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Abstract. We prove two results on stacked triangulated manifolds in this paper:
(a) every stacked triangulation of a connected manifold with or without boundary
is obtained from a simplex or the boundary of a simplex by certain combinatorial
operations; (b) for a connected closed manifold M of dimension d ≥ 4, if the ith
homology group vanishes for 1 < i < d − 1, then any tight triangulation of M is
stacked. These results give affirmative answers to questions posed by Novik and
Swartz and by Effenberger.

1. Introduction

Stacked triangulations of spheres are of fundamental, in particular in the study of
convex polytopes and triangulations of spheres. Recently, the notion of stackedness
was extended to triangulations of manifolds in [MN]. In this paper, we prove two
results on stacked triangulations of manifolds.

We say that a simplicial complex ∆ is a triangulation of a manifold M if its
geometric carrier |∆| is homeomorphic to M . A triangulation of a d-manifold with
non-empty boundary is said to be stacked if all its interior faces have dimension
≥ d − 1. A triangulation of a closed d-manifold is said to be stacked if it is the
boundary of a stacked triangulation of a (d + 1)-manifold. A triangulation of a
d-manifold is said to be locally stacked if each vertex link is a stacked triangulation
of the (d− 1)-sphere or the (d− 1)-ball.

Kalai [Ka] proved that, for d ≥ 4, every locally stacked triangulation of a con-
nected closed d-manifold can be obtained from the boundary of a (d + 1)-simplex
by certain combinatorial operations. This result does not hold for 3-manifolds since
there are triangulations of 3-manifolds which are locally stacked but cannot be ob-
tained by their construction (see e.g. [BD2]). On the other hand, since the stacked-
ness and the locally stackedness are equivalent in dimension ≥ 4 [BD3, MN], Kalai’s
result also characterizes stacked triangulations of connected closed manifolds of di-
mension ≥ 4. We give a similar characterization for stacked triangulations of man-
ifolds with boundary of dimension ≥ 2 (Theorem 3.11). As a consequence, we
generalize the result of Kalai to stacked triangulations of closed manifolds of dimen-
sion ≥ 2 (Corollary 3.12). This result and a recent result of Bagchi [Ba] solve a
question posed by Novik and Swartz [NS, Problem 5.3].

Our second result is about an equivalence of tightness and tight-neighborliness.

Let H̃i(∆;F) be the ith reduced homology group of a topological space (or a simpli-

cial complex) ∆ with coefficients in a field F. The number βi(∆;F) := dimF H̃i(∆;F)
is called the ith Betti number of ∆ with respect to F. For a simplicial complex ∆ on
the vertex set V , we write ∆[W ] = {α ∈ ∆ : α ⊂ W} for its induced subcomplex
on W ⊆ V . A simplicial complex ∆ on the vertex set V is said to be F-tight if
the natural map H̃i(∆[W ];F) → H̃i(∆;F) induced by the inclusion map is injective
for all W ⊆ V and for all i ≥ 0. See [Kü, KL] for background and motivations of
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tightness. A simplicial complex ∆ is said to be neighborly if each pair of vertices
form a face. Note that F-tight connected simplicial complex must be neighborly.

An n-vertex triangulation ∆ of a connected closed manifold of dimension d ≥ 3 is
said to be tight-neighborly if

(
n−d−1

2

)
=

(
d+2
2

)
β1(∆;Z/2Z). This condition is known

to be equivalent to saying that ∆ is stacked and neighborly (cf. Propositions 3.13,
3.14). Tight-neighborliness was introduced by Lutz, Sulanke and Swartz. They
conjectured that tight-neighborly triangulations are (Z/2Z)-tight [LSS, Conjecture
13]. The conjecture was solved by Effenberger [Ef, Corollary 4.4] in dimension ≥ 4
and by Burton, Datta, Singh and Spreer [BDSS, Corollary 1.3] in dimension 3. On
the other hand, Effenberger [Ef, Question 4.5] asked if the converse of this property
holds for triangulations of connected sums of Sd−1-bundles over S1 when d ≥ 4.

We answer Effenberger’s question affirmatively (Corollary 4.4). This result and
Effenberger’s result say that, for triangulations of connected sums of Sd−1-bundles
over S1 with d ≥ 4, tightness is equivalent to tight-neighborliness. Also, since
tight-neighborly triangulations are vertex minimal triangulations, the result solves
a special case of a conjecture of Kühnel and Lutz [KL, Conjecture 1.3] which states
that every tight combinatorial triangulation is vertex minimal.

