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ABSTRACT

A hose-shaped rescue robot is one of the robots that have been de-
veloped for disaster response in times of large-scale disasters such
as a massive earthquake. This robot is suitable for entering narrow
and dark places covered with rubble in a disaster site and for finding
victims inside it. It can transmit ambient sound captured by its built-
in microphones to its operator. However, there is a serious problem,
that is, the inherent noise of this robot, such as vibration sound or
fricative sound, is mixed with the transmitted voice, thereby disturb-
ing the operator’s perception of a call for help from a disaster victim.
In this paper, we apply the multichannel nonnegative matrix factor-
ization (NMF) with the rank-1 spatial constraint (determined rank-1
MNMF), which was proposed by Kitamura et al., to the reduction of
the inherent noise.

Index Terms— determined rank-1 MNMF, hose-shaped rescue
robot, ego-noise, noise reduction

1. INTRODUCTION

It is an important task to develop robots for coping with large-scale
disasters. Robots working in a disaster site are required in emer-
gency response and in the restoration of the disaster site, which are
difficult or dangerous tasks for humans. There are tasks for modern-
day robots in disaster response, but their functions are insufficient
outdoors and their ability to respond to unexpected situations is un-
satisfactory. For example, a robot cannot move in a disaster site
and evaluate the situation, as well as act in an environment that
does not fit its working condition. To support the development of
robots in a disaster site, which can overcome some of the problems
of conventional robots, the Council for Science, Technology and In-
novation promoted the ImPACT Tough Robotics Challenge [1]. In
this research and development program, we aim to realize remote-
controlled and autonomous robots that are effective in extreme situ-
ations, and develop technologies that will become the basis for the
development of outdoor robots.

In the Tough Robotics Challenge, five types of remote-controlled
and autonomous robots are developed. In this work, we deal with
one of them, namely, a hose-shaped rescue robot [2], which is long
and narrow like a snake. Using the microphones mounted on the
robot, we develop its voice recording function to capture a disaster
victim’s voice in a disaster site. We examine the application of the
determined rank-1 multichannel nonnegative matrix factorization
(determined rank-1 MNMF) [3], [4] to the reduction in the inherent
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Fig. 1. Hose-shaped rescue robot

noise (ego-noise) of the robot, which is a particularly big problem
for voice recording.

2. EGO-NOISE OF HOSE-SHAPED RESCUE ROBOT

2.1. Structure of robot and disposition of ego-noise

The hose-shaped rescue robot is suitable for entering narrow and
dark places covered with rubble in a disaster site and finding victims
inside it. Figure 1 shows a picture of the robot, and Fig. 2 shows its
structure. The robot consists of a hose for the axis and ciliary tape
wrapped around it; it moves forward slowly against the direction
of the cilia by vibrating the ciliary tape with vibration motors. A
camera and a lighting are attached to the tip of the robot, in addition
to an inertial measurement unit (IMU), microphones, and speakers
attached along the length of the robot.

According to the operation principle of the robot, very loud ego-
noise is mixed into the microphones. The main factors for the ego-
noise are considered to be the vibration sound generated by the vi-
bration motors and fricative sound. In an actual disaster site, the
voice of a person seeking help is not loud enough to capture, and it
is fainter than the ego-noise. To capture the voice in such a situation,
it is necessary to separate the voice from the recorded sound.
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Fig. 2. Structure of hose-shaped rescue robot

2.2. Conventional noise reduction methods

In the conventional noise reduction methods for other robots, it is as-
sumed that the acoustic characteristics of ego-noise do not change.
However, it is considered that competent performance cannot be ob-
tained by conventional methods, because the ego-noise characteris-
tics are changed by the area a robot touches. Because a robot oper-
ates at the time of a disaster, a method that requires prior informa-
tion is inappropriate. Therefore, in this work, we choose and apply
a method that does not require prior information and can further re-
duce ego-noise compared with conventional methods.

3. APPLICATION OF BLIND SOURCE SEPARATION TO
NOISE REDUCTION

3.1. Approach

Blind source separation (BSS) is a method that does not require prior
information and it separates sound sources from only observed sig-
nals, and it is studied actively. It is considered that BSS, which uses
multichannel signals, is effective because it utilizes the spatial infor-
mation of sound sources obtained by the robot’s many microphones.
Thus, we consider an effective multichannel BSS method for the
ego-noise reduction in the hose-shaped rescue robot.

