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ABSTRACT 

This paper proposes a new adaptive algorithm (called 
the ES-RLS algorithm) with double the convergence speed 
of the conventional RLS algorithm. Our previous report 
showed that the variation of a room impulse response be- 
comes progressively smaller along the series by the same 
exponential ratio as the impulse response. The ES-RLS al- 
gorithm is derived by incorporating these variation charac- 
teristics into the conventional RLS algorithm using Kalman 
filter theory, which gives physical meaning to the RLS al- 
gorithm. The ES-RLS algorithm adjusts coefficients with 
large errors in large steps and coefficients with small errors 
in small steps. Computer simulations demonstrated that 
our new adaptive algorithm converged twice as fast bs the 
conventional RLS algorithm. 

1. INTRODUCTION 

Acoustic echo cancellers are now in use in teleconfer- 
encing and hands-free telecommunication systems to over- 
come acoustic feedback and to make conversation comfort- 
able. An acoustic echo canceller adaptively identifies the 
impulse response between a loudspeaker and a microphone, 
and then produces an echo replica which is subtracted from 
the real echo (acoustic feedback signal). Since the impulse 
response varies when a person moves and varies with the 
environment, an adaptive filter is used for the identifica- 
tion. 

The LMS algorithm and NLMS (normalized LMS) al- 
gorithm [l] require few computations, and are, therefore, 
widely applied for acoustic echo cancellers. However, there 
is a strong need to improve the convergence speed of the 
LMS and NLMS algorithms. 

The RLS (recursive least-squares) algorithm [2], whose 
convergence does not depend on the input signal, is the 
fastest of all conventional adaptive algorithms. The major 
drawback of the RLS algorithm is its large computational 
cost. However, fast (small computational cost) RLS algo 
rithms have been studied recently [3], and the RLS algo 
rithm is expected to be used in acoustic echo cancellers in 
the near future. 

We have studied the variation characteristics of a room 
impulse response, which is the w unknown system * for the 
acoustic echo canceller. We have reported that the expected 
variation of a room impulse response becomes progressively 
smaller along the series by the same exponential ratio as 
the impulse response energy decay [4]. As a result, we have 
proposed two adaptive algorithms. One is the ES (exponen- 
tially weighted stepsize NLMS) algorithm [4] which reflects 
the variation characteristics of a room impulse response in 
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Fig. 1 Configuration of an acoustic echo canceller. 

the conventional NLMS algorithm [l]. The other is the ESP 
(exponentially weighted stepsize projection) algorithm [5] 
which reflects the variation characteristics of a room im- 
pulse response in the conventional projection algorithm [6]. 

The basic concept of both the ES and ESP algorithms 
is to adjust coefficients with large errors in large steps and 
coefficients with small errors in small steps. For this pur- 
pose, these algorithms use a different stepsize for each coef- 
ficient of an adaptive transversal FIR filter by introducing 
a stepsize matrix with a diagonal form instead of the scalar 
stepsize of the conventional adaptive algorithms. These 
stepsizes are time-invariant and weighted proportional to 
the expected variation of the room impulse response. Con- 
sequently, the ES and ESP algorithms converge twice as 
fast as the conventional NLMS and projection algorithms, 
respectively. 

In this paper we aim to obtain a faster algorithm by 
incorporating knowledge of the room impulse response into 
the RLS algorithm. Unlike the NLMS and projection algo- 
rithms, the RLS algorithm does not have a scalar stepsize. 
Therefore, the variation characteristics of a room impulse 
response cannot be reflected directly in the RLS algorithm. 
Here, we study the RLS algorithm from the viewpoint of 
the Kalman filter [2] because (a) the RLS algorithm can be 
regarded as a special version of the Kalman filter and (b) 
each parameter of the Kalman filter has a physical mean- 
ing. Then we propose the ES-RLS (exponentially weighted 
stepsize RLS) algorithm which reflects the variation charac- 
teristics of a room impulse response in the RLS algorithm. 
Computer simulations demonstrate that this algorithm con- 
verges twice as fast as the conventional RLS algorithm. 
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2. ACOUSTIC ECHO CANCELLER AND 
ADAPTIVE ALGORITHM 

The configuration of an acoustic echo canceller is shown 
in Fig. 1. The echo canceller identifies the impulse response 
h(k) between the loudspeaker and the microphone at dis- 
crete time k. Usually, h(k) is a transversal FIR filter. The 

