‘åŠw‰@¶‚É‚æ‚éŒû“ª”­•\i”­•\ŽÒ–¼C‘è–ÚCŠw‰ï–¼CêŠC”NŒŽj


2018”N“xF

  1. ‰““¡@^”¿ ‘oˆÀ’耂𔺂¤Ž©—R‹«ŠE–â‘è‚ɑ΂·‚é‰ð‚Ìis‘¬“x‚Æ‘Q‹ß“IŒ`óC
    ‘æ44‰ñ”­“W•û’öŽ®Œ¤‹†‰ïC“ú–{—Žq‘åŠwC2018”N12ŒŽD

  2. —é–Ø@Œ’‰î ”ñüŒ^ŠgŽU•û’öŽ®‚ɑ΂·‚鎩—R‹«ŠE–â‘è‚ÆˆÚ—¬‚ÌŒø‰ÊC
    ‘æ44‰ñ”­“W•û’öŽ®Œ¤‹†‰ïC“ú–{—Žq‘åŠwC2018”N12ŒŽD

  3. ‰““¡@^”¿ A free boundary problem for a reaction diffusion equation with positive bistable nonlinearity,
    RIMS‹¤“¯Œ¤‹†u”ñüŒ`”­“W•û’öŽ®‚ðŠî”Õ‚Æ‚·‚錻‰ð͂Ɍü‚¯‚½”Šw—˜_‚Ì“WŠJvA‹ž“s‘åŠw ”—‰ðÍŒ¤‹†ŠC2018”N10ŒŽD

  4. Œ“Žq@—T‘å Properties of spreading solutions to a free boundary problem with Dirichlet boundary conditions,
    12th AIMS Conference on Dynamical Systems, Differential Equations and applications, ‘—§‘ä˜p‘åŠwC‘ä–kC2018”N7ŒŽD

  5. ‰““¡@^”¿ Asymptotic behaviors of solutions to nonlinear diffusion y problems with Dirichlet and free boundary conditions,
    12th AIMS Conference on Dynamical Systems, Differential Equations and applications, ‘—§‘ä˜p‘åŠwC‘ä–kC2018”N7ŒŽD

2017”N“xF

  1. ¬—Ñ@Œõ–Ø : ”ñüŒ`‘Þ‰»Œ^ŠgŽU‚𔺂¤X—у‚ƒfƒ‹‚É‚¨‚¯‚éˆê—l—LŠE«,
    ‘æ12‰ñ”ñüŒ`•Δ÷•ª•û’öŽ®‚ƕϕª–â‘èCŽñ“s‘åŠw“Œ‹ž, 2018”N2ŒŽ.

  2. Œ“Žq@—T‘å : ”—¶‘ÔŠwƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è‚ɑ΂·‚é‰ð‚Ì‘Q‹ß‘¬“xC
    ‹ãBŠÖ”•û’öŽ®ƒZƒ~ƒi[C•Ÿ‰ª‘åŠwƒZƒ~ƒi[ƒnƒEƒX, 2018”N1ŒŽD

  3. ŽOD@Œ[–ç : ”ñÄŽŸ‹«ŠEðŒ‚É‚¨‚¯‚éˆê”ʉ» Carleman ƒ‚ƒfƒ‹‚Ì—¬‘Ì—ÍŠw“I‹ÉŒÀ‚ɂ‚¢‚Ä,
    ‘æ4‚R‰ñ”­“W•û’öŽ®Œ¤‹†‰ïC“ú–{—Žq‘åŠw, 201‚V”N12ŒŽ.

  4. ‰““¡@^”¿ : ‘oˆÀ’耂𔺂¤Ž©—R‹«ŠE–â‘è‚Æ‘Q‹ß‹““®,
    ‘æ43‰ñ”­“W•û’öŽ®Œ¤‹†‰ïC“ú–{—Žq‘åŠw, 2017”N12ŒŽD

  5. Œ“Žq@—T‘å : ”½‰žŠgŽU•û’öŽ®‚ÌŽ©—R‹«ŠE–â‘è‚ɑ΂·‚é‰ð‚Ì‘Q‹ß‘¬“xC
    ‘æ43‰ñ”­“W•û’öŽ®Œ¤‹†‰ïC“ú–{—Žq‘åŠw, 2017”N12ŒŽD

  6. Œ“Žq@—T‘å : ”ñÄŽŸƒfƒBƒŠƒNƒŒ‹«ŠEðŒ‚𔺂¤ŒÂ‘ÌŠgŽUƒ‚ƒfƒ‹‚ɂ‚¢‚ÄC
    2017H‚̕Δ÷•ª•û’öŽ®ƒZƒ~ƒi[C‘åã‘åŠw, 2017”N9ŒŽD

  7. ‰““¡@^”¿ : ‘oˆÀ’耂𔺂¤”½‰žŠgŽU•û’öŽ®‚ɑ΂·‚鎩—R‹«ŠE–â‘è,
    ‘æ39‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[CƒOƒŠ[ƒ“ƒzƒeƒ‹ŽOƒ–ª(Š—ŒSŽsjC2017”N9ŒŽD

  8. ŽOD@Œ[–ç : ”ñÄŽŸ‹«ŠEðŒ‚ðŽ‚Âˆê”ʉ»‚µ‚½ Carleman ƒ‚ƒfƒ‹‚Ì—¬‘Ì—ÍŠw“I‹ÉŒÀ‚Ö‚ÌŽû‘©‚ɂ‚¢‚Ä,
    ‘æ39‰ñE­“W•ûEöŽ®ŽáŽèƒZƒ~ƒi[CƒOƒŠ[ƒ“ƒzƒeƒ‹ŽOE–ª(E—ŒSEsjC2017”N9ŒŽD

2016”N“xF

  1. ¬—Ñ@Œõ–Ø : ”ñüŒ`‘Þ‰»Œ^ŠgŽU‚𔺂¤‚ÁX—у‚ƒfƒ‹‚É‚¨‚¯‚é‘åˆæ‰ð‚Ì‘¶ÝC
    ‘æ11‰ñ”ñüŒ`•Δ÷•ª•û’öŽ®‚ƕϕª–â‘èCŽñ“s‘åŠw“Œ‹ž, 2017”N2ŒŽD

  2. ŽOD@Œ[–ç : ŒÂ•Ê—±Žq‚©‚猩‚½ Carleman ƒ‚ƒfƒ‹Œ^•û’öŽ®Œn,
    ‘æ42‰ñ”­“W•û’öŽ®Œ¤‹†‰ïC“ú–{—Žq‘åŠw, 2016”N12ŒŽ.

  3. Œ“Žq@—T‘å : ”½‰žŠgŽUŒn‹ßŽ—‚É‚æ‚éŒÂ‘ÌŠgŽUƒ‚ƒfƒ‹‚Ì”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“,
    ‘æ42‰ñ”­“W•û’öŽ®Œ¤‹†‰ïC“ú–{—Žq‘åŠw, 2016”N12ŒŽD

  4. ¬—Ñ@Œõ–Ø : ”ñüŒ`‘Þ‰»Œ^ŠgŽU‚𔺂¤‚ÁX—у‚ƒfƒ‹‚É‚¨‚¯‚é‘åˆæ‰ð‚Ì‘¶ÝC
    ‘æ42‰ñ”­“W•û’öŽ®Œ¤‹†‰ïC“ú–{—Žq‘åŠw, 2016”N12ŒŽD

  5. ’†ŽR@r•ã : ”—¶‘ÔŠw‚É‚¨‚¯‚é‹óŠÔ“I‚É”ñˆê—l‚ÈðŒ‰º‚ł̎©—R‹«ŠE–â‘è‚ɂ‚¢‚Ä,
    ‘æ42‰ñ”­“W•û’öŽ®Œ¤‹†‰ïC“ú–{—Žq‘åŠw, 2016”N12ŒŽD

  6. Yuki Kaneko : Numerical example of a free boundary problem modeling the spreading of speciesC
    Japanese-German International Workshop on Mathematical Fluid DynamicsCƒ_ƒ‹ƒ€ƒVƒ…ƒ^ƒbƒg, ƒhƒCƒc, 2016”N12ŒŽD

  7. Œ“Žq@—T‘å : ŒÂ‘ÌŠgŽUƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è‚ɑ΂·‚é”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“C
    2016‰Ä‚̕Δ÷•ª•û’öŽ®ƒZƒ~ƒi[C‘åã‘åŠw, 2016”N8ŒŽD

  8. ŽOD@Œ[–ç : Convergence of hydrodynamical limit for generalized Carleman models,
    ‘æ38‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C‚ ‚¤‚鋞–ki‹ž“s•{—§ƒ[ƒ~ƒi[ƒ‹ƒnƒEƒX)C2016”N8ŒŽD

  9. Yuki Kaneko : Generation of singularity and large time behaviors of solutions for a free boundary problem of a reaction-diffusion equationC
    11th AIMS Conference on Dynamical Systems, Differential Equations and ApplicationsCƒtƒƒŠƒ_BƒI[ƒ‰ƒ“ƒh, 2016”N7ŒŽD

  10. Yuki Kaneko : Spreading, vanishing and singularity for radially symmetric solutions of a Stefan-type free boundary problemC
    International Conference on Reaction-Diffusion EquationsC’†‘l–¯‘åŠw, 2016”N5ŒŽD

2015”N“xF

  1. Yuki Kaneko : Spreading and vanishing phenomena in a free boundary problem for nonlinear diffusion equationsC
    ALGORITMY 2016: Conference on Scientific ComputationCƒ”ƒBƒ\ƒPEƒ^ƒgƒŠ(ƒXƒƒoƒLƒA), 2016”N3ŒŽD

  2. Œ“Žq@—T‘å : ŒÂ‘ÌŠgŽU‚ð•\‚·Ž©—R‹«ŠE–â‘è‚Ì‰ð‹““®‚Æ“ÁˆÙ“_C
    ‘æ6‰ñˆÚ—¬‚ÆŠgŽU‚Ì”—Cˆ¤•Q‘åŠw, 2015”N12ŒŽD

  3. ‘êŒû@_—R : “ú–{Œê‚Å”Šw‚ðŠw‚Ô—¯Šw¶‚Ì“à—e—‰ð‚ðŽx‚¦‚éƒTƒ|[ƒg‚ðl‚¦‚é\‘åŠw”Šw‚ÌŠî‘b‰È–Úu”÷•ªÏ•ªvEuüŒ`‘ã”v‚ÉŠÖ‚µ‚ÄE\,
    “dŽqî•ñ’ÊMŠw‰ï@Žvl‚ÆŒ¾ŒêŒ¤‹†‰ï,‘ˆî“c‘åŠw, 2015”N10ŒŽ.

  4. Œ“Žq@—T‘å : Spreading, vanishing and singularity for radially symmetric solu- tions of a Stefan-type free boundary problemC
    RIMSŒ¤‹†W‰ïu”ñüŒ`Œ»Û‚̉ð͂ւ̉ž—p‚Æ‚µ‚Ă̔­“W•û’öŽ®˜_‚Ì“WŠJvC‹ž“s‘åŠw”—‰ðÍŒ¤‹†Š, 2015”N10ŒŽD

  5. Œ“Žq@—T‘å : Ž©—R‹«ŠE‚ðŽ‚Â‹…‘Î̗̈æ‚É‚¨‚¯‚锽‰žŠgŽU•û’öŽ®‚ɂ‚¢‚Ä,
    2015H‚̕Δ÷•ª•û’öŽ®ƒZƒ~ƒi[, ‘åã‘åŠw, 2015”N9ŒŽ.

  6. ¬—Ñ@Œõ–Ø : A large-time behavior of one dimensional dead core for a reaction-diffusion equation with strong absorption,
    ‘æ37‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, ¬’M’©—¢ƒNƒ‰ƒbƒZƒzƒeƒ‹, 2015”N8ŒŽ.

  7. ŽOD Œ[–ç : Diffusive limits of nonlinear hyperbolic systems with variable coefficients,
    ‘æ37‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, ¬’M’©—¢ƒNƒ‰ƒbƒZƒzƒeƒ‹, 2015”N8ŒŽ.