This paper is organized as follows. In Section 2, we give few basic definitions. In
Section 3, we present a combinatorial characterization of stacked triangulations of
manifolds with and without boundary. In Section 4, we study the stackedness of
tight triangulations.

2. Preliminaries

Recall that a simplicial complex is a collection of finite sets (sets of vertices) such
that every subset of an element is also an element. For i ≥ 0, the elements of size
i + 1 are called the i-faces (or i-simplices or faces of dimension i) of the complex.
The empty set ∅ is a face (of dimension −1) of every simplicial complex. Let fi(∆)
be the number of its i-faces of ∆. For a simplicial complex ∆, the maximum of k
such that ∆ has a k-simplex is called the dimension of ∆ and is denoted by dim(∆).
A maximal face (under inclusion) in ∆ is also called a facet of ∆. If σ is a face of ∆
then the link of σ in ∆ is the subcomplex

lk∆(σ) = {τ \ σ : σ ⊆ τ ∈ ∆}.

For d ≥ 0, if U is a set of d + 1 elements then the simplicial complex U consists of
all the subsets of U triangulates the d-ball and said to be the standard d-ball.

All simplicial complexes here are finite. For a field F, a simplicial complex S of
dimension d is said to be an F-homology d-sphere if, for each face σ of dimension
i ≥ −1, lkS(σ) has same F-homologies as the (d−i−1)-sphere. A simplicial complex
B of dimension d is said to be an F-homology d-ball if (i) B has trivial reduced F-
homologies, (ii) for each face σ of dimension i ≤ d− 1, the reduced F-homologies of
lkB(σ) are trivial or same as those of the (d− i− 1)-sphere and (iii) the boundary

∂B = {σ ∈ B : −1 < dim(σ) < d and H̃d−dim(σ)−1(lkB(σ);F) = 0} ∪ {∅} is an
F-homology (d − 1)-sphere. A simplicial complex is said to be an F-homology d-
manifold if each vertex link is either an F-homology (d− 1)-sphere or a (d− 1)-ball.
Note that a triangulation of a d-manifold is a homology d-manifold.
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By a homology manifold/ball/sphere we shall mean an F-homology manifold/ball/
sphere for some field F. As before, the boundary of a homology d-manifold ∆ is

∂∆ = {σ ∈ ∆ : −1 < dim(σ) < d and H̃d−dim(σ)−1(lk∆(σ);F) = 0} ∪ {∅}.

If ∂∆ = {∅}, then ∆ is called a closed homology d-manifold (or a homology d-
manifold without boundary), otherwise ∆ is called a homology d-manifold with bound-
ary. If ∆ is a homology d-manifold with boundary, then ∂∆ becomes a closed
homology (d− 1)-manifold. We note the following easy fact.

Lemma 2.1. Let ∆ be a homology d-manifold with boundary. If ∆ has a trivial
reduced homologies then ∆ is a homology d-ball.

Proof. It is clear that ∆ satisfies conditions (i) and (ii) of homology balls. The fact
that ∂∆ is a homology (d − 1)-sphere follows from the long exact sequence of the
pair (∆, ∂∆) and the Poincaré - Lefschetz duality [Sp, Theorem 6.2.19]. □

A simplicial complex ∆ is called pure if all the facets of ∆ have the same dimension.
The dual graph Λ(∆) of a pure simplicial complex ∆ is the graph whose vertices are
the facets of ∆, where two facets are adjacent in Λ(∆) if they intersect in a face
of codimension one. A d-dimensional pure simplicial complex ∆ is said to be a
pseudomanifold if (i) each (d − 1)-face is in at most two facets, and (ii) the dual
graph Λ(∆) is connected. All connected homology manifolds are pseudomanifolds.

We define the stackedness and the locally stackedness for homology manifolds
in the same way as for triangulations of manifolds. Clearly, a stacked homology
manifold is locally stacked. Since any stacked homology ball (resp., sphere) is a
combinatorial ball (resp., sphere), it follows that a locally stacked homology manifold
is a combinatorial manifold, i.e., a PL triangulation of a manifold.

Next, we recall Walkup’s class Hd. Let ∆ be a connected closed homology mani-
fold and let σ and τ be facets of ∆. We say that a bijection ψ : σ → τ is admissible
if lk∆(v)∩ lk∆(ψ(v)) = {∅} for each vertex v ∈ σ. Note that, for the existence of an
admissible bijection ψ : σ → τ , σ and τ must be disjoint. For an admissible bijection
ψ : σ → τ , let ∆ψ be the simplicial complex obtained from ∆ \ {σ, τ} by identifying
v and ψ(v) for all v ∈ σ. The simplicial complex ∆ψ is said to be obtained from ∆
by a combinatorial handle addition.

