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Abstract

Emotion recognition is essential for human behavior analysis
and possible through various inputs such as speech and images.
However, in practical situations, such as in call center analy-
sis, the available information is limited to speech. This leads
to the study of speech emotion recognition (SER). Considering
the complexity of emotions, SER is a challenging task. Re-
cently, automatic speech recognition (ASR) has played a role
in obtaining text information from speech. The combination of
speech and ASR results has improved the SER performance.
However, ASR results are highly affected by speech recogni-
tion errors. Although there is a method to improve ASR perfor-
mance on emotional speech, it requires the fine-tuning of ASR,
which is costly. To mitigate the errors in SER using ASR sys-
tems, we propose the use of the combination of a self-attention
mechanism and a word-level confidence measure (CM), which
indicates the reliability of ASR results, to reduce the impor-
tance of words with a high chance of error. Experimental results
confirmed that the combination of self-attention mechanism and
CM reduced the effects of incorrectly recognized words in ASR
results, providing a better focus on words that determine emo-
tion recognition. Our proposed method outperformed the state-
of-the-art methods on the IEMOCAP dataset.

Index Terms: speech emotion recognition, confidence mea-
sure, automatic speech recognition, self-attention mechanism

1. Introduction

Emotion recognition is a key to improving the quality of human-
to-human and human-to-machine interactions. In recent years,
technological advancements have enabled emotion recognition
systems to receive various inputs, including speech, facial ex-
pressions, gestures, and biological signals. In some studies on
emotion recognition, the combination of these types of infor-
mation and their classification using deep neural networks have
also been investigated. One study included feature fusion and
ensemble learning on both speech and text [1]. Other studies
combined both speech and text from transcriptions by aligning
them frame-to-frame and learning the contribution weights of
both types of information [2] [3]. Another approach incorpo-
rates speech, text, and visual information such as video and mo-
tion capture, where all types of information are fused at the end
of the network for classification[4]. In most previous studies,
speech is the most commonly used as it has rich information that
reflects the emotion and is most readily available. Moreover, in
many practical situations where speech is the only information,
such as in call center analysis, other types of information are
unusable.

The limitation of information leads to the study of speech
emotion recognition (SER) by classifying different emotions
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from speech. With the advancement of deep neural networks,
recurrent neural networks to capture sequence and attention
mechanism for importance weighting have helped feature ex-
traction from speech, improving the SER performance [5] [6].
The recent spread of automatic speech recognition (ASR) sys-
tems has also enabled the extraction of textual information from
speech. ASR opens up the possibility of combining speech and
text without the need for human-based transcriptions. In sev-
eral studies, SER combined with ASR results as the textual in-
formation has also been investigated. In one study, SER with
ASR was conducted by independently training ASR, SER, and
emotion recognition submodels from text and by fine-tuning the
combined submodels [7]. In another method, the end-to-end
training process was simplified by conducting SER with a joint
task to tune the ASR performance on emotional speeches [8].
Despite the reduced ASR error rate, ASR performance remains
insufficient. Moreover, the fine-tuning of ASR for emotional
speeches is costly.

To solve this problem, we propose an approach to mitigate
the effects of speech recognition errors using the information on
the confidence measure (CM) [9], an indicator of the reliability
of ASR results available upon recognition, as a textual feature in
SER. The confidence measure adjusts the importance weights in
text information according to the likelihood of a speech recog-
nition error in each word, allowing us to mitigate the speech
recognition error effects on SER performance without the need
for the fine-tuning of ASR. Moreover, this approach has the
prospect of being effective in mitigating the errors in SER us-
ing ASR systems on lower-resource languages, in which ASR
has a considerably higher error rate. In this study, we investi-
gated three approaches to using CM: as an early-fusion feature,
as a late-fusion feature, and as a correction for word-level im-
portance weighting. We conducted experiments on the IEMO-
CAP dataset [10] to verify the effectiveness of these three ap-
proaches. Finally, we compare the performance of our proposed
method with the state-of-the-art method.

2. Baseline method
2.1. Overview

Figure 1 shows the classifier structure with acoustic and text in-
formation, which is based on many state-of-the-art SER meth-
ods as shown in this study [8]. There are three main parts: the
acoustic feature extractor, the textual feature extractor, and the
final emotion classifier that combines the output of the two pre-
vious parts. The flow of SER starts from extracting the acoustic
features and textual features of an utterance. Next, to obtain in-
termediate representations, the acoustic features are fed to bidi-
rectional long short-term memory (BLSTM) [11] and weighted
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Figure 1: Base method structure

with a self-attention mechanism [12] . On the other hand, the
textual features are encoded with word embedding and then pro-
cessed similarly to the acoustic features. Finally, the intermedi-
ate representations are concatenated and classified with a fully
connected network to obtain the final emotion class as the out-
put. The details are discussed in the next subsections.