FIR filter coefficient G(k) should be a copy of the impulse 
response h(k). An echo replica g(k) is created by con- 
volving h(k) with the received input vector x(k), where 
x(k) = [z(k),z(k - l), .. .,z(k - L + l)]* and L repre- 
sents the number of taps, and the superscript T represents 
the transpose of a vector (matrix). The echo replica G(k) 
is then subtracted from the real echo y(k) to give the error 
e(k) = y(k)-$(k)+n(k), where n(k) represents the ambient ^ 
noise. The adaptive FIR filter h(L) is adjusted to decrease 
the error power in every sampling interval. The adaptive 
algorithm should provide fast convergence and high echo re- 
turn loss enhancement (ERIE, defined as the ratio of the 
real echo power to the error power excluding the ambient 
noise). 

3. KALMAN FILTER AND RLS ALGORITHM 

3.1 Kalman Alter 
The Kalman filter, when used as an adaptive filter, 

updates the filter coefficient vector 6(k) according to the 
following equations [2]. 

h(k + 1) = h(k) + k(k)e(k) (1) 
Pdk)x(k) 

k(k) = R(k) + X(k)TPK(k)X(k) (‘1 

i&(k) = PK(k) - k(k)x(k)=P@) 

PK(~ + 1) = f%(k) + Q(k) 
(3) 

(4) 

where 
e(k) = y(k) - hex + n(k), (5) 

k(k) : L-2h order Kalman gain vector, 

PK(~) = E[{h(k) - &(k)}{h(k) -6(k)}=]: L x L 
a priori coefficient error covariance matrix, 

h(k) = E[{h(L)-ii(li+l)}{h(k)-fi(L+l)}T]: LxL 
a posteriori coefficient error covariance matrix, 

Q(k) = E[Ah(k)Ah(k)‘]: covariance matrix of the 
impulse response variation Ah(l;) at time step k, 
h(L + 1) = h(k) + Ah(k), 

R(k) = E[n(k)‘]: power of the ambient noise n(k), 
E[ . 1: statistical expectation. 

Equation (3) represents the relationship between 

PK(~) and PK(~). It shows that the coefficient error co 
variance matrix P&L) decreases according to the update 

of (1) and becomes PK(~). On the other hand, equation 
(4) shows that according to the impulse response variation 
h(k+ 1) = h(k)+Ah(k), the covariance matrix Q(k) of the 
impulse response variation Ah(k) is added to PK(~) and 
increases to become PK(~ + 1). 

In the Kalman filter, the Kalman gain k(k) is calculated 
according to (2) using the coefficient error covariance matrix 
P&k) calculated one time step before. The filter coefficient 

vector L(k) is adjusted according to (1). According to the 

adjustment, the filter coefficient h(k + 1) is obtained that 
minimizes the sum of the mean-squared coefficient error 
E[{h(k+l)-d(k+l)}T{h(k+l)-~(k+l)}]at timestep 
k+ 1. 

As described above, in the adaptive processing by the 
Kalman filter, the covariance matrix Q(k) of the impulse 
response variation Ah(k) and power R(k) of the ambient 
noise n(k) are assumed to be known. However, in echo can- 
celiers, it is impractical to know Q(k) and R(k). Therefore, 
it is difficult to apply the Kalman filter directly to acoustic 
echo cancellers. 

3.2 Kalman filter and RLS algorithm 
The RLS algorithm was derived to recursively solve the 

least-squares estimation problem. It was originally indepen- 
dent of the Kalman filter. However, the RLS algorithm can 
be derived from the Kalman filter (l)-(5) as follows [2]. 

First, Q(k) in (4) is assumed to’be‘ ’ 

Q(k) = (8 - l)&(k), 

where 0 < v 5 1. Substituting (6) into (4) 

PK(k + 1) = u-‘&(k). 

yields 
(6) 

(7) 
Assumption (6) means that the coefficient error covariance 

matrix fiK(k) increases by Y-’ (2 1) according to the im- 
pulse response variation. 

Next, the ambient noise n(k) is assumed to be station- 
ary, having time-invariant power R(k) E R. Introducing a 
matrix P(k), which is related to PK(k) by 

PK(k) = u-‘R P(k), (8) 
and substituting (3) and (6) into (4), and (8) into (2) and 
(4), the RLS algorithm (9)-(12) can be derived. 