  8. Yuki Kaneko : Spreading and vanishing phenomena for a free boundary problem of reaction-diffusion equations,
    Mathematics for Nonlinear Phenomena: Analysis and Computation, ŽD–yƒRƒ“ƒxƒ“ƒVƒ‡ƒ“ƒZƒ“ƒ^[, 2015”N8ŒŽ. (Poster Session)

  9. Œ“Žq@—T‘å : ŒÂ‘ÌŠgŽU‚ð•\‚·”½‰žŠgŽU•û’öŽ®‚ÌŽ©—R‹«ŠE–â‘è,
    –¾Ž¡”ñüŒ^”—ƒZƒ~ƒi[, –¾Ž¡‘åŠw, 2015”N8ŒŽ.

2014”N“xF

  1. Yuki Kaneko : Criteria of spreading and vanishing for a free boundary problem in mathematical ecology,
    The 11th Japanese-German International Workshop on Mathematical Fluid Dynamics, ‘ˆî“c‘åŠw, 2015”N3ŒŽ (in English).

  2. ‰Í‡@—D—C : ¶EÔŒnƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è‚É‚¨‚¯‚é‘嬂ÌspreadingŒ»Û,
    ‘æ3‰ñuŒ»Û‚Ì”—vŒ¤‹†‰ï, ˆÉ“¤ŽRŒ¤CƒZƒ“ƒ^[, 2015”N1ŒŽ.

  3. ’Â ”@Žì : Mathematical analysis for a model of Hepatitis B Virus,
    ‘æ3‰ñuŒ»Û‚Ì”—vŒ¤‹†‰ï, ˆÉ“¤ŽRŒ¤CƒZƒ“ƒ^[, 2015”N1ŒŽ.

  4. ŽR–{ —æ : ”ñüŒ`ŠgŽU‚𔺂¤X—у‚ƒfƒ‹‚ɂ‚¢‚Ä,
    ‘æ3‰ñuŒ»Û‚Ì”—vŒ¤‹†‰ï, ˆÉ“¤ŽRŒ¤CƒZƒ“ƒ^[, 2015”N1ŒŽ.

  5. ‹g“c@—Y‰î : Global stability for semilinear Volterra diffusion equations with spatial inhomogeneity and advection,
    ‘æ3‰ñuŒ»Û‚Ì”—vŒ¤‹†‰ï, ˆÉ“¤ŽRŒ¤CƒZƒ“ƒ^[, 2015”N1ŒŽ.

  6. Œ“Žq@—T‘å : ŒÂ‘ÌŠgŽU‚Æ”½‰žŠgŽU•û’öŽ®‚ÌŽ©—R‹«ŠE–â‘è,
    ‘æ3‰ñuŒ»Û‚Ì”—vŒ¤‹†‰ï, ˆÉ“¤ŽRŒ¤CƒZƒ“ƒ^[, 2015EN1ŒŽ.

  7. ‰Í‡@—D—C : ¶‘ÔŒnƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è‚É‚¨‚¯‚é‘嬂ÌspreadingŒ»Û,
    ‘æ40‰ñ”­“W•û’öŽ®Œ¤‹†‰ï, “ú–{—Žq‘åŠw, 2014”N12ŒŽ.

  8. ŽR–{@—æ : ”ñüŒ`ŠgŽU‚𔺂¤X—у‚ƒfƒ‹‚ɂ‚¢‚Ä,
    ‘æ40‰ñ”­“W•û’öŽ®Œ¤‹†‰ï, “ú–{—Žq‘åŠw, 2014”N12ŒŽ.

  9. ‹g“c@—Y‰î : ‹óŠÔ”ñˆê—l«‚𔺂¤”¼üŒ`VolterraŠgŽU•û’öŽ®‚̉ð‚Ì‘Q‹ß‹““®,
    ‘æ40‰ñ”­“W•û’öŽ®Œ¤‹†‰ï, “ú–{—Žq‘åŠw, 2014”N12ŒŽ.

  10. Œ“Žq@—T‘å : ŒÂ‘ÌŠgŽUƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è‚ÉŒ»‚ê‚éSpreading‚ÆVanishing ‚̈ê”ÊŒ^,
    ‘æ40‰ñ”­“W•û’öŽ®Œ¤‹†‰ï, “ú–{—Žq‘åŠw, 2014”N12ŒŽ.

  11. Yuki Kaneko : Spreading and vanishing for a free boundary problem in population ecology,
    International Research Training Group Seminar, TU Darmstadt (ƒ_ƒ‹ƒ€ƒVƒ…ƒ^ƒbƒgH‰È‘åŠw), Germany, 2014”N11ŒŽ (in English).

  12. Yusuke Kawai : Big and Small Spreading Phenomena for Free Boundary Problems of Spruce Budworm Models,
    RIMS workshopuReconsideration of the method of estimates on partial differential equations from a point of view of the theory on abstract evolution equationsv, ‹ž“s‘åŠw”—‰ðÍŒ¤‹†Š, 2014”N10ŒŽ.

  13. Yusuke Yoshida : Asymptotic behavior of solutions for semilinear Volterra diffusion equations with spatial inhomogeneity,
    RIMS WorkshopuReconsideration of the method of estimates on partial differential equations from a point of view of the theory on abstract evolution equationsv, ‹ž“s‘åŠw”—‰ðÍŒ¤‹†Š, 2014”N10ŒŽ (in English).

  14. ‰Í‡@—D—C : Holling IIIŒ^‚̶‘ÔŒnƒ‚ƒfƒ‹‚É‚¨‚¯‚鎩—R‹«ŠE–â‘è,
    ‘æ36‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, ‹x‰É‘º“숢‘h, 2014”N8ŒŽ.

  15. ‹g“c@—Y‰î : ‹óŠÔ”ñˆê—l«‚𔺂¤”¼üŒ`VolterraŠgŽU•û’öŽ®‚ɂ‚¢‚Ä,
    ‘æ36‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, ‹x‰É‘º“숢‘h, 2014”N8ŒŽ.

  16. Œ“Žq@—T‘å : ‘½ŽŸŒ³—̈æ‚É‚¨‚¯‚éŒÂ‘ÌŠgŽUƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è,
    ‘æ36‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, ‹x‰É‘º“숢‘h, 2014”N8ŒŽ.

  17. Œ“Žq@—T‘å : ‘½ŽŸŒ³—̈æ‚É‚¨‚¯‚éŒÂ‘ÌŠgŽUƒ‚ƒfƒ‹‚̉ð‚Ì‘Q‹ß‹““®,
    2014‰Ä‚̕Δ÷•ª•û’öŽ®ƒZƒ~ƒi[, ‘åãEåŠw, 2014”N8ŒŽ.

  18. Yuki Kaneko : Free boundary problems modeling the spreading of species in multi-dimensional domains,
    The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Madrid, Spain, 2014”N7ŒŽiin Englishj.

2013”N“xF

  1. Œ“Žq@—T‘å : ‘½ŽŸŒ³—̈æ‚É‚¨‚¯‚éŒÂ‘ÌŠgŽUƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è‚ɂ‚¢‚Ä,
    ‘æ21‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, ” ª, 2014”N3ŒŽ.

  2. Œ“Žq@—T‘å : ‘½ŽŸŒ³—̈æ‚É‚¨‚¯‚锽‰žŠgŽU•û’öŽ®‚ÌŽ©—R‹«ŠE–â‘è,
    ‘æ2‰ñuŒ»Û‚Ì”—vŒ¤‹†‰ï, ˆÉ“Œ, 2014”N1ŒŽ.

  3. Œ“Žq@—T‘å : ŒÂ‘ÌŠgŽU‚ð•\‚í‚·Ž©—R‹«ŠE–â‘è‚ÌŽã‰ð‚Ì‘¶Ý‚ɂ‚¢‚Ä,
    ‘æ39‰ñ”­“W•û’öŽ®Œ¤‹†‰ï, “ú–{—Žq‘åŠw, 2013”N12ŒŽ.

  4. Œ“Žq@—T‘å : On a population model with a free boundary and related elliptic problems,
    RIMS Seminar uProgress in Qualitative Theory of Ordinary Differential Equationsv, ‹ž“s‘åŠw”—‰ðÍŒ¤‹†Š, 2013”N11ŒŽ (in English).

  5. Œ“Žq@—T‘å : Spreading and vanishing behaviors of solutions in a population model with a free boundary,
    International Research Training Group Seminar, TU Darmstadt (ƒ_ƒ‹ƒ€ƒVƒ…ƒ^ƒbƒgH‰È‘åŠw), Germany, 2013”N10ŒŽ (in English).

  6. Œ“Žq@—T‘å : Spreading and vanishing behaviors of radially symmetric solutions in a population model with a free boundary,
    One Forum, Two Cities 2013: Aspect of Nonlinear PDEs, ‘ˆî“c‘åŠw, 2013”N9ŒŽ (in English).

2012”N“xF

  1. Œ“Žq@—T‘å : ”—¶‘ÔŠwƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è‚ÉŒ»‚ê‚éSpreading‚ÆVanishing,
    “ú–{”Šw‰ï”N‰ï, ‹ž“s‘åŠw, 2013”N3ŒŽ.

  2. ]‰Ä@—mˆê : Š´õǂ̗¬s‚ð•\‚·’x‰„”÷•ª•û’öŽ®‚Ì’èí‰ð‚Ì‘åˆæ‘Q‹ßˆÀ’è«‚Æ‚»‚̉ž—p,
    ‘æ12‰ñ‚³‚¢‚½‚Ü”—‰ð̓Zƒ~ƒi[, é‹Ê‘åŠw(ƒTƒeƒ‰ƒCƒgƒLƒƒƒ“ƒpƒX), 2013”N03ŒŽ.

  3. Œ“Žq@—T‘å : ”—¶‘ÔŠw‚É‚¨‚¯‚éŒÂ‘ÌŠgŽUƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è,
    ‘æ20‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, “’‰ÍŒ´, 2013”N3ŒŽ.

  4. ‘åŽ}@˜a_ : ”íHŽÒ‚Ì‚½‚ß‚Ì•ÛŒì‹æˆæ‚ªE¶Ý‚·‚é”íHŽÒ]•ßHŽÒƒ‚ƒfƒ‹,
    “ŒH‘å”—‰ðÍŒ¤‹†‰ï, “Œ‹žH‹Æ‘åŠw, 2013”N2ŒŽ.

  5. ‘åŽ}@˜a_ : •ÛŒì‹æˆæ‚ª‘¶Ý‚·‚é”íHŽÒ]•ßHŽÒƒ‚ƒfƒ‹‚̳’l’èí‰ð‚Ì‘¶Ý‹y‚шÀ’è«‚ÉŠÖ‚·‚élŽ@,
    ‘æ5‰ñ“Œ–k‘ȉ~Œ^E•ú•¨Œ^”÷•ª•û’öŽ®Œ¤‹†W‰ï, “Œ–k‘åŠw, 2013”N1ŒŽ.

  6. “‡‘Ü@Œ\l : Œð·ŠgŽU‚𔺂¤ Lotka-Volterra Œ^‹£‡ƒ‚ƒfƒ‹‚̳’l’èí‰ð‚ɂ‚¢‚Ä,
    ‘æ38‰ñ”­“W•û’öŽ®Œ¤‹†‰ï, “ú–{—Žq‘åŠw, 2012”N12ŒŽ.

  7. Œ“Žq@—T‘å : ”—¶‘ÔŠw‚ÉŒ»‚ê‚鎩—R‹«ŠE–â‘è‚Ì‹…‘ÎÌ‰ð‚Æ‘Q‹ß‹““®,
    ‘æ38‰ñ”­“W•û’öŽ®Œ¤‹†‰ï, “ú–{—Žq‘åŠw, 2012”N12ŒŽ.

  8. ]‰Ä@—mˆê : Š´õǃ‚ƒfƒ‹‚ðŠÜ‚Þ’x‰„”÷•ª•û’öŽ®‚É‚¨‚¯‚镽t‰ð‚Ì‘åˆæˆÀ’è«,
    KSU”ñüŒ`‰ðE̓Zƒ~ƒi[, ‹ž“sŽY‹Æ‘åŠw, 2012”N12ŒŽ.

  9. ‘åŽ}@˜a_ : Coexistence in a diffusive Lotka-Volterra prey-predator system with a protection zone,
    RIMSŒ¤‹†W‰ïu”ñ•½tŒ»Û‚̉ð͂ɂ¨‚¯‚é”­“W•û’öŽ®—˜_‚ÌV“WŠJv, ‹ž“s‘åŠw, 2012”N10ŒŽ.

