analysts, Catania, Italy, July, 2000.
- Shingo TakeuchiFPartial differential equations with degenerate diffusion and logisitic
reaction,
The 3rd World Congress of Nonlinear Analysts, Catania, Italy, July, 2000.
- Kimie NakashimaFMorse indices of multi-layered stationary solutions for a spatially
inhomogeneous Allen-Cahn equation,
Dynamics in Inhomogeneous Media, Univ. of Athens,
Greece, June, 2000.
1999”N“xF
- ’|“à@TŒáFMultiplicity result for a degenerate elliptic equation with logisitic reaction,
“ú–{”Šw‰ï”N
‰ïC‘ˆî“c‘åŠwC2000”N3ŒŽD
- ‹v“¡@t‰îFSublinear term ‚ð‚à‚ŠgŽU•û’öŽ®‚Ì’èí‰ð‚Æ‚»‚̈À’諂ɂ‚¢‚ÄC
“ú–{”Šw‰ï”N‰ïC
‘ˆî“c‘åŠwC2000”N3ŒŽD
- ‹v“¡@t‰îFStabilization of solutions of a diffusion problem with a non-Lipschitz reaction
term,
‘æ7‰ñ‰ž—p‰ðÍŒ¤‹†‰ïCˆÉ“¤’·‰ªC2000”N3ŒŽD
- œA£@Œ’•¶FMultiple existence of positive solutions of competing species equations with
diffusion
and large interactions,
‘æ‚V‰ñ‰ž—p‰ðÍŒ¤‹†‰ïCˆÉ“¤’·‰ªC2000”N3ŒŽD
- ’|“à@TŒáFMultiplicity result for a degenerate elliptic equation with logisitic reaction,
u”ñüŒ`‚É‚¨‚¯‚é‰ð‚Ì‹óŠÔ\‘¢‚ƃ_ƒCƒiƒ~ƒNƒXvŒ¤‹†W‰ïC“Œ‹ž‘åŠwC2000”N1ŒŽD
- ’|“à@ETŒáFMultiplicity result for a degenerate elliptic equation with logisitic reaction,
‘æ25
‰ñ”“W•û’öŽ®Œ¤‹†‰ïCç—t‘åŠwC1999”N12ŒŽD
- ‹v“¡@t‰îFSublinear term ‚ð‚à‚ŠgŽU•û’öŽ®‚̉ðW‡‚ɂ‚¢‚Ä,
‘æ25‰ñ”“W•û’öŽ®Œ¤‹†‰ïC
ç—t‘åŠwC1999”N12ŒŽD
- Kimie Nakashima: Multi-layered stationary solutions for a spatially inhomogeneous Allen
Cahn equation,
International Conference on Free Boundary Problems: Theory and
Applications, Chiba Univ., November, 1999.
- Shingo Takeuchi: Behavior of solutions near the flat hats of stationary solutions for a
degenerate
parabolic equation,
International Conference on Free Boundary Problems:
Theory
and Applications, Chiba Univ., November, 1999.
- ’†“‡@ŽåŒbF‚ ‚é‘oˆÀ’èŠgŽU•û’öŽ®‚Ì’èí–â‘è‚ÉŒ»‚ê‚éˆÀ’è‘JˆÚ‘w‚Æ•sˆÀ’è‘JˆÚ‘w‚ɂ‚¢‚ÄC
“ú–{”Šw‰ï‘‡•ª‰È‰ïCL“‡‘åŠwC1999”N9ŒŽD
- ’|“à@TŒáF‚ ‚é‘Þ‰»‘ȉ~Œ^•û’öŽ®‚̳’l‰ð‚ÌŒ`ó‚Æ‘½d«‚ɂ‚¢‚Ä,
‘æ21‰ñ”“WŽáŽèƒZƒ~ƒi[C‹ž“sC1999”N8ŒŽD
- ‹v“¡@t‰îFSublinear - superlinear type‚Ì”ñüŒ`€‚𔺂¤ŠgŽU•û’öŽ®‚̉ð‚Ì‹““®‚ɂ‚¢‚Ä,
‘æ21‰ñ”“WŽáŽèƒZƒ~ƒi[C‹ž“sC1999”N8ŒŽD
- ’|“à[email protected]TŒáFDegenerate elliptic equation with logisitic reaction,
RIMSŒ¤‹†W‰ïu•Ï•ª–â‘è‚Æ‚»‚ÌŽü•ÓvC‹ž“s‘åŠwC1999”N6ŒŽD
1998”N“xF
- ’|“à@TŒáFPositive solutions for a degenerate elliptic equation with logisitic reaction,
“ú–{”Šw‰ï”N‰ïCŠwK‰@‘åŠwC1999”N3ŒŽD
- Kimie Nakashima: Boundary layers in a steady-state problem for the Lotka - Volterra
competition model,
Analyse Nonlineaire et Problemes de Transitions de Phase, Univ. de
Paris-Dud, France, March, 1999.