Definition 2.2 (Walkup’s class Hd). Let d ≥ 3 be an integer. We recursively define
the class Hd(k) as follows.

(a) Hd(0) is the set of stacked triangulations of the (d− 1)-sphere.
(b) A simplicial complex ∆ is in Hd(k+1) if it is obtained from a member of Hd(k)

by a combinatorial handle addition.

The Walkup’s class Hd is the union Hd =
∪
k≥0 Hd(k).

It was proved by Kalai [Ka, Corollary 8.4] that Hd+1 is the set of all (locally)
stacked triangulations of connected closed d-manifolds for d ≥ 4. We will extend
this result for stacked homology manifolds with and without boundary of dimension
≥ 2.
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3. A characterization of stacked triangulated manifolds

All homologies are with coefficients in an arbitrary field F, which is fixed through-

out. When the homology manifold ∆ means an F-homology manifold then H̃i(∆;F)
will be denoted by H̃i(∆). Similarly, we will denote β(∆;F) by β(∆).

We first define an analogue of a combinatorial handle addition for homology man-
ifolds with boundary.

Let ∆ be a homology d-manifold with boundary on the vertex set V and let σ
and τ be facets of ∂∆. We say that a bijection ψ : σ → τ is admissible if, for every
vertex v ∈ σ, lk∆(v) ∩ lk∆(ψ(v)) = {∅}. For an admissible bijection ψ : σ → τ ,
we extend ψ to the map from V to V \ σ by ψ(v) = v for all v ̸∈ σ and write
ψ(α) = {ψ(v) : v ∈ α} for any α ∈ ∆. Define

∆ψ = {ψ(α) : α ∈ ∆}.

Thus ∆ψ is the simplicial complex obtained from ∆ by identifying v and ψ(v) for

all v ∈ σ. If ∆ is connected, then we say that ∆ψ is obtained from ∆ by a simplicial
handle addition. If ∆ has two connected components ∆1 and ∆2 and if σ ∈ ∆1 and

τ ∈ ∆2, then we write ∆ψ = ∆1 ∪ψ ∆2 and call it a simplicial connected union of

∆1 and ∆2. Below we give some basic properties of ∆ψ.

Lemma 3.1. Let ∆ and Γ be two homology d-balls. If ∆∩Γ = ∂∆∩∂Γ = α, where
α is a (d− 1)-simplex, then ∆ ∪ Γ is a homology d-ball.

Proof. We use induction on d. The statement is obvious when d = 1. Suppose
d > 1. Since ∆ ∩ Γ = α, the Mayer -Vietoris exact sequence says that ∆ ∪ Γ has a
trivial reduced homology. Let v be a vertex of ∆∪Γ. If v ̸∈ α then lk∆∪Γ(v) is equal
to either lk∆(v) or lkΓ(v) and hence a homology (d − 1)-sphere or (d − 1)-ball. If
v ∈ α then v ∈ ∂∆∩∂Γ and hence lk∆(v) and lkΓ(v) are homology (d−1)-balls and

lk∆(v)∩ lkΓ(v) = α \ {v}. Since lk∆∪Γ(v) = lk∆(v)∪ lkΓ(v), lk∆∪Γ(v) is a homology
(d− 1)-ball by induction hypothesis. The lemma now follows from Lemma 2.1. □

It follows from Lemma 3.1 that the simplicial connected union of two homology
d-balls is a homology d-ball.

Lemma 3.2. Let ∆ be a (not necessary connected) homology manifold with boundary
of dimension ≥ 2. Let σ and τ be facets of ∂∆ and ψ : σ → τ an admissible bijection.

(i) ∆ψ is a homology d-manifold with boundary.

(ii) β0(∆
ψ) is either β0(∆) or β0(∆) − 1. If β0(∆

ψ) = β0(∆) then β1(∆
ψ) =

β1(∆) + 1. Otherwise, β1(∆
ψ) = β1(∆).

(iii) ∆ψ is stacked if and only if ∆ is stacked.