  10. ]‰Ä@—mˆê : Global stability of a positive equilibrium for delayed epidemic models and IVGTT models with nonlinear incidence rates,
    GCOE Tutorial Workshop ``Biomathematics of Structured Populations" with a Mini-Symposium in Honor of Professor Yasuhiro Takeuchi, “Œ‹ž‘åŠw, 2012”N10ŒŽ.

  11. Œ“Žq@—T‘å : ‘½ŽŸŒ³‰~ŠÂ—ÌEæ‚É‚¨‚¯‚é”—¶‘ÔŠwƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è‚É‚ÂE¢‚Ä,
    “ú–{”Šw‰ïH‹G‘‡•ª‰È‰ï, ‹ãB‘åŠw, 2012”N9ŒŽ.

  12. ‘åŽ}@˜a_ : ”ñüŒ`ŠgŽU‚Æ protection zone ‚𔺂¤”íHŽÒ-•ßHŽÒƒ‚ƒfƒ‹‚Ì’èí‰ð,
    “ú–{”Šw‰ïH‹G‘‡•ª‰È‰ï, ‹ãB‘åŠw, 2012”N9ŒŽ.

  13. ]‰Ä@—mˆê : Asymptotic stability for epidemic models with time delays and monotonicity of the incidence function,
    ‘æ22‰ñ“ú–{”—¶•¨Šw‰ï”N‰ï, ‰ªŽR‘åŠw, 2012”N9ŒŽ.

  14. Œ“Žq@—T‘å : ”½‰žŠgŽU•û’öŽ®‚ÌŽ©—R‹«ŠE–â‘è| Spreading ‚Æ Vanishing |,
    ‘æ34‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, ƒ^ƒiƒxŒo‰cÓ쌤CƒZƒ“ƒ^[, 2012”N9ŒŽ.

  15. Y. Kaneko : Asymptotic behavior of radially symmetric solutions for a free boundary problem in ecology,
    Turing Symposium on Morphogenesis, å‘ä‘ÛƒZƒ“ƒ^[, 2012”N8ŒŽ.(Poster Session)

  16. Y. Enatsu : Lyapunov functionals and global stability for epidemic models with delays,
    Turing Symposium on Morphogenesis, å‘ä‘ÛƒZƒ“ƒ^[, 2012”N8ŒŽ.(Poster Session)

  17. Y. Kaneko : Asymptotic behavior of radially symmetric solutions for a free boundary problem related to an ecological model,
    Seminar on Partial Differential Equations in Osaka, 2012, ‘åã‘åŠwHŠw•”, 2012”N8ŒŽ.

  18. Y. Enatsu : Lyapunov functionals for disease transmission models with delays and its applications,
    Seminar on Partial Differential Equations in Osaka, 2012, ‘åã‘åŠwHŠw•”, 2012”N8ŒŽ.

  19. K. Oeda : Effect of a protection zone and cross-diffusion on a prey-predator model,
    Seminar on Partial Differential Equations in Osaka, 2012, ‘åã‘åŠwHŠw•”, 2012”N8ŒŽ.

  20. Y. Kaneko : Free boundary problems modeling the spreading of species in symmetric domains,
    The 9th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Orlando Florida, USA , July 1-5, 2012.

  21. Y. Enatsu : Asymptotic behavior of solutions of epidemic models with delays,
    The 9th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Orlando Florida, USA , July 1-5, 2012.

  22. K. Oeda : Coexistence problem for a prey-predator model with a protection zone,
    The 9th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Orlando Florida, USA , July 1-5, 2012.

  23. ‘åŽ}@˜a_ : Protection zone ‚ª‘¶Ý‚·‚é”íHŽÒ-•ßHŽÒƒ‚ƒfƒ‹‚Ì‹¤‘¶‰ð,
    é‹Ê‘åŠw‰ð̓[ƒ~, é‹Ê‘åŠw, 2012”N6ŒŽ.

  24. Y. Enatsu : Global stability analysis of delayed epidemic models with Lyapunov functionals and its applications,
    China-Japan-Korea International Conference on Mathematical Biology, Pusan National University Sangnam International House, Korea, May, 2012.

2011”N“xF

  1. Y. Enatsu : Harmless delays for the global stability of a positive equilibrium of epidemic models,
    Conference on Evolution Equations, Related Topics and Applications, Waseda University, Tokyo, March 19-23, 2012.(Poster Session)

  2. K. Oeda : Effect of a protection zone on a Lotka-Volterra prey-predator model,
    Conference on Evolution Equations, Related Topics and Applications, Waseda University, Tokyo, March 19-23, 2012.(Poster Session)

  3. ]‰Ä@—mˆê : Harmless delays for global stability of equilibria of epidemic models and its applications,
    ‘æ19‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, ”MŠC, 2012”N3ŒŽ.

  4. Œ“Žq@—T‘å : N“üƒ‚ƒfƒ‹‚ÌŽ©—R‹«ŠE–â‘è‚ɂ‚¢‚Ä,
    KSU”ñüŒ`‰ð̓Zƒ~ƒi[, ‹ž“sŽY‹Æ‘åŠw, 2012”N1ŒŽ.

  5. Œ“Žq@—T‘å : ”—¶‘ÔŠw‚ÉŒ»‚ê‚鎩—R‹«ŠE–â‘è‚Æ‰ð‚Ì‘Q‹ß‹““®,
    ‘æ37‰ñ”­“W•û’öŽ®Œ¤‹†‰ï, Šò•Œ‘åŠw, 2011”N12ŒŽ.

  6. Œ“Žq@—T‘å : ”—¶‘ÔŠw‚ÌN“üƒ‚ƒfƒ‹‚É‚¨‚¯‚鎩—R‹«ŠE–â‘è‚ɂ‚¢‚Ä,
    ‘æ15‰ñ“ŒH‘å”—‰ð̓Zƒ~ƒi[, “Œ‹žH‹Æ‘åŠw, 2011”N12ŒŽ.

  7. K. Oeda : Stationary solutions of a three species population model with a protection zone,
    The 4th Japanese-German International Workshop on Mathematical Fluid Dynamics, ‘ˆî“c‘åŠw, 2011”N12ŒŽ.

  8. ‘åŽ}@˜a_ : Eú¬HŽÒ‚ÌE½‚ß‚Ìprotection zone‚ª‘¶Ý‚·‚é”íHŽÒ-•ßHŽÒƒ‚ƒfƒ‹‚ɂ‚¢‚Ä,
    •Δ÷•ª•û’öŽ®‚ÆŒ»ÛFPDEs and Phenomena in Miyazaki 2011, ‹{è‘åŠw, 2011”N11ŒŽ.

  9. Y. Enatsu : Stability analysis of a positive equilibrium for delayed epidemic models,
    International Research Training Group 1529 Mathematical Fluid Dynamics Seminar, TU Darmstadt, Germany, November 2011.

  10. Œ“Žq@—T‘å : A free boundary problem modeling the invasion of species,
    RIMSŒ¤‹†W‰ïu”ñ•½t”ñüŒ`Œ»Û‚̉ðÍ|”­“W•û’öŽ®‚Ì—§ê‚©‚ç|v, ‹ž“s‘åŠw, 2011”N10ŒŽ.

  11. ]‰Ä@—mˆê : Global stability of a positive equilibrium for epidemic models with delays,
    RIMSŒ¤‹†W‰ïu”ñ•½t”ñüŒ`Œ»Û‚̉ðÍ|”­“W•û’öŽ®‚Ì—§êE©‚çE|v, ‹ž“s‘åŠw, 2011”N10ŒŽ.

  12. Œ“Žq@—T‘å : ”—¶‘ÔŠw‚ÉŒ»‚ê‚锽‰žŠgŽU•û’öŽ®‚ÌŽ©—R‹«ŠE–â‘è‚ɂ‚¢‚Ä,
    “ú–{”Šw‰ïH‹G‘‡•ª‰È‰ï, MB‘åŠw, 2011”N9ŒŽ.

  13. Œ“Žq@—T‘å : ¶•¨‚ÌN“ü‚ð•\‚·Ž©—R‹«ŠE–â‘è‚̉ð‚Ì‘Q‹ß‹““®‚ɑ΂·‚é”ñüŒ`”½‰ž€‚ÌŒø‰Ê,
    ƒTƒ}[ƒZƒ~ƒi[ in ²¢•Û 2011, 2011”N8ŒŽ.

  14. Œ“Žq@—T‘å : ¶•¨‚ÌN“üƒ‚ƒfƒ‹‚ÉŒ»‚ê‚é‘oˆÀ’耂𔺂¤ŠgŽU•û’öŽ®‚ÌŽ©—R‹«ŠE–â ‘è‚ɂ‚¢‚Ä,
    ‰Ä‚̕Δ÷•ª•û’öŽ®ƒZƒ~ƒi[2011, —´’J‘åŠwƒZƒ~ƒi[ƒnƒEƒX, 2011”N8ŒŽ.

  15. ‘åŽ}@˜a_ : Protection zone‚ðŽ‚Â”íHŽÒ-•ßHŽÒŒ^‚ÌŒð·ŠgŽUŒn‚ɂ‚¢‚Ä,
    Summer Seminar on PDE in 2011, —´’J‘åŠwƒZƒ~ƒi[ƒnƒEƒX, 2011”N8ŒŽ.

  16. Y. Enatsu : On the global stability of a positive equilibrium for delayed epidemic models with a class of nonlinear incidence rates,
    International Conference on Differential and Difference Equations and Applications, Azores University, Portugal, July 2011.

2010”N“xF

  1. ]‰Ä@—mˆê : ˜A‘±Š´õǃ‚ƒfƒ‹‚Ì‘åˆæˆÀ’è«‚ð•ۂ—£ŽUƒ‚ƒfƒ‹,
    “ú–{”Šw‰ï”N‰ï, ‘ˆî“c‘åŠw, 2011”N3ŒŽ.

  2. Œ“Žq@—T‘å : ¶•¨‚ÌN“üƒ‚ƒfƒ‹‚ÉŒ»‚ê‚鎩—R‹«ŠE–â‘è‚ɂ‚¢‚Ä,
    ‘æ18‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, ” ª“’–{, 2011”N2ŒŽ.

  3. ]‰Ä@—mˆê : ŽžŠÔ’x‚ê‚ð‚à‚Š´õÇE‚ƒfƒ‹‚É‚¨‚¯E镽t“_‚Ì‘åˆæˆÀ’è«,
    ‘æ18‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, ” ª“’–{, 2011”N2ŒŽ.

  4. ‘åŽ}@˜a_ : Stationary solutions for a prey-predator cross-diffusion system with a protection zone,
    ‘æ3‰ñ–¼ŒÃ‰®”÷•ª•û’öŽ®Œ¤‹†W‰ï, –¼ŒÃ‰®‘åŠw, 2011”N2ŒŽ.

  5. Œ“Žq@—T‘å : ŠgŽU‚𔺂¤ƒƒWƒXƒeƒBƒbƒN•û’öŽ®‚ÌŽ©—R‹«ŠEEâ‘è‚ɂ‚¢‚Ä,
    Œ»Û‚Ì”—Œ¤‹†‰ï, ˆÉ“Œ, 2011”N2ŒŽ.

  6. ]‰Ä@—mˆê : ŽžŠÔ’x‚ê‚ð‚à‚Š´õǃ‚ƒfƒ‹‚Ì‘åˆæˆÀ’諉ðÍ,
    Œ»Û‚Ì”—Œ¤‹†‰ï, ˆÉ“Œ, 2011”N2ŒŽ.

  7. ‘åŽ}@˜a_ : ¶‘§—̈悪ˆê’v‚µ‚È‚¢”íHŽÒ-•ßHŽÒƒ‚ƒfƒ‹‚̉ðÍ,
    Œ»Û‚Ì”—Œ¤‹†‰ï, ˆÉ“Œ, 2011”N2ŒŽ.

  8. Œ“Žq@—T‘å : ŠgŽU‚𔺂¤ƒƒWƒXƒeƒBƒbƒN•û’öŽ®‚ÌŽ©—R‹«ŠE–â‘è‚Æ‰ð‚Ì‘Q‹ßE““®‚ɂ‚¢‚Ä,
    ‘æ36‰ñ”­“W•û’öŽ®Œ¤‹†‰ï, ’†‰›‘åŠw, 2010”N12ŒŽ.

  9. ‘åŽ}@˜a_ : Protection zone‚ðŽ‚Â”íHŽÒ-•ßHŽÒŒ^‚ÌŒð·ŠgŽUŒn‚Ì’èí–â‘è‚Æ‚»‚̋ɌÀŒn,
    ‘æ36‰ñ”­“W•û’öŽ®Œ¤‹†‰ï, ’†‰›‘åŠw, 2010”N12ŒŽ.

