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Abstract—This paper describes control of distance attenuation
using spherical loudspeaker array. Fisher et al. proposed radial
filtering with spherical microphone to control the sensitivity to
distance from a sound source by modeling the propagation of
waves in spherical harmonic domain. Since transfer functions
are not changed by swapping their inputs and outputs, we can
use the same theory of radial filtering for microphone arrays to
the filter design of distance attenuation control with loudspeaker
arrays. Experimental results confirmed that the proposed method
is effective in low frequencies.

I. INTRODUCTION

Although loudspeaker playback does not constrain bodies of
listeners unlike headphone playback, it suffers from leakage
of sound. Thus limiting the area of the the sound of the loud-
speaker playback is an important issue for acoustic insulation
and speech privacy. The most popular approach to the area
limitation is directivity control of loudspeakers. For example,
various plane wave transducer devices are developed, e.g.,
[1]. Loudspeaker array is another solution for the directivity
control [2]. Also, there has been a rapid progress in parametric
speakers to form sharp directivity using ultrasonic waves, e.g.,
[3]. However, the magnitude behind the listeners cannot be
maintained by directive loudspeakers, and the area limitation
is also degraded by reflection on walls.

In this paper we propose sound area limitation by the
control of distance attenuation using a spherical loudspeaker
array so that we can limit the area of the sound with high
magnitude is limited only around the loudspeaker array. For
this purpose, we employ a theory to control sensitivity of
spherical microphone arrays to distance from sound sources
[4] proposed by Fisher et al. Utilizing a nature of transfer
functions which are not changed by spwapping their inputs
and outputs, the Fisher’s method is used for design of filters
to control disttance attenuation of a spherical loudspeaker
array assuming a virtually inverted wave propagation model
as if sound is emitted by a microphone and reaches at the
loudspeaker array. As a result of a simulation in an anechoic
environment, effectiveness of the proposed method in low
frequencies is confirmed.

II. PROPOSED METHOD

A. Strategy

Here we review the outline of the Fisher’s method to control
the distance sensitivity of spherical microphone arrays, and

(a) Configuration of spherical
microphone array.

(b) Block diagram of spherical
microphone array.

(c) Configuration of spherical
loudspeaker array.

(d) Block diagram of spherical
loudspeaker array.

Fig. 1. Configuration and block diagram of spherical microphone array and
spherical speaker array.

discuss how to apply it to distance attenuation control of
spherical loudspeaker arrays.

The radial filtering proposed in [4] controls sensitivity of
spherical microphone arrays to distance from the sources. As
shown in Fig. 1 (a), assuming a spherical wave is radiated
from a point source and reaches a microphone array with M
microphone elements, the relation between the magnitude at
each microphone element and the distance is modeled in the
spherical harmonic domain. Using the modeled relation, filters
to approximate arbitrary distance characteristics is designed.
The observed signal at each element is filtered separately and
summed to generate the output signal as shown in Fig. 1 (b).
The transfer function qmic (k) between the source and the array
output is given by

qmic (k) =
M∑
j=1

w∗ (k,Ωj) c (k,Ωj) , (1)

where {·}∗ denotes complex conjugate, Ωj (j = 1, . . . ,M )
is the angle of the j-th element in the three-dimensional
polar coordinate with its origin at the center of the spherical
microphone array, w∗ (k,Ωj) is the filter for the observed
signal at the j-th element, c (k,Ωj) is the transfer function
between the source and the j-th element, and k = f/v is the
wave number with the frequency f and the velocity v.

