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ABSTRACT 
We propose a method for blindly separating real 

environment speech signals with as less distortion as possible 

in the special case where speech signals outnumber sensors.

Our idea consists in combining sparseness with the use of an 

estimated mixing matrix. First, we use a geometrical 

approach to perform a preliminary separation and to detect 

when only one source is active. This information is then used 

to estimate the mixing matrix. Then we remove one source 

from the observations and separate the residual signals with 

the inverse of the estimated mixing matrix. Experimental 

results in a real environment (TR=130ms and 200ms) show 

that our proposed method, which we call Sparseness – 

Mixing Matrix Estimation (SMME), provides separated 

signals of better quality than those extracted by only using 

the sparseness property of the speech signal. 

1. INTRODUCTION

 BSS is a method for recovering a set of source signals from 

the observations of their mixtures without any knowledge 

about the sources themselves nor the mixing process [1]. 

While dealing with the BSS issue, we can consider different 

levels of complexity whether the mixing process is seen as an 

instantaneous mixture or as a convolutive one but also 

whether the number of sources outnumbers or not the number 

of sensors.    

 To get closer to the reality, in the speech signal area, the 

mixing process should be considered as convolutive because 

speech signals are recorded with their reverberation. 

Moreover, to be more realistic with the today’s life, we 

decide to work with more sources than sensors. Here are the 

reasons why this paper focuses on underdetermined blind 

source separation (BSS) of three speech signals mixed in a 

real environment from measurements provided by two 

sensors.

This is a tough problem and no satisfying solution has 

been proposed yet. Most of the solutions proposed so far [2-

6] are using the assumption of sparseness of speech signals. 

That is to say, they assume that most of the samples of the 

signals are zero, and therefore, they can assume that signals 

do not overlap very often. Finally they utilized binary masks 

to extract each source. Such a rough approach leads to 

considerable distortion i.e., loud musical noise, which is due 

to discontinuous zero-padding, is heard.

    However we remember that in the determined problem one 

of the common ways of solving the BSS issue was to 

estimate and then invert the mixing matrix modeling the 

system [2,5]. But, here, where sources outnumber sensors, 

the mixing matrix is no longer square and we cannot use this 

solution.  

 Nevertheless this gives us the idea to combine the 

sparseness properties of speech signals with an estimation of 

the mixing matrix. First, we use a geometrical approach to 

perform a preliminary separation and to detect when only one 

source is active. This information is then used to estimate the 

mixing matrix. Then we remove one source from the 

observations and separate the residual signals with the 

inverse of the estimated mixing matrix. Indeed we can obtain 

more information about the signals to be separated and hence 

reduce the zero-padding effect, from which the musical noise 

originates.  

2. PROBLEM STATEMENTS AND 

NOTATIONS 

In this paper, we consider speech mixtures observed in a 

real room. In this case, as speeches are mixed with their 

reverberation, the observed vectors xj (j=1..M) can be 

modeled as convolutive mixtures of the source signals si

(i=1..N) as follows: 
N

i
ijij ttx sh

1

)(*                         (1) 

where hji is the impulse response from a source i to a sensor j.  

In this paper, we deal with a case where N=3 sources and 

M=2 sensors. Moreover, we assume that the source signals 

are mutually independent and sparse: namely signals have 

large values at rare sampling points. We are using the Short 

Time Fourier Transform (STFT) to convert our problem into 

a linear instantaneous mixtures’ problem as well as to 

improve the sparseness of the speech signals [4]. In the time-

frequency domain, our system becomes: 

),()(),( mffmf SHX where f is the frequency, m the 

frame index,  H(f) the 2 3 mixing matrix whose i-j 

component is a transfer function from a source i to a sensor j,

X(f,m)=[X1(f,m), X2(f,m)]T and S(f,m)=[S1(f,m), S2(f,m), 

S3(f,m)]T, namely the Fourier transformed observed signals 

and source signals, respectively. 
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Our aim is to estimate three speech signals from 

measurements provided by two sensors.  

3. SPARSENESS INQUIRIES 

3.1. SOURCES’OVERLAPPING 

The first definition of sparseness is that the more zero 

samples contained in a source, the more sparse it is, which 

means that the sources overlap at infrequent intervals. 