- ’|“à@TŒáFPositive solutions of a degenerate elliptic equation with logistic reaction,
‘æ24‰ñ
”“W•û’öŽ®Œ¤‹†‰ïCç—t‘åEwC1998”N12ŒŽD
- ‘åé@‰pôFMultiple coexistence states for Lotka-Volterra competition systems with diffusion,
‘æ24‰ñ”“W•û’öŽ®Œ¤‹†‰ïCç—t‘åŠwEC1998”N12ŒŽD
- Žsì@’B•vFSome remarks on global solutions to quasilinear parabolic system with cross-diffusion,
‘æ24‰ñ”“W•û’öŽ®Œ¤‹†‰ïCç—t‘åŠwC1998”N12ŒŽD
- ’|“à@TŒáFBehavior of solutions near the flat hats of stationary solutions for a degenerate
p-Laplacian, Workshop on Phase TransitionC
ç—t‘åŠwC1998”N10ŒŽD
- ’|“à@TŒáF‚ ‚é‘Þ‰»•ú•¨Œ^•û’öE®‚ÉŠÖ‚·‚é’èí‰ð‚Ìflat hat ‚ÌŒø‰Ê‚ÉE‚¢‚Ä,
‘æ20‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C•l¼C1998”N8ŒŽD
1997”N“xF
- ’†“‡@ŽåŒbF‚ ‚锼üŒ`‘ȉ~Œ^•û’öŽ®‚Ì‘JˆÚ‘w‚ð‚à‚‰ð‚ɂ‚¢‚ÄC
“ú–{”Šw‰ï”N‰ïC–¼é‘åŠwC
1998”N3ŒŽD
- ’†“‡@ŽåŒbFLotka-Volterra competition model ‚Ì layer@‚ð‚à‚‰ð‚ɂ‚¢‚ÄC
“ú–{”Šw‰ï”N‰ïC
–¼é‘åŠwC1998”N3ŒŽD
- ’|“à@TŒáF‚ ‚é‘Þ‰»Eú•¨Œ^•û’öŽ®‚ÉŠÖ‚·‚é—LŒÀŽžŠÔ‚Å‚Ìflat hat ‚ÌŒ`¬‚ɂ‚¢‚ÄC
“ú–{”Šw‰ï
”N‰ïC–¼é‘åŠwC1998”N3ŒŽD
- œA£@@ŒõF‚ ‚éí”÷•ª•û’öŽ®‚̉Šú’l–â‘è‚ɑ΂·‚é³’l‰ð‚Ì\‘¢C
‘æ23 ‰ñ”“W•û’öŽ®Œ¤‹†‰ïC
ç—t‘åŠwC1997”N12ŒŽD
- ’†“‡@ŽåŒbF‚ ‚é‘ȉ~Œ^•û’öŽ®‚Ìlayer‚ðŽ‚Â‰ð‚ɂ‚¢‚ÄC
‘æ23 ‰ñ”“W•û’öŽ®Œ¤‹†‰ïCç—t‘å
ŠwC1997”N12ŒŽD
- ’|“à@TŒáF‚ ‚é‘Þ‰»Œ^•ú•¨Œ^•û’öŽ®‚ÉŠÖ‚·‚é—LŒÀŽžŠÔ‚Å‚Ìflat hat ‚ÌŒ`¬‚ɂ‚¢‚ÄC
‘æ23 ‰ñ
”“W•û’öŽ®Œ¤‹†‰ïCç—t‘åŠwC1997”N12ŒŽD
- ‹g“c@“ÖFGlobal attractivity of coexistence states for a certain class of reaction diffusion
systems
with 3x3 cooperative matrices,@
‘æ23‰ñ”“W•û’öŽ®Œ¤‹†‰ïCç—t‘åŠwC1997”N12ŒŽD
- œA£@@ŒõFStructure of positive radial solutions to the Haraux Weissler equation for a
subcritical pC
“ú–{”Šw‰ï‘‡•ª‰È‰ïC“Œ‹ž‘åŠwC1997”N9ŒŽD
- œA£@@ŒõFStructure of positive radial solutions to the Haraux Weissler equation for a
subcritical pC
“ú–{”Šw‰ï‘‡•ª‰È‰ïC“Œ‹ž‘åŠwC1997”N9ŒŽD
- ’|“à@TŒáF‘Þ‰»p-Laplacian ‚ÌŠgŽU‚Æcubic like ‚Ì”½‰žC
‘æ19 ‰ñ”“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C“y
‰YC1997”N8ŒŽD
- ’†“‡@ŽåŒbFOn radial and non-radial positive steady states for Lotka-Volterra competitionC
“ú–{”Šw‰ï”N‰ïCMB‘åŠwC1997”N3ŒŽD
- ’|“à@TŒáFp-Laplacian ‚ðŠgŽU€‚É‚à‚ Chafee-Infante –â‘èC
“ú–{”Šw‰ï‘‡•ª‰È‰ïCMB‘åŠwC
1997”N3ŒŽD