2.2. Acoustic feature processing

The first part processes the acoustic features from the utter-
ances. The acoustic features extracted in this study contain a
combination of Mel-frequency cepstrum coefficient (MFCC),
constant Q-transform (CQT), and fundamental frequency (FO)
as adopted from a previous study [13]. These combined features
X1...XT, where X; is the acoustic feature vector at the time frame
¢ and 7' is the number of frames, provide more detailed informa-
tion on the phoneme information, intonation, and pitches, which
are significant in determining the emotion class. The acoustic
features are fed to the BLSTM network for sequential feature
extraction. The output vector e; concatenates the forward and
backward hidden states of BLSTM (g; and h;), and is defined
as

e, =g; ®h,, (1)
where @ represents concatenation. e; is then weighed for its
importance by the self-attention mechanism defined as

i = softmaz(witanh(We])).

@

«; is the attention weight for each frame, and w; and W are
trainable parameters. The self-attention mechanism has been
proven to be effective in weighting important parts from se-
quential features and improving the performance of SER tasks
[5]1[14]. Finally, the weighted sum v from BLSTM and attention

weights defined as
T
vV = Z ;€
i=1

is calculated and fed to a single fully connected layer to obtain
an intermediate representation, dgcoustic, from the acoustic fea-
tures.

3

2.3. Textual feature processing

The second part processes the texts, which are taken from
the ASR result. In this study, the ASR system is a rec-
ognizer trained with the Librispeech [15] dataset and Kaldi
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speech recognition toolkit[16]. The recognition result from
ASR y;...yn, where y; is the input word and N is the num-
ber of words, is first encoded with a word-embedding model
that is trained using BERT [17], a transformer-based [18] word
embedding method that models contextual and positional word
embeddings. The resulting features z, ...z are then fed to tex-
tual feature extraction in the same manner as the acoustic fea-
ture extraction, using BLSTM to extract the sequence to vec-
tor f;, self-attention mechanism to weight the importance y;,
and one dense layer to obtain the intermediate representation
dic.+ Of textual features. Note that this part uses ASR results
directly, which has a high error rate and might decrease SER
performance. To reduce the effect of speech recognition error
in the ASR result, we proposed a method that is explained in
the next section.

3. Proposed method
3.1. Overview

We propose using the combination of a self-attention mecha-
nism and CM to mitigate the effects of errors from ASR results
in textual feature extraction. We will explain how to improve
the green frame in Fig. 1 and investigate three methods: early
fusion, late fusion, and correction for word-level importance
weighting.

3.2. Confidence measure (CM)

CM [9] is a metric that indicates the reliability of ASR deci-
sions. CM has long been used in ASR systems for the evalu-
ation of word-level and sentence-level recognition results and
of how much can the words in the utterance recognized can be
trusted on the basis of values between O to 1, accurately dis-
criminating parts that contain speech recognition errors. The
use of CM in textual features of SER may suppress incorrectly
recognized words or emphasize the utterance part with the more
correctly recognized words. This study employs the CM in the
Kaldi speech recognition toolkit [16], which is defined by the
log-likelihood difference between the first and the second best
word predictions based on the lattice posterior. Here, CM is
only applied to the textual feature extraction part of SER.

3.3. Application of CM in the proposed method

Figures 2(a), 2(b), 2(c) show the application of CM in the
proposed method’s architecture. In these figures, N, Nuyord,
Npistm, and Ny represents the number of words, the dimen-
sion number of word embedding, the unit number of BLSTM,
and the dimension of the textual intermediate representation re-
spectively. As CM indicates the reliability of ASR results, it
is only applied in the textual feature extraction part of the pro-
posed method. There are three mechanisms for the proposed
method.

Early fusion (Fig. 2a) CM is treated directly as one of
the textual embedding features as they are part of the ASR re-
sults and CM is represented by a sequence of weights, which
might be suitable for extraction using BLSTM early on. In this
method, CM is concatenated after the textual features have gone
through BLSTM and before the self-attention mechanism.