Proof. (i) For every α ∈ ∆ψ with α ̸⊆ τ , there is a unique face γ ∈ ∆ such that
α = ψ(γ) and lk∆ψ(α) is combinatorially isomorphic to lk∆(γ). Thus, to prove the
statement, it is enough to show that, for every α ⊆ τ , lk∆ψ(α) is either a homology
(d−dim(α)− 1)-sphere or (d−dim(α)− 1)-ball. It is clear that |lk∆ψ(τ)| ∼= S0. For
a proper face α of τ , a straightforward computation implies

lk∆ψ(α) = lk∆(α) ∪ψ′ lk∆(ψ
−1(α)),
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where ψ′ : ψ−1(τ \ α) → τ \ α is the restriction of ψ to ψ−1(τ \ α). By Lemma 3.1,
lk∆ψ(α) is a homology (d− dim(α)− 1)-ball.

(ii) It is clear that β0(∆
ψ) = β0(∆) − 1 if σ and τ belong to different connected

components and β0(∆
ψ) = β0(∆) if σ and τ are in the same connected component.

Observe that H̃i(|∆ψ|) ∼= H̃i(|∆ψ|, |τ |) ∼= H̃i(|∆|, |σ|∪ |τ |) for all i. Then the desired
statement follows from the following exact sequence of pairs

· · · −→ H̃1(|σ| ∪ |τ |) −→ H̃1(|∆|) −→ H̃1(|∆|, |σ| ∪ |τ |)
−→ H̃0(|σ| ∪ |τ |) −→ H̃0(|∆|) −→ H̃0(|∆|, |σ| ∪ |τ |) −→ 0.

(iii) This statement follows from the proof of (i) since it says that the interior

faces of ∆ψ are τ and ψ(α) for all interior faces α of ∆. □

The proof of Lemma 3.2 (i) also says that if ∆ is connected then ∂(∆ψ) = (∂∆)ψ.
Also |∂(∆1 ∪ψ ∆2)| is a connected sum of |∂∆1| and |∂∆2|.

Next, we introduce the inverse of the construction of ∆ψ, which we call simplicial
handle deletions.

Lemma 3.3. Let B be a homology d-ball with vertex set V , σ an interior (d−1)-face
of B with ∂σ ⊂ ∂B. Then B[V \ σ] contains exactly two connected components.

Proof. Let v ∗ ∂B = ∂B ∪ {{v} ∪ α : α ∈ ∂B} be the cone of ∂B, where v is a new
vertex. It is easy to see that S = B ∪ (v ∗ ∂B) is a homology d-sphere. Then

H̃0(S[V \ σ]) ∼= H̃d−1(S[σ ∪ {v}]) ∼= H̃d−1(S[σ ∪ {v}], (v ∗ ∂B)[σ ∪ {v}])),
where the first isomorphism follows from the Alexander duality [Sp, Theorem 6.2.17]
and the second isomorphism follows from the long exact sequence of pairs since

H̃i((v ∗ ∂B)[σ ∪ {v}]) = 0 for all i. Since B[V \ σ] = S[V \ σ] and since

H̃d−1(S[σ ∪ {v}], (v ∗ ∂B)[σ ∪ {v}])) ∼= H̃d−1(B[σ], (∂B)[σ])) = H̃d−1(σ, ∂σ) ∼= F,

B[V \ σ] has exactly two connected components. □
Recall that any interior (d − 1)-face σ of a homology d-manifold ∆ is contained

in exactly two facets since lk∆(σ) has same homologies as S0.

Lemma 3.4. Let B and σ be as in Lemma 3.3, C1 and C2 the connected components
of B[V \ σ] and let W1 and W2 be the vertex set of C1 and C2 respectively. Let
B1 = B[W1 ∪ σ] and B2 = B[W2 ∪ σ].
(i) B = B1 ∪B2 and B1 ∩B2 = σ.
(ii) Let {x} ∪ σ and {y} ∪ σ be the facets of B containing σ. Then one of x and y

is in B1 and the other in B2.
(iii) B1 and B2 are homology d-balls.

Proof. (i) It is clear that B ⊃ B1 ∪ B2 and B1 ∩ B2 = σ. We prove B ⊂ B1 ∪ B2.
Let α be a facet of B. Then α\σ ∈ B[V \ σ] is contained in either W1 or W2, which
implies α ∈ B1 ∪B2.

(ii) Since C1 and C2 are not empty, there are facets α, γ of B such that α ∈ B1

and γ ∈ B2. Since B is a pseudomanifold, there is a sequence α = α0, α1, . . . , αk = γ
of facets such that αi−1 ∩ αi has dimension d− 1 for 1 ≤ i ≤ k. Let j be a number
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such that αj−1 ∈ B1 and αj ∈ B2. Then αj−1 ∩ αj must be σ. Since {x} ∪ σ and
{y} ∪ σ are the only facets containing σ, they must be αj−1 and αj.