  10. Y. Enatsu : Global asymptotic stability of SIRS models with a class of nonlinear incidence rates and distributed delays,
    The Third China-Japan Colloquium of Mathematical Biology, ŠC–k—Ή€, China, October 2010.

  11. ‘åŽ}@˜a_ : Stationary problem of a prey-predator cross-diffusion system with a protection zone,
    RIMSŒ¤‹†W‰ïuŒ»Û‚Ì”—‰ð͂֌ü‚¯‚½”ñüŒ`”­“W•û’öŽ®‚Æ‚»‚ÌŽü•Óv, ‹ž“s‘åŠw, 2010”N10ŒŽ.

  12. ]‰Ä@—mˆê : ŽžŠÔ’x‚ê‚ð‚à‚Š´õǃ‚ƒfƒ‹‚É‚¨‚¯‚镽t‰ð‚Ì‘åˆæˆÀ’諉ðÍ,
    ‘æ32‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, ˆÉ“¤’·‰ª, 2010”N8ŒŽ.

  13. ‘åŽ}@˜aE_ : Protection zone‚ðŽ‚Â”íHŽÒ-•ßHŽÒŒ^‚ÌŒð·ŠgŽUŒn‚Ì’èí‰ð‚ɂ‚¢‚Ä,
    ‘æ32‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, ˆÉ“¤’·‰ª, 2010”N8ŒŽ.

  14. Y. Enatsu : global stability for a class of epidemic models with delays and a nonlinear incidence rate,
    8th AIMS conference on Dynamical systems, Differential equations and Applications, Dresden, Germany, May 2010.

2009”N“xF

  1. ‘åŽ}@˜a_ : Protection zoneEðŽ‚Â”íHŽÒ-EßHŽÒŒ^‚ÌŠgŽUƒ‚ƒfƒ‹‚ɂ‚¢‚Ä,
    “ú–{”Šw‰ï2010”N“xt‚Ì”N‰ï‰ž—p”Šw•ª‰È‰ï, Œc‰ž‹`m‘åŠw, 2010”N3ŒŽ.

  2. Y. Enatsu : Global asymptotic stability for a class of epidemic models with delays,
    International Workshop on Mathematical Fluid Dynamics, ‘ˆî“c‘åŠw, 2010”N3ŒŽ.

  3. K. Oeda : Stationary problem for a cross-diffusion system of a prey-predator type with a protection zone,
    International Workshop on Mathematical Fluid Dynamics, ‘ˆî“c‘åŠw, 2010”N3ŒŽ.

  4. ´…@‹`O : Ž©—R‹«ŠE‚𔺂¤Prey-Predator Model,
    ‘æ17‰ñ‰ž—p‰ðÍŒ¤EEEVƒ“ƒ|ƒWƒEƒ€, “’‰ÍŒ´, 2010”N3ŒŽ.

  5. Žç“c@‚‘× : Forest Kinematic Model ‚Ì’èí–â‘è‚ÉŠÖ‚·‚é‰ðÍ,
    ‘æ17‰ñ‰žEp‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, “’‰ÍŒ´, 2010”N3ŒŽ.

  6. ‘åŽ}@˜a_ : Protection zone‚ðŽ‚Â”íHŽÒ-•ßHŽÒŒ^‚ÌŒð·ŠgŽUŒn‚̳’l’èí‰ð,
    ‘æ17‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, “’‰ÍŒ´, 2010”N3ŒŽ.

  7. ‘åŽ}@˜a_ : Protection zone‚𔺂¤”íHŽÒ-•ßHŽÒŒ^‚ÌŒð·ŠgŽUƒ‚ƒfƒ‹‚Ì’èí‰ð‚ɂ‚¢‚Ä,
    ‘æ4‰ñ”ñüŒ^•Δ÷•ª•û’öŽ®‚ƕϕª–â‘è, Žñ“s‘åŠw“Œ‹ž, 2010”N2ŒŽ.

  8. Y. Enatsu: Stability analysis of delayed epidemic models with a class of nonlinear incidence rates,
    International Research Training Group 1529 Mathematical Fluid Dynamics Seminar, TU Darmstadt,Germany,February 2010.

  9. ‘åŽ}@˜a_ : Protection zone‚ðŽ‚Â”íHŽÒ-•ßHŽÒŒ^‚ÌEð·ŠgŽUŒn‚Ì’èí–â‘è,
    RDSƒZƒ~ƒi[, –¾Ž¡‘åŠw, 2010”N1ŒŽ.

  10. K. Oeda : Stationary problem for a Lotka-Volterra cooperative model with nonlinear diffusion,
    International Research Training Group 1529 Mathematical Fluid Dynamics Seminar,TU Darmstadt,Germany,November 2009.

  11. ]‰Ä@—mˆê : ¶•¨”Šw‚É‚¨‚¯‚é‘åˆæ‘Q‹ßˆÀ’è«‚ÉŠÖ‚·‚éLyapunov ŠÖ”‚Ì\¬–@,
    RIMSŒ¤‹†W‰ïu‘æ6‰ñ¶•¨”Šw‚Ì—˜_‚Æ‚»‚̉ž—pv, —´’J‘åŠwƒZƒ~ƒi[ƒnƒEƒX, 2009”N11ŒŽ.

  12. ]‰Ä@—mˆê : ”—ƒ‚ƒfƒ‹‚É‚¨‚¯‚éLyapunov ŠÖ”‚ð—p‚¢‚½•½t“_‚Ì‘åˆæ‘Q‹ßˆÀ’諂ɂ‚¢‚Ä,
    ‘æ7‰ñŒvŽZ”ŠwŒ¤‹†EE — ”Ö’òƒƒCƒ„ƒ‹ƒzƒeƒ‹, 2009”N10ŒŽ.

  13. ²“¡@“TO : Gray-Scott Œ^”½‰žŠgŽUŒn‚Ì’èí–â‘è‚ɂ‚¢‚Ä,
    “ú–{”Šw‰ïH‹G‘‡•ª‰È‰ï, ‘åã‘åŠw, 2009”N9ŒŽ.

  14. ‘åŽ}@˜a_ : Existence of coexistence states for a strongly coupled prey-predator system with a protection zone,
    “ú–{”Šw‰ïH‹G‘‡•ª‰È‰ï, ‘åã‘åŠw, 2009”N9ŒŽ.

  15. ]‰Ä@—mˆê : ”ñüE`ÚG€‚ÆŽžŠÔ’x‚ê‚ð‚à‚Š´õǃ‚ƒfƒ‹‚Ì‘åˆæ‘Q‹ßˆÀ’è«,
    “ú–{”Šw‰ïH‹G‘‡•ª‰È‰ï, ‘åã‘åŠw, 2009”N9ŒŽ.

  16. ‘åŽ}@˜a_ : ”ñüŒ`ŠgŽU€‚𔺂¤Lotka-VolterraŒ^‹¤¶Œn‚Ì”ñ’蔳’l’èí‰ð‚ɂ‚¢‚Ä,
    MZSeminar, ‹{è‘åŠw, 2009”N9ŒŽ.

  17. Y.Enatsu : Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates,
    Conference on Evolution Equations,Related Topics and Applications,München, Germany September 2009.(Poster Session)

  18. K.Oeda : Positive steady states for a strongly coupled prey-predator system with a protection zone,
    Conference on Evolution Equations,Related Topics and Applications,München, Germany September 2009.(Poster Session)

  19. T.Wakasa : Asymptotic Characterization of linearized eigenvalue problems associated with balanced bistable reaction-diffusion equations,
    Conference on Evolution Equations,Related Topics and Applications,München, Germany September 2009.(Poster Session)

  20. ²E¡@“TO : Gray-Scott Œ^”½‰žŠgŽUŒn‚Ì’èí–â‘è‚ɂ‚¢‚Ä,
    RIMSŒ¤‹†W‰ïuŽUˆíŒn‚Ì”—-ƒpƒ^[ƒ“‚ð•\Œ»‚·‚é‘Q‹ß‰ð‚Ì\¬-v, ‹ž“s‘åŠw, 2009”N6ŒŽ.

2008”N“xF

  1. ‘åŽ}@˜a_ : ”ñüŒ`ŠgŽU€‚ðŠÜ‚ÞLotka-Volterra‹¤¶Œn‚ɑ΂·‚é’èí–â‘è,
    OSƒZƒ~ƒi[, “Œ–k‘åŠw, 2009”N3ŒŽ.

  2. ²“¡@“TO : ‚ ‚鎩ŒÈG”}‰»Šw”½‰ž‚ÉŒ»‚ê‚é’èíƒpƒ^[ƒ“Œ`¬–â‘è‚̉ðÍ,
    ‘æ16‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, ”MŠC, 2009”N3ŒŽ.

  3. ‘åŽ}@˜a_ : ”ñüŒ`ŠgŽU€‚ðŠÜ‚ÞLotka-Volterra‹¤¶Œn‚̳’l’èí‰ð‚ɂ‚¢‚Ä,
    ‘æ16‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, ”MŠC, 2009”N3ŒŽ.

  4. ‘åŽ}@˜a_ : ”ñüŒ`ŠgŽU€‚ðŠÜ‚Þ‹¤¶Œnƒ‚ƒfƒ‹‚Ì‹óŠÔ”ñˆê—l‚È’èí‰ð‚Ì‘¶ÝE”ñ‘¶Ý,
    ‘æ3‰ñ”ñüŒ^•Δ÷•ª•û’öŽ®‚ƕϕª–â‘è, Žñ“s‘åŠw“Œ‹ž, 2009”N2ŒŽ.

  5. Žá‹·@“O : Precise asymptotic results on some linearized eigenvalue problems associated with scalar reaction diffusion equations,
    SNP2008, ŠÖ¼ƒZƒ~ƒi[ƒnƒEƒX, 2008”N12ŒŽ.

  6. Žá‹·@“O : ‚ ‚é‘oˆÀ’èŒ^•û’öŽ®‚ɑ΂·‚éüŒ`‰»ŒÅ—L’l–â‘è‚Ì•\Œ»ŒöŽ®‚Æ‘Q‹ßŒöŽ®,
    PPM2008, ‹{è‘åŠw, 2008”N11ŒŽ.

  7. Žá‹·@“O, Žlƒc’J@»“ñ : ‚ ‚éüŒ`‰»ŒÅ—L’l–â‘è‚̌ŗLŠÖ”‚Ì‘Q‹ßŒ`ó‚ɂ‚¢‚Ä,
    “ú–{”Šw‰ïH‹G‘‡•ªEȉï, “Œ‹žH‹Æ‘åŠw, 2008”N9ŒŽ.

  8. T.Wakasa : On some linearized eigenvalue problems associated with Chafee-Infante equatio:A classical approach from elliptic integrals,
    World Congress of Nonlinear Analysts 2008, Orlando,Florida,USA, July,2008.

2007”N“xF

  1. ‘åŽ}@˜a_ : ”ñüŒ`ŠgŽU€‚ðŠÜ‚Þ‹¤¶Œnƒ‚ƒfƒ‹‚Ì‹óŠÔ”ñˆê—l‚ȳ’l’èí‰ð‚ɂ‚¢‚Ä,
    “ú–{”Šw‰ï”N‰ï, ‹ß‹E‘åŠw, 2008”N3ŒŽ.

  2. Žá‹·@“O, Žlƒc’J@»“ñ : ‚ ‚éüŒ`‰»ŒÅ—L’l–â‘è‚Ì‚·‚ׂĂ̌ŗL’l‚ƌŗLŠÖ”‚ɂ‚¢‚Ä,
    “ú–{”Šw‰ï”N‰ï, ‹ß‹E‘åŠw, 2008”N3ŒŽ.

  3. ‰–Œ©@’Žj : ŠÂ‹«•Ï“®€‚ÆŠgŽU€‚𔺂¤3Ží¶‘Ôƒ‚ƒfƒ‹‚Ì’èí‰ð‚ɂ‚¢‚Ä,
    ‘æ15‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, ” ª“’–{, 2008”N3ŒŽ.

  4. ‹I•½@‘åŽ÷ : Forest Kinematic Model‚ɑ΂·‚鎞ŠÔ‘åˆæ‰ð‚Ì‘¶Ý‚Æ—ÍŠwŒn‚̉ðÍ,
    ‘æ15‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, ” ª“’–{, 2008”N3ŒŽ.