The problem we discuss in this paper is the playback by the



spherical loudspeaker array as shown in Fig. 1 (c). Suppose
the M loudspeaker positions in Fig. 1 (c) is the same as
the ones of microphones in Fig. 1 (a). Also, the source in
Fig. 1 (a) is replaced by the microphone at the same position
in Fig. 1 (c). Since the source is multiple loudspeakers on
the surface of the sphere, the wave front is not a simple
spherical wave but the more complicated superimposition of
the waves from the multiple loudspeaker elements. However,
the transfer functions between the spherical loudspeakers and
the microphone in Fig. 1 (c) is the same as the ones between
the source and the microphones, e.g., c (k,Ω1) , . . . , c (k,ΩM )
because transfer functions are not changed by swapping their
inputs and outputs. Thus, by outputting the signal filtered
by the same filters w∗ (k,Ωj) , j = 1, . . . ,M , the transfer
function qspk (k,Ωj) from the loudspeaker array input to the
microphone is given by

qspk (k) =
M∑
j=1

c (k,Ωj)w
∗ (k,Ωj)

= qmic (k) , (2)

results as the equivalent one as the transfer function qmic (k) of
the spherical microphone array. Thus the distance characteris-
tics of the loudspeaker output in Fig. 1 (c) is the same as that of
the sensitivity of the microphone array in Fig. 1 (a). Therefore,
we can design the distance characteristics of the spherical
loudspeaker array by the Fisher’s method using the inverted
virtual microphone array model, where a single microphone
emits the spherical wave and the elements of the loudspeaker
array observes the wave emitted from the microphone.

B. Signal Expression in Spherical Harmonic Domain

Arbitrary sound pressure g (k,Ω) of the wave number k at a
point of the angle Ω on a sphere is expressed by the following
linear combination using the spherical harmonic Y m

n (Ω) as the
orthonormal bases.

g (k,Ω) =

∞∑
n=0

n∑
m=−n

gnm (k)Y m
n (Ω) , (3)

where gnm (k) is the coefficient corresponding to the basis
Y m
n (Ω), n is the order of harmonic, m is an integer to satisfy

−n ≤ m ≤ n, and the detail of the spherical harmonic
Y m
n (ω) is described in Appendix A. Equation (3) is known as

inverse spherical Fourier transform. The coefficient gnm (k) is
obtained by the following integral on a 2-sphere S2, referred
to as spherical Fourier transform:

gnm (k) =

∫
Ω∈S2

g (k,Ω)Y m∗
n (Ω) dΩ. (4)

As can be seen in Eq. (3), infinite order of the spherical
harmonic is required to express the pressure g (k,Ω) ac-
curately. However, as discussed in [5], the order n to be
approximated is bounded by the number M of the array
elements as M ≥ (n+ 1)

2. Thus we have to truncate the
order by the maximum N ≤

√
M − 1, and the maximum

wave number kmax to control has to satisfy

kmax ≪ N

a
, (5)

where a is the radius of the array sphere. The theoretical
estimate of the error caused by the truncation is discussed
in [6], and in this paper we evaluate the error through the
experiments.

C. Derivation of Radial Filter

The gain y (k) of the array output of the microphone array
to observe the sound field assuming near field is expressed as

y (k) =
N∑

n=0

n∑
m=−n

w∗
nm (k) pnm (k) , (6)

where pnm (k) is the spherical harmonic coefficients of the
sound field p (k, r,Ω) with the near-field assumption, whose
detail is described in Appendix B, is given by

pnm (k, r) =

∫
Ω∈S2

p (k, r,Ω)Y m∗
n (Ω) dΩ

= bs
n (k, r, rs)Y

m∗
n (Ωs) , (7)

where rs and Ωs are respectively the distance and the direction
of the source, and bs

n (k, r, rs) is the near-field intensity given
by

bs
n (k, r, rs) = i−n+1kbn (kr)hn (krs) , (8)

where hn (·) describes the spherical Hankel function whose
details are described in Appendix C, and bn (·) is the far-
field intensity described in Appendix D. Here we consider
the following filter coefficient w∗

nm (k) to cancel the terms
unrelated to the distance rs:

w∗
nm =

dn (k)

i−n+1kbn (ka)
Y m
n (Ωl) , (9)

where i =
√
−1 and Ωl is the look direction of the source

and dn (k) is the coefficient to design. Its array output gain
y (k, rs,Ωl) is given by

y (k, rs,Ωl) =

N∑
n=0

n∑
m=−n

w∗
nm (k) pnm (k, a)Y m

n (Ωl)