Figure 1 is a histogram showing the number of sources that 

are simultaneously active. It can be seen that the time points 

where no sources are active are very numerous whereas the 

time points where three sources are active are very 

infrequent. We can infer from these observations that the 

signals are sparse and that the three signals rarely overlap. 

Fig. 1: Histogram of the number of active sources: 0, 1, 2 or 3 for 

a male-male-female combination recorded with a reverberation 

of 200 ms and for a DFT size of 512.

3.2. MEASURE OF OVERLAPPING 

    We investigated the sparseness more closely and 

checked the degree of signal overlap by utilizing a criterion 

called Approximate W-Disjoint Orthogonality (WDO) 

defined by Rickard and Yilmaz [6]. We use a mask: 

otherwise

xmfYmfS
mf
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0
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where Yj(f,m) is the STFT of 

N

ji1,i

ij (t)s(t)y  i.e. yj(t) is 

the summation of the sources interfering with source j. The 

Approximate WDO is defined as:  

.||),(||/||),(),(||100)( 22

),( mfSmfSmfxr jjxjj
(3)

This measures the percentage rj of source j energy for 

time-frequency points where it dominates the other signals by 

rj % at x dB. From this criterion it emerges that, if we can 

predict the time-frequency points at which a source 

dominates the others by rj % at x dB, we should be able to 

recover rj % of the energy of the original sources. If rj is 

sufficiently large, we can separate signals with small 

distortion and vice-versa.  

For example in Fig.2, if we want a signal-to-interference 

ratio of 20 dB, only around 50 % of the original power is 

recoverable, which means that almost half the points are 

zero-padded by a mask and such distortion cannot be avoided. 

Moreover  shows that reverberant data have a lower 

Approximate WDO than no-reverberant data. Hence 

separating reverberant data becomes more difficult.  
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Fig. 2: Approximate WDO against the threshold x for a DFT size 

of 512 and a male-male-female combination.  

4. PROPOSED METHOD 

In previously reported methods [2-4], one of the major 

drawbacks was the occurrence of distortion, i.e., musical 

noise. To overcome this issue, we propose a three-step 

method. First, using the sparseness of speech signals, we 

adopt a geometrical approach extracting the time points m

when only one source is active [1st step], then we estimate 

the mixing matrix [2nd step] and finally we reconstruct the 

signals when two sources are active [3rd step].  

• [1st step] Geometrical approach

Fig. 3: Scatter-plots of the mixtures at a frequency of 312 Hz for 

male-male-female combination, a reverberation of 130 ms and a 

DFT size of 512. 

This first step consists of detecting the frame indices m

when only one of the three sources is active for each 

frequency bin  f.

Scatter-plots of the measurements, as shown in Fig. 3, 

comprise three main lines (if the sources are sparse enough). 

According to Vielva et al. [4], these lines symbolize the 

directions defined by the column vectors of the mixing 

matrix. In other words, they can be seen as a representation 

of each source existing alone. In between two given 

directions, we find the time-frequency points modeling our 

system when two sources (those linked to the above 

directions) are active simultaneously.   

By setting narrow areas each containing only one line, 

such as areas 1, 2 and 3 in Fig. 3, we are able to determine 

when only one source is active. At the same time we can also 

reconstruct the signals for these time-frequency points. This 
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is the method exploited in previous works [2, 3, 4]. However, 

as expected by using such a rough approach, the quality of 

the separated signals is not satisfactory. Since the rate of 

recoverable energy is too low (as shown in  Fig. 6), we 

cannot avoid an important zero-padding, which makes the 

signals insufficiently continuous. As a result, considerable 

distortion i.e., loud musical noise can be heard. 

To overcome this lack of quality, we attempt to complete 

our separation using a totally different approach, relying on 

the knowledge of the mixing matrix. 

• [2nd step] Estimation of  mixing matrix 

Deville recovers the mixing matrix by estimating a certain 

cross-correlation parameter ratio over time-frequency zones 

where only one source exists [5]. This ratio was then proved 

to be equal to H2i/H1i (i=1, 2, 3). 