  5. Žá‹·@“O : On a linerized eigenvalue problem associated with 1-dimensional reaction diffusion equation of bistable-type,
    —´’J”—‰ÈŠwƒZƒ~ƒi[, —´’J‘åŠw, 2008”N2ŒŽ.

  6. ‘åŽ}@˜a_ : ‹¤¶Œnƒ‚ƒfƒ‹‚Ì’èí‰ðW‡‚ɑ΂·‚é”ñüŒ`ŠgŽU€‚ÌŒø‰Ê,
    ‹ãBŠÖ”•û’öŽ®ƒZƒ~ƒi[, ‹ãB‘åŠw, 2007”N11ŒŽ.

  7. ‘åŽ}@˜a_ : Stationary patterns for a cooperative model with nonlinear diffusion,
    RIMSŒ¤‹†W‰ïu”ñüŒ`”­“W•û’öŽ®‚ÆŒ»Û‚Ì”—v, ‹ž“s‘åŠw, 2007”N10ŒŽ.

  8. ²“¡@“TEO : ‚ E锽‰žŠgŽUŒn‚ÉŠÖ‚·‚é’èí‰ðW‡‚ɂ‚¢‚Ä,
    ‘æ33‰ñ”­“W•û’öŽ®Œ¤‹†‰ï, ’†‰›‘åŠw, 2007”N9ŒŽ.

  9. ‘åŽ}@˜a_ : ”ñüŒ`ŠgŽU€‚ðŠÜ‚Þ‹¤¶Œnƒ‚ƒfƒ‹‚̳’l’èí‰ð‚ɂ‚¢‚Ä,
    ‘æ33‰ñ”­“W•û’öŽ®Œ¤‹†‰ï, ’†‰›‘åŠw, 2007”N9ŒŽ.

  10. ‘åŽ}@˜a_ : ”ñüŒ`ŠgŽU€‚ðŠÜ‚Þ2Ží‚̶•¨‚Ì‹¤¶Œn‚Ì’èí‰ð‚ɂ‚¢‚Ä,
    ‘æ29‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~Ei[, ŽRŒû, 2007”N8ŒŽ.

  11. ‰–Œ©@’Žj : 3Eú¬¶‘Ôƒ‚ƒfƒ‹‚É‚¨‚¯‚é‹óŠÔ”ñˆê—l‚È•ªŠò‰ð‚Æ‚»‚̈À’è«,
    ‘æ29‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, ŽRŒû, 2007”N8ŒŽ.

  12. Žá‹·@“O : Representation and asymptotic formulas for some 1-dimensional linearized eigenvalue problems,
    RIMSŒ¤‹†W‰ïu•Ï•ª–â‘è‚Æ‚»‚ÌŽü•Óv, ‹ž“s‘åŠw, 2007”N6ŒŽ.

  13. Žá‹·@“O : 1ŽŸŒ³”½‰žŠgŽU•û’öŽ®‚ÌüŒ`‰»ŒÅ—L’l–â‘è‚ɑ΂·‚éŒÅ—L’lEŒÅ—LŠÖ”,
    _Šyâ‰ð̓Zƒ~ƒi[, “Œ‹ž—‰È‘åŠw, 2007”N5ŒŽ.

2006”N“xF

  1. Žá‹·@“O, Žlƒc’J@»“ñ : ‚ ‚éüŒ`‰»ŒÅ—L’l–â‘è‚É‚¨‚¯‚錵–§‰ð‚ƌŗL’l‚Ì‘Q‹ßŒöŽ®,
    “ú–{”Šw‰ï”N‰ï”Ÿ”•û’öŽ®•ª‰È‰ï, é‹Ê‘åŠw, 2007”N3ŒŽ.

  2. ²“¡@“TO : —LŠE—̈æ‚É‚¨‚¯‚é Gray-Scott ƒ‚ƒfƒ‹‚Ì’èí‰ðW‡,
    ‘æ14‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, “’‰ÍŒ´, 2007”N2ŒŽ.

  3. ‘åŽ}@˜a_ : Cross-Diffusion Œn‚̳’l’èí‰ðW‡‚Ì\‘¢‚ɂ‚¢‚Ä,
    ‘æ14‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, “’‰ÍŒ´, 2007”N2ŒŽ.

  4. ‰–Œ©@’Žj : 3Žíƒ‚ƒfƒ‹‚̉ðÍ,
    ‘æ14‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€, “’‰ÍŒ´, 2007”N2ŒŽ.

  5. Žá‹·@“O : ‚ ‚éüŒ`‰»ŒÅ—L’l–â‘è‚̌ŗL’lEŒÅ—LŠÖ”‚ɂ‚¢‚Ä,
    ”ñüŒ`•Δ÷•ª•û’öŽ®‚ƕϕª–âEè@À’ÃZƒ~ƒi[, À’ÃH‹Æ‚“™ê–åŠwZ, 2007”N2ŒŽ.

  6. ²“¡@“TO : Gray-Scott ƒ‚ƒfƒ‹‚É‚¨‚¯‚é’èí–â‘è‚ɂ‚¢‚Ä,
    RIMSŒ¤‹†W‰ïu‘æ3‰ñ¶•¨”Šw‚Ì—˜_‚Æ‚»‚̉ž—pv, ‹ž“s‘åŠw, 2006”N12ŒŽ.

  7. ²“¡@“TO : —LŠE—̈æ‚É‚¨‚¯‚é Gray-Scott ƒ‚ƒfƒ‹‚Ì’èí‰ð\‘¢,
    “ú–{”Šw‰ïH‹G‘‡•ª‰È‰ï, ‘åãŽs—§‘åŠw, 2006”N9ŒŽ.

  8. Žá‹·@“O : ‚ ‚锽‰žŠgŽU•û’öŽ®‚ÉŠÖ˜A‚·‚éüŒ`‰»ŒÅ—L’l–â‘è‚̉ð•\ަ‚ɂ‚¢‚Ä,
    ‘æ32‰ñ”­“W•û’öŽ®E¤‹†‰ï, ’†‰›‘åŠw, 2006”N9ŒŽ.

  9. ²“¡@“TO : —LŠE—̈æ‚É‚¨‚¯‚é Gray-Scott ƒ‚ƒfƒ‹‚Ì’èí–â‘è,
    ‘æ32‰ñ”­“W•û’öŽ®Œ¤‹†‰ï, ’†‰›‘åŠw, 2006”N9ŒŽ.

  10. ‘剮@”Žˆê, ŠÖ‰ª@’¼Ž÷, ‰–Œ©@’Žj : Competition versus Predation for some population models with three species,
    ‘æ32‰ñ”­“W•û’öŽ®Œ¤‹†‰ï, ’†‰›‘åŠw, 2006”N9ŒŽ.

  11. ‘剮@”Žˆê, ŠÖEª@’¼Ž÷: Positive solutions for some population model with three species,
    “‡ª‘åŠw‚É‚¨‚¯‚é”÷•ª•û’öŽ®ƒZƒ~ƒi[, “‡ª‘åŠw, 2006”N8ŒŽ.

  12. Žá‹·@“O : ‚ ‚éüŒ`‰»ŒÅ—L’l–â‘è‚Ì‚·‚ׂĂ̌ŗL’lEŒÅ—LŠÖ”‚Ì•\ަ‚ɂ‚¢‚Ä,
    Fukuoka Mini Workshop on Evolution Equations and Related Topics, •Ÿ‰ª, 2006”N8ŒŽ.

  13. Žá‹·@“O : U‚èŽq‚Ì•û’öŽ®‚ÌüŒ`‰»–âEè‚ɑ΂·‚é‚·‚ׂĂ̌ŗL’lEŒÅ—LŠÖ”‚ɂ‚¢‚Ä,
    ‘æ28‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, _ŒË, 2006”N8ŒŽ.

  14. ²“¡@“TO : —LŠE—̈æ‚É‚¨‚¯‚é Gray-Scott ƒ‚ƒfƒ‹‚Ì’èí‰ð\‘¢‚ɂ‚¢‚Ä,
    ‘æ28‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, _ŒË, 2006”N8ŒŽ.

  15. ‘剮@”Žˆê, ŠÖ‰ª@’¼Ž÷: ŠgŽU€‚𔺂¤ 3 Ží population model ‚̉ð͂ɂ‚¢‚Ä,
    ‘æ28‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[, _ŒË, 2006”N8ŒŽ.

  16. ‘剮@”Žˆê : ”ñ—LŠE—̈æ‚É‚¨‚¯‚éd‚݂‚«ƒ\ƒ{ƒŒƒt‹óŠÔ‚ɑ΂·‚éˆêlŽ@,
    ˆ¤•Q‘åŠw”Šw’k˜b‰ï, ˆ¤•Q‘åŠw, 2006”N7ŒŽ.

  17. Hirokazu Ohya : Note on the embedding properties for Weighted Sobolev spaces in unbounded domains,
    The 6th International Congress of Dynamical Systems and Differential Equations, University of Poitiers at Poitiers, France, June, 2006.

  18. ‘剮@”Žˆê : Analysis of the embedding properties for Weighted Sobolev spaces in unbounded domains,
    _Šyâ‰ð̓Zƒ~ƒi[, “Œ‹ž—‰È‘åŠw, 2006”N5ŒŽ.
2005”N“xF

  1. Žá‹·@“O : U‚èŽq‚Ì•û’öŽ®‚ÌüŒ`‰»–â‘è‚É‚¨‚¯‚éŒÅ—L’l‚ƌŗLŠÖ”C
    “ú–{”Šw‰ï”N‰ïC’†‰›‘åŠwC2006”N3ŒŽ

  2. ²“¡@“TOF Gray-Scott ƒ‚ƒfƒ‹‚É‚¨‚¯‚é’èí‰ð‚ɂ‚¢‚ÄC
    ‰ž—p‰ðÍŒ¤‹†‰ïC”MŠCC2006”N2ŒŽ

  3. Žá‹·@“O : ”ñEE`ŒÅ—L’l–â‘è‚ÉŠÖ˜A‚·‚éüŒ`‰»–â‘èẺð‚ÉE‚¢‚ÄC
    ‰ž—p‰ðÍŒ¤‹†‰ïC”MŠCC2006”N2ŒŽ

  4. ‘剮@”Žˆê : Note on the embedding properties for Weighted Sobolev spaces in unbounded domains,
    ‰ž—p‰ðÍŒ¤‹†‰ïC”MŠCC2006”N2ŒŽ

  5. Žá‹·@“O : ”ñüŒ`ŒÅ—L’l–â‘è‚ÌüŒ`‰»–â‘è‚É‚¨‚¯‚錵–§‰ð‚ɂ‚¢‚ÄC
    —´’J‘åŠw”—‰ÈŠwƒZƒ~ƒi[C—´’J‘åŠwC2006”N2ŒŽ

  6. ‘剮@”ŽEE: ”ñ—LŠE‚Èd‚ÝŠÖ”‚ðŽ‚Âd‚Ý•t‚«ƒ\ƒ{ƒŒƒt‹óŠÔ‚ÌE„‚ßž‚݂ɂ‚¢‚Ä C
    —´’J‘åŠw”—‰ÈŠwƒZƒ~ƒi[C—´’J‘åŠwC2006”N2ŒŽ

  7. ‰Y–ì@“¹—Y : ‹óŠÔ”ñˆê—l‚È‘oˆÀ’èŒ^”½‰žŠgŽU•û’öŽ®‚ÉŒ»‚ê‚é‘JˆÚ‘w‚ƃXƒpƒCƒN‚ɂ‚¢‚ÄC
    “Œ–k‘åEw”Šw‹³ŽºƒZƒ~ƒi[C“Œ–k‘åŠwC2005”N12ŒŽ.

  8. Žá‹·@“O : Chafee-Infante–â‘è‚ÌüŒ`‰»–â‘è‚É‚¨‚¯‚éŒÅ—L’l‚ƌŗLŠÖ”C
    “úE{”Šw‰ï‘‡•ª‰È‰ïC‰ªŽR‘åŠwC2005”N9ŒŽ.

  9. ‘剮@”Žˆê : Žw”ŠÖ”‚ðd‚݂Ɏ‚Âd‚Ý•t‚«ƒ\ƒ{ƒŒƒt‹óŠÔ‚Ì–„‚ßž‚݂ɂ‚¢‚ÄC
    “ú–{”Šw‰ï‘‡•ª‰È‰ïC‰ªŽR‘åŠwC2005”N9ŒŽ.