=
N∑

n=0

2n+ 1

4π
dn (k)hn (krs)Pn (cosΘ) , (10)

using the spherical harmonics addition theorem [7]:
n∑

m=−n

Y m∗
n (Ωs)Y

m
n (Ωl) =

2n+ 1

4π
Pn (cosΘ) , (11)

where Θ is the angle between Ωl and Ωs, and Pn (·) is
the Legendre function. It can be seen in Eq. (10) that the
directivity of the control is affected only by the Legendre
function Pn (cos θ), whose plots with low orders are shown
in Fig. 2. With any order Pn (cos θ) is one if Θ = 0, π and
the directivity is not so strong for other directions with the
low orders. Thus the radial filtering by Eq. (10) does not have
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Fig. 2. Legendre function Pn (cos θ) with orders n = 0, 1, 2, 3.

strong directivity.

D. Filter Design by Least Squares Estimate

Suppose the listener is at the distance of rlis from the
center of the sphere, referred to as listening distance, and we
control the gain y (k, rs,Ωl) to be close to the desired gain
yd (k, rs,Ωl), which equals to 1 at rs = rlis and equals to zero
at the distance farther than rsup as

y (k, rs,Ωl) ≈ yd (k, rs,Ωl) =

{
1 (rs = rlis) ,

0 (rs ≥ rsup) .
(12)

To design the filter coefficients dn (k) to satisfy Eq. (12), for-
mulate the least squares problem with the sampled distances.

We sample the (L−1) distances from rsup to rsupE (> rsup),
and we define the L sample distances rl, l = 1, . . . , L together
with rlis as

r1 = rlis, r2 = rsup, rL = rsupE, rl−1 < rl < rl+1. (13)

Note that L > N . Next, we define the L × (N + 1) matrix
H (k) composed of the right term of Eq. (10) except the
coefficient dn (k) and Legendre functions as

H (k) =

[
2n+ 1

4π
hm−1 (krl)

]
lm

, (14)

where [x]lm denotes the matrix which has the entry x in the l-
th row and m-th column. Also with the vector d (k) composed
of the coefficients dn (k), given by

d (k) = [d0 (k) , . . . , dN (k)]
T
, (15)

where {·}T denotes the matrix transposition, the L-
dimensional vector form y (k) of the series of the array output
gain y (k, rl,Ωl) is expressed as

y (k) = [y (k, r1,Ωl) , . . . , y (k, rL,Ωl)]
T

= H (k)d (k) . (16)

Also the L-dimensional vector form yd (k) of the desired gain
yd (k, rl,Ωl) is given by

yd (k) = [yd (k, r1,Ωl) , . . . , yd (k, rL,Ωl)]
T
. (17)

Thus the least squares solution of the coefficient dn (k) to
minimize ∥yd (k)− y (k)∥2 is obtained as

d (k) = H (k)
†
yd (k) , (18)

TABLE I
PARAMETERS OF SIMULATION

Number L of sampled distances 100
Maximum order N 2

Number M of loudspeaker elements 12
Radius a of spherical loudspeaker array 0.05 m

Maximum controlled distance rsupE 5 m
Listening distance rlis 0.1 m, 0.2 m

where {·}† denotes the pseudo inverse matrix. However, the
designed distance characteristics y (k, rs,Ωl) is just a theoreti-
cal curve only within the truncated order n ≤ N is considered.
the performance degraded by the truncation is evaluated in the
simulation of the following section.

By substituting the designed coefficient dn (k) in Eq. (9) and
applying the inverse spherical Fourier transform to wmn (k),
the frequency characteristics of the array filter w∗ (k,Ωj) for
j = 1, . . . ,M is obtained as

w∗ (k,Ωj) =
N∑

n=0

n∑
m=−n

dn (k)

i−n+1kbn (ka)
Y m
n (Ωl)Y

m
n (Ωj) .

(19)

With the inverse discrete Fourier transform of w∗ (k,Ωj), we
can obtain the array filter for the l-th element in the form of
finite impulse response.