In contrast to Deville, here we are working with a  

underdetermined convolutive case, however his approach 

gave us the idea to model our system in the time-frequency 

domain by: 
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Therefore, using time points estimated in the first step 

when only Si (i=1, 2, 3) is active, we have: 

m)(f,(f)SHm)(f,

m)(f,(f)SHm)(f,

i2i2

i1i1                                   (5)

whose ratio X2(f,m)/X1(f,m) provides one of the components 

of the mixing matrix H2i(f)/H1i(f).

• [3rd step] Reconstruction of time-frequency points 

when two sources are active 

At this stage, it should be noted that knowing the mixing 

matrix does not enable us to separate the signals when three 

sources are active. This is because the mixing matrix is not 

square and does not have any inverse. Deville has only 

applied his method to a squared mixing matrix.  

Nevertheless, it is still possible to rebuild the time-frequency 

points when two sources are active, providing that for each 

frequency bin, we know the frame indices for which this case 

occurs. Once more this information is provided by the 

geometrical approach employed in the first step. But this 

time, instead of setting the limits very close to the observed 

directions, we are considering much wider areas so as to 

enclose the points located between two given directions. 

Indeed let us suppose that, for an estimated (f, m) detected 

during the first step, S1(f, m) is null (area 23 in Fig. 3), in this 

area, our system becomes: 
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Now the mixing matrix is square and can thus be 

inverted, leading to H12(f)S2(f,m) and H13(f)S3(f,m):
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Moreover, in this area, if the signals H12(f)S2(f,m) and 

H13(f)S3(f,m) are not too greatly zero-padded, we expect that 

the distortion of the estimated H12(f)S2(f,m) and H13(f)S3(f,m)

will not be that large. We proceed in the same way when 

S3(f,m) is null. 

It should be noted that, in Fig.1, we have already 

confirmed that we do not often have three sources active 

simultaneously. 

5. EXPERIMENTS 

5.1. EXPERIMENTAL CONDITIONS  

Fig. 4: Experimental conditions 

The recordings were done in a room whose reverberant 

times were TR=130 and 200 ms using a two-element array of 

directional microphones 4 cm apart. The speech signals, 

sampled at 8 kHz, came from three directions: 120° (male), 

90° (male) and 50° (female) and the distance between the 

sources and the sensors was L = 55 cm. The DFT frame size 

was 512 where we can get the sparsest representation [7]. 

5.2. STABILITY OF THE ESTIMATED 

MIXING MATRIX COEFFICIENTS 

Fig. 5: Representation of the matrix coefficients, male 

(H23(f)/H13(f)) - male(H22(f)/H12(f)) -female (H21(f)/H11(f)) combination, 

DFT size=512, TR=130 ms. 

To evaluate the efficiency of our method, we need to know 

about the stability of the mixing matrix we estimated in the 

2nd. In Fig. 5, we plotted the amplitude and phase of the three 

coefficients H2i(f)/H1i(f) (i=1,2,3) in (4). As we can see, our 

estimation offers a great stability in the whole, except for the 

low frequencies, where the time delay between the two 

microphones, which stand very close to each other, is harder 

S3 (male)

S2 (male)

S1 (female)

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

Frequency  bins Frequency bins

am
p

li
tu

d
e

P
h

as
e 

(r
ad

.)

H23(f)/H13(f)
H23(f)/H13(f)

H22(f)/H12(f)

H21(f)/H11(f)

H21(f)/H11(f)

H22(f)/H12(f)

IV - 87

➡ ➡



       

to calculate with accuracy. However we can observe the 

constant amplitude and the linear phase of the coefficients. 

5.3. MASK JUSTIFICATION 

Figure 6 justifies our decision to use wide masks. Indeed if 

we use narrow masks (e.g., area 3 in Fig. 3) as in the previous 

method, the recoverable power is only around 45 % with a 

threshold of 10 dB whereas if we utilize wider masks (e.g., 

area 23 in Fig. 3), we can recover over 60 % of this power.  
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 Fig. 6: Approximate WDO against the threshold, DFT size=512, 

TR=130 ms.   

Consequently the technique using wide areas makes it 

possible to reduce the distortion of the separated signals, 

which was our aim. 