Late fusion (Fig. 2b) As CM is small in dimension com-
pared with the textual features, extracting CM sequentially in
the early stages might cause early information loss and CM
would not have markedly reduce speech recognition errors.
Therefore, it would be more effective when used as one fea-
ture to consider aside from the extracted sequential text features
for the self-attention mechanism. In this method, CM is con-
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Figure 2: Architecture of the proposed method on the textual feature extraction part of SER

catenated after the textual features have gone through BLSTM
and before the self-attention mechanism.

Attention weight correction (Fig. 2¢) The previous two
mechanisms use CM both directly and indirectly as part of the
textual features. These mechanisms would require many train-
ing data for the incorrectly recognized words and their weight-
ing. To solve this, we concatenate CM directly to the self-
attention mechanism weights and update the weights through
a fully connected network. By this method, one can decrease
the CM dependence on the textual feature and train with fewer
data. As CM indicates how reliable the ASR result is, CM val-
ues can act as another weight for ASR results, similarly to what
the self-attention mechanism does for the textual feature extrac-
tion. The combination of two different weights provides more
precise weights for textual information.

In this case, the CM c; is concatenated with the attention
weights o5 calculated using Eq. (2) as a new feature that will be
fed to a fully connected layer and normalized using the softmax
function to obtain new attention weights. The new attention
mechanism is defined as

B; = softmax(W'(a; @ c;)), “4)
N

¢ = Zﬁjej. (5)
i=1

The fully connected layer represented by the trainable parame-
ter W' learns and adjusts the attention weights by also consid-
ering the confidence measure aligned to the same word position.
The resulting self-attention weights (3; are then used to calcu-
late the weighted sum of the BLSTM outputs, producing the
new weighted-summed features ¢’, which serve as the interme-
diate representations from the text.

4. Experiments

The experiment aims to examine the effectiveness of the pro-
posed method in improving SER performance.

4.1. Dataset

In this study, we used the Interactive Emotional Dyadic Mo-
tion Capture (IEMOCAP) dataset [10], one of the benchmark
datasets for emotion recognition, to evaluate the effectiveness
of the proposed method. The IEMOCAP dataset consists of
both scripted and improvised emotional speeches divided into
five sessions, each containing one male and one female speak-
ers. In total, there are 10 speakers (five male and five female)
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Table 1: Dataset specifications

Dataset IEMOCAP

Speakers 5 male and 5 female

Utterance length 1-19s

# of utterances Happy 1689
Sad 1084
Neutral 1708
Angry 1103

in the IEMOCAP dataset. Each utterance corresponds to the
transcriptions and is labeled as one of seven emotions (happy,
sad, neutral, angry, excited, frustrated, and other). Similarly to
previous works, we included the utterances labeled as excited to
the utterances labeled as happy, and we only used four classes
(happy, sad, neutral, and angry) for classification. We con-
ducted five-fold cross-validation, in which four sessions were
used as the training set and the remaining one session was used
as the test set, ensuring speaker independence. The details about
the dataset for this study are shown in Table 1.

4.2. Input feature

The features were divided into two parts for acoustic feature
extraction and textual feature extraction. For the acoustic fea-
ture extraction, we extracted a 33-dimensional feature con-
sisting of 20-dimensional MFCC, 12-dimensional CQT, and
one-dimensional FO. For the textual features, first we con-
ducted ASR on the utterances using a recognizer pretrained
with the Librispeech [15] dataset and Kaldi speech recognition
toolkit[16]. Librispeech consists of approximately 1000 hour of
speech sampled at 16 kHz. Next, we encoded the ASR results
using pretrained BERT [17], which was trained from lower-
case English texts. The pretrained BERT consists of 12-layer,
and 110M parameters, resulting in 768-dimensional textual fea-
tures.

4.3. Classifier specifications

The acoustic extractor for the SER was comprised of two lay-
ers of BLSTM with 64 cells. Weighting was carried out using a
self-attention mechanism with a single head and 128 cells. For
the ASR part, we use the recognition result encoded by pre-
trained BERT as the input for the text feature extractor. The
text feature extractor consist of two layers of BLSTM, a self-
attention mechanism with a single head, and 128 cells. To com-
bine both acoustic and ASR features, we used one fully con-



Table 2: Baseline method comparison

Method UA | WA
Speech 61.1 | 64.3
Text (Transcript) 75.5 | 75.6
Text (ASR) 71.8 | 71.9
Speech + Text (Transcript) 78.6 | 78.4
Speech + Text (ASR) 739 | 74.2
Our proposed method

Proposed 1 743 | 744
Proposed 2 749 | 754
Proposed 3 75.9 | 76.1
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Figure 3: Attention update visualization

nected layer with 64 nodes, connecting the output from the self-
attention layers. This was followed by a ReLU activation layer
and an output layer with softmax to determine the final emotion
class. In this experiment, we used Adam [19] as the optimizer
with a learning rate of 0.0001 and a weight decay of 0.00001.
The dropout was set to 0.3. The batch size was set to 40. The
results were taken from the best out of 100 epochs.