III. SIMULATION

A. Experimental Conditions

We simulate the distance attenuation control in anechoic
environment comparing the performance in different configu-
rations. We compared the simulated responses of the spherical
loudspeaker array of the designed filter given by Eq. (19) with
theoretical values given by Eq. (6) to evaluete the error caused
by the truncation of the order, and with the simulated responses
of a single loudspeaker output to evaluate the effectiveness of
the proposed method. The used spherical loudspeaker array
has 12 elements positioned at the vertexes of the icosahedron
inscribed within the open sphere. The simulation parameters
are listed on Table I.

B. Results

The results of the simulation are shown in Fig. 3. Comparing
(a)–(c) or (d)–(f), the control in the low frequency is success-
ful, but in the high frequencies the curve of the processed
gain is far worse than the theoretical curve, the gain in the
spherical harmonic domain, and approaches to the curve of
the unprocessed signal. For example, in 148 Hz shown in (a)
the suppression of about 40 dB is obtained at 1 m compared
with the unprocessed output, but it degrades to worse than
10 dB in 1000 Hz as in (c). Thus the control of the high
frequency is hard because of the condition in Eq. (5) is hardly
satisfied.

Comparing (a) and (d), (b) and (e) or (c) and (f) reveals
that the contol is easy when the listening distance is close to
the array surface.



(a) f = 148 Hz, rs = 0.1 m
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(b) f = 383 Hz, rs = 0.1 m
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(c) f = 1000 Hz, rs = 0.1 m
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(d) f = 148 Hz, rs = 0.2 m
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(e) f = 383 Hz, rs = 0.2 m
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(f) f = 1000 Hz, rs = 0.2 m
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Fig. 3. Experimental results.

IV. CONCLUSIONS

This paper described the control of the area where loud-
speaker output is audible using loudspeaker array. The filter
coefficients are designed in the spherical harmonic domain
according to the inverted model of the wave propagation which
is treated as if a microphone emits the spherical wave and the
loudspeaker array observes it. Effectiveness of the proposed
method in the low frequency is ascertained in the simulation.
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APPENDIX

A. Spherical Harmonic

The spherical harmonic is the solution of three-dimensional
Laplace equation in spherical coordinate, given by

Y m
n (Ω) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cos θ) eimϕ, (20)

where Pm
n (·) is the associated Legendre function given by

Pm
n (x) = (−1)

m (
1− x2

)m/2 dm

dxm
Pn (x) , (21)

with the Legendre function given by

Pn (x) =
1

2nn!

[
dn

dxn

(
x2 − 1

)n]
. (22)

B. Sound Field in Spherical Harmonic Domain

The sound filed with the near-field assumption is given as
follows in the frequency domain.

p (k, r) =
e−2πik |r− rs|

|r− rs|
, (23)

where r = (r,Ω) and rs = (rs,Ωs) and |r− rs| denotes the
Euclidean distance between the vectors r and rs. Applying the
spherical Fourier transform, the sound field p (k, r,Ω) in the
spherical harmonic domain is given as

p (k, r,Ω) =
∞∑

n=0

n∑
m=−n

bs
n (k, r, rs)Y

m∗
n (Ωs)Y

m
n (Ωs) , (24)

whose double sum is canceled by the orthonormal property of
Y m
n (Ω) and reduces to Eq. (7).

C. Spherical Hankel and Bessel functions

The spherical Hankel and Bessel functions hn and jn and
the derivatives of them h′

n and j′n are given by

hn (kr) =

√
π

2kr
H

(1)

n+ 1
2

(kr) (25)

jn (kr) =

√
π

2kr
Jn+ 1

2
(kr) (26)

h′ (kr) =
n

kr
hn (kr)− hn+1 (kr) (27)

j′n (kr) =
n

kr
jn (kr)− jn+1 (kr) , (28)

where H
(1)

n+ 1
2

, Jn+ 1
2

and Yn+ 1
2

are the Hankel function of the
first kind, the Bessel function of the first kind and the Bessel
function of the second kind, respectively.

D. Intensity Function

The intensity bn (kr) of the far-field assumption is given for
open and rigid spheres as

bn (kr) = 4πin

{
jn (kr) (open sphere),

jn (kr)− j′n(ka)
h′
n(kr)

hn (kr) (rigid sphere).
(29)
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