(iii) We use induction on d. The statement is clear when d = 1. Consider
the subcomplex B1. If α is a face in B1 \ σ then any facet γ ∈ B containing
α must intersect W1 and hence in B1. If α ∈ σ, then α is a face of the d-face
σ ∪ {x} ∈ B1. Thus, B1 is pure. Next, let v be a vertex of B1. If v ̸∈ σ then
lkB1(v) = lkB(v) is a homology (d− 1)-sphere or a homology (d− 1)-ball. Suppose
v ∈ σ. Then lkB(v) is a homology (d− 1)-ball such that σ \ {v} is its interior face.

Since lklkB(v)(α) = lkB({v}∪α) is a homology ball for any α ∈ ∂(σ \ {v}), it follows
that ∂(σ \ {v}) ⊂ ∂(lkB(v)). Since x and y are in lkB(v), lkB(v)[W1] and lkB(v)[W2]
are non-empty. Thus, they are different components of lkB(v)[V \ σ]. By induction
hypothesis, lkB1(v) = lk∆(v)[(W1∪σ)\{v}] is a homology (d−1)-ball. Thus, lkB1(v)
is either a homology (d− 1)-sphere or a homology (d− 1)-ball for every vertex v of
B1. This implies that B1 is a homology d-manifold with boundary. Since part (i)

and the Mayer -Vietoris exact sequence say H̃i(B1) = 0 for all i, B1 is a homology
d-ball by Lemma 2.1. Similarly, B2 is a homology d-ball. □

We say that Bi in Lemma 3.4 is the x-component (resp. y-component) of B with
respect to σ if it contains x (resp. y).

Let ∆ be a homology d-manifold with boundary. Suppose that ∆ has an interior
(d− 1)-face σ = {z1, . . . , zd} with ∂σ ⊂ ∂∆. Let {x} ∪ σ and {y} ∪ σ be the facets
of ∆ containing σ. Consider

R = {α ∈ ∆ : α ∩ σ ̸= ∅, α ̸⊆ σ}.

Observe that, for each τ ⊂ σ, lk∆(τ) is a homology ball satisfying the assumption

of Lemma 3.3 in the sense that σ \ τ is an interior face of lk∆(τ) with ∂(σ \ τ) ⊂
∂(lk∆(τ)). Let

Rx(k) = {α ∈ R : zk ∈ α, α \ {zk} is in the x-component of lk∆(zk) w.r.t. σ \ {zk}}

and define Ry(k) similarly. Let

X =
d∪

k=1

Rx(k) and Y =
d∪

k=1

Ry(k).

Note that R = X ∪ Y .

Lemma 3.5. If Rx(k), Ry(k), X and Y are as above then X ∩ Y = ∅. Also,
{α ∈ X : zk ∈ α} = Rx(k) and {α ∈ Y : zk ∈ α} = Ry(k) for 1 ≤ k ≤ d.

Proof. To prove the first result, what we must prove is that Rx(k)∩Ry(ℓ) = ∅ for all
k ̸= ℓ. Suppose contrary that α ∈ Rs(k)∩Ry(ℓ) for some k ̸= ℓ. Then α \ {zk, zℓ} is
in the x-component and the y-component of lk∆({zk, zℓ}) with respect to σ \{zk, zℓ}
and hence α ⊆ σ, a contradiction since α ∈ R.

Let α ∈ X with zk ∈ α. Then α ∈ Rx(ℓ) for some ℓ. If ℓ = k then α ∈ Rx(k).
Otherwise, α \ {zk, zℓ} and x are in the same component of lk∆({zk, zℓ}). Since
lk∆(zk) ⊃ lk∆({zk, zℓ}), we have α ∈ Rx(k). This proves that {α ∈ X : zk ∈ α} =
Rx(k). Similarly, {α ∈ Y : zk ∈ α} = Ry(k). □
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Definition 3.6. Let ∆ be a homology d-manifold with boundary and let σ =
{z1, . . . , zd} be an interior (d − 1)-face of ∆ with ∂σ ⊂ ∂∆. Let R, Rx(k), Ry(k),
X and Y be as above. Let z+1 , . . . , z

+
d be new vertices and σ+ = {z+1 , . . . , z+d }. For

α = α ′∪{zi1 , . . . , ziℓ} ∈ X with α ′∩σ = ∅, define α+ = α ′∪{z+i1 , . . . , z
+
iℓ
}. Consider

the simplicial complex

∆̃σ = {α ∈ ∆ : α ̸∈ X} ∪ {α+ : α ∈ X} ∪ σ+.