4.4. Results

Table 2 shows the results of experiments on the methods with
different feature combinations. The word error rate (WER) of
the ASR on the IEMOCAP data was 43.5%, which is com-
paratively high due to the IEMOCAP containing emotions and
spontaneous conversational words. As evaluation metrics for
SER, we employed unweighted accuracy (UA) and weighted
accuracy (WA) following the previous studies. As both met-
rics have similar tendencies, we analyzed the results primarily
using WA. The method using only speech achieved a WA of
64.3%, and the method using transcripts only achieved a WA of
75.6%. The method combining speech and text from transcrip-
tions achieved a WA of 78.4%, which was significantly higher
than that achieved by a method using only speech (14.1%) or
transcripts (2.8%). On the other hand, the WA of the method us-
ing text was degraded by 3.7% when using ASR result instead
of transcriptions. Combining speech and ASR results yielded
a WA of 74.2%, which indicates a performance degradation of
4.2%. Although the performance degradation was smaller than
expected, this may be because the method using ASR result was
trained with incorrectly recognized ASR results.

Our proposed methods on incorporating CM into the text
feature yielded WA of 74.4%, 75.4%, and 76.1% for early fu-
sion, late fusion, and attention weight correction, respectively.
Among all the methods proposed, the attention weight correc-
tion showed the most significant performance gain from the re-
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Table 3: Comparison of results of present work with those of
previous works

Method Information source UA | WA
Mirsamadi et al. [S] | Speech 58.8 | 63.5
Luo et al. [6] Speech 63.9 | 60.3
Lietal. [14] Speech 72.6 | 70.5
Chen et al. [1] Speech + transcription | 72.0 | 71.0
Liu et al. [3] Speech + transcription | 70.1 | 72.4
Feng et al. [8] Speech + ASR 69.7 | 68.6
Heusser et al. [7] Speech + ASR 71.0 | 73.5
Proposed method Speech + ASR + CM 759 | 76.1

sult from speech and ASR and the closest performance to the
one from the combined speech and transcription model. This
also implies that the performance enhancement can be achieved
by adjusting the attention weight of the ASR result extraction,
in which the CM reduces the importance of the ASR result with
a high chance of error. Furthermore, this method shows that
the performance enhancement for SER with speech and ASR
result is attainable without fine-tuning the ASR to recognize
emotional speech.

Table 3 shows the results of the present work in comparison
with those of the previous studies along with the types of infor-
mation in the [IEMOCAP dataset with similar class settings. Our
proposed method achieved the highest UA and WA. The close
similarity between UA and WA in the result of our proposed
method indicates the stability in conducting SER.

Fig. 3 shows the attention update mechanism in the pro-
posed method of using CM as the correction to text attention
weight, taken from a sample “angry” utterance with the correct
text “you don’t realize the stuff that I've got in that I really need
to get the suitcase okay”. The top, middle, and bottom graphs
show text attention weight, CM, and the updated text attention
weights, respectively. The incorrectly recognized words are
highlighted in yellow. Here, the incorrectly recognized “I've”
is highly emphasized in the initial text attention, whereas some
other correctly recognized words such as “realize” and “need”
are not as heavily weighted. By applying the weight correction
from CM, we found that the weight from “I’ve” and other in-
correctly recognized words are decreased, and the weights of
correctly recognized words are increased. This was at first in-
correctly recognized as a “happy” utterance but corrected af-
terward to “angry”. Note that as the updated attention weights
affect the textual feature intermediate representation, the final
emotion class is also determined by the acoustic feature inter-
mediate representation.

5. Conclusions

In this paper, we proposed an SER method that uses ASR re-
sults as text information and word-level CM. We investigated
the combination of a self-attention mechanism and a word-level
CM in reducing the effects of speech recognition errors on the
ASR results used as the text feature in SER on the IEMOCAP
dataset. Among the three approaches proposed, that using CM
as the attention weight correction yields the best performance.
The result showed that our proposed method performs better
than those in most of the previous studies using the IEMOCAP
dataset. Our proposed method using CM can reduce the possi-
ble speech recognition errors through correction of importance
weight in the ASR results. This opens the possibility of con-
ducting SER with only acoustic features and ASR results with-
out conducting ASR fine-tuning for emotional utterances.
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