  10. Žá‹·@“O : CHAFEE-INFANTE–â‘è‚ÌüŒ`‰»–â‘è‚É‚¨‚¯‚éŒÅ—L’l‚ƌŗLŠÖ”‚ÌŒöŽ®C
    ‘æ27‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C¼]C2005”N8ŒŽ.

  11. ‰Y–ì@“¹—Y : ‘oˆÀ’èŒ^”½‰žŠgŽU•û’öŽ®‚ÉŒ»‚ê‚é‘JˆÚ‘w‰ð‚̃‚[ƒXŽw”‚ɂ‚¢‚ÄC
    ‘æ27‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C¼]C2005”N8ŒŽ.

  12. Hirokazu Ohya : Embedding properties for Weighted-Sobolev spaces in unbounded domains,
    PDE's seminar, Worcester Polytechnic Institute, USA Aug 2005.

  13. ‰Y–ì@“¹—YFStability of steady-state solutions with transition layers for a bistable reaction-diffusion equation,
    RIMSŒ¤‹†W‰ïu•Ï•ª–â‘è‚Æ‚»‚ÌŽü•ÓvEC‹ž“s‘åŠwC2005”N6ŒŽD
2004”N“xF

  1. ²“¡@“TOFGray-Scottƒ‚ƒfƒ‹‚Ì’èí‰ð‚ɂ‚¢‚Ä,
    “ú–{”Šw‰ï”N‰ïC“ú–{‘åŠwC2005”N3ŒŽD

  2. ‰Y–ì@“¹—YF‘oˆÀ’èŒ^”½‰žŠgŽU•û’öŽ®‚Ì‘JˆÚ‘w‚âƒXƒpƒCƒN‚ðŽ‚Â‰ð‚̈À’è«,
    “ú–{”Šw‰ï”N‰ïC“ú–{‘åŠwC2005”N3ŒŽD

  3. Žá‹·@“OFGeneration of interfaces to Lotka-Volterra competition-diffusion system with large interaction rates,
    “ú–{”Šw‰ï”NEEC“ú–{‘åŠwEC2005”N3ŒŽD

  4. Žá‹·@“OFGeneration of interfaces to Lotka-Volterra competition diffusion system with large interaction,
    ”Šw‘‡ŽáŽèŒ¤‹†W‰ï, –kŠC“¹‘åŠw, 2005”N2ŒŽD

  5. Žá‹·@“OFGeneration of corner-layer to Lotka-Volterra competition diffusion system with large interaction rates,
    Workshop on Mathematical and Numerical Analysis of Nonlinear Phenomena, “Œ‹ž“s—§‘åŠw, 2005”N2ŒŽD

  6. ²“¡@“TOFSome stationary problem for the Gray-Scott model,
    Workshop on Mathematical and Numerical Analysis of Nonlinear Phenomena, “Œ‹ž“s—§‘åŠw, 2005”N2ŒŽD

  7. ²“¡@“TOFGray-Scottƒ‚ƒfƒ‹‚Ì’èí‰ð‚ɂ‚¢‚Ä,
    ‘æ30‰ñ”­“W•û’öŽ®Œ¤‹†‰ïC’†‰›‘åŠwC2004”N12ŒŽD

  8. ‰Y–ì@“¹—YF‘oˆÀ’èE^‚Ì”½‰žŠgŽU•û’öŽ®‚ÉŒ»‚ê‚é‘JˆÚ‘w‚âƒXƒpƒCƒN‚ðŽ‚Â‰ð‚̈À’è«,
    ‘æ30‰ñ”­“W•û’öŽ®Œ¤‹†‰ïC’†‰›‘åŠwC2004”N12ŒŽD

  9. Žá‹·@“OF‹£‡Œ^”½‰žŠgŽU•û’öŽ®Œn‚ÌŠE–ÊŒ`¬‚̃vƒƒZƒX‚ɂ‚¢‚Ä,
    ‘æ30‰ñ”­“W•û’öŽ®Œ¤‹†‰ïC’†‰›‘åŠwC2004”N12ŒŽD

  10. ‹v“¡@t‰îFPositive solutions to some strongly coupled diffusion systems,
    ‘æ‚Q‰ñ•l¼•Δ÷•ª•û’öŽ®Œ¤‹†W‰ï, ɪ‘åŠw, 2004”N12ŒŽD

  11. ‰Y–ì@“¹—YFSteady-states with transition layers and spikes for a bistable reaction-diffusion equation,
    Mathematical Approach to Nonlinear Phenomena; Modeling, Analysis and Simulations,
    Third Polish Japanese Days, ç—t‘åŠw, 2004”N11ŒŽ.

  12. Žá‹·@EOFGeneration of an interface of competition-diffusion system with large interaction,
    RIMSŒ¤‹†W‰ïu”­“W•û’öŽ®‚Ɖð‚Ì‘Q‹ß‰ðÍv, ‹ž“s‘åŠw, 2004”N11ŒŽ.

  13. ‹v“¡@t‰îFPositive solutions to some cross-diffusion systems in population dynamics,
    RIMSŒ¤‹†W‰ïu”½‰žŠgŽUŒn‚ÉŒ»‚ê‚鎞E‹óŠÔƒpƒ^[ƒ“‚̃ƒJƒjƒYƒ€vC‹ž“s‘åŠwC2004”N10ŒŽ.

  14. ‹v“¡@t‰îFCoexistence states to a prey-predator model with nonlinear diffusion,
    “ú–{”Šw‰ï‘‡•ª‰È‰ïC–kŠC“¹‘åŠwC2004”N9ŒŽD

  15. ‘剮@”ŽˆêF‚ ‚é‚Q“_‹«ŠE’l–â‘è‚É‚¨‚¯‚é³’l‰ð‚Ì‘½d«‚ɂ‚¢‚Ä,
    “ú–{”Šw‰ï‘‡•ª‰È‰ïC–kŠC“¹‘åŠwC2004”N9ŒŽD

  16. ‘剮@”ŽˆêF”ñ—LŠE—̈æ‚É‚¨‚¯‚锼üŒ^‘ȉ~Œ^•û’öŽ®‚É‚¨‚¯‚é‰ð‚Ì‘½d«‚ɂ‚¢‚Ä,
    ˆ¤•Q‘åŠw‚É‚¨‚¯‚é”÷•ª•û’öŽ®ƒZƒ~ƒi[Cˆ¤•Q‘åŠwC2004”N9ŒŽD

  17. ²“¡@“TOFGray-Scottƒ‚ƒfƒ‹‚Ì’èí‰ð‚ɂ‚¢‚Ä,
    ‘æ26‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C‰œ‘½–€C2004”N8ŒŽD

  18. ‰Y–ì@“¹—YF‚ ‚é‘oˆÀ’èŒ^•û’öŽ®‚ɑ΂·‚é‘JˆÚ‘w‚âƒXƒpƒCƒN‚ðŽ‚Â‰ð‚̈À’è«,
    ‘æ26‰ñ”­“WEû’öŽ®ŽáŽèƒZƒ~ƒi[C‰œ‘½–€C2004”N8ŒŽD

  19. Žá‹·@“OFGeneration of corner layer of Lotka-Volterra competition model with large diffusion,
    ‘æ26‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C‰œ‘½–€C2004”N8ŒŽD

  20. ‘剮@”ŽˆêFE ‚锼üŒ^‘ȉ~Œ^•û’öŽ®‚É‚¨‚¯‚é³’l‰ð‚Ì‘½d«‚ɂ‚¢‚Ä,
    ‘æ26‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C‰œ‘½–€C2004”N8ŒŽD

  21. Michinori IshiwataFExistence of a stable set for some nonlinear parabolic equation involving critical Sobolev exponent,
    The 5th International Congress of Dynamical Systems and Differential Equations, Univ. California State Polytechnic at Pomona, USA, June, 2004.

  22. Kosuke KutoFCoexistence states for a prey-predator model with cross-diffusion,
    The 5th International Congress of Dynamical Systems and Differential Equations, Univ. California State Polytechnic at Pomona, USA, June, 2004.

  23. Michio UranoFTransition layers and spikes for a reaction-diffusion equation with bistable nonlinearity,
    The 5th International Congress of Dynamical Systems and Differential Equations, Univ. California State Polytechnic at Pomona, USA, June, 2004.

  24. Hirokazu OhyaFMultiple positive solutions for some semilinear elliptic equations with concave-convex nonlinearity,
    The 5th International Congress of Dynamical Systems and Differential Equations, Univ. California State Polytechnic at Pomona, USA, June, 2004.

  25. ‘剮@”ŽˆêF‚ ‚锼üŒ^‘ȉ~Œ^•û’öŽ®‚É‚¨‚¯‚é³’l‰ð‚Ì‘½d‘¶Ý‚ɂ‚¢‚ÄC
    •Ï•ª–â‘èƒZƒ~ƒi[C“Œ‹ž“s—§‘åŠwC2004”N6ŒŽD
2003”N“xF
  1. ‰Y–ì@“¹—YF‚ ‚é‘oEÀ’èŒ^”½‰žŠgŽU•û’öŽ®‚̉ð‚É‘ÎE·‚é‘JˆÚ‘w‚ƃXƒpƒCƒNEɂ‚¢‚Ä,
    “ú–{”Šw‰ï”N‰ïC’}”g‘åŠwC2004”N3ŒŽD

  2. ‘剮@”ŽˆêF‚ ‚锼üŒ`‘ȉ~Œ^•û’öŽ®‚É‚¨‚¯‚éŽw”Œ¸Š‚·‚é³’l‰ð‚Ì‘½d«‚ɂ‚¢‚Ä,
    “ú–{”Šw‰ï”N‰ïC’}”g‘åŠwC2004”N3ŒŽD

  3. Γn ’Ê“¿FA remark on the asymptotic behavior of some solutions for nonlinear parabolic equations involving critical Sobolev exponent,
    “ú–{”Šw‰ï”N‰ïC’}”g‘åŠwC2004”N3ŒŽD

  4. Γn@’Ê“¿FAsymptotic behavior of some global solutions of nonlinear parabplic problem with critical Sobolev exponent,
    ‰ž—p‰ðÍŒ¤‹†‰ïC“’‰ÍŒ´C2004”N3ŒŽD

  5. ‰Y–ì@“¹—YF‘oˆÀ’耂ðŽ‚Â”½‰žEgŽU•û’öŽ®‚ɑ΂·‚é‘JˆÚ‘w‚ƃXƒpƒCƒN,
    ‰ž—p‰ðÍŒ¤‹†‰ïC“’‰ÍŒ´C2004”N3ŒŽD

  6. ‘剮@”ŽˆêFMultiplicity results for some semilinear elliptic equations with concave-convex nonlinearity,
    ‰ž—p‰ðÍŒ¤‹†‰ïC“’‰ÍŒ´C2004”N3ŒŽD

  7. Γn@’Ê“¿FAsymtotic behavior of solutions for some nonlinear parabolic equations involving critical Sobolev exponent,
    ɪ‘åŠwƒZƒ~ƒi[, ɪ‘åŠw, 2004”N2ŒŽ.

  8. Γn@’Ê“¿FOn the asymptotic behavior of some global solutions for nonlinear parabolic problems with critical Sobolev nonlinearity,
    —´’J‘åŠwƒZƒ~ƒi[, —´’J‘åŠw, 2004”N2ŒŽ.

  9. Γn@’Ê“¿FOn the asymptotic behavior of some global solutions of nonlinear parabolic problems with critical Sobolev inequality,
    ‘æ 4 ‰ñŽRŒû‚É‚¨‚¯‚é•Δ÷•ª•û’öŽ®‡hƒZƒ~ƒi[, KKR ŽRŒû‚ ‚³‚­‚ç, 2004”N2ŒŽ.

  10. ‘剮@”ŽˆêFMultiplicity of rapidly decaying solutions for some semilinear elliptic equations with concave-convex nonlinearity,
    U“®—˜_ƒ[ƒNƒVƒ‡ƒbƒvCˆ¤•Q‘åŠwC2004”N2ŒŽD

  11. Γn@’Ê“¿FAsymptotic behavior of some global solutions for nonlinear parabolic problems with scale-invarinat Lyapunov functionals,
    L“‡‘åŠw”—‰ð̓Zƒ~ƒi[, L“‡‘åŠw, 2004”N1ŒŽ.