We say that ∆̃σ is obtained from ∆ by a simplicial handle deletion over σ.

Intuitively, ∆̃σ is a simplicial complex obtained from ∆ by cutting it along the
face σ. Note that this construction is a simplified version of the construction in
[BD1, Lemma 3.3]. Also, a similar construction for manifolds without boundary
was considered by Walkup [Wa].

Theorem 3.7. Let ∆̃σ be obtained from a homology d-manifold with boundary ∆ by
a simplicial handle deletion over σ. Then

(i) ∆̃σ is a homology d-manifold with boundary, and

(ii) ∆ = (∆̃σ)ψ, where ψ : σ+ → σ is the bijection given by ψ(z+i ) = zi for all i.

Proof. The second statement is straightforward if ∆̃σ is a homology manifold. So,

we prove (i). For simplicity, we write ∆̃ = ∆̃σ. Let V be the vertex set of ∆.

We prove that each vertex link of ∆̃ is either a homology (d − 1)-sphere or a

(d− 1)-ball. Suppose v ̸∈ σ+ ∪ σ. Define the map φ : ∆ → ∆̃ by φ(α) = α if α ̸∈ X

and φ(α) = α+ if α ∈ X. Then φ gives a bijection between ∆ \ σ and ∆̃ \ (σ+ ∪ σ),
in particular, gives a bijection between {α : v ∈ α ∈ ∆} and {α : v ∈ α ∈ ∆̃}. Thus
lk∆̃(v) is combinatorially isomorphic to lk∆(v), which implies the desired property.
Suppose v = z+k for some k. Then

lk∆̃(v) = lk∆̃(z
+
k ) = (σ \ {zk})+ ∪ {(α \ {zk})+ : zk ∈ α ∈ X}.

On the other hand, the x-component of lk∆(zk) is

σ \ {zk} ∪ {(α \ {zk}) : zk ∈ α ∈ Rx(k)}.

By Lemma 3.5, they are combinatorially isomorphic. This proves that lk∆̃(v) is a
homology (d− 1)-ball. Finally, suppose v = zk for some k. Since X ∩ Y = ∅,

lk∆̃(v) = σ \ {v} ∪ {α \ {v} : v ∈ α ∈ Ry(k) \X}

= σ \ {zk} ∪ {α \ {zk} : α ∈ Ry(k)}

is the y-component of lk∆(v) w.r.t. σ \ {v}. Thus lk∆̃(v) is a homology (d− 1)-ball.

Finally, ∆̃ has a non-empty boundary since σ ∈ ∂∆̃. □
Now, we define an analogue of Walkup’s class for manifolds with boundary.

Definition 3.8. Let d ≥ 2 be an integer. We recursively define Hd(k) as follows.

(a) Hd(0) is the set of stacked triangulations of d-balls.

(b) ∆ is a member of Hd(k + 1) if it is obtained from a member of Hd(k) by a
simplicial handle addition.
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Let Hd =
∪
k≥0Hd(k).

Note that every stacked triangulation of the d-ball is obtained from a d-simplex by
taking a simplicial connected union with a d-simplex repeatedly. See [DS, Lemma

2.1]. Also, if ∆ ∈ Hd then ∂∆ ∈ Hd.

Lemma 3.9. If ∆ ∈ Hd(k) and Γ ∈ Hd(ℓ) then their simplicial connected union

belongs to Hd(k + ℓ).

Proof. We may assume k ≤ ℓ. We use induction on k + ℓ. If k + ℓ = 0 then the
assertion follows from Lemma 3.2(iii). Suppose k + ℓ > 0. Then Γ = Σφ for some

Σ ∈ Hd(ℓ − 1) and for some admissible bijection φ between facets of ∂Σ. Let ψ
be a bijection from a facet of ∂∆ to a facet of ∂Γ. Then ∆ ∪ψ Γ is (∆ ∪ψ Σ)φ

(by an appropriate identification of the vertices). By induction hypothesis, we have

∆ ∪ψ Σ ∈ Hd(k + ℓ− 1) and hence ∆ ∪ψ Γ ∈ Hd(k + ℓ). □
Remark 3.10. A similar result for Hd was proved by Walkup [Wa, Proposition
4.4].