6(k + 1) = d(k) + k(k)e(k) (9) 

k(k) = 
v-‘P(k)x(k) 

1 + rlx(k)=P(k)x(k) 
(10) 

P(k + 1) = “-‘P(k) -‘v”k(kjx(kjTP(k) (11) 

e(k) = y(k) - &(k)Tx(k) + n(k). (12) 

Thus, the RLS algorithm can be derived from the 
Kalman filter by assuming the covariance matrix Q(k) of 
the impulse response variation of (6) and stationary ambi- 
ent noise R(k) E R. 

4. NEW ADAPTIVE ALGORITHM 

4.1 Variation in a room impulse response 
An adaptive algorithm with suitable special assump 

tions about the characteristics of the “ unknown system ” 
to be identified is expected to improve convergence. 

Although the detailed waveform is complicated, the 
envelope of a room impulse response (our “unknown sys 
tern n ) attenuates exponentially, and more importantly, the 
expected variation of the room impulse response also atten- 
uates by the same exponential ratio when a person moves 
or the environment changes [4]. This is expressed by the 
equation: 

E[Ahi(k)‘] = ao(k)r (i = 1,. . . , JC), (13) 

where 7 (0 < y 5 1) is the exponential attenuation ratio of 
the room impulse response power. The value of y is com- 
mon to all impulse responses in the same room. It can be 
derived from the reverberation time, which is determined 
by the acoustical conditions of the room, i.e., size and ab- 
sorption coefficient. Thus, we can estimate the exponential 
attenuation ratio y from the room conditions, or determine 
it by measuring one impulse response. 
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4.2 Exponentially weighted stepsize RLS (ES-RLS) 
algorithm 

The ES-RLS algorithm is derived from the Kalman fil- 
ter by introducing several assumptions as follows. First, 
each element of the impulse response variation Ah(k) is as 
sumed to be a statistically independent random variable. 
As a result, the covariance matrix Q(k) of the variation 
Ah(k) becomes a diagonal matrix. Then, for the diagonal 
component of the matrix Q(k), i.e., E[Aki(k)‘], we use (13) 
which reflects the variation characteristics of the room im- 
pulse response. The so(k), which represents the magnitude 
of the variation, is assumed to take time-invariant value 00. 
Based on these assumptions, we set Q(k) as 

Q(k)EA= [ Q1 Q2 . . . ’ ‘i (14) 

\ 0 QL / 
where 

a, = aoy’-l (i= 1;..,L), 

y : exponential attenuation ratio of room impulse 
responses (0 < y 5 1). 

Elements oi are time-invariant and decrease exponentially 
from ~1 to cry by the same ratio y as the impulse response 
h(k). 

Here we define the mean stepsize 6 which represents 
the magnitude of the matrix A as 

1 L &=- 
c 

a0 1 - yL 

L Qi = Tl-r’ 
a=1 

Then, assuming that the ambient noise n(k) is station- 
ary [R(k) c R], we introduce PE.s-(k) by multiplying the 
a priori coefficient error covariance matrix PK(k) of the 
Kalman filter by l/R, i.e., 

Prc(k) = R Pm(k). (16) 
Substituting (16) into (2), and using R(k) I R, and then 
substituting (3), (14), and (16) into (4), we get the follow- 
ing ES-RLS algorithm [7]. 

&(k + 1) = h(k) + k(k)e(k) (17) 

PEs(k)xtk) 
k(k) = 1 + x(k)=PEs(k)x(k) (18) 

PEs(k + 1) = PEs(k) - k(k)x(k)=P&k) + + (19) 

e(k) = y(k) - h(k)=x(k) + n(k) A& (20) 
where 

PEs(k) : L x L matrix, 
A : stepsize matrix. 

Elements [ ol, oz, . . . . CYL ] of the stepsize matrix A are 
not really ” stepsizes n like in the conventional NLMS or 
projection algorithms. However, as described below, these 
elements function as if they were stepsizes, and from the 
relationship between the previously proposed ES algorithm 
[4] and ESP algorithm [5], we call matrix A a stepsize ma- 
trix. 

On the other hand, the stepsize is known to be related 
to the forgetting factor Y of the RLS algorithm. In fact, 
according to (19), when the value A/R is large compared 
to PEs(k), the proportion of PEs(k) in PEs(k+l) becomes 
small. In other words, old information is forgotten quickly. 

Thus, the mean stepsize & shown in (15) has the same role 
as the forgetting factor v of the RLS algorithm. 