5.4. EVALUATION MEASURES 

To evaluate the separation performance of our method, we 

have chosen to calculate the Signal-to-Interference Ratio 

(SIR) as a measure of separation performance and the Signal-

to-Distortion Ratio (SDR) as a measure of sound quality: 
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where the permutation is solved before calculating SIR and 

SDR, i.e. yi(t) is the estimation of si(t),  and yiSj is the output 

of the whole separating system at yi when only sj is active and 

sk (k j) does not exist, and xkSj is the observation obtained 

by microphone k when only sj exists.  is a constant that 

compensates for the amplitude difference and  is an angle 

that fits the phase difference between input xkSj  and output 

yiSj. To evaluate of the previous method (sparseness only 

method), we calculated SIR and SDR using both 

microphones’ measurements, and adopted the better values. 

5.5. RESULTS 

Tables 1 and 2 show the results we obtained from our 

measurements. By “sparseness” we imply that we are 

evaluating the performance of our speech signals when we 

are applying the narrow masks. “invH12” means that we are 

applying our mixing matrix to area 12 comprising speech 

signals 1 and 2. Likewise “invH23” means that we are 

applying our mixing matrix to area 23 comprising speech 

signals 2 and 3. Actually, we are comparing the conventional 

method with our SMME method. The results are shown in 

Tables 1 (when TR=130 ms) and 2 (when TR=200 ms).

Table 1: SIR and SDR calculated in dB for different approaches, 

DFT size=512, TR=130 ms 

SIR1 SIR2 SIR3 SDR1 SDR2 SDR3 

sparseness 15.3 9.9 10.6 8.4 10.3 3.4 

invH12 11.6  3.1   8.7 12.2  

invH23  3.3 7.6  12.5  7.2

Table 2: SIR and SDR calculated in dB for different approaches, 

DFT size=512, TR=200 ms 

SIR1 SIR2 SIR3 SDR1 SDR2 SDR3 

sparseness 8.6 5.6 11.6 0.9 3.3 1.4 

invH12 4.0 1.3   2.5 4.8   

invH23   0.4 8.9   7.2 4.5

As we can see, the use of our SMME method allows us 

to obtain less distorted signals without suffering from serious 

deterioration in the separation performance (SIR). Moreover 

we performed informal listening tests and it is important to 

note that much less musical noise is heard when separation is 

undertaken using SMME than when only sparseness is used.  

6. CONCLUSION 

We proposed a separation method for use when there are 

more speech signals than sensors by combining a sparseness 

approach and an estimation of the mixing matrix. The first 

experimental results are very encouraging in terms of quality 

and suggest that the SMME is an approach that deserves 

serious investigation.

7. REFERENCES 
[1]  A. Hyvarinen, J. Karhunen and E. Oja,  Independent 

Component Analysis, John Wiley & Sons, 2001. 

[2]  P. Bofill and M. Zibulevsky,  “Blind separation of more 

sources than mixtures using sparsity of their short-time Fourier 

transform,”  Proc. ICA2000, pp. 87-92, 2000.  

[3] M. Zibulesky, B. A. Pearlmutter, P. Bofill and P. Kisilev, 

“Blind source separation by sparse decomposition in a signal 

dictionary,”  TR No. CS99-1, University of New Mexico, 

Albuquerque, July 1999. 

[4] L. Vielva, D. Erdogmus, C. Pantaleon, I. Santanmaria, J. 

Pereda and J. C. Principe, “Underdetermined blind source 

separation in a time-varying environment,”  Proc. 

ICASSP2002, vol. 3, pp. 3049-3052, 2002. 

[5] Y. Deville, “Temporal and time frequency correlation-based 

blind source separation methods,” Proc. ICA2003, pp. 1059-

1064, 2003. 

[6] S. Rickard and O. Yilmaz, “On the approximate w-disjoint 

orthogonality of speech,” Proc. ICASSP2002, vol.1, pp. 529-

532, 2002. 

[7]   A. Blin, S. Araki and S. Makino, “Blind source separation when 

speech signals outnumber sensors using a sparseness-mixing 

matrix combination,”  Proc. IWAENC2003, pp. 211-214. 

IV - 88

➡ ➠