It is considered that the main factors for the ego-noise are the vi-
bration sound generated by vibration motors and fricative sound. We
conjecture that ego-noise can be expressed effectively by nonnega-
tive matrix factorization (NMF) [5] because it is considered that the
time frequency structure is obtained by repeating several types of
similar spectra. Because the hose-shaped rescue robot moves very
slowly, the source separation by linear microphone array signal pro-
cessing is effective when a linear time-varying mixture is assumed,
which means that the positional relationship between the ego-noise
sources and the microphones barely changes. In particular, the deter-
mined rank-1 MNMF [3], [4] method proposed by Kitamura et al.
introduces the expression of NMF into the sound source model of
the independent vector analysis (IVA) [6]. This is one of the sound
source separation techniques by linear microphone array signal pro-
cessing, and it realizes sound source separation more precisely than
IVA. On the basis of the foregoing, we consider that the determined
rank-1 MNMF is effective for the ego-noise reduction for the hose-
shaped rescue robot and apply it.

3.2. Blind source separation

3.2.1. Formulation

The number of sources and the number of microphones are assumed
to be M . We describe multichannel sound source signals, observed
signals, and separated signals in each time-frequency slot as follows:

sij = (sij,1 · · · sij,M )t, (1)
xij = (xij,1 · · ·xij,M )t, (2)
yij = (yij,1 · · · yij,M )t, (3)

where 1 ≤ i ≤ I (i ∈ N) describes the frequency index, 1 ≤ j ≤
J (j ∈ N) describes the time index, and t denotes the vector trans-
pose, and all the entries of these vectors are complex values. We can
approximately represent the observed signals as

xij = Aisij . (4)

Then, Ai = (ai,1 · · ·ai,M ) expresses the mixing matrix of the ob-
served signals. When Wi = (wi,1 · · ·wi,M )h refers to the demix-
ing matrix, the separated signal yij is represented as

yij = Wixij , (5)

where ai,m is the steering vector, wi,m is the demixing filter, and h

is the Hermitian transpose.

3.2.2. Determined rank-1 MNMF

The determined rank-1 MNMF [3], [4] is a method that adds the
rank-1 spatial model limitation to the multichannel NMF (MNMF)
[7]. We explain the formulation and algorithm [3], [4] derived by
Kitamura et al. An observed signal is represented by the correlation
matrix between the channels, Xij , as

Xij = xijx
h
ij . (6)

The separation model X̂ij that approximates Xij is represented as

Xij ≈ X̂ij = Σk(ΣmHi,mzmk)tikvkj , (7)

where m = 1, · · · ,M is the index of sound sources, and k =
1, · · · ,K is the index of the spectral bases for NMF. Hi,m is an
M×M spatial covariance matrix for each frequency i and source m,
and Hi,m = ai,mah

i,m is limited to a rank-1 matrix. zmk ∈ R[0,1] is
a weight for distributing K NMF bases (frequent appearance spec-
trum) to each sound source. It shows that the kth base contributes to
only the mth source. In addition, tik ∈ R+ and vkj ∈ R+ are the
elements of the basis matrix T and the activation matrix V . MNMF
obtains the separated signals y by assigning the spatial covariance
matrices H and the source information TV with the partition func-
tion. However, the determined rank-1 MNMF separates the sound
source by obtaining the demixing matrix Wi from the decomposed
model described above. The update rules of the demixing matrix Wi

to obtain the separated signal y is as follows:

rij,m = Σkzmktikvkj , (8)

Vi,m =
1

J
Σj

1

rij,m
xijx

h
ij , (9)

wi,m ← (WiVi,m)−1 em, (10)

where em is the unit vector and the only mth element equals to 1.
The partition function zmk and the elements of the basis matrix

tik and the activation matrix vkj in the determined rank-1 MNMF



are updated by two methods. One method involves the assignment
of the bases to each separated sound source using the above partition
function automatically, and the other method does not use the par-
tition function and instead expresses all sound sources in the same
number of bases. The method without the partition function does
not have the update of zmk. Therefore, it updates tik,m and vkj,m
by applying the update rules of NMF by the channels. The update
rules are as follows:

til,m ← til,m

√
Σj |yij,m|2vlj,m (Σl′til′,mvl′j,m)−2

Σjvlj,m (Σl′til′,mvl′j,m)−1 , (11)

vlj,m ← vil,m

√
Σi|yij,m|2til,m (Σl′til′,mvl′j,m)−2

Σitil,m (Σl′ til′,mvl′j,m)−1 . (12)

On the other hand, in the method involving the assignment of the
bases with the partition function zmk, it is necessary to update zmk

as with MNMF.

zmk ← zmk

√
Σi,j |yij,m|2tikvkj (Σk′zmk′tik′vk′j)

−2

Σi,jtikvkj (Σk′zmk′tik′vk′j)
−1 (13)

tik ← tik

√
Σj,m|yij,m|2zmkvkj (Σk′zmk′tik′vk′j)

−2

Σj,mzmkvkj (Σk′zmk′tik′vk′j)
−1 (14)

vkj ← vkj

√
Σi,m|yij,m|2zmktik (Σk′zmk′tik′vk′j)

−2

Σi,mzmktik (Σk′zmk′tik′vk′j)
−1 (15)

From the above, we obtain Wi to find separated signals by updating
Wi, zmk, tik, and vkj alternately and repeatedly. Finally, we restore
the signal scale by applying a back-projection technique [8].