Theorem 3.11. Let ∆ be a connected homology manifold ∆ with boundary of di-
mension d ≥ 2. Then ∆ is stacked if and only if ∆ ∈ Hd.

Proof. The ‘if part’ follows from part (iii) of Lemma 3.2.
The ‘only if part’ is obvious if ∆ has one facet. Suppose that ∆ has more than one

facet. Then ∆ has an interior (d− 1)-face σ. Since ∆ is stacked, it has no interior
faces of dimension ≤ d− 2. Thus we have ∂σ ⊂ ∂∆. By Lemma 3.2 and Theorem
3.7, ∆ is a simplicial connected union of two connected stacked homology manifolds
or is obtained from a connected stacked homology manifold having a smaller first
Betti number by a simplicial handle addition. Then the assertion follows by double
induction on the number of facets and the first Betti number. □

Since, the boundary of a member of Hd is a member of Hd for d ≥ 3, we obtain
the following corollary.

Corollary 3.12. Let ∆ be a connected closed homology manifold of dimension d ≥ 2.
Then ∆ is stacked if and only if ∆ ∈ Hd+1.

We say that a connected closed F-homology d-manifold ∆ is orientable if H̃d(∆;F)
∼= F. Novik and Swartz [NS, Theorem 5.2] and Bagchi [Ba, Theorem 1.14] gave the
following interesting characterization of the stackedness.

Proposition 3.13 (Novik - Swartz). Let ∆ be a connected closed orientable homol-
ogy manifold of dimension d ≥ 3. Then

f1(∆)− (d+ 1)f0(∆) +

(
d+ 2

2

)
≥

(
d+ 2

2

)
β1(∆).

Further, if d ≥ 4 then f1(∆) − (d + 1)f0(∆) +
(
d+2
2

)
=

(
d+2
2

)
β1(∆) if and only if

∆ ∈ Hd+1.

Proposition 3.14 (Bagchi). Let ∆ be a connected closed homology 3-manifold.
Then f1(∆) − 4f0(∆) + 10 ≥ 10β1(∆). Equality holds here if and only if ∆ is
stacked.
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As a consequence of Corollary 3.12 and Proposition 3.14 we have

Corollary 3.15. Let ∆ be a connected closed homology 3-manifold. Then f1(∆)−
4f0(∆) + 10 = 10β1(∆) if and only if ∆ ∈ H4.

This shows that Proposition 3.13 is true for d = 3 also. This is a question ([NS,
Problem 5.3]) posed by Novik and Swartz. Observe that, Corollary 3.15 is valid
without the assumption of any orientability. We think that the following conjecture,
which is a special case of [BD4, Conjecture 1.6] posed by Bagchi and the first author,
is plausible.

Conjecture 3.16. Proposition 3.13 holds for any connected closed homology man-
ifold.

Remark 3.17. It is known that the topological type of a member of Hd+1 is one of
the following: (i) the d-sphere Sd (ii) connected sums of sphere product Sd−1 × S1

(iii) connected sums of twisted sphere product Sd−1×−S1. See [LSS, Section 3]. Thus
Corollary 3.12 also gives a restriction to the topological types of stacked triangula-
tions of manifolds.

4. Tight triangulations and stackedness

In this section, we study stackedness of tight triangulations. As in the previous

section, we fix a field F and denote H̃(∆;F) and βi(∆;F) by H̃(∆) and β(∆). Also,
we simply say that a simplicial complex is tight if it is F-tight. For a simplicial
complex ∆ with vertex set V , a subset σ ⊂ V of k + 1 elements is called a missing
k-face of ∆ if σ /∈ ∆ and all proper subsets of σ are faces of ∆. If σ is a missing

k-face of ∆, then we have H̃k−1(∆[σ]) ∼= F. The following lemma follows from the
definition of tightness.

Lemma 4.1. Let ∆ be an tight simplicial complex on the vertex set V . Then

(i) for all subsets U ⊂ W of V , the natural map H̃i(∆[U ]) → H̃i(∆[W ]) induced
by the inclusion is injective, and

(ii) if βk−1(∆) = 0 then ∆ has no missing k-faces. In particular, if ∆ is connected,
then ∆ is neighborly.

For a simplicial complex ∆, we identify its 1-skeleton Skel1(∆) = {σ ∈ ∆ :
dim(σ) ≤ 1} with the simple graph whose vertex set is the set of the vertices of ∆
and whose edge set is the set of the edges (1-simplices) in ∆. We say that a simple
graph G is chordal if it has no induced cycle of length ≥ 4. The following result is
due to Kalai [Ka, Theorem 8.5].