  12. Γn@’Ê“¿FAsymptotic behavior of some global solutions for nonlinear parabolic problems with critical Sobolev nonlinearity,
    ‘æ 3 ‰ñ•Δ÷Eª•û’öŽ®ƒ[ƒNƒVƒ‡ƒbƒv, ƒEEFƒ‹ƒTƒ“ƒsƒA‘啪, 2004”N1ŒŽ.

  13. –å“c@’qmA‹v“¡@t‰îFPositive steady-states for a prey-predator model with nonlinear diffusion,
    ”­“W•û’öŽ®Œ¤‹†W‰ïC’†‰›‘åŠwC2003”N12ŒŽD

  14. ‰Y–ì@“¹—YF‘oˆÀ’耂ðŽ‚Â”½‰žŠgŽU•û’öŽ®‚Ì‘JˆÚ‘w‚ƃXƒpƒCƒN‚ɂ‚¢‚Ä,
    ”­“W•û’öŽ®Œ¤‹†W‰ïC’†‰›‘åŠwC2003”N12ŒŽD

  15. ‘剮@”ŽˆêFŒù”z€‚ðŠÜ‚Þ”¼üŒ`‘ȉ~Œ^•û’öŽ®‚É‚¨‚¯‚é Žw”Œ¸EŠ‚·‚é³’l‰ð‚Ì‘½d«‚ɂ‚¢‚Ä,
    ”­“W•û’öŽ®Œ¤‹†W‰ïC’†‰›‘åŠwC2003”N12ŒŽD

  16. Γn@’Ê“¿FAsymtotic behavior of solutions for some nonlinear parabolic equations involving critical Sobolev exponent,
    Fudan University, Shanghai, China, 2003”N11ŒŽD

  17. ‰Y–ì@“¹—YFTransition layers and spikes for a bistable reaction-diffusion equations,
    EÏ•ª–â‘èƒZƒ~ƒi[C“Œ‹ž“s—§‘åŠwC2003”N11ŒŽD

  18. ‹v“¡@t‰îFMultiple existence and stability of steady-states for a prey-predator system
    with cross-diffusion,
    uNon-local Elliptic and Parabolic ProblemsvC‘åã‘åŠwC2003”N11ŒŽD

  19. Γn@’Ê“¿FAsymptotic behavior of some global solutions for nonlinear parabolic problems with critical Sobolev nonlinearity,
    uPDEs and Phenomena in Miyazaki 2003vC‹{è‘åŠwC2003”N11ŒŽD

  20. Γn@’Ê“¿FMorse polynomials for functionals associated to some nonlinear elliptic problems involving nearly critical exponent,
    u”÷•ª•û’öŽ®‚Æ•¨—”ŠwvC“Œ‹ž‘åŠwC2003”N10ŒŽD

  21. ‰Y–ì@“¹—YFTransition layers and spikes for a bistable reaction-diffusion equations,
    RIMSŒ¤‹†W‰ïu”­“W•û’öŽ®‚Ɖð‚Ì‘Q‹ß‰ðÍvC ‹ž“s‘åŠwC2003”N10ŒŽD

  22. Žá‹·@“OFGierer-Meinhardt shadow system ‚ÉŒ»‚ê‚é’èíƒpƒ^[ƒ“‚Ì ˆÀ’è«‚Æ Hopf•ªŠò‚ɂ‚¢‚Ä,
    ‘æ25‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C‘¾É•{C2003”N8ŒŽD

  23. ²“¡@“TOFGray-Scott ƒ‚ƒfƒ‹‚É‚¨‚¯‚éis”g‰ð‚ɂ‚¢‚Ä,
    ‘æ25‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C‘¾É•{C2003”N8ŒŽD

  24. ‰Y–ì@“¹—YFTransition layers and spikes for a bistable reaction-diffusion equation,
    ‘æ25‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[EC‘¾É•{C2003”N8ŒŽD

  25. ‘åE®@”ŽˆêEF”ñ—LŠE—̈æ‚É‚¨‚¯‚é‚ ‚é€üŒ^‘ȉ~Œ^•û’öŽ®‚ɂ‚¢‚Ä,
    ‘æ25‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C‘¾É•{C2003”N8ŒŽD

  26. Γn@’Ê“¿FMorse theoretical approach for the existence of multiple solutions of some nonlinear elliptic problems with nearly critical exponent,
    —Šw•”‰ð̓Zƒ~ƒi[C_ŒË‘åŠwC2003”N7ŒŽD

  27. ‘剮@”ŽˆêF”ñ—LŠE—̈æ‚É‚¨‚¯‚é‚ ‚é€üŒ^‘ȉ~E^•û’öŽ®‚̉ð\‘¢‚ɂ‚¢‚Ä,
    •Ï•ª–â‘èƒZƒ~Ei[C“Œ‹ž“s—§‘åŠwC2003”N7ŒŽD

  28. ‘剮@”ŽˆêFExistence results for some quasilinear elliptic equations in an unbounded domain,
    RIMSŒ¤‹†W‰ïu•Ï•ª–â‘è‚Æ‚»‚ÌŽü•ÓvC‹žEs‘åŠwC2003”N6ŒŽD

  29. Γn@’Ê“¿FAn introduction to Morse theory with applications to nonlinear elliptic equations,
    Šô‰½Šw‚ÆE¨—ŠwƒZƒ~ƒi[C ‘ˆî“c‘åŠwC2003”N6ŒŽD

2002”N“xF
  1. Γn@’Ê“¿FMultiplicity of solutions for some semilinear elliptic equations involving nearly critical exponent: Morse theoretical approach,
    “ú–{”Šw‰ï”N‰ïC “Œ‹ž‘åŠwC2003”N3ŒŽD

  2. ‘剮@”ŽˆêF—ÕŠEŽw”‚ðŽ‚Â‚ ‚é€üŒ`‘ȉ~Œ^•û’öŽ®‚ɂ‚¢‚Ä,
    “ú–{”Šw‰ï”N‰ïC “Œ‹ž‘åŠwC2003”N3ŒŽD

  3. ‰Y–ì@“¹—YFTransition layers and spikes for a bistable reaction-diffusion equation,
    ‘æ10‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€C” ª“’–{C2003”N3ŒŽD

  4. Žá‹·@“OFStability-change and Hopf-bifurcation phenomena arising in an activator-inhibitor model,
    ‘æ10‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€C” ª“’–{C2003”N3ŒŽD

  5. ‘剮@”ŽˆêFExistence results for some quasilinear elliptic equations involoving critical Sobolev exponents,
    ‘æ10‰ñ‰ž—p‰ðÍŒ¤‹†‰ïƒVƒ“ƒ|ƒWƒEƒ€C” ª“’–{C2003”N3ŒŽD

  6. ‹v“¡@t‰îFPostive solutions to reaction-diffusion systems with cross-diffusion,
    ‘æ28‰ñ”­“W•û’öŽ®Œ¤‹†‰ïC’†‰›‘åŠwC2002”N12ŒŽD

  7. ‘剮@”ŽˆêFExistence results for some quasilinear elliptic equations involoving critical Sobolev exponents,
    ‘æ28‰ñ”­“W•û’öŽ®Œ¤‹†‰ïC’†‰›‘åŠwC2002”N12ŒŽD

  8. ‹v“¡@t‰îFPositive steady-states for a reaction diffusion system with cross-diffusion,
    ‘æ52‰ñŠwK‰@‘åŠwƒXƒyƒNƒgƒ‹—˜_ƒZƒ~ƒi[C ŠwK‰@‘åŠwC2002”N11ŒŽD

  9. Γn@’Ê“¿FMultiplicity of solutions for some semilinear ellipric equations with weight functions: Morse theoretical approach,
    ’k˜b‰ïC ɪ‘åŠwC2002”N10ŒŽD

  10. Γn@’Ê“¿FOn some semilinear elliptic and parabolic equations involving Sobolev critical exponent,
    ’k˜b‰ïC –¼ŒÃ‰®‘åŠwC2002”N10ŒŽD

  11. ‹v“¡@t‰îFPositive solutions for reaction-diffusion system with cross-diffusion and related topics,
    Seminor on Theory of Evolution Equations and its ApplicationsC
    ‘åã‘åŠwC2002”N10ŒŽD

  12. ‹v“¡@t‰îFStability analysis for steady-states of a prey-predator system with cross-diffusion,
    “ú–{”Šw‰ï‘‡•ª‰È‰ïC “‡ª‘åŠwC2002”N9ŒŽD

  13. Γn@’Ê“¿FMultiplicity of solutions for some semilinear elliptic equations with weight function,
    ’é‘åŠw‚É‚¨‚¯‚é”÷•ªƒZƒ~ƒi[C ’é‘åŠwC2002”N8ŒŽD

  14. ‹v“¡@t‰îFStability of steady-state solutions to a prey-predator system with cross-diffution,
    ‘æ24‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C ‹ß‹E‘åŠwHŠw•”C2002”N8ŒŽD

  15. ²“¡@“TOFGray-Scottƒ‚ƒfƒ‹‚É‚¨‚¯‚é’èí‰ð‚ƈÀ’諂ɂ‚¢‚Ä,
    ‘æ24‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C ‹ß‹E‘åŠwHŠw•”C2002”N8ŒŽD

  16. ‰Y–ì@“¹—YFTransition layers for general bistable equations,
    ‘æ24‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C ‹ß‹E‘åŠwHŠw•”C2002”N8ŒŽD

  17. Γn@’Ê“¿FMultiplicity of solutions for some semilinear ellipric equations with weight functions: Morse theoretical approach,
    ’k˜b‰ïC “Œ–k‘åŠwC2002”N6ŒŽD

  18. ‹v“¡@t‰îFCoexistence states for a prey-predator system with cross-diffusion,
    •Ï•ª–â‘èƒZƒ~ƒi[C “Œ‹ž“s—§‘åŠwC 2002”N5ŒŽ

2001”N“xF
  1. ‹v“¡@t‰îFMultiple coexistence states for a prey-predator system with cross-diffusion,
    ‘æ27‰ñ”­“W•û’öŽ®Œ¤‹†‰ïC’†‰›‘åŠwEC2001”N12ŒŽD

  2. ‹v“¡@t‰îFRadial solutions of elliptic equations with concave-convex nonlinearity,
    “ú–{”Šw ‰ï‘‡•ª‰È‰ïC‹ãB‘åŠwC2001”N10ŒŽD

  3. ‹v“¡@t‰îFMultiple existence of steady-states for a prey-predator system with cross-diffusion,
    “ú–{”Šw‰ï‘‡•ª‰È‰ïC‹ãB‘åŠwC2001”N10ŒŽD

  4. ‘剮@”ŽˆêFŒù”z€‚ðŽ‚Â”¼üŒ`‘ȉ~Œ^•û’öŽ®‚Ì‹…‘Î̉ðW‡‚̉ðÍC
    “ú–{”Šw‰ï‘‡•ª‰È‰ïC ‹ãB‘åŠwC2001”N10ŒŽD

  5. ‹v“¡@t‰îF‘ŠŒÝŠgŽU€‚ð‚à‚ÂLotka-VolterraŒn‚̳’l’èí‰ð‚ÉŠÖ‚·‚鑽d«,
    ‘æ23‰ñ”­“W•û’ö Ž®ŽáŽèƒZƒ~ƒi[C¼ŽRC2001”N8ŒŽD

  6. ‘剮@”ŽˆêFKeller-Segel ƒ‚ƒfƒ‹‚ÌŠÖ˜A‚·‚锼EE`‘ȉ~Œ^•û’öŽ®‚̳’l‰ð‚ɂ‚¢‚ÄC
    ‘æ23‰ñ”­“W •û’öŽ®ŽáŽèƒZƒ~ƒi[C¼ŽRC2001”N8ŒŽD

  7. ‹v“¡@t‰îFDiffusion problems with concave-convex nonliearities,
    RIMSŒ¤‹†W‰ïu•Ï•ª–â‘è‚Æ‚»‚ÌŽü•ÓvC‹ž“s‘åŠwC2001”N6ŒŽD

2000”N“xF
  1. Îì@—RˆêFSteady-state solutions for reaction diffusion systems for general prey-predator model,@
    ‘æ8‰ñ‰ž—p‰ðÍŒ¤‹†‰ïC“’‰ÍŒ´C2001”N2ŒŽD