4. EXPERIMENT

4.1. Conditions

Using the actual ego-noise recorded by a hose-shaped rescue robot,
we evaluated the ego-noise reduction performance. Specifically, we
measured the impulse responses from a disaster victim to micro-
phones using a robot with eight microphones, seven vibration mo-
tors, and a total length of 3 m, in the set simulating a disaster site.
The distance of the robot from a sound is 1–3 m. We generated a
mixed sound for simulation by convolving an impulse response with
a speech and adding it to the ego-noise-adjusted SNR. We separated
a mixed sound by the determined rank-1 MNMF and evaluated it.
We used the signal-to-distortion ratio (SDR) [9] as an evaluation
measure. Table 1 shows other experiment conditions.

In the experiment, we investigated each parameter of the de-
termined rank-1 MNMF, which was appropriate for the ego-noise
reduction. Moreover, on the basis of the quantity of SDR improve-
ment, we confirmed whether the determined rank-1 MNMF was ef-
fective for the ego-noise reduction for the hose-shaped rescue robot.

4.2. Results

4.2.1. Results of experiment on fast Fourier fransform length

Figure 3 shows the experimental results for finding the number of
bases and changing the analysis frame length. In this experiment,
we uses the number of bases, which provides the best result with
or without the partition function. Without the partition function, the
number of bases assigned to each sound sources is fixed at 15. On
the other hand, with the partition function, we fix the total number

Table 1. Experimental conditions

Sampling frequency 16 kHz
FFT length 1024, 2048, 4096, 8192 sample

Window shift length FFT length/4

Number of bases Without partition function 1, 5, 10, 15, 20
With partition function 8, 40, 80, 120, 160

Number of iterations 200
Input SNR 0, −5, −10 dB
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Fig. 3. SDRs of different analysis frame length (Input SNR: −5 dB)

of bases of all sound sources to 40 and assign each base to each
sound source by the partition function. Figure 3 shows the results
in the case that the input SNR of the sound to the ego-noise was
−5 dB; SDR was highest when the analysis frame length was 2048
samples. In the case of the determined rank-1 MNMF, the analy-
sis frame length that provides good results was changed by the im-
pluse response from a victim to eight microphones. Therefore, it was
confirmed that SDR was markedly improved by setting the analysis
frame length to 2048 samples.

4.2.2. Results of experiment on partitioning bases

We fixed the analysis frame length to 2048 samples and changed the
partition function and number of bases. Figures 4 and 5 show the
experimental results without and with the partition function, respec-
tively. The input SNR of the sound to ego-noise was−5 dB. Figures
4 and 5 confirmed that SDR was highest when we did not use the
partition function and the number of bases was 15. On the other
hand, when we assigned 40 bases with the partition function, SDR
was highest.

4.2.3. Results of experiment on effectiveness of determined rank-1
MNMF

Figure 6 shows SDR improvement achieved by IVA, determined
rank-1 MNMF without the partition function, and determined rank-
1 MNMF with the partition function, with various input SNRs. The
analysis frame length was 2048 samples for 15 bases assigned to the
sound sources for the determined rank-1 MNMF without the parti-
tion function and 40 bases in total for the determined rank-1 MNMF
with the partition function. Figure 6 confirmed that the determined
rank-1 MNMF has a higher ego-noise reduction performance than
IVA. In addition, it is shown that a large number of bases is neces-
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sary to express each sound source, because IVA is equivalent in the
case of 1 base. Furthermore, without the partition function, the SDR
improvement was greater, which confirms that the partition func-
tion did not work effectively. By adding a restriction to the partition
function to match the sound and ego-noise, we can make use of the
flexibility of the partition function in ego-noise reduction.

5. CONCLUSIONS

In this paper, we applied the determined rank-1 MNMF to the ego-
noise reduction for a hose-shaped rescue robot for response at a dis-
aster site. First, we examined the analysis frame length and num-
ber of bases appropriate for ego-noise reduction in the determined
rank-1 MNMF. Furthermore, we compared IVA and the determined
rank-1 MNMF; the determined rank-1 MNMF had a higher SDR.
We confirmed the effectiveness of the determined rank-1 MNMF for
ego-noise reduction.
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