Proposition 4.2 (Kalai). Let ∆ be a homology (d− 1)-sphere with d ≥ 3. Then ∆
is stacked if and only if the 1-skeleton of ∆ is chordal and ∆ has no missing k-faces
for 1 < k < d− 1.

Let ∆ be a connected closed homology manifold of dimension d ≥ 3. Recall that
∆ is said to be tight-neighborly if

(
f0(∆)−d−1

2

)
=

(
d+2
2

)
β1(∆;Z/2Z). Since

(
f0
2

)
− (d+

1)f0 +
(
d+2
2

)
=

(
f0−d−1

2

)
, by Propositions 3.13 and 3.14, ∆ is tight-neighborly if and

only if ∆ is stacked and neighborly. Note that these propositions also say that, for a
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tight-neighborly triangulation ∆, β1(∆;Z/2Z) = β1(∆;F) for any field F. Here we
prove the following.

Theorem 4.3. Let ∆ be an tight connected closed homology manifold of dimension
d ≥ 4 such that βi(∆) = 0 for 1 < i < d− 1. Then ∆ is locally stacked.

Proof. Let v be a vertex of ∆. We prove that lk∆(v) is stacked.
We first claim that any induced subcomplex of lk∆(v) cannot be a 1-dimensional

simplicial complex which forms a cycle. Suppose contrary that lk∆(v)[W ] is a cycle
for some W . Let C = lk∆(v)[W ] and v ∗C = C ∪ {{v} ∪ σ : σ ∈ C}. Then we have
∆[W ∪ {v}] = ∆[W ]∪(v∗C) and ∆[W ]∩(v∗C) = C. Consider the Mayer -Vietoris
exact sequence

H̃2(∆[W ∪ {v}]) −→ H̃1(C) −→ H̃1(∆[W ])⊕ H̃1(v ∗ C)
φ−→ H̃1(∆[W ∪ {v}]).

Since ∆ is tight and β2(∆) = 0, we have H̃2(∆[W ∪ {v}]) = 0. Then since H̃1(C) ̸=
0, the map φ has a non-trivial kernel. However, since H̃1(v∗C) = 0, this contradicts
the tightness of ∆ as it implies that φ is injective by Lemma 4.1(i). Hence any
induced subcomplex of lk∆(v) cannot be a cycle.

Now we prove the statement. By Lemma 4.1(ii), ∆ has no missing k-faces for
2 < k < d. This implies that lk∆(v) has no missing k-faces for 2 < k < d− 1. Also,
lk∆(v) has no missing 2-faces since if it has a missing 2-face σ then lk∆(v)[σ] is a
cycle of length 3. Similarly, the 1-skeleton of lk∆(v) is a chordal graph since if it has
an induced cycle of length ≥ 4 with the vertex set W , then lk∆(v)[W ] is a cycle.
Thus, by Proposition 4.2, lk∆(v) is stacked. □

From this theorem and all the known results, we have the following.

Corollary 4.4. Let ∆ be a connected closed homology manifold of dimension d ≥ 4.
Then the following are equivalent.

(i) ∆ is tight-neighborly.
(ii) ∆ is a neighborly member of Hd+1.
(iii) ∆ is neighborly and stacked.
(iv) ∆ is neighborly and locally stacked.
(v) ∆ is tight and βi(∆) = 0 for 1 < i < d− 1.

Proof. The equivalence (i) ⇔ (ii) follows from Proposition 3.13. The equivalence
(ii) ⇔ (iii) follows from Corollary 3.12. The equivalence (ii) ⇔ (iv) follows from
Kalai’s result [Ka, Corollary 8.4].

Now, (v) ⇒ (iv) follows from Theorem 4.3. Since ∆ ∈ Hd+1 implies βi(∆) = 0
for 1 < i < d − 1, (ii) & (iv) ⇒ (v) follows from Effenberger’s result [Ef, Theorem
3.2]. This completes the proof. □

From the equivalence of (i) and (v) in Corollary 4.4 it follows that tight triangu-
lations of connected sums of Sd−1-bundles over S1 are tight-neighborly for d ≥ 4.
This answers a question asked by Effenberger [Ef, Question 4.5].

It would be natural to ask following.

Question 4.5. Is every tight triangulation of a connected closed 3-manifold locally
stacked?
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