The covariance matrix Q(k) of the impulse response 
variation is added in (4); on the other hand, the time- 
invariant A/R is always added in (19). In other words, 
exponentially attenuating bias is always added in diagonal 
elements of the matrix PBS(k). As a result, the gain vector 
k(k) attenuatesexponentially in (18), so the filter coefficient 

vector h(k) is adjusted by the exponentially attenuating ad- 
justment vector in (17). Accordingly, this algorithm adjusts 
coefficients with large errors in large steps and coefficients 
with smalI errors in small steps. 

5. COMPUTER SIMULATIONS 

Computer simulation results on the ERLE convergence 
of the ES-RLS algorithm are shown in Figs. 2 and 3. The 
exponentially attenuating impulse response was generated 
by exponentially windowed white noise in the computer. 
The number of taps was 64. The filter coefficients were ini- 
tially set to zero. Ambient noise with a fixed SNR of 17 
dB was added. The impulse response changed at time step 
k = 1000. ERLE (echo return loss enhancement) is defined 
by 

where 
ERLE = 10 log,, E (dB), (21) 

PY = EMk)21, 
pe = W(k)‘] = E[(y(k) - i(k))2]. 

The signal powers pv and pe were estimated from 10 data 
samples for white noise and 256 for speech. Each curve is 
the average of 50 independent results. 

In the proposed algorithm, A/R is added to matrix 
P&k) at every time step k. This results in fast con- 
vergence because the expected variation of the room im- 
pulse response is reflected when the impulse response varies. 
However, this means that unnecessary variation (noise) is 
added even when the impulse response is not varying. As a 
result, the steady-state ERLE stays at a low level due to 
this noise. Such an effect is expected to be significant when 
the magnitude of the stepsize matrix A (mean stepsize ti) 
is large, i.e., a larger d results in a faster convergence but a 
smaller steady-state ERLE. On the other hand, a smaller 
5 results in slower convergence but a larger steady-state 
ERLE. Figure 2 demonstrates this effect, where parame- 
ter a/R was varied. The received input was white noise. As 
stated above, the mean stepsize d controls the trade-off be- 
tween the convergence speed and the steady-state ERLE. 

Next, Fig. 3 shows the ERLE convergence in the ES- 
RLS algorithm and the conventional RLS algorithm. The 
received inputs were (a) white noise and (b) speech. The 
forgetting factor of the RLS algorithm was set to v = 0.998 
to get a steady-state ERLE of 30 dB. In the ES-RLS algo- 
rithm, the mean stepsize d was set to get the same value of 
the steady-state ERLE as the conventional RLS algorithm. 
With both a white noi% input [Fig. 3 (a)] and a speech in- 
put pig. 3 (b)], the ES-RLS algorithms reaches an ERLE 
of 20 dB twice as fast as the RLS algorithm. 

The ES-RLS algorithm is regarded as an algorithm that 
replaces the covariance matrix Q(k) of the impulse response 
variation in the Kalman filter by the time-invariant expo 
nentially weighted diagonal matrix A. This replacement 
assumes that the room impulse response always varies by 
A. On the other hand, computer simulations, where the 
impulse response changed only at time step k = 1000, are 
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Fig. 2 Computer simulation results on ERLE conver- 
gence showing the effect of mean stepsize 5. The mean 
stepsize 5 controls the trade-off between the conver- 
gence speed and the steady-state ERLE. 

quite different from the assumption of the impulse response 
variation in the ES-RLS algorithm. Nevertheless, the ES- 
RLS algorithm was shown to have double the convergence 
speed of the RLS algorithm. 

6. CONCLUSIONS 

Knowledge about a room impulse response has been 
incorporated into the conventional RLS algorithm, which is 
the fastest of all conventional adaptive algorithms. As a re- 
sult, we have proposed a new adaptive algorithm, called the 
ES-RLS (exponentially weighted stepsize RLS) algorithm. 

The expected variation of a room impulse response be- 
comes progressively smaller along the series by the same ex- 
ponential ratio as the impulse response energy decay. The 
ES-RLS algorithm is derived by incorporating these varia- 
tion characteristics of the room impulse response into the 
updating equation of the coefficient error covariance matrix 
of the conventional RLS algorithm using Kalman filter the- 
ory, which gives physical meaning to the RLS algorithm. 
A diagonal matrix (stepsize matrix A) is added to the co- 
variance matrix. The diagonal components of this stepsize 
matrix are time-invariant and are set proportional to the 
expected variation of the room impulse response. 

The magnitude of the stepsize matrix (mean stepsize 
ti) controls the trade-off between the convergence speed 
and the steady-state ERLE. Computer simulations showed 
that our new adaptive algorithm has double the convergence 
speed of the conventional RLS algorithm. 
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