  2. ‘剮@”ŽˆêFKeller-Segel ƒ‚ƒfƒ‹‚ÉŠÖ˜A‚·‚锼üŒ`‘ȉ~Œ^•û’öŽ®‚̉ðÍC
    ‘æ8‰ñ‰ž—p‰ðÍŒ¤‹†‰ïC“’‰ÍŒ´C2001”N2ŒŽ

  3. Îì@—RˆêFSteady-state solutions for reaction diffusion systems with Holling-type interaction,@
    ‘æ26‰ñ”­“W•û’öŽ®Œ¤‹†‰ïCç—t‘åŠwC2000”N12ŒŽD

  4. ’†“‡@ŽåŒbF‘oˆÀ’è•û’öŽ®‚Ì’èí–â‘è‚ÉŒ»‚ê‚é–§W‚µ‚½‘JˆÚ‘w‚ƃXƒpƒCƒNC
    RIMSŒ¤‹†W‰ïu”ñüŒ`”­“W•û’öŽ®‚Æ ‚»‚̉ž—pvC‹ž“s‘åŠwC2000”N10ŒŽD

  5. ’†“‡@ŽåŒbFStationary solutions of a bistable equation with clustering layers and spikesC
    RIMSŒ¤‹†W‰ïuŽ© —R‹«ŠE–â‘èvC‹ž“s‘åŠwC2000”N10ŒŽD

  6. ’†“‡@ŽåŒbF‘oˆÀ’èŒ^”½‰žŠgŽU•û’öŽ®‚Ì’èí‰ð‚ɂ‚¢‚Ä\Ü‚èd‚È‚Á‚½‘JˆÚ‘w‚ƃXƒpƒCƒN\C
    “ú –{”Šw‰ï‘‡•ª‰È‰ïC‹ž“s‘åŠwC2000”N9ŒŽD

  7. ‹v“¡@t‰îFSublinear term ‚ð‚à‚ŠgŽU•û’öŽ®‚̉ð‚Ì‹““®‚ɂ‚¢‚ÄC
    ‘æ22‰ñ”­“W•û’öŽ®ŽáŽèƒZ ƒ~ƒi[Cå‘äC2000”N8ŒŽD

  8. Kousuke KutoFStabilization of solutions of a diffusion problem with a non-Lipschitz reaction term,
    The 3rd World Congress of Nonlinear Analysts, Catania, Italy, July, 2000.

  9. Kimie NakashimaFMulti-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation,
    The 3rd World Congress of Nonlinear Analysts, Catania, Italy, July, 2000.

  10. Shingo TakeuchiFPartial differential equations with degenerate diffusion and logisitic reaction,
    The 3rd World Congress of Nonlinear Analysts, Catania, Italy, July, 2000.

  11. Kimie NakashimaFMorse indices of multi-layered stationary solutions for a spatially
    inhomogeneous Allen-Cahn equation,
    Dynamics in Inhomogeneous Media, Univ. of Athens, Greece, June, 2000.

1999”N“xF
  1. ’|“à@TŒáFMultiplicity result for a degenerate elliptic equation with logisitic reaction,
    “ú–{”Šw‰ï”N ‰ïC‘ˆî“c‘åŠwC2000”N3ŒŽD

  2. ‹v“¡@t‰îFSublinear term ‚ð‚à‚ŠgŽU•û’öŽ®‚Ì’èí‰ð‚Æ‚»‚̈À’諂ɂ‚¢‚ÄC
    “ú–{”Šw‰ï”N‰ïC ‘ˆî“c‘åŠwC2000”N3ŒŽD

  3. ‹v“¡@t‰îFStabilization of solutions of a diffusion problem with a non-Lipschitz reaction term,
    ‘æ7‰ñ‰ž—p‰ðÍŒ¤‹†‰ïCˆÉ“¤’·‰ªC2000”N3ŒŽD

  4. œA£@Œ’•¶FMultiple existence of positive solutions of competing species equations with diffusion
    and large interactions,
    ‘æ‚V‰ñ‰ž—p‰ðÍŒ¤‹†‰ïCˆÉ“¤’·‰ªC2000”N3ŒŽD

  5. ’|“à@TŒáFMultiplicity result for a degenerate elliptic equation with logisitic reaction,
    u”ñüŒ`‚É‚¨‚¯‚é‰ð‚Ì‹óŠÔ\‘¢‚ƃ_ƒCƒiƒ~ƒNƒXvŒ¤‹†W‰ïC“Œ‹ž‘åŠwC2000”N1ŒŽD

  6. ’|“à@ETŒáFMultiplicity result for a degenerate elliptic equation with logisitic reaction,
    ‘æ25 ‰ñ”­“W•û’öŽ®Œ¤‹†‰ïCç—t‘åŠwC1999”N12ŒŽD

  7. ‹v“¡@t‰îFSublinear term ‚ð‚à‚ŠgŽU•û’öŽ®‚̉ðW‡‚ɂ‚¢‚Ä,
    ‘æ25‰ñ”­“W•û’öŽ®Œ¤‹†‰ïC ç—t‘åŠwC1999”N12ŒŽD

  8. Kimie Nakashima: Multi-layered stationary solutions for a spatially inhomogeneous Allen Cahn equation,
    International Conference on Free Boundary Problems: Theory and Applications, Chiba Univ., November, 1999.

  9. Shingo Takeuchi: Behavior of solutions near the flat hats of stationary solutions for a degenerate
    parabolic equation,
    International Conference on Free Boundary Problems:
    Theory and Applications, Chiba Univ., November, 1999.

  10. ’†“‡@ŽåŒbF‚ ‚é‘oˆÀ’èŠgŽU•û’öŽ®‚Ì’èí–â‘è‚ÉŒ»‚ê‚éˆÀ’è‘JˆÚ‘w‚Æ•sˆÀ’è‘JˆÚ‘w‚ɂ‚¢‚ÄC
    “ú–{”Šw‰ï‘‡•ª‰È‰ïCL“‡‘åŠwC1999”N9ŒŽD

  11. ’|“à@TŒáF‚ ‚é‘Þ‰»‘ȉ~Œ^•û’öŽ®‚̳’l‰ð‚ÌŒ`ó‚Æ‘½d«‚ɂ‚¢‚Ä,
    ‘æ21‰ñ”­“WŽáŽèƒZƒ~ƒi[C‹ž“sC1999”N8ŒŽD

  12. ‹v“¡@t‰îFSublinear - superlinear type‚Ì”ñüŒ`€‚𔺂¤ŠgŽU•û’öŽ®‚̉ð‚Ì‹““®‚ɂ‚¢‚Ä,
    ‘æ21‰ñ”­“WŽáŽèƒZƒ~ƒi[C‹ž“sC1999”N8ŒŽD

  13. ’|“à[email protected]TŒáFDegenerate elliptic equation with logisitic reaction,
    RIMSŒ¤‹†W‰ïu•Ï•ª–â‘è‚Æ‚»‚ÌŽü•ÓvC‹ž“s‘åŠwC1999”N6ŒŽD

1998”N“xF
  1. ’|“à@TŒáFPositive solutions for a degenerate elliptic equation with logisitic reaction,
    “ú–{”Šw‰ï”N‰ïCŠwK‰@‘åŠwC1999”N3ŒŽD

  2. Kimie Nakashima: Boundary layers in a steady-state problem for the Lotka - Volterra competition model,
    Analyse Nonlineaire et Problemes de Transitions de Phase, Univ. de Paris-Dud, France, March, 1999.

  3. ’|“à@TŒáFPositive solutions of a degenerate elliptic equation with logistic reaction,
    ‘æ24‰ñ ”­“W•û’öŽ®Œ¤‹†‰ïCç—t‘åEwC1998”N12ŒŽD

  4. ‘åé@‰pôFMultiple coexistence states for Lotka-Volterra competition systems with diffusion,
    ‘æ24‰ñ”­“W•û’öŽ®Œ¤‹†‰ïCç—t‘åŠwEC1998”N12ŒŽD

  5. Žsì@’B•vFSome remarks on global solutions to quasilinear parabolic system with cross-diffusion,
    ‘æ24‰ñ”­“W•û’öŽ®Œ¤‹†‰ïCç—t‘åŠwC1998”N12ŒŽD

  6. ’|“à@TŒáFBehavior of solutions near the flat hats of stationary solutions for a degenerate p-Laplacian, Workshop on Phase TransitionC
    ç—t‘åŠwC1998”N10ŒŽD

  7. ’|“à@TŒáF‚ ‚é‘Þ‰»•ú•¨Œ^•û’öE®‚ÉŠÖ‚·‚é’èí‰ð‚Ìflat hat ‚ÌŒø‰Ê‚ÉE‚¢‚Ä,
    ‘æ20‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C•l¼C1998”N8ŒŽD

1997”N“xF
  1. ’†“‡@ŽåŒbF‚ ‚锼üŒ`‘ȉ~Œ^•û’öŽ®‚Ì‘JˆÚ‘w‚ð‚à‚‰ð‚ɂ‚¢‚ÄC
    “ú–{”Šw‰ï”N‰ïC–¼é‘åŠwC 1998”N3ŒŽD

  2. ’†“‡@ŽåŒbFLotka-Volterra competition model ‚Ì layer@‚ð‚à‚‰ð‚ɂ‚¢‚ÄC
    “ú–{”Šw‰ï”N‰ïC –¼é‘åŠwC1998”N3ŒŽD

  3. ’|“à@TŒáF‚ ‚é‘Þ‰»Eú•¨Œ^•û’öŽ®‚ÉŠÖ‚·‚é—LŒÀŽžŠÔ‚Å‚Ìflat hat ‚ÌŒ`¬‚ɂ‚¢‚ÄC
    “ú–{”Šw‰ï ”N‰ïC–¼é‘åŠwC1998”N3ŒŽD

  4. œA£@@ŒõF‚ ‚éí”÷•ª•û’öŽ®‚̉Šú’l–â‘è‚ɑ΂·‚é³’l‰ð‚Ì\‘¢C
    ‘æ23 ‰ñ”­“W•û’öŽ®Œ¤‹†‰ïC ç—t‘åŠwC1997”N12ŒŽD

  5. ’†“‡@ŽåŒbF‚ ‚é‘ȉ~Œ^•û’öŽ®‚Ìlayer‚ðŽ‚Â‰ð‚ɂ‚¢‚ÄC
    ‘æ23 ‰ñ”­“W•û’öŽ®Œ¤‹†‰ïCç—t‘å ŠwC1997”N12ŒŽD

  6. ’|“à@TŒáF‚ ‚é‘Þ‰»Œ^•ú•¨Œ^•û’öŽ®‚ÉŠÖ‚·‚é—LŒÀŽžŠÔ‚Å‚Ìflat hat ‚ÌŒ`¬‚ɂ‚¢‚ÄC
    ‘æ23 ‰ñ ”­“W•û’öŽ®Œ¤‹†‰ïCç—t‘åŠwC1997”N12ŒŽD

  7. ‹g“c@“ÖFGlobal attractivity of coexistence states for a certain class of reaction diffusion systems
    with 3x3 cooperative matrices,@
    ‘æ23‰ñ”­“W•û’öŽ®Œ¤‹†‰ïCç—t‘åŠwC1997”N12ŒŽD

  8. œA£@@ŒõFStructure of positive radial solutions to the Haraux Weissler equation for a subcritical pC
    “ú–{”Šw‰ï‘‡•ª‰È‰ïC“Œ‹ž‘åŠwC1997”N9ŒŽD

  9. œA£@@ŒõFStructure of positive radial solutions to the Haraux Weissler equation for a subcritical pC
    “ú–{”Šw‰ï‘‡•ª‰È‰ïC“Œ‹ž‘åŠwC1997”N9ŒŽD

  10. ’|“à@TŒáF‘Þ‰»p-Laplacian ‚ÌŠgŽU‚Æcubic like ‚Ì”½‰žC
    ‘æ19 ‰ñ”­“W•û’öŽ®ŽáŽèƒZƒ~ƒi[C“y ‰YC1997”N8ŒŽD

  11. ’†“‡@ŽåŒbFOn radial and non-radial positive steady states for Lotka-Volterra competitionC
    “ú–{”Šw‰ï”N‰ïCMB‘åŠwC1997”N3ŒŽD

  12. ’|“à@TŒáFp-Laplacian ‚ðŠgŽU€‚É‚à‚ Chafee-Infante –â‘èC
    “ú–{”Šw‰ï‘‡•ª‰È‰ïCMB‘åŠwC 1997”N3ŒŽD